Please use this identifier to cite or link to this item: http://hdl.handle.net/10174/13679

Title: On Vanishing dissipative-dispersive perturbations of hyperbolic conservation laws
Authors: Correia, Joaquim M.C.
Bedjaoui, Nabil
Mammeri, Youcef
Editors: Shitikova, Marina V.
Vladareanu, Luige
Guarnaccia, Claudio
Keywords: diffusion
viscosity
capillarity
dissipation
dispersion
KdV equation
Burgers’ equation
hyperbolic conservation laws
entropy measure-valued solutions
Issue Date: 2014
Publisher: WSEAS Press
Citation: Recent Advances in Mechanical Engineering Series 11, pp. 13-18, ISBN: 978-960-474-402-2
Abstract: In presence of linear diffusion and non-positive dispersion, we prove well-posedness of the nonlinear conservation equation u_t+f(u)_x=\eps u_xx -\del((u_xx)^2)_x. Then, as the right-hand perturbations vanish, we prove convergence of the previous solutions to the entropy weak solution of the hyperbolic conservation law u_t+f(u)_x=0.
URI: http://hdl.handle.net/10174/13679
ISBN: 978-960-474-402-2
ISSN: 2227-4596
Type: article
Appears in Collections:CIMA - Artigos em Livros de Actas/Proceedings

Files in This Item:

File Description SizeFormat
Correia(Vanish Perturb Hyperbolic Cons. Laws).pdf183.08 kBAdobe PDFView/Open
FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Dspace Dspace
DSpace Software, version 1.6.2 Copyright © 2002-2008 MIT and Hewlett-Packard - Feedback
UEvora B-On Curriculum DeGois