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This paper is devoted to the synchronization of a dynamical system defined by two different
coupling versions of two identical piecewise linear bimodal maps. We consider both local
and global studies, using different tools as natural transversal Lyapunov exponent, Lyapunov
functions, eigenvalues and eigenvectors and numerical simulations. We obtain theoretical
results for the existence of synchronization on coupling parameter range. We characterize the
synchronization manifold as an attractor and measure the synchronization speed. In one coupling
version, we give a necessary and sufficient condition for the synchronization. We study the basins
of synchronization and show that, depending upon the type of coupling, they can have very
different shapes and are not necessarily constituted by the whole phase space; in some cases,
they can be riddled.

Keywords : Almost global synchronization; Lyapunov exponents; basins; Lyapunov functions.

1350134-1

http://dx.doi.org/10.1142/S0218127413501344


August 31, 2013 11:53 WSPC/S0218-1274 1350134

D. Fournier-Prunaret et al.

1. Introduction

An important feature of our world is the tendency
of different systems to achieve common rhythms,
namely, the tendency for synchronization. Essen-
tially, the synchronization can be understood as the
ability of systems of various types to form a com-
mon scheme or to have interaction strength, see for
example [Pikovsky et al., 2001; Osipov et al., 2007].
The phenomenon of synchronization occurs when
at least two elements are coupled but can also be
found in assemblies involving hundreds, thousands
or millions of dynamic entities. For instance, we can
cite: the insulin-secreting cells in the pancreas [Sher-
man et al., 1988], the ratchet system [Alatriste &
Mateos, 2006], the behavior of diffusively coupled
droplets separated by oil gaps, where each drop
contains the reactants of the oscillatory Belousov–
Zhabotinsky reaction [Toiya et al., 2010] or the
classical and earliest known (in 1657 by Christian
Huygens), the pendulum clock [Caneco et al., 2009;
Luo & Min, 2011]. However, this phenomenon has
become even more important and powerful from
the moment it was found that synchronization can
exist even in systems with chaotic dynamics. This
was revealed in the early 90s, with the pioneering
studies of Yamada and Fujisaka [1984] and Pec-
ora and Carroll [1990]. Thus, the phenomenon of
synchronization has become one of the most active
fields of research in nonlinear dynamics. Over the
years, different types of synchronization have been
characterized, such as the complete synchroniza-
tion, lag synchronization, generalized synchroniza-
tion, phase and imperfect phase synchronization
[Srinivasan et al., 2012; Wu et al., 2012; Suresh
et al., 2012]. In this paper, we also consider the
almost global synchronization [Canale & Monzón,
2008].

Our work is based on previous studies by Hasler
and Maistrenko [1987] who have studied in their
article various phenomena linked to the synchro-
nization of chaotic systems. They propose two types
of coupling that allow synchronization of two one-
dimensional systems by introducing models of two-
dimensional piecewise linear transformations. But
while they have coupled unimodal maps, we pro-
pose to extend their work with bimodal maps. We
give a necessary condition of existence of complete
synchronization in a plane of coupling parameters.
Another purpose is to have a necessary and suf-
ficient condition of complete synchronization and
complementary results leading to synchronization.

For this, we propose a complementary study and a
discussion in order to obtain global results and not
only local. First, let us recall that complete syn-
chronization can be defined as the equality of the
state variables while evolving in time, in the case
of coupled identical systems. We also consider the
notion of almost global synchronization [Canale &
Monzón, 2008], which is defined as the case in which
almost all initial conditions (except at most a set
of measure zero) in the state space give rise to iter-
ated sequences converging towards the set where the
variables of the state space are equal, the diagonal
set. For this aim, we consider Lyapunov functions
and we study more precisely the eigenvalues and
associated eigenvectors on a direction transverse to
the diagonal.

We do not introduce new tools or new tech-
niques in our paper. First, we wish to extend the
classical tools permitting the study of synchroniza-
tion in the case of the coupling of bimodal maps, in
order to obtain when a necessary and sufficient con-
dition on parameters is for possible synchronization.
Then we wish to complete classical works by com-
paring results obtained from the use of Lyapunov
exponents and Lyapunov functions, a discussion
using eigenvectors in the phase plane and simula-
tions of basins of attraction. To our knowledge, such
work has not yet been done at the same time for
the same system. Our aim is to consider the differ-
ent ways of studying synchronization of chaos or of
other attractors in a system, which permit to look at
different sides of it. The couplings that we consider
are classical ones, but they have not been studied in
the case of bimodal maps. We think that our study
can permit to extend the work to n-modal maps and
also to higher dimensional problems. Moreover, a
good knowledge of the synchronization in parame-
ter plane can permit system control in several kinds
of applications [Caneco et al., 2011; Wieland et al.,
2011].

This article is organized as follows. In Sec. 2,
we consider a dynamical system defined by two
different coupling versions of two identical piece-
wise linear bimodal maps and we give a necessary
condition to obtain complete synchronization for
the two versions, using the transversal Lyapunov
exponent. Moreover, we characterize the synchro-
nization manifold as an attractor and measure the
synchronization speed. In Sec. 3, our purpose is to
obtain a necessary and sufficient condition for the
synchronization behavior and to know which initial
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conditions in the phase plane give rise to synchro-
nization. In Sec. 4, we present some properties of
the basins of synchronized states for two coupling
versions, namely, basins can be riddled. Our basins
are obtained by numerical simulations, coupled with
geometrical properties of critical lines. Finally, in
the last section, we summarize the results and open
routes for future work.

2. Synchronization of Chaotic
Piecewise Linear Bimodal Maps

One of the possible criteria for synchronization is
that all transversal Lyapunov exponents of trajecto-
ries are negative. Nevertheless, this condition is not
sufficient. In [Pecora & Carroll, 1990, 1991] it was
established that synchronization can be achieved
provided that all the transversal Lyapunov expo-
nents are negative. Since then, some authors [Shuai
et al., 1997] have reported their computational
experiments showing that apparently, it is possi-
ble to achieve synchronization without the nega-
tivity of all transversal Lyapunov exponents and
some others, see [Cao & Lu, 2006] and references
therein, have reported that sometimes there is a
brief lack of synchronization in the regions where
all the transversal Lyapunov exponents are nega-
tive. How to explain these situations?

In fact, there is a numerical trap when coupling
identical systems. Near the synchronization mani-
fold, the two identical systems look like in complete
synchronization due to finite precision of numeri-
cal calculations [Pikovsky et al., 2001]. As a matter
of fact, the negativity of the transversal Lyapunov
exponents is a necessary condition for the stability
of the synchronized state [Boccaletti et al., 2002].
Indeed, the conditional or transversal Lyapunov
exponent is related to the logarithm average of the
distance of the solutions on the transversal manifold
to the solutions on the synchronization manifold.
The negativity of the transversal Lyapunov expo-
nent is a mathematical expression of the decreasing
of the logarithm average. So, if there is a strong
convergence of this distance to zero, this average
must decrease to zero. But the converse is not true.
Indeed, even when all the transversal Lyapunov
exponents are negative, it is possible that some
orbits escape from the synchronization manifold.
This is only a weak synchronization, in the sense of
Milnor [Pikovsky et al., 2001]. Only Lyapunov func-
tions give necessary and sufficient conditions for the
stability of the synchronization manifold. Besides

the fact that the stability based on the negativity of
the transversal Lyapunov exponents be only a weak
stability, there are other phenomena like bubbling,
riddling and blowout bifurcation that can explain
the brief and persistent events of desynchronization
in the region where all the transversal Lyapunov
exponents are negative, see [Boccaletti et al., 2002]
and references therein.

In this section we consider a dynamical sys-
tem defined by two different coupling versions of
two identical piecewise linear bimodal maps. We are
concerned with the range parameter for which there
is synchronization of these maps, using the transver-
sal Lyapunov exponent. Moreover, we characterize
the synchronization manifold as an attractor and
measure the synchronization speed.

2.1. Coupling of two identical
piecewise linear bimodal maps

Let f : [0, 1] → [0, 1] be a bimodal map, defined by

f(x) = |1 − |3x − 1||

=




3x, 0 ≤ x <
1
3

−3x + 2,
1
3
≤ x <

2
3

3x − 2,
2
3
≤ x < 1.

(1)

Taking into account the one-dimensional
map (1), we consider two kinds of coupling
[Hasler & Maistrenko, 1987] to study synchroniza-
tion phenomena. Version 1 of the coupling is given
by (xk+1, yk+1) = F (xk, yk), with F defined by{

xk+1 = f(xk) + δ(yk − xk)

yk+1 = f(yk) + ε(xk − yk).
(2)

Version 2 of the coupling is given by (xk+1, yk+1) =
G(xk, yk), with G defined by{

xk+1 = f [xk + δ(yk − xk)]

yk+1 = f [yk + ε(xk − yk)].
(3)

In both cases, k ∈ N0, xk and yk are the state
variables, δ and ε are real parameters. Both ver-
sions of coupling are bidirectional, since the systems
xk+1 = f(xk) and yk+1 = f(yk) are connected in
such a way that they mutually influence each other’s
behavior. In version 1, the map F can generally be
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Fig. 1. The map (1).

defined from R
2 to R

2, but we mainly consider the
situation in [0, 1]2, when there exists bounded iter-
ated sequences. The two coupling parameters δ and
ε are positive. In version 2, the map G is defined
from [0, 1]2 to [0, 1]2 when (δ, ε) ∈ [0, 1]2.

Considering (1), we can write the map F of (2),
coupling version 1, as{

xk+1 = |1 − |3xk − 1|| + δ(yk − xk)

yk+1 = |1 − |3yk − 1|| + ε(xk − yk)
(4)

and the map G of (3), coupling version 2, as{
xk+1 = |1 − |3[xk + δ(yk − xk)] − 1||
yk+1 = |1 − |3[yk + ε(xk − yk)] − 1||

or, equivalently{
xk+1 = |1 − |αxk + (3 − α)yk − 1||
yk+1 = |1 − |βyk + (3 − β)xk − 1|| (5)

where α = 3 − 3δ and β = 3 − 3ε. This version
of coupling corresponds to the family of maps con-
sidered in [Manjunath & Fournier-Prunaret, 2011],
defined on [0, 1]2, by

Gα,β(x, y) = (|1 − |αx + (3 − α)y − 1||,
|1 − |(3 − β)x + βy − 1||) (6)

with the parameters (α, β) taking values in [0, 3]2

to have the square [0, 1]2 mapped into itself

((α, β) ∈ [0, 3]2 is equivalent to (δ, ε) ∈ [0, 1]2).
Some important properties of the map Gα,β have
been previously studied in [Manjunath & Fournier-
Prunaret, 2011].

2.2. Synchronization range
parameter and transversal
Lyapunov exponent

Systems (2) and (3) are two different ways of
coupling the same function f . When the coupled
systems are identical, synchronization appears as
the equality of the state variables while evolving
in time. This type of synchronization is referred
to in the literature as complete or identical
synchronization.

The maps F and G defined by (4) and (5),
respectively, keep invariant the segment of the
diagonal set

S = {(x, y) ∈ R
2 : 0 ≤ x = y ≤ 1}.

The straight line x = y is the subspace where the
two dynamical systems xk+1 = f(xk) and yk+1 =
f(yk) are synchronized.

Definition. The synchronization manifold S is said
to be globally asymptotically stable (or the dynami-
cal systems defined by (2) or (3) are globally asymp-
totically synchronized) if for any η > 0, there exists
k0, such that for all k > k0,

‖xk − yk‖ ≤ η.

A trajectory of the dynamical system defined
by (2) or (3) synchronizes if it is bounded and
limk→∞ |xk −yk| = 0. The synchronization stability
study of identically coupled systems can be formu-
lated by addressing the question of the stability of
the synchronization manifold (x ≡ y), or equiva-
lently, by studying the temporal evolution of the
synchronization error ek ≡ xk − yk.

In order to check the synchronization we have
to investigate if a trajectory that starts near S con-
verges or not to a trajectory on S. The speed of
mutual convergence or divergence of these trajecto-
ries is measured by the Lyapunov exponents.

2.2.1. Lyapunov exponents

One of the most important properties of a chaotic
system is the sensitivity to initial conditions. A way
to measure the sensitivity with respect to initial
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conditions is to compute the average rate at which
nearby trajectories diverge from each other. The
computation of the Lyapunov exponents gives the
average rate of convergence or divergence of two
trajectories from each other.

The Lyapunov exponents of a trajectory xk is
defined by

λ = lim
k→+∞

1
k

k−1∑
j=0

ln |f ′(xj)| (7)

whenever it exists [Hasler & Maistrenko, 1987].
Note that, if xj = 1

3 or xj = 2
3 , for some j, then,

f ′(xj) does not exist. The number of such trajecto-
ries xj is countably infinite, so the Lebesgue mea-
sure of these initial conditions is zero. The question
of existence of the limit in (7) and its independence
of a certain particular trajectory is associated with a
unique probability density ρ(x), that is f -invariant.
The f -invariant probability density ρ(x) on [0, 1] for
the piecewise linear map (1) verifies

ρ(x) =
1
3

[
ρ
(x

3

)
+ ρ

(
x − 2
−3

)
+ ρ

(
x + 2

3

)]
. (8)

It can be shown that the only probability den-
sity which satisfies (8) is the constant probability
on [0, 1], ρ(x) = 1. From Birkhoff’s ergodic theo-
rem, it follows that the asymptotic distribution of
the points of almost all trajectories is uniform. For
almost all initial conditions, the Lyapunov expo-
nent defined by (7) exists, is designated by natural
Lyapunov exponent and may be expressed as

λnat =
∫ 1

0
ln|f ′(x)|ρ(x)dx. (9)

For the piecewise linear map (1), we have

λ = λnat = ln(3).

2.2.2. Synchronization domain

The map F of coupling version 1, defined by sys-
tem (4), has nine determinations, depending on the
sign of the terms inside the brackets | · | in the
expression of the map, i.e. depending on the region
Rij where (x, y) belongs, see Fig. 2. We consider
Rij as the open regions, which are limited by the
straight lines li, i = 1, 2, 3, 4, where l1 ≡ y = 1/3,
l2 ≡ x = 1/3, l3 ≡ y = 2/3 and l4 ≡ x = 2/3. These
line segments are the closure of a subset on which
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Fig. 2. The regions Rij , limited by the lines l1 ≡ y = 1/3,
l2 ≡ x = 1/3, l3 ≡ y = 2/3 and l4 ≡ x = 2/3, constitute a
partition of the square [0, 1]2. The expression of the map F
of coupling version 1 depends on the region Rij .

F fails to be differentiable, and we call these line
segments critical lines [Mira et al., 1996].

In region R11, the version 1 of the coupling is
given by {

xk+1 = 3xk + δ(yk − xk)

yk+1 = 3yk + ε(xk − yk).
(10)

Respectively, in R22 (11) and R33 (12), one has{
xk+1 = −3xk + 2 + δ(yk − xk)

yk+1 = −3yk + 2 + ε(xk − yk)
(11)

{
xk+1 = 3xk − 2 + δ(yk − xk)

yk+1 = 3yk − 2 + ε(xk − yk).
(12)

In regions Rij, i, j = 1, 2, 3, i �= j, the ver-
sion 1 of the coupling is given by combinations of
expressions of xk+1 and yk+1 obtained from (10),
(11) or (12), depending where the point (xk, yk) is
located regarding the straight lines li, i = 1, 2, 3, 4.

For points on the synchronization subspace S,
only the regions Rii matter, the Jacobian matrix of
the system (4) for these points, where x = y, is

DF

[
x

x

]
=

[
c − δ δ

ε c − ε

]
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where

c = c(x) =




3 if x ∈
[
0,

1
3

[
∪

]
2
3
, 1

]

−3 if x ∈
]
1
3
,
2
3

[
.

(13)

The eigenvalues of the Jacobian DF are

µ1(x) = c and µ2(x) = c − ε − δ. (14)

The corresponding eigenvectors are

v1 = (1, 1) and v2 = (δ,−ε). (15)

For the map G of coupling version 2, defined by
system (5), there are nine determinations, depend-
ing on the sign of the terms inside the brackets | · |
in (5), i.e. depending on the region Rij where (x, y)
belongs, see Fig. 3.

The regions Rij are limited by the straight lines
contained in I2 given by αx + (3 − α)y − 1 = 0,
αx + (3 − α)y − 1 = 1, (3 − β)x + βy − 1 = 0
and (3 − β)x + βy − 1 = 1, which are respectively
denoted by l1, l2, l3 and l4. As in the case of the map
F , these line segments are the closure of a subset on
which Gα,β fails to be differentiable, and are called
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Fig. 3. As for the map F , the expression of the map G
of coupling version 2 depends on the region Rij , which are
limited by the lines l1, l2, l3 and l4. The regions Rij constitute

a partition of the square [0, 1]2. The lines li, i = 1, 2, 3, 4 are
not horizontal nor vertical, but the situation is very similar
to that of the map F .

critical lines [Mira et al., 1996]. It is straightforward
to observe that the critical line l1 is parallel to l2,
and l3 is parallel to l4 regardless of α, β. The slopes
of l1 and l2 are equal to α/(α − 3) and the slopes
of l3 and l4 are equal to (β − 3)/β. They are always
negatives. The slopes of l3 and l4 are less than the
slopes of l1 and l2 iff α + β < 3. When α + β < 3,
the slopes of l3 and l4 are less than the slopes of l1
and l2. When α + β > 3, the slopes of l3 and l4 are
greater than the slopes of l1 and l2 and regions Rij

are inverted regarding the diagonal x = y. When
α+β belongs to [2, 4], regions R13 and R31 are out-
side of the square. These lines define the bound-
aries of regions Rij , i, j = 1, 2, 3, where Gα,β is
defined by one of the nine determinations.

In R11, version 2 of the coupling is given by{
xk+1 = 3[xk + δ(yk − xk)]

yk+1 = 3[yk + ε(xk − yk)].
(16)

Respectively, in R22 (17) and R33 (18), one has{
xk+1 = −3[xk + δ(yk − xk)] + 2

yk+1 = −3[yk + ε(xk − yk)] + 2
(17)

{
xk+1 = 3[xk + δ(yk − xk)] − 2

yk+1 = 3[yk + ε(xk − yk)] − 2.
(18)

As in the case of the map F , in regions Rij ,
i, j = 1, 2, 3, i �= j, version 2 of the coupling is
given by combinations of expressions of xk+1 and
yk+1 obtained from (16), (17) or (18), depending
where the point (xk, yk) is located on the straight
lines li, i = 1, 2, 3, 4.

For the study of the Jacobian matrix of sys-
tem (5) for points (x, y) ∈ S, only the regions Rii

matter, so, for these points the Jacobian is

DG

[
x

x

]
= c

[
1 − δ δ

ε 1 − ε

]
= c




α

3
3 − α

3

3 − β

3
β

3




where c is defined in (13). In this case, the eigenval-
ues of DG are

µ1(x) = c and µ2(x) = c(1 − δ − ε) (19)

and the corresponding eigenvectors are

v1 = (1, 1) and

v2 = (δ,−ε) =
(

3 − α

3
,−3 − β

3

)
.

(20)
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For both cases, (4) version 1 or (5) version 2, the
eigenvectors do not depend on x, they are also
eigenvectors of

Dk =
∂G

∂x
(xk−1)

∂G

∂x
(xk−2) · · · ∂G

∂x
(x0).

The two eigenvalues of Dk are

µi = µi(xk−1)µi(xk−2) · · · µi(x0)

with i = 1, 2. The corresponding Lyapunov expo-
nents are

λi = lim
k→+∞

1
k

k−1∑
j(0)

ln|µi(xj)|.

Note that, for both cases, (4) version 1 and (5)
version 2, the first eigenvector belongs to the sub-
space S. Thus, the first Lyapunov exponent, which
will be denoted by λ‖, corresponds to the motion
in the subspace S and this motion is given by the
one-dimensional dynamical system xk = fk(x0). In
particular, we obtain

λ1 = λ‖ = ln(3).

The second eigenvector is transversal to S
and the corresponding Lyapunov exponent is called
transversal Lyapunov exponent, which will be
denoted by λ⊥. Note that, for the case (4) version 1,
the eigenvalue µ2 depends on x. In the case (5) ver-
sion 2, the eigenvalue µ2 also depends on x, however
the corresponding Lyapunov exponent does not and
we obtain

λ2 = λ⊥ = ln|c(1 − δ − ε)| = ln|α + β − 3|.
Using the one-dimensional invariant probability

density ρ(x) = 1 on S, the value of λi, for almost
all trajectories in S, can be computed by applying
Birkhoff’s ergodic theorem, i.e.

λnat
i =

∫ 1

0
ln|µi(x)|ρ(x)dx. (21)

For both cases, the natural parallel Lyapunov expo-
nent verifies

λnat
‖ = λ1 = λ‖ = ln(3).

In the case (4) version 1, we obtain the natural
transversal Lyapunov exponent

λnat
⊥ = λ2 =

1
3

ln(|3 − ε − δ|2|−3 − ε − δ|).
(22)

In the case (5) version 2, the natural transversal
Lyapunov exponent is

λnat
⊥ = λ2 = λ⊥ = ln|α + β − 3|. (23)

If λnat
⊥ is negative, the trajectories beginning

close to S are in the mean attracted to S and the
system synchronizes. In the case (4) version 1, λnat

⊥
is negative if (3 − d)2|3 + d| < 1, where d = ε + δ,
i.e. d1 < ε + δ < d2, where d1 = 2.57653 . . .
and d2 = 3.39543 . . . are real positive solutions
of (3 − d)2|3 + d| = 1. See Fig. 4. According to
[Hasler & Maistrenko, 1987], under these condi-
tions, the subspace S is an attractor with a locally
riddled basin. In the case (5) version 2, λnat

⊥ is neg-
ative if |α + β − 3| < 1. Note that, the synchroniza-
tion regions obtained theoretically are similar to the
ones obtained by numerical simulations. See Figs. 5
and 6.

So, we proved the existence of a synchronization
range parameter to each case of coupling. The next
result follows.

Property 1. Consider the coupling of two identical
piecewise linear bimodal maps (1).

(1) If the coupling is defined by (4), with two dif-
ferent coupling positive parameters (ε, δ), then
the natural transversal Lyapunov exponent is

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Fig. 4. Parameter region 2.57653 . . . < ε + δ < 3.39543 . . .
where synchronization occurs for the coupling (4) version 1,
of two identical piecewise linear bimodal maps (1).
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negative if d1 < ε+ δ < d2, where d1 and d2 are
real positive solutions of (3 − d)2|3 + d| = 1.

(2) If the coupling is defined by (5), with two dif-
ferent coupling parameters (α, β), each one in
[0, 3], then the natural transversal Lyapunov
exponent is negative if 2 < α + β < 4.

So, by this property, the fact that the natural
transversal Lyapunov exponent is negative means
that almost all synchronized trajectories, i.e. almost
all trajectories near S are transversally attract-
ing, which implies that S is an attractor in the
weak sense of Milnor [Alexander et al., 1992; Ash-
win et al., 1996]. We have obtained synchronization
range parameter, in terms of the coupling parame-
ters, for both types of coupling.

2.3. S as an attractor and
synchronization speed

Consider the case (4) version 1. Note that, the
transversal Lyapunov exponent for the constant tra-
jectories at the fixed point (0, 0) is λ⊥ = ln|3 −
ε − δ|, which is negative if 2 < ε + δ < 4. On
the other hand, the transversal Lyapunov expo-
nent for the constant trajectories at the fixed point
(1/2, 1/2) is λ⊥ = ln|−3−ε−δ|, which is negative if
−4 < ε + δ < −2, but we do not consider this case.
Thus, for any positive values of the coupling param-
eters (ε, δ), we have at least one of the two transver-
sal Lyapunov exponents at (0, 0) or (1/2, 1/2) that
is positive. Furthermore, these fixed points of F
have preimages dense in S [Hasler & Maistrenko,
1987], then, always a dense set exists on S of initial
conditions that leads to trajectories with positive
transversal Lyapunov exponents.

However, in the case (5) version 2, the transver-
sal Lyapunov exponent for any trajectory in S, is
λnat
⊥ = λ2 = λ⊥ = ln|α + β − 3|, according to (19)

and (23), which is negative if 2 < α+β < 4. In par-
ticular, the value of λnat

⊥ is attained for the constant
trajectories sitting on the fixed points. So, all syn-
chronized trajectories are transversally attracting.
Outside the region 2 < α + β < 4, the transver-
sal Lyapunov exponent is positive. Once more, the
preimages of the fixed points give a dense set on S
of initial conditions, that leads to trajectories with
positive transversal Lyapunov exponents.

We have proved the following results.

Property 2. Consider the coupling of two identical
piecewise linear bimodal maps (1).

(1) If the coupling is defined by (4), with two dif-
ferent coupling positive parameters (ε, δ), then
the system has trajectories in the synchroniza-
tion subspace S with a positive transversal
Lyapunov exponent, for any value of the posi-
tive coupling parameters (ε, δ). The initial con-
ditions of these trajectories are dense in S.

(2) If the coupling is defined by (5), with two
different coupling parameters (α, β), then the
transversal Lyapunov exponent is negative if
2 < α + β < 4. For any values of the parame-
ters (α, β) in [0, 3]2 and outside of the closure
of the region 2 < α+β < 4, there is a dense set
of initial conditions that generate trajectories
with positive transversal Lyapunov exponent.

Property 3. Consider the coupling of two identical
piecewise linear bimodal maps (1) defined by (4). If
the natural transversal Lyapunov exponent is neg-
ative, then S is an attractor with a locally riddled
basin.

This result is a consequence of (1) of Proper-
ties 1 and 2. By Property 1 there exists a region
d1 < ε + δ < d2, where the natural transversal Lya-
punov exponent is negative and by Property 2 there
exists trajectories in the synchronization subspace
S, with a positive transversal Lyapunov exponent.
So, there is a neighborhood U of S such that in any
neighborhood V of any point in S, there is a set
of points in V ∩ U of positive measure which leave
U in a finite time. For more details, see [Hasler &
Maistrenko, 1987; Alexander et al., 1992; Ashwin
et al., 1996].

Proposition 1. Consider the coupling of two identi-
cal piecewise linear bimodal maps, defined by (5).

(1) If |α + β − 3| < 1, then the manifold S is a
globally asymptotically stable attractor.

(2) If (α, β) is outside of the closure of the region
|α+β−3|< 1, then the manifold S has a locally
riddled basin of attraction.

(3) If xk and yk are trajectories starting from x0

and y0, respectively, and are always in the same
linear region, until time k, then these trajecto-
ries synchronize with an exponential synchro-
nization speed,

|xk − yk| = φk|x0 − y0| (24)

where φ = |α + β − 3|.
Proof. In (2) of Property 1, it is established
that the natural transversal Lyapunov exponent is
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negative if |α+β−3| < 1. This region coincides with
the region where the transversal Lyapunov expo-
nent, of all trajectories in S, are negative, by (2) of
Property 2. Therefore, the manifold S is a globally
asymptotically stable attractor.

On the other hand, considering again, (2) of
Properties 1 and 2, for any values of (α, β) outside
of the closure of the region |α+β−3| < 1, there is a
dense set of initial conditions that generate trajec-
tories with positive transversal Lyapunov exponent.
So, the manifold S has a locally riddled basin of
attraction [Hasler & Maistrenko, 1987; Alexander
et al., 1992; Ashwin et al., 1996].

Moreover, for trajectories in the same linear
region, until the time k, the rate of synchronization
is proved:

|xk − yk| = f [xk−1 + δ(yk−1 − xk−1)]

− f [yk−1 + ε(xk−1 − yk−1)]

= 3|1 − (δ + ε)||xk−1 − yk−1|
= |α + β − 3||xk−1 − yk−1|
= φk|x0 − y0|

where φ = |α + β − 3|. �

Fig. 5. In blue, region of synchronization in the plane (δ, ε)
for the map F (4) version 1. This figure has been obtained by
numerical simulations using 10 000 iterations for each point.
The red straight lines indicate the theoretical limits obtained
from Properties 1 and 2. Due to the existence of riddled basins
with a fractal boundary for the chaotic attractor on the diag-
onal (see section on basins), the limits of the synchronization
region in the parameter plane that are numerically obtained
are not clearly defined.

Fig. 6. In blue, region of synchronization in the plane (α, β)
for map G (5) version (2). The black part corresponds to
the existence of a chaotic attractor outside the diagonal. It
has been proved in [Manjunath & Fournier-Prunaret, 2011]
that there is a domain in the parameter plane where the map
has the property of mixing (inside the black part). This fig-
ure has been obtained by numerical simulations using 10 000
iterations for each point. In this case, the basin boundaries of
the attractor on the diagonal are not fractal, so the limits of
the synchronization region in the parameter plane are clearly
defined from a numerical point of view and correspond to the
theoretical limits obtained in Properties 1 and 2.

The equality (24) characterizing the speed syn-
chronization in version 2 coupling, shows the differ-
ent qualitative behaviors from version 1 coupling.

Figures 5 and 6 are obtained with numerical
simulations in the parameter planes (δ, ε) and
(α, β), respectively, and correspond to the theoreti-
cal results obtained using versions 1 and 2 coupling.

Remark 2.1. If α = β and (x, y) ∈ Rii, with i =
1, 2, 3, we may write the system (5) in the form{

xk+1 = fi(xk) + δ[fi(yk) − fi(xk)]

yk+1 = fi(yk) + δ[fi(xk) − fi(yk)],
(25)

with δ = ε = (3 − α)/3 and

fi(x) =




3x, if i = 1

−3x + 2, if i = 2

3x − 2, if i = 3.

This system may be considered a network with only
two nodes. The graph underlying this network is
complete, so the Laplacian matrix is

L =

[
1 −1

−1 1

]
. (26)
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According to Li and Chen [2003], the bidirec-
tional coupled system (25) is synchronized if the
coupling parameter δ belongs to the synchroniza-
tion interval, defined by

1 − e−λ

|γ2| < δ <
1 + e−λ

|γN | , (27)

where λ is the Lyapunov exponent of f , γ2 is the
smaller nonzero eigenvalue of L and γN is the largest
eigenvalue of L. In this case, λ = ln|f ′

i(x)| = ln(3)
and the eigenvalues of L are 0 and 2, so, we have
γ2 = γN = 2. Then, the synchronization interval is
1/3 < δ < 2/3, that is, 1 < α < 2, which confirms
the previous result, 2 < α + β < 4.

3. Global Behavior and Basins
of the Synchronized States

In the previous section, we have given a neces-
sary condition to obtain complete synchronization
for the two versions of coupling that we have con-
sidered. Indeed, the negativity of the transversal
Lyapunov exponents is only a necessary condition
for the stability of the synchronized state. Moreover,
the previous study is a local one and only permits to
detect if initial conditions located inside neighbor-
hoods of the diagonal will give rise to trajectories
converging toward the diagonal. Of course, it should
be of the greatest interest to have a necessary and
sufficient condition for the synchronization behavior
and to know which initial conditions in the phase
plane will give rise to synchronization. In this sec-
tion, we intend to partially answer these questions.
First, we consider Lyapunov functions in order to
prove that the conditions that have been obtained
in the previous section concerning parameter values
are also sufficient conditions. Secondly, we propose
to discuss the values of eigenvalues and eigenvec-
tors in regions Rij in order to find the basins of
the synchronized states. We obtain results when
considering the regions Rii, i = 1, 2, 3, but in the
regions Rij , i, j = 1, 2, 3, i �= j, the situation is
not so easy.

3.1. Lyapunov functions

The stability of the synchronization manifold S can
also be studied by the use of the Lyapunov function,
which gives a necessary and sufficient condition for
stability. To the study of temporal evolution of the

synchronization error e ≡ x = y, the Lyapunov
function V (e) is considered.

A continuous scalar function V :⊆ R
n → R

is said to be a Lyapunov function if it is a locally
positive-definite function, i.e.

V (0) = 0 and V (x) > 0, ∀x ∈ U\{0}
where U is a neighborhood of x = 0.

To get the conditions for the global stability of
synchronization of two trajectories xk and yk, we
consider the Lyapunov function

Vk = (xk − yk)2, (28)

defined as [Jalan, 2004; Iggidr & Bensoubaya, 1996].
Clearly Vk ≥ 0 and the equality holds only when
the nodes x and y are exactly synchronized. For
the asymptotic global stability of the synchronized
state, Lyapunov function should satisfy the follow-
ing condition in the region of stability, Vk+1 < Vk.
This condition can also be written as,

Vk+1

Vk
< 1. (29)

Now consider version 1 of the coupling, which
is given by (xk+1, yk+1) = F (xk, yk), with F defined
by (2). Following (28), we have

Vk+1 = [f(xk) − f(yk) + δ(yk − xk) − ε(xk − yk)]2.

If xk and yk are in the same region R11 or R33,
then

f(xk) − f(yk) = 3(xk − yk),

so,

Vk+1 = [3(xk − yk) + (xk − yk)(−ε − δ)]2

= (xk − yk)2(3 − ε − δ)2.

Consequently, condition (29) is equivalent to

(3 − ε − δ)2 < 1 ⇔ −1 < 3 − ε − δ < 1

⇔ 2 < ε + δ < 4.

If xk and yk are in region R22, then

f(xk) − f(yk) = −3(xk − yk),

so,

Vk+1 = (xk − yk)2(−3 − ε − δ)2

= Vk(−3 − ε − δ)2.

Then condition (29) is equivalent to

(−3 − ε − δ)2 < 1 ⇔ −1 < 3 + ε + δ < 1

⇔ 2 < −ε − δ < 4.
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This condition is not of interest as the parameter
values ε and δ are positive.

Consider version 2 of the coupling given by
(xk+1, yk+1) = G(xk, yk), with G defined by (3).
For this version of the coupling, the Lyapunov
function is

Vk+1 = {f [xk + δ(yk − xk)] − f [yk + ε(xk − yk)]}2.

If xk + δ(yk −xk) and yk + ε(xk − yk) are in the
same Rii (i = 1, 2, 3) region and given that f ′′ =
f ′′′ = · · · = 0, we have by the Taylor formula at the
point c = yk + ε(xk − yk) that

Vk+1 = [xk + δ(yk − xk) − yk − ε(xk − yk)]2[f ′(c)]2

= [(xk − yk) + (xk − yk)(−ε − δ)]2[f ′(c)]2

= (xk − yk)2(1 − ε − δ)2[f ′(c)]2

= Vk(1 − ε − δ)2[f ′(c)]2.

Therefore, condition (29) is equivalent to

(1 − ε − δ)2[f ′(c)]2 < 1 ⇔ −1
3

< 1 − ε − δ <
1
3

⇔ 2 < α + β < 4.

This means that for all initial conditions on the
regions Rii (i = 1, 2, 3) there is almost global syn-
chronization, if 2 < α + β < 4, (α, β) ∈ [0, 3]2.

In particular, this confirms our previous results,
but with Lyapunov functions, we have proved the
synchronization for initial conditions at any point
of region Rii (i = 1, 2, 3) in the case of version 2
coupling, while with the method of Lyapunov expo-
nents, we only proved synchronization for initial
conditions in a neighborhood of S.

3.2. Local behavior through
eigenvalues and eigenvectors

Here, we present a study of the eigenvalues and
eigenvectors of the two systems to understand the
local behavior in neighborhoods of the diagonal
with points in regions Rij, whatever be i, j in 1, 2, 3.
We only consider the parameter values correspond-
ing to the necessary condition of synchronization.
Indeed, we would like to obtain more information
about the basin of synchronized states. Let us recall
that the basin B of an attractor S at finite distance
is the set of initial conditions that converge towards
S when the number of iterations by the considered
map T tends towards infinity. The basin B is invari-
ant under backward iteration of the map but not

necessarily invariant by the map itself. We have the
following properties: T−1(B) = B and T (B) ⊂ B.

3.2.1. Version 1 coupling

Considering the coupling map F defined in (4), the
Jacobian matrix of the system, in each open region
Rij is

DF

[
x

y

]
=

[
c(x) − δ δ

ε c(y) − ε

]

where c(x) and c(y) are defined by (13).
First, let us consider the regions Rii, i = 1, 2, 3.

Rii contains segments of the diagonal and we can
look at the eigenvalues at each point (x, x) of these
segments. Let us recall that the eigenvalues of the
Jacobian D(x, x) are given by (14) and the corre-
sponding eigenvectors by (15). In Rii, i = 1, 2, 3, it
is easy to check that µ1(x) is the eigenvalue asso-
ciated to the direction on the diagonal and µ2(x)
to the transversal direction. When i = 1 or i = 3,
we have c(x) = c(y) = 3. For the parameter val-
ues (δ, ε) corresponding to the necessary condition
of synchronization, |µ2(x)| < 1, so there exists a
neighborhood of the diagonal in R11 or R33, such
that each initial condition gives rise to an iterated
sequence converging toward the diagonal. Inversely,
when i = 2, we obtain c(x) = c(y) = −3. For the
parameter values (δ, ε) corresponding to the nec-
essary condition of synchronization, |µ2(x)| > 1,
so there exists a neighborhood of the diagonal in
R22, such that each initial condition gives rise to
divergent iterated sequences. Anyhow, it is pos-
sible that those divergent iterated sequences go
to another region Rij and reach the diagonal by
another way.

Now, we consider the regions Rij , i �= j,
from where we can approach the diagonal points
(1/3, 1/3) and (2/3, 2/3). These regions are R12,
R21, R23 and R32. In these regions we have c(x) =
−c(y) and, taking c = c(x), the Jacobian matrix
becomes

DF

[
x

y

]
=

[
c − δ δ

ε −c − ε

]
.

In this study, we do not consider the regions
R13 and R31, which do not have points close to the
diagonal, even if some of them can be initial con-
ditions giving rise to trajectories converging to the
diagonal.
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Let us remark that we cannot define the
eigenvalues and eigenvectors exactly at the point
(1/3, 1/3), because the map F is not differentiable
at this point, so we cannot define the Jacobian. Nev-
ertheless, we can consider a directional limit and
see what occurs when we are at a point (x, y) in a
neighborhood of the point (1/3, 1/3).

If we consider points (x, y) in the regions Rij

with (i, j) ∈ {(1, 2), (2, 1), (2, 3), (3, 2)}, we obtain
the following eigenvalues µi and eigenvectors vi

µ1 =
1
2
(−δ − ε −

√
(ε + δ)2 + 4c2 + 4cε − 4cδ),

µ2 =
1
2
(−δ − ε +

√
(ε + δ)2 + 4c2 + 4cε − 4cδ),

v1 = (2c + ε − δ

−
√

(ε + δ)2 + 4c2 + 4cε − 4cδ, 2ε),

v2 = (2c + ε − δ

+
√

(ε + δ)2 + 4c2 + 4cε − 4cδ, 2ε).

In this case, the eigenvectors depend on (x, y).
We only have two different situations:

(1) R12 and R32, where c = 3;
(2) R21 and R23, where c = −3.

We study the eigenvalues µi with the parame-
ters ε and δ for the case where c = 3.

In the region where we have found synchro-
nization, |µ1| > 1 and |µ2| can be less than 1 or
greater than 1. The eigenvectors v1 (in blue) and
v2 (in green) (see Fig. 7) have characteristic slopes
depending on the region of the parameter space. So,
if we take the initial point of the eigenvectors close
to the point (1/3, 1/3), we observe that if ε > 0, v2

always points toward the direction of R11 or R22. If
δ > 0, v1 always points toward the direction of R12

or R21. We can see this situation in Fig. 7 for ε > 0
and δ > 0.

We have the same kind of behavior if we
consider the case c = −3.

To conclude this subsection, it is worth not-
ing that if we choose initial conditions in regions
Rij close to the diagonal, we can have trajectories
that move away from the diagonal staying inside
the considered region Rij and some others that go
outside Rij toward another region Rii, i = 1, 2, 3.
Moreover, in R11 and R33, the iterated sequences
initiated close to the diagonal converge towards the
diagonal, but in R22, all iterated sequences issued

R31R11 R21

R32R12

R13 R23 R33

R22

1
3

2
3

x

1
3

2
3

y

Fig. 7. For the map F , characteristic position of the eigen-
vectors, v1 (in blue) and v2 (in green), in the (x, y)-space
with initial point at (1/3, 1/3), in regions of the parameters
where ε > 0 and δ > 0.

from an initial condition close to the diagonal go far
away from the diagonal. In the case of the version 1
coupling we can conjecture that the basin does not
contain a whole neighborhood of the diagonal.

3.2.2. Version 2 coupling

In this section, we consider the second coupling map
G defined in (5) and we intend to do the same kind
of study as that for the previous section for the map
F (4). The Jacobian matrix of the system in each
open region Rij is now

DG

[
x

y

]
=

[
f ′(r)(1 − δ) f ′(r)δ

f ′(s)ε f ′(s)(1 − ε)

]
,

where r = x + δ(y − x), s = y + ε(x − y) and f is
defined by (1).

In the regions Rii, i = 1, 2, 3, the eigenval-
ues of the Jacobian DG are given by (19) and
the corresponding eigenvectors by (20). As for the
map (4), µ1(x) is the eigenvalue associated to the
direction on the diagonal and µ2(x) to the transver-
sal direction. In Rii, i = 1, 2, 3, it is easy to check
that for the parameter values (δ, ε) (or equivalent
(α, β)) corresponding to the necessary condition
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of synchronization, |µ2(x)| < 1. So there exists a
neighborhood of the diagonal in R11, R22 or R33,
such that each initial condition will give rise to an
iterated sequence converging toward the diagonal.
This is true whatever be the value of i = 1, 2, 3,
oppositely to the case of the map F (4).

Now, let us consider the regions Rij , i �= j. As
in the case of the map (4), we cannot define the
eigenvalues and eigenvectors exactly at the point
(1/3, 1/3), because the map G is not differentiable
at this point, so we cannot define the Jacobian. Nev-
ertheless, we can consider a directional limit and see
what occurs when we are at a point (x, y) very close
to the point (1/3, 1/3) or (2/3, 2/3). The regions
from where we can approach the diagonal points
(1/3, 1/3) and (2/3, 2/3) are R12, R21, R23 and R32.
In these regions, Rij, the Jacobian matrix becomes

DG

[
x

y

]
=

[
c − cδ cδ

−cε −c + cε

]

=

[
(−1)i+1α (−1)i+1(3 − α)

(−1)j+1(3 − β) (−1)j+1β

]
,

with c = (−1)i+13, j = i ± 1, i, j ∈ 1, 2, 3.
If we consider points (x, y) in the regions Rij

with (i, j) ∈ {(1, 2), (2, 1), (2, 3), (3, 2)}, we obtain
the following eigenvalues µi and eigenvectors vi:

µ1 =
c

2
(−δ + ε −

√
(δ − ε)2 + 4(1 − δ − ε)),

µ2 =
c

2
(−δ + ε +

√
(δ − ε)2 + 4(1 − δ − ε)),

v1 = (2 − δ − ε −
√

(δ − ε)2 + 4(1 − δ − ε),−2ε),

v2 = (2 − δ − ε +
√

(δ − ε)2 + 4(1 − δ − ε),−2ε).

In this case, the eigenvectors do not depend on
(x, y), if we are in a Rij region with i �= j.

We made a study on the eigenvalues µi with the
parameters α and β for the case R12, where c = 3
(see Fig. 8).

As in the case of version 1 coupling, the eigen-
vectors v1 (in blue) and v2 (in green) have charac-
teristic slopes which do not depend on the region of
the parameter space. So, if we put the initial point
of the eigenvectors close to the point (1/3, 1/3),
we observe that v2 always points toward the direc-
tion of R11 and v1 always points toward the direc-
tion of R22. We can see this situation in Fig. 9.

line: α + β = 4

line: α + β = 2

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Fig. 8. For the map G, we can see the regions of the (α, β)-
plane where the eigenvalues are real and |µ1| < 1 (in blue)
and |µ2| < 1 (in green). The black area indicates the region
where both conditions are fulfilled.

If the eigenvectors are pointed towards the
inside of the problematic regions Rij , i �= j, there
would be paths that deviate from the diagonal, and
this situation, for the considered parameter values,
does not occur.

l 1

l 2

l 4
l 3

R11

R22

R33

R13

R32

R21

R12

1

3

2

3
1

x

1

3

2

3

1

y

Fig. 9. Concerning the map G, characteristic position of the
eigenvectors, v1 (in blue) and v2 (in green), in the (x, y)-space
with initial point at (1/3, 1/3).

1350134-13



August 31, 2013 11:53 WSPC/S0218-1274 1350134

D. Fournier-Prunaret et al.

So, we can conjecture that when we choose an
initial condition inside Rij , with i �= j, we never
move away from the diagonal, but we move away
from the region Rij toward a region Rii. Oppositely
to the case of the map (4), in each region Rii, the
diagonal is attractive for a neighborhood located
inside Rii. So, it permits to conjecture that for the
map (5), the basin of the synchronized states con-
tains a whole neighborhood of the diagonal (except
maybe sets of zero measure).

To conclude this section on the local behavior
through eigenvalues and eigenvectors, by consider-
ing the eigenvalues and eigenvectors at points of
the diagonal for both maps (4) and (5), we do not
obtain the same result in both cases. In the case
of (4) (coupling version 1), it does not seem pos-
sible to obtain a necessary and sufficient condition
on parameter values for complete synchronization.
Indeed, we can conjecture that the basin of the syn-
chronized states does not contain a whole neighbor-
hood of the diagonal. On contrary, in the case of (5)
(version 2 coupling), we can conjecture it. Moreover,
the basin of synchronized states should contain a
whole neighborhood of the diagonal.

4. Basins

In this paragraph, we wish to present some prop-
erties of the basins of synchronized states for the
maps F (4) and G (5). The condition giving pos-
sible values of parameters to obtain complete syn-
chronization is a necessary condition, as previously
explained. In previous studies, it is also said that all
initial conditions taken in the phase space do not
necessarily give rise to synchronization (that means
trajectories converging towards diagonal). Indeed,
sometimes, it can be necessary to remove a dense
set of zero measure to obtain the basin of the syn-
chronized states. Anyhow, we are going to see that,
depending upon the type of maps, the basins can
have very different shapes and are not necessarily
constituted by the whole phase space. Sometimes,
it is not only required to remove a set of zero mea-
sure, but larger sets. In both cases, the basins can
be riddled. We consider the two cases of versions 1
and 2, built from the bimodal map and we con-
sider the basin of synchronized states. Our basins
have been obtained by numerical simulations. Such
simulations, coupled with geometrical properties of
critical lines, as introduced in [Mira et al., 1996],
permit to explain the shapes of basins.

4.1. Basins of the map F

We consider the map F . Let us first remark that we
can extend the definition of F : [0, 1]2 → [0, 1]2

to F : R2 → R2 (using f(x) = |1 − |3x − 1||,
which can be defined on R). It will permit to have
a better understanding of the evolution of the basin
of attraction. Previous studies on two-dimensional
maps [Mira et al., 1996] have shown that the study
of critical lines is of high interest to obtain infor-
mation on the evolution of the basin shape. So, we
consider the straight lines l1 : y = 1/3, l2 : x = 1/3,
l3 : y = 2/3, l4 : x = 2/3 and their images by F ,
that are the critical lines of F . We can define four
points: A,B,C,D, which are intersection points
between the lines li, i = 1, 2, 3, 4 (see Figs. 10–12).
A = l1 ∩ l2, B = l3 ∩ l4, C = l2 ∩ l3, D = l1 ∩ l4.
The coordinates of these points are A(1/3, 1/3),
B(2/3, 2/3), C(1/3, 2/3) and D(2/3, 1/3). We can
define L2 = F (l2), which we are interested in and
whose equation is


if δ = 0 : x = 1, y ≥ −ε

3

if δ �= 0 : y =
∣∣∣∣1 −

∣∣∣∣3(x − 1)
δ

∣∣∣∣
∣∣∣∣ − ε(1 − x)

δ
.

(30)

y

x

δ=0 ε=2,7

l 1

l 4l 2

l 3

3

-3
-0,5 1,2

L2

A

BC

D

L1

L3

L4

F(D)

F(C)

F(B)

F(A)

Fig. 10. In the state space (x, y), δ = 0, ε = 2.7, in beige,
the basin of the chaotic attractor on the diagonal (in red) for
the map F . The critical line L1 is in green and L3 in light
blue. L2 and L4 are dashed lines. States are synchronized,
the synchronization is global.
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Fig. 11. In the state space (x, y), δ = 0.02, ε = 2.7, in beige,
the basin of the chaotic attractor on the diagonal (in red) for
the map F . The hole H0 is in yellow, its preimage H−1

0 is
located close to the point C and the lines l2 and l3. States
are synchronized, but the synchronization is not global, due
to the holes inside the basin.

This curve is made up of four different pieces
when δ �= 0:

y =




−1 +
(3 − ε)(x − 1)

δ
, if 1 +

δ

3
≤ x

1 +
(3 + ε)(1 − x)

δ
, if 1 ≤ x < 1 +

δ

3

1 +
(3 − ε)(x − 1)

δ
, if 1 − δ

3
≤ x < 1

−1 +
(3 + ε)(1 − x)

δ
, if x < 1 − δ

3
.

(31)

We can define the curves L1, L3 and L4 in the
same way. The point F (C) belongs to L2 ∩ L3 and
its coordinates are (1 + δ/3,−ε/3). When δ = 0,
F (C) is the point (1,−ε/3) and is located on
the boundary of the basin (see Fig. 10). When δ
becomes slightly positive (δ = 0.02 on Figs. 11–13),
the point F (C) is located outside the basin. A
domain H0 is created (Fig. 12), the preimages of
any rank of which are sets of initial conditions of
divergent iterated sequences located inside the beige
basin. As H0 is limited by F (C) and pieces of the

Fig. 12. Enlargment of Fig. 11. One can see the region H0

in yellow, which is limited by pieces of L2 and L3, the point
F (C) and the boundary of the basin.

curves L2 and L3, the rank-one preimage of H0,
H−1

0 , is limited by C and pieces of l2 and l3 and
located below C (situation due to the branch of L2

which is involved in the creation of H0). In this
case, there can be a set of nonzero measure inside

Fig. 13. Enlargment of Fig. 11. One can see the region H−1
0

in yellow, which is limited by pieces of l2 and l3, the point C
and the boundary of the basin.
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Fig. 14. In the state space (x, y), δ = 0.02, ε = 2.7, in beige,
the total basin in R

2 of the chaotic attractor on the diagonal
for the map F .

the basin, which is a set of initial conditions giving
divergent trajectories. So, synchronization occurs,
but is not global. The basin of the synchronized
states is fractal and contains holes or tongues of

Fig. 15. In the state space (x, y), δ = 2.4, ε = 0.6, in beige,
the multiply connected basin in R

2 of the chaotic attractor
on the diagonal (in red) for the map F .

Fig. 16. In the state space (x, y), δ = 2.5, ε = 0.6, in beige,
the basin in R

2 of the chaotic attractor on the diagonal (in
red) for the map F . The basin has a fractal boundary.

initial conditions corresponding to divergent iter-
ated sequences said to be multiply connected [Mira
et al., 1996] (Figs. 11, 12 and 14). Figures 15 and 16
give examples of other shapes of the basin of syn-
chronized states.

4.2. Basins of the map G

In the case of version 2, we do not observe the same
phenomena for the basins than in the case of ver-
sion 1. Indeed, we only consider parameter values
for which the square [0, 1]2 is mapped into itself, so,
initial conditions do not give rise to divergent iter-
ated sequences. All trajectories stay inside [0, 1]2.
Main initial conditions converge to the diagonal and
we have complete synchronization, except, as it is
said in [Hasler & Maistrenko, 1987], for a set of ini-
tial conditions of zero measure.

5. Conclusion

Following the works by Hasler and Maistrenko
[1987], we have considered two kinds of couplings
(1 and 2) between two identical one-dimensional
bimodal maps, in order to study the synchro-
nization. So, we have studied two two-dimensional
piecewise linear maps, defined on R

2 (map F ) or
[0, 1]2 (map G) and depending upon two parame-
ters. The complete synchronization corresponds to
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the existence of an attractor on the diagonal. We
have tried different tools in order to obtain condi-
tions on parameter values for having synchronized
states (natural transversal Lyapunov exponent,
Lyapunov functions, eigenvalues and eigenvectors,
numerical simulations). Then, we have obtained dif-
ferent results for both maps. A necessary and suf-
ficient condition of stability and global results have
been given for the map G (coupling 2), whereas it
was not possible for the map F (coupling 1). Com-
plete synchronization can be proven for F but only
in a neighborhood of the diagonal. It has been only
possible to give a global condition in two regions
R11 and R33. The numerical simulations, coherent
with the theoretical results, have indicated that the
basins are not necessarily a whole domain of initial
conditions in the case of coupling 1, they can be
fractal and we can obtain sets of nonzero measure
for the basins of convergent iterated sequences (syn-
chronized states) and divergent iterated sequences,
whereas, for version 2 coupling, the basin of syn-
chronized states is constituted by the whole square
[0, 1]2, except at most a set of zero measures. This
study could be extended to other kinds of piece-
wise differentiable two-dimensional maps. Indeed,
many models using two-dimensional maps permit
to obtain synchronization, the questions which arise
are then how can we define the regions of synchro-
nization in parameter spaces? How can we obtain
conditions on parameters and states? How can we
have information on basins? Can we obtain com-
plete and/or almost global synchronization? Some
tools used in this paper could be useful for such
other studies.
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