Please use this identifier to cite or link to this item: http://hdl.handle.net/10174/11888

Title: Linear confinement in momentum space: Singularity-free bound-state equations
Authors: Leitão, Sofia
Stadler, Alfred
Peña, M. T.
Biernat, Elmar P.
Keywords: Confinement
Linear potential
Momentum space
Issue Date: Nov-2014
Publisher: American Physical Society
Citation: Sofia Leitão, Alfred Stadler, M. T. Peña, and Elmar P. Biernat, Phys. Rev. D 90, 096003 (2014)
Abstract: Relativistic equations of Bethe-Salpeter type for hadron structure are most conveniently formulated in momentum space. The presence of confining interactions causes complications because the corresponding kernels are singular. This occurs not only in the relativistic case but also in the nonrelativistic Schrödinger equation where this problem can be studied more easily. For the linear confining interaction the singularity reduces to one of Cauchy principal value form. Although this singularity is integrable, it still makes accurate numerical solutions difficult. We show that this principal value singularity can be eliminated by means of a subtraction method. The resulting equation is much easier to solve and yields accurate and stable solutions. To test the method’s numerical efficiency, we perform a three-parameter least-squares fit of a simple linear-plus-Coulomb potential to the bottomonium spectrum.
URI: http://hdl.handle.net/10174/11888
Type: article
Appears in Collections:FIS - Publicações - Artigos em Revistas Internacionais Com Arbitragem Científica

Files in This Item:

File Description SizeFormat
Leitao-Stadler-Pena-Biernat-PRD90-096003-2014.pdf349.67 kBAdobe PDFView/OpenRestrict Access. You can Request a copy!
FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Dspace Dspace
DSpace Software, version 1.6.2 Copyright © 2002-2008 MIT and Hewlett-Packard - Feedback
UEvora B-On Curriculum DeGois