Please use this identifier to cite or link to this item: http://hdl.handle.net/10174/19621

Title: Confidence intervals for large non- centrality parameter
Authors: Inácio, S.
Oliveira, M.
Mexia, J.T.
Editors: Zmyślony, R.
Keywords: asymptotic linearity
non-centrality parameters
highly significant F tests
measure relevance
Issue Date: 2-May-2015
Publisher: Discussiones Mathematicae Probability and Statistics
Citation: Inácio, S. T., Oliveira, M. M., Mexia, J.T. 2015. Confidence intervals for large non-centrality parameter. Discussiones Mathematicae Probability and Statistics 35.45–56 doi:10.7151/dmps.1175. ISSN 1509-9423,ISSN 2084-0381.
Abstract: We use asymptotic linearity to derive confidence intervals for large noncentrality parameters. These results enable us to measure relevance of effects and interactions in multifactors models when we get highly statistically significant the values of F tests statistics. We show how to use our approach by considering two sets of data as application examples.
URI: http://hdl.handle.net/10174/19621
ISSN: 2084-0381
Type: article
Appears in Collections:CIMA - Publicações - Artigos em Revistas Internacionais Com Arbitragem Científica

Files in This Item:

File Description SizeFormat
Inacio et al.pdf1.98 MBAdobe PDFView/OpenRestrict Access. You can Request a copy!
FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Dspace Dspace
DSpace Software, version 1.6.2 Copyright © 2002-2008 MIT and Hewlett-Packard - Feedback
UEvora B-On Curriculum DeGois