Please use this identifier to cite or link to this item: http://hdl.handle.net/10174/1396

Title: A DeMoivre-Laplace theorem of all orders of regularity
Authors: van den Berg, Imme
Keywords: Binomial distribution
DeMoivre-Laplace Theorem
Pascal Triangle
Gaussian distribution
difference quotients
discrete heat equation
nonstandard analysis
Issue Date: 2007
Publisher: Shaker Publishing, Maastricht/Aachen
Abstract: The DeMoivre-Laplace Theorem states that the binomial probability distribution B(N; 1/2) tends for N to infinity to the Gaussian distribution. We extend this theorem to the difference quotients of the family of the binomial distributions with varying N, showing that they converge to the corresponding differential quotients of the time-dependent Gaussian distribution. The convergence holds for difference quotients of all order.
URI: http://hdl.handle.net/10174/1396
Type: article
Appears in Collections:MAT - Artigos em Livros de Actas/Proceedings

Files in This Item:

File Description SizeFormat
abstractlaufen3.pdfResumo do conte├║do29.51 kBAdobe PDFView/Open
FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Dspace Dspace
DSpace Software, version 1.6.2 Copyright © 2002-2008 MIT and Hewlett-Packard - Feedback
UEvora B-On Curriculum DeGois