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Preface 

This report is the result of the collaboration of the partners of the AGREE work-package 

“Economic and environmental analysis”, which is based on case study analyses of the 

partners in seven countries of the EU. The case studies show economic and environmental 

trade-offs in the different regions in the EU, for which each partner is responsible. 

Nevertheless prior to the reporting of the case studies an intensive discussion on a common 

methodological approach has been accomplished and applied to the case studies. The case 

studies show a wide range of different perspectives of energy efficiency in agriculture, but 

they are all based on the common methodology presented in Chapter 3. In Chapter 4, the 

case studies are presented,  with authors indicated at the beginning of each section. Each 

section of Chapter 4 ends with a synthesis analysis of the results from the different case 

studies. Chapter 5 summarizes and concludes the report by highlighting the major findings of 

the analyses.  

The report builds upon the “State of the Art in Energy Efficiency in Europe” published 

separately by the AGREE consortium (Gołaszewski et al. 2012), which shows the status quo 

of energy use and possible energy efficiency measures in agriculture across different 

production systems and regions in Europe. This report presents an economic and 

environmental analysis based on in-depth case studies which show the potential for, and 

constraints on, energy efficiency measures in agriculture with respect to the specific 

environments in Europe.  
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1. Introduction 

To date energy efficiency1 in agriculture has received little attention, except for energy used 

in greenhouses. Nevertheless, energy use is considerable, especially when indirect energy 

use is taken into account. The project AGREE (AGRiculture & Energy Efficiency) has the 

objective of showing the potential of short term energy efficiency gains and the promise of 

the long term potential. Environmental effects of savings on direct and indirect energy use in 

agriculture are integrally considered, as energy use efficiency also implies reduction of 

greenhouse gas emissions per unit output. Because energy savings in agriculture depend 

greatly on the agri-environment, particularly climatic conditions. AGREE brought together 

south-eastern, south-western, north-eastern and north-western agricultural production 

systems. Evidence from the energy saving potential and corresponding environmental and 

economic effects at country level are brought to the transnational level to identify an agenda 

for transnational collaboration to increase the learning curve on energy use efficiency. To 

this end, AGREE sets up a stakeholder participation process for two reasons. Firstly by doing 

so, stakeholders will be involved in the development of the agenda and this  will facilitate 

the implementation of the results. Secondly, AGREE needs the opinions and views of 

stakeholders to produce an agenda that reflects the needs and opportunities by the various 

agricultural practices.  

To enhance implementation, AGREE has created a link with a European network of 

researchers committed to adopting the issue. This network (ENGAGE) is closely associated 

with the European Society of Agricultural Engineers (EurAgEng). This link will facilitate the 

adoption process. AGREE has established a close link with and involvement of the 

SCAR/KBBE Collaborative Working Group on agriculture and energy. This group is embedded 

in the Standing Committee on agriculture and the KBBE-net and is thus perfectly positioned 

to translate the agenda, produced by AGREE, into commitment for effective R&D on energy 

efficiency. To this end, it is important that AGREE provides evidence of the added value of 

such research. 

This report uses case studies with an in-depth analysis of the interactions of energy 

efficiency measures, farm economics and the environmental impact of the measures across 

Europe. It builds upon the “State of the Art in Energy Efficiency in Europe” previously 

published  by the AGREE consortium (Gołaszewski et al. 2012). It shows trade-offs and win-

win situations associated with energy efficiency measures, farm economics and greenhouse 

gas emissions in agriculture across Europe. These cases studies are virtual farms of average 

size in which energy efficiency measures are implemented. The impact of these measures on 

                                                      
1
 Technically, 'energy efficiency' means using less energy inputs while maintaining an equivalent level of 

economic activity or service; 'energy saving' is a broader concept that also includes consumption reduction 

through behaviour change or decreased economic activity. In practice the two are difficult to disentangle and 

the terms are often used interchangeably (Energy Efficiency Plan 2011. Brussels, 8.3.2011, COM(2011) 109 

final) 
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farm economics, energy use, energy efficiency and greenhouse gas emissions were 

calculated and discussed. This methodological procedure allowed the project to provide 

insight in the complexity of energy efficiency.  
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2. Energy Efficiency Measures in Agriculture  

A reduction in energy use can be achieved by reducing energy input. Improved energy 

efficiency, however, is only achieved, if energy input per unit produce from the agricultural 

system is reduced. Therefore, improved energy efficiency can  be realized with either 

increased or decreased energy inputs depending on the input-output relationship. Generally 

energy efficiency can be realized by the use of improved technologies, but also 

straightforward adjustments to the level of energy input into agricultural systems can 

contribute to better energy efficiency. Energy efficiency measures in agriculture can be 

grouped in seven clusters, according to the technology addressed with the energy efficiency 

measure.   

2.1. Reduced tillage and controlled traffic farming 

Reduced tillage in plant production systems has been identified as an efficient measure to 

reduce energy input. Agricultural systems with reduced tillage need less fuel and thus result 

in lower GHG emissions and lower costs for the farmer. Furthermore, an associated carbon 

sequestration effect in the soil may further mitigate the net greenhouse gas emissions from 

agriculture. However, with respect to soil and climate conditions, reduced tillage may also 

affect crop yields, which could counteract the positive effects. The individual situation needs 

to be evaluated in each regional setting, which will be provided in the case studies. Using 

Precision Farming techniques, especially GNSS-Real Time Kinematics to provide autosteer of 

tractors, can provide permanent trackways for Controlled Traffic Farming (CTF). CTF, very 

common in Australia and increasingly common in Europe, is primarily a technique to 

improve soil conditions but can  show a fuel reduction of about  20% and additional yield 

increase  as soil compacted by equipment is reduced.  This greatly reduces energy used to 

break-up compacted soil and, over time, allows plant roots to penetrate deeper for nutrients 

and moisture (Tullberg et al. 2007; Tinker et al. 2010).  

2.2. Waste/side stream valorization 

The utilization of waste/side streams from agricultural production systems for energy, 

chemical or other material use can contribute to a more efficient use of energy in the whole 

agricultural process. The waste streams can be quite different; for instance straw can be 

used for bioenergy, or used to produce manure from animal husbandry systems, which then 

can be used to produce biogas. Another option is to use straw  directly to produce materials 

for non-food purposes. Common to all valorization streams is that the production of 

additional goods, such as energy, chemicals or materials can avoid energy use in other 

production chains, which can be accounted for as credits according to life cycle assessment 

accounting methods. However it is necessary that  accounting credits for waste stream 

valorization do not consider the waste in the reference system, otherwise, the value of the 

waste in the reference system needs to be accounted for. For example the use of animal 

manure as fertilizer per se is not regarded as an energy saving measure since animal manure 

is generally used as plant fertilizer. In Europe several regulations, for instance the Nitrogen 



  Agriculture and Energy Efficiency 

Economics and Environment: Case studies and trade offs 

14 

Directive, ensures that manure use is controlled when applied to agricultural fields especially 

maximum fertilizer rates per ha. Therefore, manure use per se cannot be treated as energy 

saving measure. Instead a  more efficent use of manure can contribute substantially to 

energy efficiency since in this case less energy is needed for fertilizer production. 

Furthermore benefits for the environment can be expected because of reduced emissions of 

plant nutrients to the environment. 

2.3. Efficiency measures in storage, drying, ventilation and cooling processes 

Post-harvest processes such as storage, drying, ventilation and cooling often have a great 

impact on energy use in agriculture. Drying is a typical method of preserving the quality of 

different agricultural products like wheat, sunflower, fodder grass etc.. However, it is the 

most energy intensive unit operation in postharvest technology since typically large 

quantities of water must be evaporated due to the high moisture content of the harvested 

products. Gentle treatment of the crops and low drying temperatures are often essential. 

Some dryers or storage facilities  e.g. for onions or potatoes require simple ventilation 

without significant additional thermal energy input, in order to keep the product free from 

moisture for avoiding microorganisms. This however requires as well considerable amount 

of electrical energy for the blowers.  

Recognizing and applying efficiency measures in agricultural drying and cooling require a 

process-oriented approach. Increased uniformity of drying by optimizing the dryer 

apparatus, minimum heat losses, maximum heat recovery including by the use of heat 

pumps, and optimized process control are the measures that can be taken for an enhanced 

energy efficiency in drying. The effect of the measures can be expressed in terms of specific 

primary energy consumption (SPEC) per unit of evaporated moisture. The SPEC varies 

considerably depending on the type of the drying process (e.g. continuous or batch-type), 

the scale of the dryer, the product to be dried, the initial moisture content, the 

meteorological conditions, and the age of the equipment. In Europe an important difference 

that must be mentioned in this context, is observed among the countries. The post harvest 

process steps are not always carried out within the farm boundary. For instance in countries 

like Germany and Poland drying is often performed by the farmers on the farm in order to 

acquire a higher price in the market, whereas in the Netherlands usually contract drying is 

preferred. If storage, drying and other post harvest treatments are not done inside the farm, 

the corresponding energy efficiency measures are not relevant for the balance around the 

farm. Nevertheless the measures are still effective for the companies fulfilling the contracts 

and can contribute substantially to resulting in lower energy consumption in the overall 

balance for the agricultural products. 

2.4. Irrigation systems 

Pumping of irrigation water can contribute to substantial energy use. Innovative irrigation 

technologies use water more efficiently and thus use less energy per crop. The innovative 

systems have to be adjusted to the production systems in the specific farming contexts and 
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cannot be applied to all systems in the same way. In the case study analyses views will be 

given for various systems. Reduced GHG emissions can be expected to be associated with 

the fuel savings. Furthermore different irrigation systems may provide interactive effects for 

N2O emissions. 

2.5. Fertilizer management (reduced inputs, precision agriculture) 

Indirect energy associated with fertilizer use, contributes to the total energy use in 

agriculture by 30 to 50%.  Therefore, all measures to improve the efficiency of fertilizer use 

contribute to the overall energy efficiency to a great extent. As an example Precision 

Farming technologies can contribute to improved fertilizer use efficiency. Different 

technologies, however, have different potentials, which have to be addressed specifically.  

A reduction in fertilizer use reduces energy use, but at the same time yield may be reduced 

as well, which could thus even lead to a decrease in energy efficiency. This potential trade-

off effect requires attention. A negative effect should be avoided and therefore a well 

balanced reduction of fertilizer to realize an optimum level of energy use needs to be found. 

2.6. Housing (light construction, insulation) 

The material and construction of housing in agriculture contributes to energy use efficiency 

indirectly by the energy cost of the materials including the insulation (leading to less direct 

energy demand). Even though significant indirect emission savings can be achieved with 

lightweight construction these gains need to be depreciated over the duration of use of the 

housing. In contrast, insulation provides yearly direct energy savings especially in northern 

Europe. In Mediterranean climate zones, housing can be lightweight, as the direct heating 

needs are low and only occur for a short period of the year.  

2.7. Improving the energy efficiency in animal husbandry systems 

In animal husbandry systems, energy efficiency can be improved to a certain extent by 

increased performance of the system in terms of milk yield per cow or meat per animal or 

eggs per layer. For example Kraatz (2012) showed that energy use per kg of produced milk 

can be reduced from 2.1 to 1.7 MJ/kg milk by changing the diet of the cows so that milk yield 

increased from 4000 to 8000 kg milk per year. The increased energy efficiency is primarily a 

result of reduced energy cost for rearing the offspring necessary to maintain the herd. 

However a further increase in milk yield per cow did not result in lower energy use per kg 

milk as the high energy cost of the concentrated feed eventually is not compensated by the 

reduced energy cost for rearing the offspring. 



  Agriculture and Energy Efficiency 

Economics and Environment: Case studies and trade offs 

16 

 

3. Methodological Framework for the analysis of measures for improved 

energy use efficiency in agriculture and their impact on economics and 

the environment 

Increased efficiency in energy use implies using less energy for the same amount of 

agricultural product produced. The analysis of the environmental and economic trade-offs 

includes the analysis of energy efficiency measures on the use of direct and indirect energy, 

GHG emissions and farm economics. The energy use, environmental and economic analysis 

are based on a cradle-to-farm-gate analysis, taking all costs and emissions into account 

needed to produce the agricultural products following ISO 14040. This is a procedure 

followed throughout the AGREE project. The economic cost calculations were based on the 

economic settings in the considered countries, while for the energy use and GHG estimates, 

whenever possible, common methodologies were used. 

3.1. Modeling of agricultural systems to explore trade-offs in the case studies 

In order to model potential trade-offs between energy savings, GHG-emissions and farm 

economics the relevant energy efficiency measures were modeled in simple spreadsheet 

based models. Four model frameworks were constructed to estimate the effects of energy 

saving measures on farm level in cropping systems, animal production systems, greenhouses 

and permanent crop systems. The farms were defined as typical and thus virtual farms in the 

countries considered expressing a general and common or average situation. This procedure 

allowed to yield results of average and indicative value. The calculations are not based on 

real farming situations but prices, inputs and yield express average levels within a country. 

For each farm system, models were constructed based on typical farm situations in the 

countries for the selected case studies. Instead of modeling just the production systems, we 

have put the studied production systems  within a farm framework and included the related 

costs and savings on energy, economic costs and GHG emissions to the total costs at farm 

level. 

In order to provide consistent results across Europe the same system boundaries for all 

economic and environmental assessments were chosen. The farm gate was considered as 

the ultimate boundary of the analysis of the trade-offs of energy efficiency measures (Figure 

1). This means that in some countries processes are within farm boundaries whereas in 

other countries they lie outside the boundaries. For instance in wheat production, drying is 

not included in Dutch farms but is included in German arable farms. The target is not to 

compare different countries but to get an idea of the effects of energy efficiency measures 

on farm level. 
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Figure 1: System boundary of economic and environmental assessments 

3.2. Estimates for energy savings and GHG emission savings associated with the 

energy efficiency measure 

The calculations of the energy savings and GHG emissions with the energy efficiency 

measures were based on the report “State of the Art on Energy Efficiency in Agriculture” 

published on the AGREE website2 (Gołaszewski et al. 2012) and extended with regard to GHG 

emissions. Data on assumptions were, if not stated otherwise, drawn from published data 

from the Biograce database (www.biograce.net). 

3.3. Estimates for cost savings associated with the energy efficiency measure 

The economic assessments were based on the use of inputs calculated for the farm models. 

Furthermore, fixed costs were allocated according to the expected lifetime of the equipment 

used. Prices for inputs and machinery (variable costs) were taken from country specific data, 

as described in the case study analyses. 

                                                      
2
 www.agree.aua.gr 
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4. Analysis of Case Studies 

In case studies across Europe energy efficiency measures were analyzed for their 

interactions with farm economics and environmental impacts. This is done in order to 

understand potential opportunities as well as drawbacks and pitfalls associated with energy 

efficiency measures across Europe. The production systems for the in-depth analysis are 

shown in Table 1.  

Table 1: Production systems for in-depth analyses of case studies in the four regions 

 Regions 

Production systems SW (PT) SE (EL) NW (DE, NL) NE (PL, FI) 

Arable crops Wheat Cotton, wheat 
Wheat (D, NL), 

sugar beet (NL), 
Wheat 

Dairy / beef Dairy  Dairy (NL) Dairy 

Pork/ poultry Pork, poultry  Pork, poultry (NL) 
Pork (FI),  

poultry (FI, PL) 

Greenhouse 
production 

Tomato 
Greenhouse 

production systems 
Tomato, cucumber, 
sweet pepper (NL) 

 

Permanent crops 
Olive trees, 
vineyards 

Olive trees, 
vineyards 

Vineyards (D)  

4.1. Case studies–arable crops 

4.1.1. Energy efficiency measures in German wheat production  

Andreas Meyer-Aurich, Thomas Ziegler, Hasan Jubaer, Lukas Scholz, Tommy Dalgaard 

The statistical data regarding energy input in German wheat production was shown with 

three different scenarios (low, average, high) in the report “State of the Art on Energy 

Efficiency in Agriculture” published on the AGREE website  (Gołaszewski et al. 2012). The 

highest energy inputs in typical German wheat production stem from fertilizer inputs and 

grain drying, followed by fuel use (Figure 2).  
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Figure 2: Relative contribution of different processing units and inputs in wheat production to economics, energy use 

and GHG emissions 

The direct energy use is about one third of the total energy use in wheat production, two 

thirds of the energy use stems from indirect energy use, which statistically is typically 
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accounted for outside the agricultural sector but is caused by agricultural activities and 

should be taken into consideration for energy saving potentials in agriculture. The 

implications of energy efficiency measures in different processing units are very different 

though. While typically for improved grain drying systems significant investments are 

necessary, reduced fertilizer input has no investment requirements unless technological 

solutions, like precision farming are applied. Anyhow, a reduction in fertilizer input 

compared to optimal fertilizer rates results in opportunity costs such as reduced yields, while 

precision farming, especially site-specific fertilizer application may increase energy efficiency 

without reductions in yield. 

Investments in grain drying 

In order to implement the proper efficiency measure in grain drying systems, it is very 

important to recognize the main causes of poor efficiency. The leading reasons causing 

variation in the specific energy consumption of wheat-drying include the type of the drying 

process (e.g. continuous or batch-type), the size as well as age of the equipment, the initial 

moisture content of the product and the weather conditions. 

Several types of dryer are used in drying of wheat. Most of them are also well-established 

and well known. However, they are not always energy efficient in their design or operation. 

For instance a dryer with poor design causes heterogeneous drying of the crop, which 

ultimately leads to significantly high energy consumption. Therefore, one of the most 

important measures towards energy efficiency is to implement dryers with optimal design. 

Another measure at farm level, which does not require as large investment as for new 

equipment, is to improve the operation of the existing dryer by implementing energy 

optimization. For instance, an optimized process control system can decrease the specific 

energy consumption considerably. 

A substantial amount of energy gets wasted in drying of wheat only because the energy in 

the system is not utilized properly. Apart from the heat losses due to poor or missing 

thermal insulation, in most cases heat recovery from the waste air is lacking, which results in 

a considerable additional amount of energy to be consumed. Therefore, maximizing heat 

recovery for instance by using heat pumps as well as minimizing heat losses by better 

insulation are essential, in order to achieve a better energy efficiency. 

Precision Farming  

Precision farming is a measure to apply inputs more precisely and minimize inefficient 

nutrient losses. For this study we draw from a case study in Germany, where major 

investments were implemented in a farm, which resulted in increased yields and reduced 

fertilizer inputs (Meyer-Aurich et al. 2008). 

Reduced nitrogen fertilizer input 

Reduced nitrogen fertilizer input may be an effective measure to reduce the energy input 

per ha in cropping systems. However, since yield is affected by fertilizer levels, a reduction in 
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fertilizer use may result in reduced yield. The impact of reduced fertilizer applications have 

been investigated by Meyer-Aurich et al. (2011) and is used to illustrate the trade-offs of 

reduced fertilizer inputs in cropping systems. 

Relative Contribution of different inputs and process steps to energy use, total costs of 
production and greenhouse gas emissions 

The different inputs and processing units contribute in different proportions to the total 

costs, primary energy consumption (PEC) and greenhouse gas emissions (GHG). This implies 

that some small changes may cause only a little change in costs, but have a high impact on 

energy use and GHG emissions. For example crop drying has a small contribution to the total 

economic costs of wheat production, but the relative impact on the energy use is much 

higher. In contrast, the relative economic cost of machinery use is much higher than its 

impact on energy use and GHG emissions.  

Impact of different energy efficiency measures on economics and the environment 

The analysis showed that all suggested energy efficiency measures contributed to energy 

savings and reduced GHG emissions, which were in the range of 2.3 to 4.4% of the total 

energy use and 1.3 to 5.9% for the GHG emissions (Table 2). Cost savings were in the range 

of 1.3% to 3.2% for all energy efficiency measures with the exception of reduced nitrogen 

fertilizer measure. In this case negligible costs apply because the fertilizer application rate 

was below the economically optimal rate. 

Table 2: Annualized costs, PEC and GHG emissions with energy efficiency measures in wheat production 

 Annualized Cost PEC GHG 

 €/ha % MJ/ha % CO2e/ha % 

Reference 952 100.0 19260 100.0 1722 100.0 

Dryer I (New dryer with optimal design) 932 97.9 18459 95.8 1679 97.5 

Dryer II (Optimization of existing dryer) 939 98.7 18820 97.7 1699 98.7 

Precision Farming 921 96.8 18620 96.7 1661 96.4 

Reduced N 952 100.1 18414 95.6 1621 94.1 

While the measures which affect the fertilizer application rate have a strong effect on GHG 

emissions, improved drying has a major effect on the energy use but a smaller effect on GHG 

emissions (Figure 3). Comparing other energy efficiency measures with “Precision Farming”, 

the economic and environmental effects were higher when the effects were related to the 

crop yield (per ton) (Figure 4). This is due to the assumed yield increasing effect of Precision 

Farming. Since “Reduced N” results in reduced crop yield, the environmental effects are less 

pronounced per ton of product, while the economic effects were more pronounced. 

However, the 10% reduced fertilizer application does not result in negative energy savings 

per ton of crop, although this is the case with more drastic fertilizer reductions. 

All energy saving measures, which were associated with investments showed positive 

annualized cash flows, indicating economic profitability. These need to be analysed further 

with sensitivity analyses to provide a holistic investment analysis. 
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Figure 3: Impact of different energy saving measures on cost savings, energy use and GHG emissions per ha. 
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Figure 4: Impact of different energy saving measures on cost savings, energy use and GHG emissions per ton. 

Conclusions 

The introduction of Precision Farming, some reduced nitrogen fertilizer application and 

improved crop drying technologies proved to be efficient measures for enhancing energy 

efficiency in wheat production. While the Precision Farming and improved crop drying 

measures require investment, reduced fertilizer input can be realized without investments 

(although farmers will need to monitor carefully fertilizer use and impact on yield to ensure 

that it is still economically near optimum). While policies targeting reduced pollution with 

reactive nitrogen have been set in place, current policies do not consider energy and GHG 

aspects of different fertilizer strategies in the same way (Häussermann & Döhler 2010). The 

environmental effects of all measures are comparable and do not show a clear advantage of 

one measure against others. However, reduced fertilizer input implies an economic loss 

which is unlikely to be realized by farmers unless they are forced to do so, and currently 

given the interest in global food sustainability and CAP negotiations, may not be politically 

attractive. The measures of this case studies are rather process based and do not take into 

account complex interactions relevant for whole crop rotations, which can have a great 

effect on energy use efficiency, especially when integrating legumes in the crop rotation.  
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4.1.2. Energy efficiency measures in Finnish wheat production  

Hannu Yli-Kojola, Jussi Esala, Hannu Mikkola, Mari Rajaniemi, Tapani Jokiniemi, Jukka Ahokas 

Wheat is a grain crop cultivated all over Europe which is why it was chosen as a reference 

crop analyzed in all six AgrEE countries. However, barley and oats are more important cereal 

crops in Finland and they are cultivated on larger  area (in 2010: barley 448 000 ha, oats 

296 000 ha, wheat 214 000 ha (Information Centre of the Ministry of Agriculture and 

Forestry 2011)). Barley and oats are better adapted to the short Finnish growing season than 

wheat. Wheat has been traditionally cultivated in southern and south-western parts of 

Finland. Due to its longer growing season and higher temperature requirement, the risk of 

unfavorable growing seasons in the northern parts of the country are higher than those for 

barley and oats. A traditional cultivation chain of wheat starts with ploughing as a primary 

tillage method. It is followed by secondary tillage, combined seeding and fertilizer 

placement, plant protection, harvesting, and grain drying.  

Combined seeding and fertilizer placement (to every other row spacing to a depth of 6–8 

cm) is a Scandinavian specialty which has many positive impacts on the growth of cereals 

and oil seed crops. It improves exploitation of nitrogen, reduces pressure of weeds, lowers 

the moisture content of grains at harvesting time and increases the yield (Kara & Räisänen 

1976; Esala & Larpes 1986a; Esala & Larpes 1986b; Rasmussen et al. 1996; Rees et al. 1997). 

This method is already widely used and it can’t be regarded as a novel EE measure. Farmers 

also favour stubble cultivation and direct drilling instead of ploughing in cereal cultivation. 

Both of the measures decrease diesel fuel consumption (Danfors 1988) and if the yield is the 

same as it is after ploughing, EE will be improved. 

Grain drying is necessary in Scandinavian conditions. The moisture content of cereals at 

harvesting in Finland are, as long-term averages, for barley 18.8%, oats 18.5%, spring wheat 

20.5%, winter wheat 21.0%, and rye 23.1% (Sieviläinen 2008). In practice, grain  has to be 

dried every year. Grain can be stored by methods other than drying e.g. by silage method, 

with propionic acid addition, or by means of airproof preservation. However, drying has 

been used mainly (90% of the grain yield according to Suomi et al. 2003), because drying is 

an appropriate method for that part of the cereal yield which is used for human nutrition, 

seed, or for industrial purposes or exported. The rest of the yield (> 60% according to Suomi 

et al. 2003) is used for animal feed and it could be stored fresh without drying (Siljander-Rasi 

et al. 2000). The impact of fresh storage methods on EE and economy are discussed in the 

chapters of milk, pork and broiler production.  

Energy consumption and saving in wheat production 

The distribution of energy use in Finnish wheat cultivation is presented in Figure 5. Fertilizers 

are the major input and would be an attractive target for energy saving measures. There are 

potential measures to cut nitrogen input by implementing crop rotations which include 

legumes. There is also potential to reduce the need of P and K by means of better nutrient 

recycling. However, changes in crop rotations would also require changes in the market of 
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agricultural products. There should be sufficient demand for  products other than cereals at 

reasonable prices. One possibility could be to include green manure crops in the crop 

rotation or to grow catch crops after the cash crops. These measures should be economically 

competitive with synthetic fertilizers. Changes in crop rotations and their impacts on the 

market of agricultural products are difficult to forecast and therefore interest in this analysis 

was focused on grain drying and on diesel fuel consumption in field operations. They are the 

second and third most significant energy inputs in wheat cultivation.  

 
Figure 5: Distribution of energy input in Finnish wheat cropping with average intensity. Total energy input = 12.3 GJ/ha. 

Grain drying was the second highest energy input in wheat production. 10-20% of energy 

could be saved in grain drying by thermal insulation of the hot metal surfaces of the grain 

dryer (Ahokas and Koivisto 1983). Thermal insulation does not interfere with  the use of the 

grain dryer in any way and  is an inexpensive investment which a farmer can do himself 

making it an attractive energy saving investment. Energy could be saved also by avoiding 

drying at night time. The impact of the temperature on the water holding capacity of air can 

be found from the Mollier diagram. Heating increases the absolute water holding capacity 

more in higher than in low temperatures. So, from the point of view of energy saving it is 

advisable to use as hot air for drying as possible but, of course, taking into consideration fire 

safety and the impact of high temperatures on the quality of grains.  The ambient air 

temperature is at night time 5–10˚C lower than at daytime. This would save energy 5–20%. 

Heat recovery from the outlet air of a grain dryer is technically possible but it is so far 

uneconomical due to high investment costs. 

One suggestion to reduce diesel oil consumption in agricultural is to teach economic tractor 

operating to farmers. Teaching is expected to have similar impacts on fuel consumption as 

courses on  economic driving for car drivers. It is also assumed that online feedback on fuel 

consumption (l/ha) would help tractor operators to adopt economic driving . 

These measures were seen as practical and relatively easy to be implemented quickly. They 

are expected to lower the direct energy demand of wheat production and if realized 

together they could cut 10% off the direct energy consumption and 3% off the total energy 

consumption for wheat production. 

Thermal insulation of a grain drier 

A hot air grain dryer of silo type is  typical in Finland. The grain is dried in batches from 10 to 

70 m3. The grain circulates in the dryer during the drying process and normally it passes 



  Agriculture and Energy Efficiency 

Economics and Environment: Case studies and trade offs 

24 

through a pre-cleaner several times as well to remove dust, trash, weed seeds  and light, 

poor quality grain and improves the quality of the grain. Continuous operation grain dryers 

are not popular due to the lack of continuous grain input because of the  uncertain 

harvesting conditions and difficulty in drying very moist grain. The temperature of the 

ingoing air is 60–80°C depending on the moisture content of the grain. It is  lower the higher 

the moisture content because a high temperature destroys the germination ability of seeds. 

However, grain which is used for animal feed can be dried with air up to 100°C or even more 

(Suomi et al. 2003).  

Due to the high temperature of the ingoing air metal surfaces of the grain dryer are hot. 

Significant energy can be lost from uninsulated surfaces (Ahokas and Koivisto 1983). Thermal 

insulation can be made simply by fixing insulation sheets on the hot surfaces of the grain 

dryer and round the air duct leading from the furnace to the grain dryer. Only the air input 

part of the dryer needs to be insulated. The outlet section can be left without insulation. 

For thermal insulation of a 30 m3 grain drier 40 m2 polyurethane sheets is needed. The cost 

is 800 € (40 m2 x 20 €/m2 = 800 €). Labor cost for installation is 200 € (10 hours x 20 €/hour). 

The write-off period of the investment was supposed to be 15 years. Estimated savings were 

10% of the fuel consumption for drying. 

Figure 6 shows the energy savings MJ/t and cost savings €/t, reduction of GHG emissions kg 

CO2e/t, and the pay-back time in years on a 120 ha farm. Cropping intensity had just no 

impact on these indicators. The pay-back time of the investment was 1.3-1.5 years. 

Calculation made with smaller cultivation areas indicated that the pay-back time was less 

than 10 years even though the farm size was only 30 ha. The annual profit of the investment 

was higher than the annual costs and for this reason the cost of GHG emission reduction was 

negative (from -172 € to -634 €/kg CO2e). 

 
Figure 6: The impact of thermal insulation on the energy and cost savings of grain drying, reduction of GHG emissions 

and the pay-back time on a 120 ha farm. Low, average and high cultivation intensities were studied. 

The temperature of the drying air should be kept constant during the drying period. If the 

ambient air temperature falls then more energy is needed to heat air. For example if 70˚C 

drying temperature is used, at daytime the ambient temperature can be 15˚C and a 
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temperature rise of 55˚C is needed. At night time the ambient temperature can be 5˚C and a 

temperature rise of 65˚C is needed and some 18% more energy is needed to heat air. During 

intensive harvesting season it is not always possible to dry only at daytime because the dryer 

capacity in many cases restricts the harvest capacity and the dryer must be operated day 

and night.  

Operating tractors for fuel economy 

Diesel oil can be saved in tractor operations by using the tractor in the optimal loading range 

of the engine (Renius 1999; Handler and Nadlinger 2009). The most energy efficient loading 

range is engine specific but  can be found from test reports. At the most fuel economic 

loading rate the torque is generally 70-90% of the maximum and the speed of the engine is 

60–80% of the maximum. The tractor can be operated at the optimal load if the power of 

the tractor is correctly matched to the capacity of the implement and that  power 

transmission by suitable sized and ballasted tyres or Power-Take-Off (PTO)use that allows 

the optimal engine load to be achieved. This is the technical basis of economic tractor 

operating (Green driving). This kind of short introduction to the theory of fuel economy 

could be included to the lessons of green driving. Gear Up, Throttle Back advice and engine 

efficiency indicators have been available for very many years in certain countries as 

described in Tinker 1992.  

Courses on driving for fuel economy (Green driving) for car drivers have proved that after 

the course fuel consumption is 6–13% less than before the course (SenterNovem 2005). 

Studies have also shown that immediate feedback of fuel consumption by a gauge or 

monitor helps to save fuel and to adopt energy saving driving. A study of tractor fuel 

consumption in field work has shown that fuel efficient driving can be realized also in tractor 

operations (Ahokas & Mikkola 1986). 

A driving course could be a one day event including 2–3 hours lessons and another 2–3 

hours practical training. A group of 10–15 tractor operators at a time would be an ideal 

number of people for one course. The group is small enough to stimulate spontaneous 

discussion among course participants and practical training is easy to arrange. Lessons 

should contain information about fuel consumption meters to give real-time fuel 

consumption feedback in older tractors. If GNSS devices are incorporated then fuel use per 

distance or per area can be shown as well. In modern tractors these devices are mostly 

available as standard or as options.  

Practical training is important because it demonstrates the impact of driving style on fuel 

consumption. Playful competitions are a good way to raise interest and to motivate 

participants. Existence of a GNSS device in a tractor can motivate farmers to use  GNSS for 

field navigation. This can reduce overlapping by ca. 5-10% which improves the efficiency of 

fuel use, operator’s time, seed use and  plant protection chemicals and fertilizer application. 

Better application, apart from reducing inputs,  improves yield and quality and reduces 

emissions. Savings in plant protection chemicals and fertilizer are savings of indirect energy. 
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Investments needed to realize this energy saving measure are a course on  operating for fuel 

economy (300 €) and devices to enable the online feedback of fuel consumption to be seen 

in the tractor cab (650 €). The write-off period for the devices was estimated to be 10 years 

and the estimated saving was 10% of fuel consumption.  

Economic analysis was made for a 120 ha farm but costs were studied on smaller farms too. 

Figure 7 shows the energy and cost savings MJ/t, reduction of GHG emissions kg CO2e/t, and 

the pay-back time on a 120 ha farm. The magnitude of this energy saving measure was much 

the same as that for thermal insulation of the grain dryer. Energy saving from green driving 

increased when cropping intensity increased while thermal insulation was not sensitive for 

cropping intensity. The pay-back time was 3.3–1.3 years and it was less than 10 years even 

for a 40 ha farm. Costs of GHG emission reduction were negative for this measure because 

the annual profit of the investment was higher than the annual costs. 

 
Figure 7: The impact of operating for fuel economy on the energy and cost savings, reduction of GHG emissions, and the 

pay-back time on a 120 ha farm. Low, average and high cropping intensities were studied. 

Modern tractors equipped with an automatic powershift or a continuously variable 

transmission (CVT) help the operator to save energy because they enable the tractor engine 

to run at the most fuel efficient speed and torque for a range of vehicle speeds and loads. 

Integrated electronic engine control units, ECU, can adjust the engine speed and 

transmission ratio in a way that is beyond the driver’s capabilities. Though the efficiency of 

the powershift and CVT transmissions is lower than that for a simple manual operated 

mechanical transmission the engine of the tractor operates so much more efficiently that it 

improves fuel economy.( Tinker 1992). 

4.1.3. Poland–Case study on Energy Saving Measures in Wheat Production 

Janusz Gołaszewski, Mariusz Stolarski, Zbigniew Brodziński, Ryszard Myhan, Ewelina Olba-Zięty 

Poland’s share is 1.4% of the global and 6.9% of the EU-27 wheat production. Despite a 

recent downward trend in the wheat use, with some replaced by maize and triticale, wheat 

remains the most important cereal and is cultivated across the whole country (Figure 8). 

Our evaluation of the energy efficiency of winter wheat production and potential energy 

savings has been performed on a cash crop farm in Łężany (Province of Warmia and Mazury; 
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53.9667 °N, 21.1333 °E) taken as a case study, and with the 2011 data. The farm does not 

have any livestock production. The arable area is 1058 ha. The soils vary from sandy through 

sandy clay and clay loamy ones; in terms of agricultural usability, they are classified from 

complex 3 (defective wheat complex) to complex 6 (defective rye complex). The crops and 

proportions on the farm are winter wheat (59.4%), winter oilseed rape (18.1%), oat (14.2%), 

spring oilseed rape (8.1%) and winter rye (0.2%). The straw is used for energy generation.  

 
Figure 8: The regional distribution of wheat production in Poland by percentage share in production and yield per 

hectare. (Source: Concise Statistical Yearbook of Poland 2011) 

Our analysis of the energy efficiency attained on the above farm contains three energy 

saving measures:  

1) change in plant rotation by reduction of oilseed crops (winter rapeseed) and inclusion 
of leguminous crop–horse bean;  

2) ploughing of straw and application of multi-compound inorganic fertilizer, and  
3) application of effective microorganisms. 

The energy saving measures considered here represent the three aspects of integrated 

production in a farming system, which takes into account the economics of production as 

well as protection of the environment. 

Plant rotation and replacement of oilseed crops with leguminous crop–horse bean 

By introducing leguminous crops into a crop rotation system including cereal and industrial 

crops, it is possible to reduce amounts of applied nitrogen fertilizers and to improve 

productivity of crops owing to increased organic matter resources, improved soil fertility, 

enhanced soil biological activity and more effective use of nutrients and moisture by plants 

(Korbas 2011). Consequently, the inputs for plant fertilizer use are lower as the nutrients are 

used by the plants more effectively. This means there is better effectiveness of chemicals 

used to protect plants from diseases and pests. Likewise, the biological activity in the soil is 

improved, e.g. it contains higher counts of beneficial organisms. As a result, fewer plant 

protection treatments and less pesticide, are needed.  

Ploughing in of straw and application of liquid multi-compound fertilizers with macro and 
microcompounds 

There is a high demand in Poland for energy biomass, which makes straw such a valuable 

fuel that many cash crop farms increase their income by selling straw. With such a demand 

and with a generally low level of humus in Polish soils, intensive cash crop production, 
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together with the lack of organic matter input to soil, causes gradual degradation of soils 

from loss of nutrients, poor structure and drainage, low humus levels and poor moisture 

retention. On the analysed farm, it is recommended to plough in straw in order to retain 

humus in soil, which, accompanied by application of multi-compound NPK fertilizers with 

micronutrients (under the commercial name PRP SOL), can ensure a positive production 

balance in the context of energy, economy and the natural environment. Multi-compound 

fertilizers contain components which stimulate the uptake of nutrients by plants. When 

multi-compound fertilizers are applied, there is no need to use phosphorus and potassium 

fertilizers while nitrogen application is reduced by 10%. For winter wheat cultivation, multi-

compound fertilizer is applied at a rate of 200-300 kg/ha. Besides, application of such 

fertilizers improves the plants’ resistance to disease and pests and contributes to better 

yields. 

Application of agricultural additives 

The Effective Microorganisms (EM) biopreparation has been used increasingly often in 

sustainable winter wheat production (Higa & Parr 1994). Depending on current needs, it can 

be used together with the seed material, sprayed over leaves and/or introduced to the soil. 

EM is characterized by a broad spectrum of action and produces complex effects on the 

plants’ habitat. This is associated with a multi-directional effect on various groups of 

antagonistic microorganisms, which belong to separate taxonomic classes. EM contains lactic 

bacteria (Lactobacillus casei, Streptococcus lactis), photosynthesizing bacteria 

(Rhodopseudomonas palustris, Rhodobacter sphaeroides), yeasts (Saccharomyces albus, 

Candida utilis), actinobacteria (Streptomyces albus, Streptomyces griseus) and moulds 

(Aspergillus oryzae, Mucor hiemalis) (Higa 1998; Valarini et al. 2003). Among positive effects 

of the biopreparation on the growth and development of plants, the following are 

suggested: induction of plants’ resistance, protection of yields and stimulation of yields. 

Moreover, biopreparations demonstrate stimulating influence on the formation of humus 

and regulation of biotic relations in soils. By introducing EM into soil, we improve its physical 

and chemical properties, but the actual effect depends on the type of soil and dose of the 

preparation (Kaczmarek et al. 2007; Kaczmarek et al. 2008). Application of the 

biopreparation has a beneficial effect on the biological activity of soil and reduces 

putrefaction, improves the humus content, detoxifies soil contaminated with pesticides, 

improves availability of compounds not easily accessible to plants, enhances the effect of 

photosynthesis, inhibits the development of phytopathogens and improves the quality and 

yields of the crop (Higa 1998; Stielow 2003; Yamada &  Xu 2000).  

Relative Contribution of Different Inputs and Process Steps to Total Costs of Production, 
Energy Use, and Greenhouse Gas Emission 

Winter wheat was one of the five crops grown in a cereal cash crop rotation system on the 

analysed farm. The structure of inputs for wheat production was dominated by the cost of 

purchase of synthetic fertilizers €317/ha (see Figure 9). The inputs for purchase of seed 

material, pesticides and diesel  were similar, i.e. €74, €79 and €89, respectively. The highest 
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energy inputs for winter wheat production were due to fertilizers (68%) and diesel (25%). 

However, the most serious environmental consequences were brought about by emission of 

carbon dioxide due to production of the applied synthetic fertilizers (1187 kg CO2e) and 

emission of nitrous oxide directly from the fertilizers, either by leaching or volatilization 

(1601 kg CO2e). In total, the above sources were responsible for 88% of the CO2e emission 

per hectare. On average, around 1.4 kg N2O is emitted per 1 ha annually, of which 50% of 

the emission is attributed to nitrogen fertilizers (Golka 2011).  

 
Figure 9: Contribution of different processing inputs in wheat production to economics, energy use (PEC) and 

greenhouse gas emissions (GHG) 

The percentages of costs, energy inputs and carbon dioxide emission due to the seed 

material, diesel consumption and emission of nitrous oxide in winter wheat production in 

the total balance worked out for Łężany Farm are presented in Table 3. Costs of wheat 

production, regardless of the inputs, were within 17.9% to 19.6% of the total production 

costs. The energy inputs and volumes of emission of the pesticides used in wheat production 

reached 78.8% of the total inputs for the production means in the farm, whereas the 

remaining inputs as well as the emission of nitrous oxide were less than 20%. 

Table 3: Percentage share of wheat in the total production costs, energy use and carbon dioxide emission for five crops 
cultivated in the farm. 

Items Cost Energy use Emission of CO2e 

Seeds 19.6 24.9 13.9 

Fertilizers-synthetic 18.3 19.1 19.3 

Pesticides 18.3 78.8 78.8 

Diesel use 17.9 17.9 14.8 

N2O emissions   19.2 

Impact of different energy efficiency measures on economics and the environment 

Average production costs per ha of cropped area on the farm in Łężany were 1140 EUR/ha, 

with the energy inputs around 15.21 GJ/ha and emission volume of 1563 kg CO2e/ha (Table 

4). Among the three energy saving measures, two led to reductions in the energy inputs, i.e. 
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inclusion of leguminous crop into the rotation (by 4.5%) and use of effective microorganisms 

(by 1.4%). At the same time the third measure,  ploughing in straw and application of liquid 

multi-compound fertilizers, did not cause any considerable change in the energy inputs or 

volume of gas emissions, but significantly reduced costs of production (by 13.8%). 

Application of liquid multi-compound fertilizers on several dates is becoming more and more 

popular on large farms. This is a way to lower production costs while maintaining the same 

energy inputs and volume of emitted greenhouse gases.  

Table 4: Annualized costs, PEC and GHG emissions per one hectare in Łężany farm with energy efficiency measures in 
wheat production 

Scenario 
Income Costs Energy Use CO2e 

€/ha €/ha % MJ/ha % kg/ha % 

Current practice 1232 1140 100 15213 100 1563 100 

Change in plant rotation  1120 98.2 14377 94.5 1514 96.8 

Straw is plowed plus multi-fertilizer  983 86.2 15213 100 1563 100 

Effective microorganisms  1129 99.0 14995 98.6 1519 97.1 

The highest cost reduction at €157/ha was associated with ploughing in of straw and multi-

fertilizer application, while significantly less cost effective were the change in plant rotation 

(€20/ha) and application of effective microorganisms (€11/ha) (Figure 10). Among the three 

ES measures, the highest reduction of energy input 836 MJ/ha was caused by the change in 

crop rotation and this figure was four-fold higher that in the case of effective 

microorganisms application. For these two ES measures, the impact on reduction of 

emissions was in the range from 44 CO2e/ha to 49 CO2e/ha. 

 
Figure 10: Impact of Different Energy Saving Measures on Cost Savings, Energy Savings and Greenhouse Gas Emission 

savings (GHG) per ha 

4.1.4. Energy efficiency measures in Dutch wheat, sugar beet and potato production 

Chris de Visser, Marcel van der Voort 

Wheat, potatoes and sugar beet are the main three crops in Dutch arable farming. Measured 

by area wheat is the largest arable crop with 155 000 hectares, followed by sugar beet (72 

000 ha) and potatoes for eating (ware potatoes) (69 000 ha) (Kamp et al. 2010). The energy 

consumption per hectare is in the reverse order (highest for potatoes, then sugar beet and 

lowest for wheat). However, when looking at total energy consumption on a national level, 
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wheat is the largest energy consumer followed by potatoes for eating and sugar beet (Kamp 

et al. 2010). The highest energy inputs in typical Dutch wheat production are associated with 

fertilizer inputs and diesel fuel use (Figure 11, Figure 12, Figure 13). In the major part of the 

Netherlands, wheat is not stored on the farm. Therefore the energy for drying is not 

included as it takes place beyond the farm gate. For typical Dutch potato production the 

highest energy inputs are related to fertilizer input, diesel fuel use and drying/storage of 

potatoes which is typically done on the farm.  

In order to indicate the possibilities for improved energy efficiency, three different energy-

saving measures were applied to a typical representative Dutch farm of 120 ha. This 

standard farm-model produces wheat (25% of the area), sugar beet (25%), ware potatoes 

(25%), onions (12.5%) and peas (12.5%). Based on 2011 price levels, the farm income and 

cost can be summarized as follows. 

The total costs of € 768,000 are calculated with norms based on recent information from 

suppliers and buyers, current agricultural practices and expert opinion (KWIN-AGV 2009). 

The costs for land and buildings are based on the current market value of arable land and 

the replacement value of the machinery. Land costs in the Netherlands are relatively high 

compared to the most other European countries. The farm model includes some contract 

work, but most work is carried out with the farm’s own machinery and labour. The costs for 

labour are based on task times and collective labour agreements. Mechanisation costs are 

based on percentages of the replacement value for interest, depreciation, insurance and 

maintenance. The variable costs include costs like energy, fertilizer, pesticides and seed. The 

storage costs are for the building and installations based on the storage needs of the product 

and are an annual percentage of the replacement value.  

Table 5: Income and costs of a standardized Flevoland farm of 120 ha. 

Income/cost Amount 

Income products € 418,000 

Cost  

Variable cost € 174,000 

Land and building € 260,000 

Labour and mechanisation € 273,000 

Storage cost € 61,000 

Total cost € 768,000 

In practice the cost- and income situation differs quite significantly by farm. Often farmers 

accept lower recompense for their owned land, own labour and capital. 

The three energy saving measures under study were precision farming, improved air flow in 

storage and use of compost. 

Precision farming  

Precision farming is a farm management technique that further optimises crop and farm 

inputs by using satellite positioning systems to determine yield variation and corresponding 
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variable spatial requirements of seed and nutrients. The precision farming relies on new 

techniques in ICT and GNSS. In a study by Van der Schans et al. (2008) the potential 

possibilities and effects in Dutch agriculture were addressed. For our standard farm, we have 

estimated the effect of implementing this technique on yield and savings on inputs and 

costs. The potential of this technique is not fully realised as much knowledge is still lacking 

regarding monitoring and sensors and the relation between sensor readings and operational 

activities. Nevertheless, we have made use of the study by van der Schans (2008) who 

estimated a 750 kg per ha increase in potato yield and a decrease in pesticide use and fuel 

use by using precision farming techniques at the current status of development in the 

Netherlands. Table 6 represents the used key figures. 

Table 6: Used key figures for study. 

Description Amount Source 

Investment € 10,000.- Van der Schans et al. 2008 

Amortization period 5 years  

Interest rate 5.3%  

Annual costs € 1,250. Van der Schans et al. 2008 

Yield effect 750 kg/ha extra potatoes Van der Schans et al. 2008 

Pesticide reduction 5% Van der Schans et al. 2008 

Diesel fuel reduction 10% Applied Plant Research 

The investment is mainly the hardware for GNSS positioning and guidance. The annual costs 

are mainly the costs for subscriptions and licenses. The yield increase of potatoes is due to 

the better positioning of the planting of tubers with the ridging cultivation, also the 

placement of the tubers during planting is more optimal. The reduction in pesticide use is 

primarily due to  less overlapping during application of pesticides. The diesel fuel reduction is 

based on experiences and verbal comments of the business unit manager of the 

experimental farm of Applied Plant Research (Wageningen UR). The costs and reductions are 

consistent with, what is referred to in the study (van der Schans et al. 2008), as “a light 

regime” of precision farming. 

The impact of precision farming hasn’t been researched for energy and GHG savings in Dutch 

agriculture. The study that was used to calculate the effects mainly focused on the economic 

effects of precision farming. This means potentially there are more savings to gain by 

extending precision farming into other related techniques such as Controlled Traffic Farming. 

Improved air flow in crate storage for potatoes  

In a study of Kamp et al. (2010) the energy use of Dutch arable farming was studied. The 

study showed that storage is an especially big energy consumer. There are a number of 

different storage techniques used in the Netherlands, but bulk storage is the most popular. 

One of the storage techniques, which is increasing in popularity, is to store potatoes in 

wooden boxes in front of a letter box. This technique is especially suitable for smaller 

quantities. The same storage technique is also used for flower bulbs where research has 

shown that with minimal effort (costs) the air flow in these box storage systems can be 
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improved significantly. The research showed that simple adjustments to the wooden 

pressure chamber, will significantly improve the energy efficiency. In Table 7 the key figures 

are used in the model are shown. 

Table 7: Used key figures for study. 

Description Amount Source 

Investment € 4,200.- Kamp et al. 2010 

Amortization period 14 years  

Interest rate 5.3%  

Energy reduction 25% Kamp et al. 2010 

The investment is mainly rounding the edges of the timber beams of the letter box and 

additional timber skids. The energy saving is mainly due to the improved air flow in the 

pressure chamber. The product is better ventilated and has less back-pressure. The 

ventilation can therefore be less intensive, to maintain the same product quality. 

Use of compost and less inorganic fertilizer  

The attention to soil fertility and the concern over soil degradation is growing in the 

Netherlands. This concern is fed by a negative organic matter balance at the farm level. One 

of the ways to stimulate the organic matter content is to supply compost to soils. Together 

with this compost, minerals are introduced that can replace a part of the mineral fertiliser 

that we assumed for the reference farm. To estimate the effects of this measure, data has 

been used from a farmers’ network. The main focus of the farmers in this network is to 

improve nutrient uptake by the plants through improving soil life and soil quality. For these 

farmers it results in a reduction in mineral fertilizer use, especially at the start of the growing 

season. But at the same time, the replacement of mineral fertilizer by compost minerals 

leads to more nitrogen emissions as the mineralization of compost nitrogen does not fully 

match the crop needs at a given time. In this case the supply of nitrogen is lower. This could 

lead to a yield loss, but this is not calculated in the model. The farmers’ network indicates 

that they experience no loss in yield. Table 8 shows the key figures that are used in the 

model. 

Table 8: Used key figures in the model. 

Description Amount Source 

Annual costs € 15,000.- Vitalebodem.nl 

Inorganic fertilizer 15% Vitalebodem.nl 

Organic fertilizer 100% Vitalebodem.nl 

Energy production compost 820 MJ/ton Dekker et al., 2009 

GHG-emission production compost 133 MJ/ton Dekker et al., 2009 

The reference farm is applying 12.5 ton of compost per hectare per year. The price of 

compost is EUR 10.00 per ton. The organic fertilizer is no  longer applied and the use of 

inorganic fertilizer is reduced by 15%. The effect on N2O field emissions is calculated as well. 

The N2O field emission are calculated using the IPCC guideline and the relevant Dutch 

default values. 
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Relative Contribution of different inputs and process steps to energy use, total costs of 
production and greenhouse gas emissions 

The different inputs contribute in different proportions to the total costs, primary energy 

consumption (PEC) and greenhouse gas emissions (GHG). For the three crops of the standard 

farm-model the relative contribution of the different inputs are given in Figure 11, Figure 12 

and Figure 13. This gives an insight to the most important input for costs, energy 

consumption and greenhouse gas emissions. There is a significant difference in relative 

importance between costs, energy consumption and greenhouse gas emission. For example, 

the cost of crop protection is important, but crop protection does not represent substantial 

indirect energy consumption nor associated greenhouse gas emissions.  

The negative costs for organic fertilizer in the Netherlands should be noted. Due to a surplus 

of organic manure arable farmers are paid to take organic manure from livestock farmers; so 

in fact, organic manure is an income. The energy and greenhouse gas emissions regarding 

production of organic manure are ascribed to the animal husbandry. This is in line with 

emission calculation schemes, like the Dutch NTA8080. Only transport and energy and 

emission of the application of organic manure are taken into account. As mentioned above 

the N2O field emissions are calculated for the complete farm and thus included per crop. The 

other costs mentioned in Figure 11, Figure 12 and Figure 13 are costs of drying (wheat), 

transport (sugar beet) and drying/storage (potatoes). 

The bars, with the cost-effects in Figure 11, Figure 12 and Figure 13, show that the crop 

protection, seed/planting material and inorganic fertilizers are the most significant input 

costs for these three crops. For energy input and GHG emissions the inorganic fertilizers and 

diesel are the two inputs with the main contribution to the total energy use and greenhouse 

gas emission. Especially for potatoes the storage/drying, and planting material for GHG, are 

also significant. This shows that the overlap in the three aspects is inorganic fertilizers. Also 

the figures show that energy efficiency and greenhouse gas are correlated to some extent. 

 
Figure 11: Relative contribution of different inputs in wheat production in The Netherlands to economics, energy use and 

greenhouse gas emissions (GHG). 
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Figure 12: Relative contribution of different inputs in sugar beet production in The Netherlands to economics, energy use 

and greenhouse gas emissions (GHG). 

 
Figure 13: Relative contribution of different inputs in potato production in The Netherlands to economics, energy use and 

greenhouse gas emissions (GHG). 

Additionally, the yields of wheat, sugar beet and potatoes, the energy consumptions (PEC) 

and the GHG emissions per hectare are stated in Table 9. 

Table 9: Yield, energy consumption and GHG emission per crop of a standardized Flevoland farm of 120 ha. 

 Wheat Sugar beet Potatoes 

Yield (t/ha) 9 74 57 

Energy (MJ/t) 2.094 235 786 

GHG (CO2e/t) 449 52 129 

Impact of different energy efficiency measures on economics and the environment 

All three measures were “implemented” at our standard farm and the effect was calculated 

on energy use, GHG emissions and emissions of minerals and pesticides. The analysis and 

results (Table 10) show that compared to the reference situation all suggested energy 

efficiency measures contribute to energy savings and reduced GHG emissions. These 

contributions were in the range of 3 to 7% of the total energy use and 1 to 6% for the GHG 

emissions. The cost remained, relatively, equal for all energy efficiency measures. The 
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income improved 1% in the precision farming scenario. The minimal effect on the income is 

mainly due to the additional costs that counteract the savings. 

Table 10: Annualized costs, PEC and GHG emissions with energy efficiency measures, based on a model farm of 120 ha in 
the Netherlands. 

 Annualized Cost PEC GHG 

 €/ha % MJ/ha % CO2e/ha % 

Reference situation farm 6,403 100 27,759 100 3,022 100 

Precision Farming 6,379 100 26,949 97 2,992 99 

Potato storage 6,392 100 26,256 95 2,829 94 

Compost 6,415 100 35,295 132 4,924 157 

The precision farming and potato storagemeasures reduce energy and GHG emissions. 

Precision farming and Potato storage improvements show a reduction in annualized cost, 

but less than 1%. The energy use and GHG emission increase significantly for the compost 

measure. The compost measure shows a small increase in annualized cost, but less than 1%. 

The addition of income is not included in the table. The precision farming measure shows an 

increase in income of just 1%. 

Table 11: Environmental effects of additional compost. 

 Reference Additional compost 

Effective Organic matter supply (kg/ha) 1,110 2,891 

NH3-emission (kg/ha) 0 6 

N-soil surplus (kg/ha) 54 141 

Nitrate content soil (mg/L) 26 67 

The reduction in pesticide use also has positive environmental effects. The weight of active 

substance is lowered from 29.2 to 27.9 kg for the total business (six crops). The effect of the 

lower active substance is positive on Dutch environmental parameters for terrestrial and 

water life and for emission to air, ground water and surface water. 

Conclusions 

The relative contribution of inputs to costs, energy consumption and greenhouse gas 

emission showed that inorganic fertilizer is the most important input for all three criteria. To 

lower the costs, energy consumption and greenhouse gas emissions measures to reduce the 

use of inorganic fertilizer are needed. Precision farming is focussed on pesticide and diesel 

fuel savings, but potentially savings in inorganic fertilizer use can play a bigger role. This has 

not been calculated in the model as there is still a lack of data. Potentially more interactive 

feedback of management systems for site-specific application of fertilizer and crop 

protection could be interesting in practice. Further research could contribute to more energy 

savings. The energy savings on storage show that limited adaptions can result in significant 

effects. Potatoes and onions are mainly stored in bulk, but due to the absence of data on 

energy use there is a limited knowledge on potential energy savings. At a national level 

potatoes and onions are, due to the large area grown, significant contributors to the overall 

energy consumption of agriculture. Further research could potentially save significantly on 
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energy consumption. The application of compost to improve soil fertility is a less common 

measure. The primary goal of the measure is not to save on energy consumption but a side 

effect is a significant increase in energy consumption and greenhouse gas emission. The use 

of compost is especially beneficial for sandy soils and  could have more beneficiary side 

effects such as improving water retention, the uptake of nutrients by the plants and soil 

cultivation and soil carbon sequestration. These beneficiary side effects all have potential to 

save energy and GHG. However, data and estimates of these effects are lacking so that these 

effects are not taken into account. Also, the yield stability in wet or dry conditions could be 

increased, which is also positive for the income of farmers and for energy efficiency of 

products. The measure should be researched to fully highlight its potential.  

4.1.5. Energy efficiency measures in Portuguese wheat production  

Fátima Baptista, Dina Murcho, Carlos Marques, Luis Leopoldo Silva, José Rafael Silva 

Introduction  

Diesel used for the machinery is one of the most important production factors contributing 

to direct energy use and greenhouse gas (GHG) emissions. Reduced tillage and no tillage 

systems have been identified as efficient measures to reduce energy input use in agricultural 

systems. These systems need less fuel and are associated with lower mechanization and thus 

reduce production costs and greenhouse gas emissions.  

Indirect energy input through fertilizers contributes 30%-50% of the total energy use in 

agriculture. Therefore, it is expected that all measures that improve  the efficiency of 

fertiliser use contribute to a great extent to energy efficiency. Differential or site-specific 

application, according to soil fertility and plant response, is a precision farming technique 

that could contribute to this improvement.  

The use of irrigation for wheat production can lead to a great increase in productivity. 

However, investment in equipment is necessary and some inputs such as fertilizers, 

electricity and water will also increase.  

The main objective is to analyse the effect in farm economic results, energy consumption 

and environmental impacts of three options: 1. no tillage cropping systems, 2. reduction of 

phosphorous application in wheat, and 3. introduction of irrigation.  

Methodology 

Alentejo is the largest agricultural region of Portugal, with a Mediterranean climate 

characterized by mild winters and dry and hot summers. Rainfall is between 400 to 600 mm, 

concentrated in autumn and winter. Average temperature is between 21 and 25 ºC, but 

maximum temperature can be higher than 40 ºC while minimum is frequently below zero 

during winter nights (Marques, 1988).  

A typical farm of 250 hectares, with clay soils and a traditional crop farming system of 

dryland agriculture in the Alentejo was chosen as the basic scenario. In this work the effect 

of no tillage, reducing fertilisers and irrigation are evaluated considering economic, energy 
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use and environmental adjustments and their effects. Crop farming systems are described 

and inputs and outputs are quantified for each analysed option.  

Basic scenario–Traditional Crop system  

The farm production system is based on a four year crop rotation (sunflower–durum wheat 

1–green peas–durum wheat 2) established to achieve high production levels of cereals. 

Usually the cereal, namely durum wheat, because of specific subsidy policies, or other cash 

cereal crop, alternates with sunflower and peas.  

Durum wheat 1 and 2-Conventional soil preparation is based on deep ploughing followed by 

two chisel tine passes. The first durum wheat in the rotation, 1, is then prepared with chisel 

tine and disc harrowing followed by sowing (200 kg seeds/ha) and fertilizer application (300 

kg/ha of N20:P20:K0). Usually a in-crop chemical weed control operation takes place (0.02 

kg/ha of Tribenuron-Methyl and 0.5 L/ha of Clodinafop + Cloquintocete) followed by a 

fertilizer application of 150 kg/ha (N 27%). Harvest is in July, with average yield of 3 t/ha of 

grain and 1.5 t/ha of straw.  

Sunflower-Conventional soil preparation is similar to the one performed for wheat, 

consisting of deep ploughing, followed by two chisel tine passes during winter, and one 

before sowing sunflower  in March. Sowing density is 4 kg/ha of seeds (75 000 plants). 

Sunflower does not receive fertilizer or herbicide treatments and it is harvested in August. 

Productivity is 850 kg/ha. 

Peas- Sowing of green peas occurs in January, with 150 kg/ha, after harrowing and two 

chisel tine passes for soil preparation. As for sunflower, green peas require neither 

herbicides nor fertilizer treatments. Harvest is in July, with productivity of 1100 kg/ha.  

Farm machinery 

To perform the field operations described above the farm machinery consists of one 105 hp 

tractor, one 9 ton trailer, one disc harrow, one chisel tine, one drill with 25 coulters, a 

fertiliser distributor, a straw baler, a rake and a precision seeder. All the machinery is stored 

in a 75 m2 building. The farmer also rents an 85 hp tractor with a plough implement, a 1000 L 

sprayer, and a combine harvester. 

EU financial aid – Common Agricultural Policy 

All farms receive, each year, an EC subsidy, the RPU (“Single Payment Scheme”). The value 

received is different for each farm and it is calculated based on the farm history of producing 

the specific crop, and it also takes into account the existence of any animals. The national 

average value attributed for the year of the study was 174 €/ha. 

Methods used for cost calculations 

For mechanisation the rate and value were calculated based on the replacement value and 

life span of each machine. The life span considers the durability of the item, the time 

between its first and last use. In the case of the tractors a life span of 12 years was 
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considered, for the seeders 13 years and for the disc harrow, the chisel tine and the trailer a 

life span of 20 years. 

For determining storage use, from harvest to the day that the products leave the farm, the 

proportion of the warehouse area occupied by the crops, according to their yields, was used 

in the calculations. 

Alternative option 1–No tillage 

As an alternative option to the traditional farming system a no tillage system was considered 

for all the crops, maintaining the same rotation. No tillage or direct seeding has been applied 

in wheat for several years in Portugal, by an increasing number of farmers, and it’s a practice 

that has been increasing over the years as a sustainable and environmental friendly 

agricultural practice for wheat production. 

Durum wheat 1-In the third week of October a weed control operation is performed using 

glyphosate (3 L/ha). Sowing is in November, using a direct drill seeder, with seed density of 

200 kg/ha and fertilizer level of 250 kg/ha (N 15: P 15: K 15). In late January there is a 

fertilizer application with 140 kg/ha (27% N). During February there is a crop weeding 

operation (0.02 kg/ha of Tribenuron-Methyl and 0.5 L/ha of Clodinafop+Cloquintocete). 

Harvest is in July, with the same average yield attained in the traditional farming system. 

Sunflower-In late February a herbicide (glyphosate) is applied. The sunflower sowing is in 

March, also with a direct precision seeder and a plant density of about 75,000 plants/ha. 

Harvest is performed in August. 

Durum wheat 2-Durum wheat 2 ends the crop farming rotation and the same annual 

calendar and operations of durum wheat 1 apply. Productivities are also similar to those of 

durum wheat 1. 

Farm machinery 

To perform the above described field operations the farm machinery used consists of one 

105 HP tractor, one 9 ton trailer, a fertiliser distributor, a straw baler. All machines and 

agricultural machines are stored in a 75 m2 building. As before the farmer still needs to rent 

a direct drill seeder, a 1000 L sprayer and a combine harvester. 

Financial aid 

In this option, besides EU subsidies, there is a national aid from PRODER program. This aid is 

granted to farmers that do organic farming, integrated pest management, produce 

indigenous breeds, and use no tillage systems. The program has specific rules and maximum 

amounts for the different crops and animal breeds. 

Alternative option 2–Reduced P2O5 

Based on data obtained by experimental research (Marques da Silva, 2012) a reduction of 

30% on the application of phosphorous on wheat crops was analysed as a further option. 
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This is considered as an energy efficiency measure with the reduction of indirect energy 

input, since it reduces the quantity of the fertilizer element used. Since in this rotation 

system the application of fertilisers is only in the wheat crops, 1 and 2, this option only 

applies to the wheat crops in the rotation.  

Alternative option 3–Irrigation 

As mentioned above the use of irrigation for wheat production can lead to a great increase 

in productivity. However, extra investment is  needed, namely in irrigation equipment and 

there will be an increase in some inputs such as fertilizers, electricity and water. 

Relative Contribution of different inputs and process steps to energy use, total costs of 
production and greenhouse gas emissions 

Figure 14 shows the relative contribution of the different inputs in total costs, GHG 

emissions (CO2eq) and energy consumption for the crops considered in the conventional 

production system of this farm, assumed as the base scenario. 

 
Figure 14: Relative contribution of different factors used on farm energy, greenhouse gas emissions (GHG) and costs 

under base scenario. 

It is clear that different inputs contribute in different proportions to total costs, primary 

energy consumption and GHG emissions. Fertilizers and diesel are the most important 

factors concerning GHG emissions and energy consumption. Seeds are particularly important 

for farm costs. The relative high contribution of seeds for the total costs is explained by the 

fact that two of the crops do not require fertilizer or pesticides. This implies that small 

changes may induce only low costs but high impacts on energy use and GHG emissions. 

Impact of different energy efficiency measures on economics and the environment for all 
the rotation system 

Table 12 and Figure 15 present costs, energy consumption and GHG emissions per hectare 

for conventional and alternative systems described before. Options 1 (no tillage) and 2 

(fertilizer reduction) decrease costs, energy consumption and GHG emissions and the 

opposite occurs with option 3 (irrigation). In fact, production costs decrease about 10% with 

no tillage, 1% with lower use of P2O5 and increase around 50% with the introduction of 

irrigation. The same is observed in energy consumption and GHG emissions. No tillage allows 
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for 40% lower energy consumption, reduced fertiliser reduces energy consumption by 2% 

and irrigation increases energy consumption to almost double that of the conventional 

system. For CO2eq emissions a decrease of 20% is obtained with no tillage, 2% with reduced 

fertiliser application and irrigation increases emissions by 70%. The decrease in the two first 

options is explained by less use of machinery/diesel and fertilisers and the increase in the 

last one is due to the increased inputs of fertiliser and electricity for irrigation. 

Table 12: Annual costs, PEC and GHG emission for energy efficiency measures in the farm rotation. 

  Annual Costs PEC GHG 

  €/ha % MJ/ha % CO2e/ha % 

Conventional 528.43 100.0 7171.26 100.0 535.97 100.0 

No Tillage 482.90 91.4 4109.36 57.3 431.70 80.5 

Reduction P2O5 522.63 98.9 7045.01 98.2 527.06 98.3 

Irrigation 770.25 145.8 13979.11 194.9 900.23 168.0 

Figure 15 also includes farm profit for different options. It is possible to see that all three 

options allow an increase of farm profit (43% with no tillage mainly due to an agro-

environmental subsidy given specifically for this type of production technology, 2% with less 

P2O5 and more than the double with the irrigation option). In the first two the increase is 

due to a decrease in the production costs and in the last one due to the increased yield.  

 
Figure 15: Impact of different energy saving measures on costs, profit, energy use and GHG emissions per ha. 

Impact of different energy efficiency measures on economics and environment for the 
wheat crop 

Figure 16 and Figure 17 allow a more detailed analysis only for the wheat crop (produced in 

125 ha of the case study crop rotation), taking into account the wheat productivity in the 

different options. These figures show the costs, profits, energy consumption and CO2e 

emissions per hectare and per ton of wheat produced on the farm. 

Figure 16 shows the same tendency mentioned before considering all the rotation crops. 

Options 1 and 2 decrease costs, energy consumption and GHG emissions and the opposite 

occurs with option 3. In fact, production costs decrease by about 8% with no tillage, 2% with 

less use of P2O5 and increase around 66% with the introduction of irrigation. The same is 

observed in energy consumption and GHG emissions. No tillage allows reduced energy 
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consumption of about 45%, less fertiliser use reduces by around 3% the energy consumption 

and irrigation increases energy consumption to almost double that compared to the 

conventional system. For the CO2e emissions a decrease of 30% is obtained with no tillage, 

2% with reduced fertiliser application and an increase of around 70% with irrigation. Finally, 

the profit per hectare increases with no tillage (24%) and with irrigation it approximately 

doubles. 

 
Figure 16: Impact of different energy saving measures on costs, profit, energy use and GHG emissions per ha of wheat. 

Figure 17 presents the impact on costs, profit, energy use and greenhouse gas emissions 

(GHG) per ton of wheat produced. The picture is slightly different with the analysis 

performed by hectare. In fact, when considering the production obtained with those costs, 

energy consumption and GHG emissions it is possible to say that the three options can 

contribute to an increase of the resource efficiency (in different scale). Less energy is 

consumed, less GHG are emitted, and a higher farm profit is obtained either due to a 

reduction of the production costs or to the increased productivity.  

Analysing the variation of the costs per ton of wheat produced a reduction of around 8%, 2% 

and 7% was attained for options 1, 2 and 3 respectively. Concerning the energy consumption 

a reduction of 45%, 3% and 3% was found for option 1, 2 and 3 respectively. For the CO2e a 

reduction of 30%, 2% and 15% was attained. Profit increased for all the options, around 24% 

for no tillage, 3% for reduced P2O5 and 4% for irrigation. 

 
Figure 17: Impact of different energy saving measures on costs, profit, energy use and GHG emissions per ton wheat. 
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Figure 18 shows the differences between the conventional system and the analysed options, 

on energy, GHG emissions, costs and farm profit per ton of attained wheat yield. It is 

possible to see that the introduction of irrigation can contribute to the highest savings in the 

production costs. No tillage allows the highest savings in energy consumption and GHG 

emissions and the highest increase in farm profit.  

 
Figure 18: Differences of costs, profit, energy-use and greenhouse gas emissions (GHG) per ton of wheat between the 

basic scenario and the different energy saving measures. 

Conclusions 

The three analysed options showed a good potential to reduce input use on this farm, 

increasing the resource use efficiency thus contributing to the increase in farm profit. 

However, several factors interact in the production system and more research is needed in 

order to obtain experimental data that allows a more detailed analysis. 

4.1.6. Energy efficiency measures in a Greek wheat-cotton rotation farming system  

Athanasios Balafoutis, Panagiotis Panagakis, Demetres Briassoulis 

Introduction  

Agricultural production in Greece is divided into arable, perennial, orchards, vineyards and 

covered crops. Regarding arable farming, agricultural tractor fuel consumption accounts for 

90-95% of total direct field energy consumption (Panagakis et al, 1996). Measures to reduce 

fossil fuel consumption should be adopted in arable farming in Greece. To achieve such a 

goal, several methods were investigated, including reduced or no tillage since soil tillage is 

the most fuel consuming agricultural practice, followed by mechanical harvesting.  

Fossil fuel for the agricultural tractor also contributes a lot to GHG emissions. Reduced tillage 

or no tillage has been identified as efficient measures for both energy and GHG reduction in 

agricultural systems, with benefits on cost of production as well.  

Fertilizers also contribute to a high extent of the total indirect energy use in arable 

agriculture. Therefore, measures improving fertilizers use efficiency will contribute 

significantly to energy use efficiency. Precision farming methodology on selective fertilizer 

application based on yield mapping could reduce fertilizers in arable farms to a great extent 
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provided it is applicable (farm size, investment etc).  

The rotational agricultural systems between intensive and extensive crops (e.g. cotton with 

durum wheat) can lead to an increase in soil fertility needing lower fertilizer application and 

perhaps increased productivity. Rotational farming has the advantage of no new investment 

need; however, it reduces the total income of the agricultural business, as extensive crops 

yield a lower income (this however depends on the fluctuations of market prices). 

In this report, the main objective was to analyse the effect of 3 energy efficiency measures 

for wheat and cotton cultivations in Greece. Focus was primarily placed on the reduction of 

energy consumption and secondly on the economic results and the environmental impacts. 

The selected alternative energy efficiency measures were: 

1) reduced tillage in both cropping systems (wheat and cotton) 
2) reduced tillage in wheat 
3) reduced fertilizer application through precision farming 

Methodology 

Thessaly is the largest agricultural region of Greece, with a continental climate characterized 

by average to cold winters and dry, hot summers. Annual rainfall is between 265 to 765 mm 

in the total region of Thessaly (Proias et al. 2010) and 423 mm in average for Larissa area, 

reported during the period 1955-1997 (EMY 2012). Average temperature is 15.7oC, but the 

maximum temperature can be higher than 45oC, while the minimum can reach a 

temperature close to or below zero during winter nights (EMY 2012).  

The basic scenario that was chosen for this report is a typical farm of 15 hectares, with 

irrigation potential and sandy-clay soils that runs a 4 year rotation farming system between 

cotton and durum wheat in Larisa area of Thessaly region.  

Basic scenario–Traditional Crop system  

The farm production system is based on a four year crop rotation (cotton–cotton–cotton–

durum wheat). Both crops are annual and durum wheat is used as an extensive crop that is 

used as a break crop after 3 years of intensive cotton production.  

Conventional durum wheat: 

The cultivation procedure in the farm under investigation follows the steps below: 

 Soil treatment 

Preparation of the seedbed by using the following machinery: 

1) Plough for deep ploughing (35 cm)  
2) Heavy cultivator (2 passes) 
3) Disk harrow 
4) Light cultivator 
 

 Sowing 

Sowing is executed in November with a drill type sowing machine (row spacing of 12 cm) 
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that carries two containers, one for the seeds and one for the fertilizers. Sowing requires 170 

kg seeds/ha combined with light fertilizer application (80 kg N/ha and 50 kg P/ha).  

 Chemical application 

Usually 1-2 crop weed control operation take place (10 g/ha triasulfuron 20% w/w, 0.5 L/ha 

clodinafop 24%-propargyl 24% w/v, 1.5 L/ha tralkoxidim 21.55%). 

 Fertilizer application 

Two post-emergence applications of fertilizer (total fertilizer application of 70 kg N/ha, 25 kg 

P/ha, 30 kg K/ha). 

 Harvesting  

Harvest is executed by the end of June using a contractor’s combine harvester (yield of 5 

t/ha of grain and 3 t/ha of straw).  

Conventional cotton:  

The cultivation procedure in the farm under investigation follows the steps below: 

 Soil treatment 

Preparation of the seedbed by using the following machinery: 

1) Plough for deep ploughing (35 cm) 
2) Sub-soiling ripper (every 3 years)  
3) Heavy cultivator (2 times)  
4) Disk harrow 
5) Light cultivator 

 

 Sowing 

Sowing is executed in April with a four-line pneumatic linear sowing machine (row spacing of 

1 m) that carries 4 containers for the seeds on each seeding unit and one container for the 

granular soil insecticide to protect the seed. Sowing requires 25 kg seeds/ha combined with 

fertilizer application (50 kg N/ha and 25 kg P/ha). 

 Inter-row cultivations 

Three inter-row mechanical cultivations for weed control are done without chemical 

applications. After the cotton plants become tall enough for the tractor to pass through the 

plantation without damaging the plants, weeds are controlled with herbicides. Another 

reason for these applications is the avoidance of root rot of healthy cotton plants. 

 Chemical application 

Usually 2 crop weed control operation takes place (2 L/ha trifluralin 48% w/v, 4 L/ha 

ethalfluralin 33% w/v). 

Growth inhibitors are used to avoid late maturing (0.1 kg/ha trimethylammonium chloride 

(C.C.C.) or 1.5 L/ha Mepiquat chloride). 

When the crop is ready to be harvested defolliating chemicals are used, in order to make 
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harvesting easier for the cotton harvesters (2.5 L/ha ethephon 48% w/v - 

cyclanilid 6% w/v). 

 Fertilizer applications 

Two post-emergence applications of fertilizer (total fertilizer application of 50 kg N/ha, 25 kg 

P/ha, 30 kg K/ha) 

 Irrigation 

After sowing, light irrigation is applied to help the seeds to germinate but not heavy 

irrigation as it creates a crust that does not allow the new plants to emerge. Then, according 

to the needs of the plants, 6 irrigations of 300–350 m³/ha are applied.  

 Harvesting  

Harvest is executed by the end of October using a cotton harvester under contract (yield of 

4.5 t/ha of seed cotton).  

Farm machinery 

The farm owns the following machinery: 

 Agricultural tractor 80 kW 

 Reversible plough (3 furrow) 

 Rigid-tine cultivator (3 m) 

 Disk harrow (3 m) 

 Light cultivator (3 m) 

 Crop sprayer (mounted, 500 L, boom 12 m) 

 Trailer (7 t) 

 Pneumatic seed drill for row spring crops (4 m) 

 Mechanical seed drill for winter cereals (4 m) 

 Centrifugal fertilizer spreader (12–36 m, 500 L) 

 Irrigation machinery (pump, auxiliary parts, 33 m³/h) 

 Dripping pipes 

The farm contracts: 

 Sub-soil ripper machine every 3 years  

 Wheat - combine harvesting service 

 Cotton - harvesting service 

EU financial aids 

The selected farm receives, each year, EU subsidies for both wheat and cotton. The value 

received is different for each farm and it is calculated based on the farm history of producing 

the specific crop. In particular, the subsidy for wheat is scalar, meaning that it reduces as the 

size of the farm is increased. The average value for wheat production in the selected farm is 

110 €/ha. As for cotton, the subsidy is divided into two types. The permanent subsidy of 900 

€/ha for any cotton plantation and the variable subsidy that depends on the size of the farm. 

In the selected farm the amount is 650 €/ha. Therefore, the average value attributed to 

cotton crop for the year of the study was 1550 €/ha. 
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Methods used for cost calculations 

The average value per kg of compound fertilizer  (N, P, K) was calculated based on the prices 

of compound fertilizers that are used for this farm. The same approach was used for 

chemicals (herbicides, fungicides and insecticides). Irrigation costs were calculated based on 

electricity consumption, as water was considered as a free resource.  

Considering machinery, the rate and value were calculated based on the replacement value 

and life span of each machine or agricultural equipment in Greece (see Table 13). The life 

span considers the durability of the item for the time between its first and last use. 

Table 13: Agricultural equipment of the selected farm and their useful life span 

Agricultural Equipment Years of useful life 

Tractor 

4wd tractor, 70-80 kW 15 

Tillage machinery 

plough, 3 furrow 12 

rigid-tine cultivator, 3.00 m 15 

diskharrow, 3.00 m 20 

light cultivator, 3.00 m 20 

Other machinery 

crop sprayer, mounted, 500 L, 12.00 m 15 

Tipping trailer, 7 ton 20 

pneumatic seed drill, 4.00 m 15 

mechanical seed drill, 3.00 m 15 

centrifugal fertilizer spreader, 12-36 m, 500 L 15 

Irrigation machinery, 33 m³/h 15 

drip pipes 5 

Alternative option 1–minimum tillage in both crops 

One of the energy efficiency measures to be applied in the traditional farming system was a 

reduced tillage system for both crops (wheat and cotton), maintaining the same rotation. In 

general, reduced tillage systems are not widely applied as farmers still believe that high soil 

cultivation improves the final yield of both crops. However, there are several research 

results reported during the last few years that have shown positive results from reduced 

tillage with only a small to zero yield reduction for both wheat and cotton cultivations.  

Durum wheat–Reduced tillage in wheat means that the ploughing and 2 out of the 3 

cultivator passes are not applied resulting in 58% reduction of diesel fuel consumption from 

the agricultural tractor (Cavalaris et al, 2003) and a respective 16.7% labour reduction. All 

the rest of the agricultural practices are the same as the conventional tillage system. 

Harvesting is scheduled for June, with the same average yield attained as in the traditional 

farming system.  

Cotton-Reduced tillage in cotton means that 2 out of the 3 cultivator passages are not 
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applied resulting in a 27% reduction of diesel fuel consumption from the agricultural tractor 

(Gemtos et al, 1998; Cavalaris et al, 2003) and a respective 9.5% labour reduction. All the 

rest of the agricultural practices are the same as the conventional tillage system. Harvesting 

is scheduled for late September to early October, with a slight reduction in average yield 

(4.7%) as compared to that attained with the traditional farming system. 

Farm machinery 

One of the positive effects of minimum tillage systems is that the farmer does not have to 

invest in new machinery of agricultural equipment. Also the useful life time of some of the 

equipment increases because of reduced use. 

Alternative option 2–Minimum tillage in wheat 

The second scenario under investigation was the application of minimum tillage only in 

wheat as it does not affect the final yield of the crop. Therefore, minimum tillage for wheat 

was examined as shown (in Alternative option 1) above.  

Alternative option 3–Reduced fertilizers and pesticides in cotton through precision farming  

The third option to reduce the energy input in a wheat-cotton rotation agricultural system is 

the application of a precision farming system to minimize the use of fertilizers and herbicides 

in cotton, which is the most energy intensive crop in this system.  

In Greece, there is a delay in the implementation of innovative systems like precision 

agriculture. The delay is attributed to several reasons, of which the most important are given 

by Papageorgiou & Spathis (2000) as: 

1) The structural problems of the Greek agriculture with many small and fragmented 
holdings, which prevent the dissemination and application of technological advances 
that would improve farm incomes. 

2) The geographic dispersion of production units and the resulting difficulty in providing 
knowledge and information from relevant organizations and agencies, which 
prevents the spread of new technologies. 

3) The human factor, namely the low level of education of a large proportion (usually 
older) of people involved in agriculture, which contributes to the delay in assessment 
and adoption of innovative technologies. 

4) The high average age of farmers has resulted in reduced interest in long-term 
perspective, lack of availability for application of new technology and a sense of 
professional competence consistently rejecting efforts to introduce high tech 
applications. 

5) Producers are stuck in traditional production techniques with which they have been 
linked for a large part of their lives, especially the elderly,  

6) Subsidies contribute significantly to their income, especially after the country's 
accession to the EU that led to complacency and unwillingness to seek innovative 
ideas. 

7) The slow implementation of technology in Greece in general, compared to the 
northern EU countries. 
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Nevertheless, precision agriculture has already started its first applications in the last 10 

years. Currently, the investigation of the applicability of precision agriculture in growing 

cotton and wheat by various agencies is in progress. The University of Thessaly, in 

collaboration with the National Agricultural Research Foundation (Annex Larissa), started in 

2001 an attempt to apply precision agriculture in cotton cultivation in the prefecture of 

Karditsa by producing yield maps in conjunction with soil testing results (Markinos et al, 

2002; Gemtos et al, 2002). A second attempt for precision agriculture application in wheat 

was executed by the American Farm School in collaboration with the University of Georgia in 

the U.S. (Gertsis et al. 2003). 

Therefore, using the existing data it was considered that precision farming techniques in 

cotton could lead to  46% reduction of fertilizer use and 81% herbicide reduction (Mygdakos 

et al, 2005). The yield is not affected negatively by this and sometimes it can be increased. 

Farm machinery 

One of the negative effects of precision farming systems is that important investment by the 

farmer has to be undertaken and it is necessary that the machinery is operated and 

maintained by trained personnel. In this case, the sensors, the computer, the printer and 

most importantly the software to produce the yield maps have to be purchased with a cost 

of about 13000€. However, this equipment could be used for a farm of at least 100 ha, which 

could be an extra income in case of hiring out these services to other, neighbouring, farms. 

Alternatively, the specific farm could use an available precision farming system service 

through subcontracting. However, the cost of such a service is not yet known as it is not an 

common in Greek agriculture.  

Relative Contribution of different inputs and process steps to energy use, total costs of 
production and greenhouse gas emissions 

Figure 19 shows the relative contribution of the different inputs to energy consumption, 

GHG emissions (CO2e) and to the total costs for both crops (wheat and cotton for a four year 

rotation system) considered in the conventional production system of this farm, which was 

assumed as the basic scenario.  

 
Figure 19: Relative contribution of different processing inputs in the farm production to energy use, GHG and economics. 

This figure can give several results about the two crops. First of all, it is obvious that 

electricity through irrigation (3 years for cotton) is the biggest energy consumer (54%) in this 

farm with the very similar effect on GHG production (51%). Also, it can be observed that 
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diesel and fertilizer (3 years for cotton and 1 year for wheat) follows in importance 

concerning energy consumption (26% and 16% respectively) and GHG emissions (24% and 

22% respectively). From the figure above, it can be seen that in general the energy and GHG 

emissions more or less follow the same trend for each component.  

However, it is very interesting to analyse the difference between the energy and 

environmental impact of this farm in comparison to the costs. The most significant example 

would be the electricity consumption that even if it requires high primary energy to be 

produced, with respective high GHG emissions, (mainly due to lignite used for electricity 

production that is of very low efficiency and of very high GHG emissions), it has a very low 

cost (natural resource) especially for agricultural production systems (11%). This  helps the 

Greek farmer, but in some cases it is the reason for irrational use of water when the only 

target is maximum yield and no consideration of sustainability, especially in a Mediterranean 

country where water is a limited resource.  

Another remarkable result is that diesel is very expensive (imported) and contributes 

considerably to the farm costs. As for the consumables (seeds, fertilizers and pesticides), 

they are also expensive influencing significantly the final income of the farm.  

Environmental and economic impact of different energy efficiency measures for the wheat-
cotton rotation system 

The three alternative scenarios had a significant reduction of energy consumption, achieving 

the target set for applying them. As was expected, the reduced energy consumption was 

also translated into GHG emission reduction. As for the final economics of the farm (profit), 

there were two cases considered in this report. There is a presentation of the same farm 

using owned land and using rented land. The reason of such a presentation is that the 

mortgage cost is significantly higher than the rent for the same land size, reflecting on the 

final farm income reduction.  

Figure 20 shows the farm results concerning energy savings. It can be observed that reduced 

tillage in both crops reduced energy consumption by 76531 MJ (8.45% of the total energy 

consumption), reduced tillage in wheat reduced energy by 21861 MJ (2.41% of the total 

energy consumption) and precision farming reduced energy consumption by 59377 MJ 

(6.55% of the total energy consumption). 

Figure 21 shows the farm results concerning avoided GHGs. It can be observed that reduced 

tillage in both crops reduced GHGs by 5581 MJ (7.66% of the total GHG emissions), reduced 

tillage in wheat reduced GHGs by 1594 MJ (2.19% of the total GHG emissions) and precision 

farming reduced GHGs by 6191 MJ (8.5% of the total GHG emissions). 

Regarding the costs of production, there was a reduction in all three cases. However, in the 

first scenario of minimum tillage application, cotton yield was also reduced, but was 

overcome from the cost reduction (less diesel use). Figure 22 shows that the highest mean 

annual profit increase was obtained by the first scenario (due to important fuel use 

reduction) and the least by the precision farming application (due to equipment purchase). 
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Figure 20: Energy consumption reduction using the three alternative scenario 

 
Figure 21: GHG emissions reduction using the three alternative scenarios 

In the case of an owned farm the mortgage accounts for 16200 €/a (≈36% of the total annual 

costs), when in the case of the rented farm the rent accounts for 4500 €/annum (≈13% of 

the total annual costs). Therefore, the mean annual profit shown in Figure 22 is a lot more 

significant for an owned farm as it accounts for a higher percentage of the total profit (see 

Figure 23, Figure 24). In particular, the owned land farm gains 23.4%, 14.7%, 0.2%, when the 

three alternative scenarios substitute the basic one (Figure 23). 

 
Figure 22: Profit increase using the three alternative scenarios 

On the other hand, the rented farm gains 6.5%, 4%, 0.05%, when the three alternative 

scenarios substitute the basic one (Figure 24). However, for the rented farm the total 
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income is higher. This is a result of overvalued land in comparison to land rent that indicates 

land purchase is not a profitable investment. It should also be pointed out that 1/3 (17850 €) 

of the total gross income of the 15 ha farm is derived by subsidies that still sustain the 

agricultural economy. If subsidies are eliminated, then this rotational system will be 

completely uneconomical. 

 
Figure 23: Total profit using the basic scenario and the three alternative scenarios (owned land) 

 
Figure 24: Total profit increase using the basic scenario and the three alternative scenarios (rent land). 

Conclusions 

In this report, there was an attempt to apply three of the energy efficiency measures that 

were proposed in the WP2 list for arable crops in Greece and in particular to wheat and 

cotton. The three scenarios analysed gave good results in terms of energy use reduction 

(which was the driver of this report), with positive side effects on environmental impact 

(GHG emissions decline) and on economics of the farm (higher final profit). However, it is 

believed that more energy efficiency measures should be evaluated by field experiments, in 

order to convince the Greek farmers to apply them in the near future. 

4.1.7. Synthesis trade-off analysis of case studies in arable production systems 

The case studies show different promising options for energy efficiency measures in crop 

production across Europe. Many of the presented energy efficiency measures target 
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nitrogen fertilizer management since nitrogen fertilizer causes a very high share of total 

energy use in all cropping systems across Europe except organic farming, where synthetic 

nitrogen fertilizer is not allowed. Most of the measures targeting more efficient use of 

nitrogen fertilizer, like precision farming approaches, promise to be win-win solutions, with 

economic as well as environmental gains (Case studies from Germany (Ch. 4.1.1) and Greece 

(Ch. 4.1.6). The case study from the Netherlands (Ch. 4.1.4) reports energy savings but 

negligible economic effect for precision farming and the substitution of synthetic nitrogen 

fertilizer by compost. All energy efficiency measures targeting a more efficient nitrogen 

management also showed positive environmental effect in terms of GHG emission savings. 

Typically the impact of nitrogen fertilizer saving measures was the highest on reducing GHG 

emissions, slightly lower on energy saving and the lowest on economic indicators. It should 

be investigated as to what extent the economic benefit of these measures can be a sufficient 

incentive for farmers to adopt the energy efficiency measure.  

Direct energy use in arable cropping systems is mainly caused by diesel use and on farm 

storage of the crops with the associated drying (in northern EU countries) and ventilation 

efforts. Reduced tillage is a known measure to reduce energy use in arable cropping 

systems, which is very successful, if it is feasible without negative impact on crop yields.  

Investments in drying technologies, insulation or improved ventilation showed to contribute 

to economic and environmental gains in Finland, Germany and the Netherlands. The 

profitability of such investments of course depends on the current status of the farms and 

opportunity costs for capital, which varies substantially across Europe. 

4.2. Case studies–dairy and beef production systems 

4.2.1. Poland–Case study on Energy Saving Measures in Dairy Milk Production  

Janusz Gołaszewski, Mariusz Stolarski, Zbigniew Brodziński, Ryszard Myhan, Ewelina Olba-Zięty 

In Poland, about 60% of cash production on farms expressed in current prices, comes from 

livestock production, including over 6% generated by milk production. On average, the 

highest share in direct costs generated by milk production is attributed to animal feeding 

(63%), while 7% of the costs are due to veterinary services. This means that one of the 

principal means for increasing production efficiency is optimization of feeding and improved 

veterinary prophylaxis (feeding, breeding, insemination, culling, etc.). The above issues gain 

in importance when high-yielding cows are maintained (8-10 thousand kg of milk annually), 

because at such high milk yields, cows are extremely sensitive to any changes in production 

technology and require particularly rational and stable feed rations as well as frequent 

renewal of animals in the herd.  

The energy saving measure tested in this analysis is an increase in dairy cow production 

intensity from moderate (6000 L of milk per year) to intensive one (8000 L milk per year). 

The analysis concerns a herd of dairy cows maintained in an indoor farming system fed all 

year on wilted grass silage containing 34% of dry matter. All our analyses are supported by 

numerical data included in a typical calculation sheet of farm income from production of 1 
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litre of milk, determined by experts from the Pomorski Agricultural Advisory Centre in 

Gdańsk.  

In the following option we are presenting differences in costs, energy inputs and emission of 

greenhouse gases. The basic difference between the compared systems consists in the 

composition of feed, with a higher share of grinding grain (+41%) and high protein feed 

mixes (+5%) as well as supplementation of the feed with nutrient-rich preparation (Premix). 

Other differences are the quality of herds and veterinary services, including insemination 

treatments.  

Relative Contribution of Different Inputs and Process Steps to Total Costs of Production, 
Energy Use, and Greenhouse Gas Emission 

The energy saving measure in the following analysis is a change in milk production intensity 

from 6000L/LU to 8000 L/LU. At higher milk production yields, the total costs increased by 

21.6%, total energy inputs by 14.1% and total CO2e emission by 14.3% (Table 14). 

Table 14: Annualized costs, PEC and GHG emissions per one LU for efficiency measure associated with the intensity of 
milk production (scenarios 6000 L/LU and 8000 L/LU). 

Specification 
Costs Energy Use CO2e 

€/LU % MJ/LU % kg/LU % 

6000 L variant       

Feed 1383 69.6 26392 73.8 3235 38.3 

 incl. concentrated feed 804 40.5 12116 33.9 1792 21.2 

Veterinary services  75 3.8     

Herd replacement 119 6.0 3047 8.5 1355 16.0 

Electricity 38 1.9 2910 8.1 150 1.8 

Fuels 89 4.5 3400 9.5 197 2.3 

Indirect costs 282 14.2     

Methane emission     3505 41.5 

In total 1986 100.0 35748 100.0 8442 100.0 

8000 L variant       

Feed 1766 69.7 31531 75.8 4135 42.0 

 incl. concentrated feed 1184 46.7 17216 41.4 2689 27.3 

Veterinary services  99 3.9     

Herd replacement 159 6.3 3047 7.3 1355 13.7 

Electricity 44 1.8 3395 8.2 175 1.8 

Fuels 95 3.8 3630 8.7 211 2.1 

Indirect costs 371 14.6     

Methane emission     3980 40.4 

In total 2535 100.0 41602 100.0 9855 100.0 

Percentage increase in total / LU 21.6  14.1  14.3  
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Regardless of the production option, the structure of costs was dominated by feed €1383 

(69.6%), followed by veterinary services and herd replacement €75+€119 (9.8%) as well as 

direct energy inputs €38+€89 (6.4%). At 8000 L/LU yield, the share of costs due to 

concentrated feed was 6.2% higher and those incurred by veterinary services and herd 

replacement increased by 0.4%. In turn, despite higher costs the energy inputs at 8000 L/LU 

milk yield contributed a smaller share to the structure of costs: electric energy consumption 

decreased by 0.1% and fuel consumption fell by 0.8%. The difference in the structure of 

energy inputs between the two production options was mainly due to 7.5% higher energy 

input for the concentrated feed. Analogously, the CO2 emission for concentrated feed in this 

option ensuring higher yields (8000 L/LU) was 6.1% higher than in the other option (6000 

L/LU). 

Impact of energy efficiency measure on economics, energy use and the environment 

By raising milk production intensity from 6000 L/LU to 8000 L/LU, it was possible to improve 

the economic, energy and environmental effects per litre of milk (Figure 25).  

 
Figure 25: Impact of Energy Saving Measure on Cost Savings, Energy Use and GHG Emissions  per L of milk. 

Compared with the lower milk yielding (6000 L/LU), raising production to 8000 L/LU 

depreciated average costs of production of one liter of milk by 4.3% (from €0.33/L at less 

intensive production to €0.32/L in the more intensive production regime). At the same time, 

at higher milk yields, the energy inputs fell by 0.76 MJ/L (12.7%) from 5.96 MJ/L to 5.20 

MJ/L, whereas emission of carbon dioxide decreased by 0.18 kg CO2e/L (12.1%) from 1.41 kg 

CO2e/L to 1.23 kg CO2e/L.  

4.2.2. Energy efficiency measures in Dutch milk production  

Arie Klop, Harm Wemmenhove, Hilko Ellen 

Dutch dairy farms are mainly based on a traditional family business. On average there are 

about 80 cows on the farm with a milk production of 8500 kg milk per cow per year, with 

4.4% fat and 3.5% protein. A typical farm selected as a case study for this analysis has 16.19 

ha of ground, divided in 11.33 ha grass and 4.86 ha of maize for silage (whole plant). For 

replacement there are about 28 heifers and 35 calves kept on the farm on a yearly basis. The 

cows have a liveweight of 600 kg on average and have an average age of 4 years and 3 

months. During the summer months the cows graze in pastures near the farm. In wintertime 
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the feed contains 20 kg grass silage, 14 kg maize silage and 7 kg concentrated feed (all kg 

product/cow/day). Milking is done in a herringbone milking parlour with 16 stands. At the 

farm level most of the energy is used for milking and cooling the milk during storage. Most of 

the work is carried out with own mechanization and labour. For silaging the farm partly uses 

contract work. The total investment in the housing is € 7000-€ 8000 per cow, not including 

land and mechanization. 

Table 15 shows the income and costs of a typical Dutch farm (2011 level). Investment in 

housing and land should be paid from the difference between income and costs. 

Table 15: Income and costs from a Dutch dairy farm with 80 cows. 

Income/cost Amount 

Income products € 269200 

Costs  

Feed cost € 40960 

Pasture (fertilizer, fences, pesticides) € 23760 

Housing (water, sawdust, etc) € 6320 

Electricity € 6880 

Healthcare cows € 15920 

Contract work € 30400 

Total costs 
(per 100 liter milk) 

€ 124240 
(€ 18.27) 

For higher energy efficiency three measures were studied: 1) better fodder efficiency and 

less energy for producing young animals; 2) heat recovery from milk; 3) less total energy 

input but more energy / kg milk, comparing conventional to organic farming.  

Better fodder efficiency 

In this case a better fodder efficiency is the goal. Therefore replacement of dairy cows by 

heifers is changed from 30% to 20% per year. That means that less fodder is used for 

growing cattle, and that feedstuffs are used more efficiently for milk production. Conclusion: 

Longer lifetime for cows results in a lower yearly replacement from cows by heifers. Energy 

efficiency raises about 8%. The difference in energy efficiency is shown in Figure 26.  

 
Figure 26: Difference in energy efficiency (in MJ/L milk) between 30% & 20% replacement of cows by heifers. 
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Heat recovery from milk 

We used pre-cooling; directly after milking the milk is cooled with water down to 15 °C. The 

energy from the cooling machine is used to prepare water of 50 °C. This water is used for 

cleaning, and in some cases it can be used for domestic purposes. Besides that a frequency 

regulator for vacuum pump was added: total investment is about € 7,000. These measures 

give a reduction of energy input for milk cooling and storage of 740 MJ/LU per year for a 

farm of 80 cows. That corresponds to a reduction of 30%. In Figure 27 the difference in 

direct electricity use is shown. 

 
Figure 27: Difference in direct electricity use (MJ/L milk) for 80 cows with or without milk heat recovery. 

Comparing conventional with organic farming 

In literature a difference for energy input has been calculated between conventional and 

organic farming (Bos et al. 2007). The energy input was calculated for all feeds which were 

bought from outside the farm + the energy input in fertilizers + diesel and gas use and 

electricity needs for equipment. Conclusion: large differences were found in energy use and 

costs of fertilizers and concentrates. Organic farming leads to an energy use reduction of 

25% with respect to conventional farming. In the study of Bos et al. (2007) the energy input 

for home grown roughage and concentrates were not taken into account. Figure 28 shows 

the difference in energy use based on this study. 

 
Figure 28: Difference in energy use between conventional and organic farming in MJ/L milk (Bos et al. 2007). 
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When we place the difference in energy use in the calculations for this project, we find a 

reduction in energy use of 13% per liter milk. The production of milk per cow per year on an 

organic farm is estimated at about 7950 kg.  

Relative Contribution of different inputs and process steps to energy use, total costs of 
production and greenhouse gas emissions 

In Table 16 the effects of the different measures on the energy use, the costs and the 

emission of greenhouse gases are shown. The effects are calculated for a ‘standard’ Dutch 

dairy farm with 80 cows and are presented per liter milk.  Organic farming had the biggest 

impact on reducing energy use per liter milk and GHG emissions per liter milk. This is mainly 

because of the use of less industrial feed and fertilizers.  

Table 16: Annualized costs, PEC and GHG emissions with energy efficiency measures, based on a Dutch model dairy farm. 

 Annualized Cost PEC GHG 

 €/100 kg milk % MJ/L milk % CO2e/L milk % 

Reference 18.27 100 29.1 100 280.3 100 

Better fodder efficiency 18.27 100 26.7 92 280.2 100 

Heat recovery from milk 17.96 98 28.8 99 245.3 90 

Organic farming n.a.  25.2 87 166.3 59 

4.2.3. Energy efficiency measures in Portuguese Dairy Cows production 

Fátima Baptista, Dina Murcho, Luis Leopoldo Silva, Carlos Marques 

Introduction 

According to Ministry of Agriculture, Rural Development and Planning (MADRP 2009) the 

dairy sector represented in 2009 around 12% of the agriculture national product. For the 

same year, in accordance with the National Statistics Institute (INE 2011), Portugal had 

278,416 dairy cows, the Azores and Douro–Minho being the regions with the highest 

number of cows, each representing 33%. The North-coast had 12% and Alentejo 8%, with 

the biggest dairy farms located in this last region (average of 138.4 cows per farm).  

Dairying is one of the agricultural subsectors that experienced a considerable development 

after the integration into the European Community due to the specialization of production 

and industrial structures. At the farm level there was an increase in farm size with a 

significant loss of small producers combined with a territorial concentration of farms. In 

spite of the decrease in the number of dairy cows in the last 10 years, national production 

has been almost constant due to the productivity increase resulting from the high 

investment in technology and genetic improvement. 

Economic sustainability of dairy farms is mainly dependent on the quantity and quality of 

produced milk, feeding costs and reproductive performance (Rodrigues et al. 2012). 

According to these authors, average milk production was, in 2007, around 8500 kg of milk 

per cow  per year with 3.61% fat and 3.21% of protein.  
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The main objective of this case study is to analyze the effect that changing to high milk 

production, through changes in feeding diet (quantity and quality), can have in the economic 

results, energy consumption and environmental impacts (GHG). The basic scenario is a farm 

with a production of 7,500 kg milk per cow and per year and the alternative is a farm with 

11,000 kg milk/cow/year. It must be stated that cows producing at this level of 

intensification are much more sensitive to all changes and a huge attention is required to all 

production factors, such as buildings, environmental conditions, animal welfare, water 

quality, animal husbandry, skilled labour and feeding. 

Basic scenario 

A typical farm of 140 dairy cows in the Alentejo region was chosen to represent the basic 

scenario. The production is 7,500 kg of milk, per cow for 305 days of lactation. The farm has 

the necessary buildings, such as a dairy and milking parlor. Animals remain indoors  day and 

night. The farm is equipped with all the necessary equipment, such as tractors, mixer-

feeders to prepare and distribute the feed and a cooling tank to store and conserve the milk. 

Direct energy consumption is mainly for milking and cooling. 

The feed mix, in total 39.5 kg per cow and per day, is composed of 24 kg of maize silage, 4kg 

of ryegrass silage, 3.6 kg of soybeans, 1.8 kg of maize gluten, 2.8 kg of maize flour, 2.8 kg of 

citrus pulp and 0.5 kg of proteins and minerals. Average dry matter is 40%. Feed is 

distributed twice a day. Cows go to the milking parlor twice per day. The dairy cows’ 

production cycle was assumed to be 8 years which means that annual replacement rate is 

12.5%. All animals born on the farm are sold and replacement is with cows bought in from 

specialized farms. Dairy farms receive a milk subsidy of 0.018 € per kg of milk.  

High Production system 

As mentioned above the alternative considered is milk production increased to 11,000 kg per 

cow per lactation. This is achieved with a different diet and assuming that all other 

important factors are under control. The data source is a real farm that produces under 

these conditions.  

Feed, a total of 45.7 kg per animal per day, is distributed twice in order to be always 

available and fresh. The feed consists of 0.2 kg of hay, 6.5 kg of brewery waste grain, 2 kg of 

sugar beet pulp, 3.6 kg of millet, 1.33 kg of minerals, 2.55 kg of rapeseed, 2.5 kg of alfalfa, 23 

kg of maize silage and 4 kg of ryegrass silage. Average dry matter is 48%. Cows go to the 

milking parlor for milking three times a day. The cows’ productive life cycle is 5 years, 

therefore the annual replacement rate is 20%. As in the basic production system all animals 

born on the farm are sold and cow replacement is done with animal bought in from 

specialized farms. Milk subsidy is 0.018 € per kg of milk. 

Impact of different energy efficiency measures on economics & environment 

Figure 29 shows the relative contribution of the different inputs in the total costs, GHG 

emissions (CO2eq) and energy consumption for the dairy farm in the basic scenario. It is clear 

that different inputs contribute in different proportion to the total costs, primary energy 
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consumption and GHG emissions. This implies that small changes may induce only a little 

change in costs but have a high impact on energy use and GHG emissions.  

Concerning the cost structure feed represents the highest amount and is around 83% of total 

costs. For the energy consumption feed contributes 70% and diesel and electricity account 

for almost 30%. For the GHG emissions the highest factor is from the cows themselves, 

contributing almost 70% of the emissions, followed by the feed with approximately 25%. 

This is due to the emission of methane by enteric fermentation and also due to animal 

manure fermentation. These impacts are well documented in literature (Schils et al. 2006; 

Van der Hoek & Van Schijndel 2006).  

 
Figure 29: Relative contribution of different inputs in the farm production to farm costs economics, energy use and 

greenhouse gas emissions (GHG) per cow. (Other include bedding straw, veterinary and water). 

Table 17 presents the costs and income for the basic scenario and the alternative option. 

Again, it can be seen the high contribution of feed costs in the total production costs, 

representing approximately 83% and 77% of the variable costs, for the basic scenario and 

the alternative, respectively. Fixed costs include labour and depreciation of machines, 

equipment, buildings and animals. Income results from selling milk, calves, cows at the end 

of their life cycle and the milk subsidy. The milk price considered is 0.33€ per kg.  

The basic scenario presents a total costs per kg of milk of 0.354 €, which shows weak 

economic sustainability, expressed by the low margin (89.09 €/cow and without the CAP 

milk subsidy the net margin is negative). In the case of intensive production, the total costs is 

0,297 €/kg and the net margin is approximately 765 €/cow, showing economic sustainability. 

Table 18 and Figure 30 present costs, energy consumption and GHG emissions per cow. In an 

overall analysis it can be stated that increasing milk production by changing feed increases 

production costs, energy consumption and GHG emissions (23%, 47% and 14% respectively). 

This could be compensated for by the production increase. In fact it is possible to improve 

resource efficiency by increasing production and decreasing energy and GHG emission per 

product unit. In Figure 30 it is also showed the impact of the different options on farm profit. 

It is possible to see that intensive production increases the farm profit in more than 700%. 

Figure 31 shows the impact on costs, profit, energy use and greenhouse gas emissions (GHG) 

per ton of milk produced. We can observe a different picture compared with the analysis 
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performed by cow. Intensive production leads to a decrease of costs (16%), energy 

consumption is similar and GHG emissions decrease (22%). Profit increases due to the higher 

income and lower production costs (from 11.88 €/t to 69.55 €/t). The intensive production 

results in a substantial increase in profit, which seems to be a way to make the activity 

economically sustainable. 

Table 17: Costs and income for a Portuguese dairy farm with 140 cows. 

    Basic scenario 11000 kg 

    (€/year) % (€/year) % 

Variable costs     

  Dairy cows replacement 15 750.00 € 6% 28 000.00 € 8% 

  Mixer feeder 236 235.30 € 83% 258 893.04 € 77% 

  bedding straw 9 345.00 € 3% 13 706.00 € 4% 

  veterinary drugs 12 915.00 € 5% 18 942.00 € 6% 

  water use  252.43 € 0% 252. 43 € 0% 

  buildings-electricity 8 190.00 € 3% 12 012.00 € 4% 

  diesel use 2 415.00 € 1% 3 542.00 € 1% 

   Total variable costs 285 102.73 € 100% 335 347.47 € 100% 

Fixed costs 86 220.00 €  121 500.00 €  

Total costs 371 322.73 €  456 847.47 €  

Income   383 796.00 €  563 962.00 €  

Net private margin 12 473.27 €  107 114.53 €  

Net social margin -6 741.73 €  78 932.53 €  

Table 18: Annual costs, PEC and GHG emissions with energy efficiency measures. 

  Annual Cost PEC GHG 

  €/cow % MJ/cow % CO2e/cow % 

basic scenario 2652.31 100.00 27257.47 100.00 4656.11 100.00 

11000 kg 3263.20 123.03 40138.59 147.26 5308.65 114.01 

 
Figure 30: Impact of intensive production on costs, profit, energy use and GHG per cow. 

Figure 32 shows the differences between the basic scenario and the intensive production, on 
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energy, GHG emissions, costs and farm profit per ton of produced milk. Again, it is possible 

to see that intensive production can contribute to lower GHG emissions and to increased 

farm profit per unit of production. 

 
Figure 31: Impact of intensive production on costs, profit, energy use and GHG per ton of milk. 

 
Figure 32: Differences of costs, profit, energy use and greenhouse gas emissions (GHG) per ton of milk between the basic 

scenario and the intensive production. 

4.2.4. Energy efficiency measures in Finnish milk production 

Hannu Yli-Kojola, Jussi Esala, Hannu Mikkola, Mari Rajaniemi, Tapani Jokiniemi, Jukka Ahokas  

Milk is the most important sales product of Finnish farms. It totaled 37% of the selling 

incomes in 2009 (Niemi and Ahlstedt 2009). The number of milk producing farms was 19% of 

all farms in 2008 but the number of farms is decreasing by some 7% per year. Pyykkönen et 

al. (2010) have estimated that in 2020 there will be 4 800 milk producing farms, 11% of all 

farms (45 000). Though the number of the milk farms has decreased significantly the volume 

of milk produced has decreased by only 7% in the period of 2000-2010 (from 2,450×106 L to 

2,270×106 L (Maa- ja metsätalousministeriön tietopalvelukeskus – TIKE 2011). The average 

number of cows per farm has increased in the same time from 19 to 30 and the average milk 

production per cow from 7 700 L to 8 700 L (cows in milk recording).  

A change in cow housing goes parallel with the structural change. Tie-stalls for 15–30 cows 

are being replaced with free-stall cowsheds for 60 or 120 cows (1 or 2 milking robots). 

Almost half of Finnish cows live in free-stall housing today. Free-stalls enable exercise for 
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cows and cows can decide themselves when they eat, rest, or go for milking (if an Automatic 

Milking System–AMS is used). Straw, saw dust, wood shavings or peat is used for bedding. 

Tied cows are milked in stalls and cows in free stalls at milking stations or increasingly by 

means of the automatic milking system (AMS). At the end of 2008 there were 385 AMSs in 

use and some 100 new AMSs are installed every year (Manninen 2009). In half of the new 

cow houses manure is handled as slurry and in one third as solid manure. In old cow houses 

the share of solid manure and slurry is 50/50. Natural ventilation is used in new cow houses 

with curtain side walls. Laminated wood or steel is the construction material of the frame of 

the new cow houses with the floor of concrete.  

Silage made of grass is the most important feed for cows. In addition, protein concentrate, 

cereal, hay, and other feed components are used for feeding depending on the price and 

availability of the feed components and also on the intensity of production. Energy input for 

producing the feed (transport of feed components, mixing, and delivery) depends on the 

location of feed stores and on the feeding system (Total Mixed Ration–TMR or concentrate 

portioned individually and silage freely available).  

Energy consumption in milk production 

Direct energy is needed in milk production for heating water, lighting, ventilation, milking, 

milk cooling, manure removal, feed preparation and feed delivery. In cow houses less energy 

is needed for heating the building itself than in piggeries and poultry houses because full 

grown cows generate heat at 600–700 W (Mannfors and Hautala 2011). Moreover, cows 

thrive well in lower temperatures than pigs and poultry. The optimal temperature range for 

cows is 5–15°C and the critical lower temperature is -15°C (Maa- ja metsätalousministeriö 

2012). In older cow houses there is in general no heating because buildings are heat 

insulated and the heat from the animals keeps the building warm enough. A semi-insulated 

free-stall cow house with curtain walls is a popular construction today and heating is needed 

at the milking station, at the rest room, and for heating water. Cubicles for sick and calving 

cows are also heated. The indoor air temperature stays above zero except for coldest days at 

winter time. Kivinen et al. (2007) found that the indoor temperature sank below zero when 

the outdoor temperature was -23°C but the limit depends inter alia on the number of 

animals per square metre, wind speed, wind direction and the location of the cow house. 

 
Figure 33: Distribution of energy input in milk production. 
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Figure 33 shows the distribution of energy input in milk production and also the dominating 

role of feed production. In the feed menu the main energy input originates from silage, 

pasture, cereal, protein concentrate and half concentrate. Silage, pasture and cereal are on-

farm produced feed and farmers can have an impact on their energy inputs. 

Energy saving measures in milk production 

In the energy analysis of milk production it was assumed that the case farm had 30 or 50 

cows and milk outputs were 6 831 l/year (low), 8 655 l/year (average) and 10 113 l/year 

(high). Feed mixes were the same as in the AGREE-WP2 report (Gołaszewski et al. 2012). 

Heat recovery from milk and replacement of grasses with nitrogen fixing plants (clovers) in 

silage cropping were the energy saving measures chosen for closer inspection.  

Heat recovery from milk 

A plate heat exchanger is a popular solution for recovering heat from milk and it was 

assumed to be used in this case. Furthermore, it was assumed that recovered heat was used 

to heat water. Wood chips were the reference fuel used for water heating. In the case study 

the investment in the heat exchanger was 3 500 € and the write-off period was 15 years.  

Because wood chips are a cheap (16 €/MWh) renewable biomass energy source no GHG 

reduction was gained and the annual costs of heat recovery were higher than the annual 

profit. Thus, this was an uneconomical investment achieving no reduction in GHG emission. 

If electricity had been used as reference energy heat recovery from milk would have been 

economical and GHG emission reductions would have been gained in the case of 50 cows.  

Replacement of grasses with nitrogen fixing plants (clovers) in silage leys 

Replacement of grasses with nitrogen fixing plants (clovers) in silage leys would make it 

possible to produce silage without synthetic nitrogen. This is how farmers producing organic 

milk produce silage for their cows. So, this measure is tested in practice and it has proven to 

work. The analysis made for clover leys took into account the economic advantage and the 

reduction of GHG emissions. On the other hand, it did not take into account the probable 

additional costs caused by lower yield, higher annual yield variations and 1–2 years shorter 

time for a clover ley than for a grass ley. The shorter time of the clover leys is perhaps no 

problem because there are today seed drills which are capable for adding (drilling) clover 

seeds to existing leys. The time of clover leys can be extended in this way.  

Clover leys have also other advantages than low costs for synthetic nitrogen and lower GHG 

emissions. Clover leys reduce the need to apply synthetic nitrogen for the next crop because 

the degrading root mass of clover supplies nitrogen for the next crop. Leys of 2–3 years 

diversify the crop rotation and improve soil structure. Clover leys can also reduce pressure of 

plant diseases. It is difficult to give a monetary value for these advantages and disadvantages 

but they certainly compensate each other partly. Perhaps more field area is needed to 

ensure adequate feed for the animals.  

Cropping clover leys instead of grass leys is an energy saving measure which has an energy 



  Agriculture and Energy Efficiency 

Economics and Environment: Case studies and trade offs 

65 

saving potential of 0.6–0.8 MJ/l milk. It saves costs 1.3–1.6 eurocents/l milk and reduces 

GHG emissions 52–65 g CO2e/l milk. Cropping clover is not an investment but rather an 

operational measure. Therefore no payback time was counted. Reduction of GHG emissions 

of clover cropping is free of charge (Figure 34).  

 
Figure 34: The impact of replacing grasses with nitrogen fixing clovers in silage lays on the energy and cost savings and 

reduction of GHG emissions. Minimum, average and maximum are production intensities. 

4.2.5. Synthesis trade-off analysis of case studies in dairy production systems 

The case studies suggested different auspicious as well as economically viable options for 

energy efficiency measures in dairy production across Europe. Poland and Portugal studied 

the option with a higher production by modifying the fodder composition and quantity. It 

has been proven to be effective in both regions. Although the total cost, energy 

consumption as well as GHG emissions increase with higher production rates, the efficiency 

increases as well. Per unit of milk production the costs, energy consumption and GHG 

emissions decrease up to 16% (Portugal), 12.7% (Poland) and 22% (Portugal) respectively. 

Moreover the case studies in Portugal showed a profit increase by almost 700%. As 

disadvantages of this method a higher proportion of replacement cows and a higher 

sensitivity of the cows to changes are expected. However Netherlands reported a lower 

replacement rate as well as a higher energy efficiency (8%) can be achieved by increasing the 

fodder efficiency. As an idea regarding the animal feed, Finland pointed out not only lower 

costs as well as lower GHG emissions but also other attractive advantages by replacing the 

grass with nitrogen fixing plants (clovers) in silage leys.  

The concept of reducing fodder inputs per kg milk to dairy systems by increasing milk yield 

per cow is effective and convincing. Anyhow, as has been shown by the Dutch case study an 

increase in milk production has its limits and may not necessarily result in lower energy use 

per kg milk. The case study illustrates that the financial effects may create an incentive to 

develop milk production systems at very high milk yields, which do not contribute to energy 

savings anymore. Even though in this case study the increased milk yield resulted in CO2 

savings, it has been shown, that increasing milk production may also increase greenhouse 

gas emissions (Zehetmeier et al. 2011). Therefore, a balanced level of milk yield and the 
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associated diet needs to be determined from economic as well as environmental 

perspectives, which probably differs strongly across Europe.  

Another interesting energy saving measure is the heat recovery from milk. The study in 

Netherlands reported a reduction in energy consumption by 30%. The Finnish case study 

also pointed out the potential of saving energy by this method; however wood chips being 

used as the reference energy source dilute the advantages. In other words in the countries 

where no such cheap energy source is available, it can further be treated as a feasible 

option. 

The Netherland’ s case study suggested organic farming as an energy saving measures which 

proved to be very effective considering the 13% reduction in energy consumption per unit of 

milk production as compared to the conventional farming. However, this method involved 

compromising the milk production up to 6.5% (from 8500 L/LU/year to 7950 L/LU/year). 

For future analysis and research ideas it should be noted that in the dairy and beef 

production the highest share in the total production cost as well as in total energy 

consumption is caused by the feed (see section 4.2.1 and section 4.2.3), whereas the source 

of highest GHG emission is the cow itself due to enteric and manure fermentation, which is 

one of the reasons why GHG emissions are lower on a product basis for high input systems  

(see section 4.2.3).  

4.3. Case studies–pork and poultry production systems 

4.3.1. Poland – Case study on Energy Saving Measures in Broiler Production 

Janusz Gołaszewski, Mariusz Stolarski, Zbigniew Brodziński, Ryszard Myhan, Ewelina Olba-Zięty 

In Poland, commercial production of poultry expressed in current prices reaches about 20% 

of livestock production. On highly intensive poultry farms with large flocks, the biggest 

problem is waste management. The legally permissible nitrogen rate is 170 kg ha-1 of 

agricultural land and limits considerably the use of poultry manure as fertilizer. For example, 

about 350-600 ha of arable land would be needed for a farm with a flock of 100 thousand 

laying hens to use the waste as fertilizer, but many poultry farms do not have the arable land 

area required by law. The problem of waste management is compounded by the question of 

transport, because the waste must be stored or transported away from the farm. The 

current animal husbandry systems have a strong influence not only on productivity and 

quality of produce or animal welfare but may also be a threat to the environment.  

There are about 124.3 million poultry birds on Polish farms. Converted per 100 ha of arable 

land, this is 771 individuals. The number of large commercial poultry farms in Poland is 606, 

and so the number of large commercial poultry farms per 1 ha of arable land is 0.04. 

Estimates of amounts and physical properties of waste depend on a bird species and age. For 

broilers, the estimated amount of waste per bird is 65g/indiv./day, and the weight of 1 m³ of 

waste is 622 kg, containing 68% of water.  
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Removing of manure after each cycle and application of rye straw by external contractor 

Poultry manure, a by-product of poultry farms, is valuable material for production of organic 

fertilizers or as a potential source of energy, but on the other hand it is a possible threat to 

the poultry farm itself and to the natural environment. 

Table 19: Input parameters for analysis of energy efficiency in broiler production. 

Specification Value 

No of animals per cycle  19000  

Duration of cycle  45 days 

No of cycles  7 

Age of animals at beginning of cycle  1 day  

Planned losses of chicks  4% 

Feed consumption per 1 kg body gain  1.9 kg 

Final weight of broiler  2.5 kg 

EUR:PLN 1:4.405 

Veterinary services   

Vaccinations  0.06 PLN/indiv. 

Check-up visits  150 PLN/visit 

Veterinary examination (dead animals) 250 PLN/examination 

Antibiotic 0.03 PLN/indiv.  

Salmonella presence test (5th week of cycle) 55 PLN/flock 

Specialist costs   

Detergenst and disinfectants  600 PLN/house 

Bedding 2.5 t (rye straw) 250 PLN/t 

Electric energy  2920 PLN/cycle 

Heating oil  12800 PLN/cycle 

Hired labour  017 PLN/indiv. 

Weight of waste bedding  65 g/indiv./day 

Value of manure  1675.56 PLN/cycle 

Among alternative uses of poultry manure is energy generation. Due to a large content of 

nitrogen and mineral substances, use of poultry manure is subjected to many limitations. 

Straw bedding waste can undergo methane digestion or thermal conversion in combustion, 

co-combustion, gasification or pyrolysis processes.  

In this analysis, it was assumed that the energy saving measure would be manure 

management by a contracted firm, which most often is an owner or someone cooperating 

with a local biogas plant or a thermal gasification plant. At the same time, a contracted 

company supplies the poultry farm with rye straw to use for bedding. The analysis was 

performed for a grow out house containing 19000 broilers per cycle. Seven cycles are run 

per year, and the mean weight of a broiler is 2.5 kg. Other assumptions are listed in Table 19.  
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Relative Contribution of Different Inputs and Process Steps to Total Costs of Production, 
Energy Use, and Greenhouse Gas Emission 

In the following analysis, the energy saving measure consisted in chicken waste management 

for energy purposes by a contracted company after each of the 7 cycles of broiler rearing. 

Table 20: Costs, Primary Energy Consumption (PEC) and GHG emissions per cycle of broiler production for efficiency 
measure associated with the utilization of poultry manure by external company for energy purposes. 

Specification 
Costs Energy Use CO2e 

€/cycle % MJ/cycle % kg/cycle % 

Original variant       

Feed 29625 63.9 356419 66.2 33766 64.6 

Veterinary services/ disinfection  1165 2.5     

Other costs  7310 15.8     

Electric energy  894 1.9 68191 12.7 3515 6.7 

Fuel  2985 6.4 113941 21.2 6609 12.6 

General maintenance costs  4387 9.5     

Sale of manure        

Methane emission      8402 16.1 

In total 46367 100.0 538551 100.0 52292 100.0 

Variant including use of manure for energy generation purposes 

Feed 29483 64.4 356419 66.6 33766 64.8 

Veterinary services/ disinfection  1165 2.5     

Other costs  7310 16.0     

Electric energy  894 2.0 68191 12.8 3515 6.7 

Fuel  2887 6.3 110191 20.6 6392 12.3 

General maintenance costs  4387 9.6     

Sale of manure  -380      

Methane emission      8402 16.1 

In total 45747 100.8 534801 100.0 52075 100.0 

Percentage decrease in total / cycle 1.34  0.70  0.42  

The reduction in the total costs, energy inputs and emission of carbon dioxide equals 1.34%, 

0.70% and 0.42%, respectively (see Table 20). Better economic efficiency of the broiler farm 

is mainly attributed to the income from selling manure and reduced consumption of fuel 

needed to remove and store manure. At the same time, lower fuel consumption led to a 

higher energy efficiency and lower GHG emission. 

Noteworthy is the fact that in a broader energy and environmental balance, beyond the farm 

to gate analysis, the positive effect of the analyzed energy saving measure is much more 

prominent as it conditions trade-off costs in the microeconomic context. Manure is a 

substrate in the process of energy generation, which means it will be utilized and serve as a 



  Agriculture and Energy Efficiency 

Economics and Environment: Case studies and trade offs 

69 

substitute for fossil fuels, thus contributing to less emission of greenhouse gasses. Besides, it 

is a source of income for the companies cooperating with the poultry farm–collecting the 

manure and/or generating energy from renewable resources in own installations.  

4.3.2. Case studies – pork and poultry production systems in the Netherlands 

Energy efficiency measures in Dutch fattening pigs production  

Fridtjof de Buisonje, Hilko Ellen 

An average house for fattening pigs in The Netherlands has 14 climate separated units for 

290 pigs each, for 4200 fattening pigs in total. The units can also be divided into pens in 

order to accommodate smaller groups of e.g. 12 pigs per pen. Fattening pigs are taken from 

a weaner or store pig of 25 kg to 118 kg of pig ready for slaughter. The average number of 

production cycles is 3.1 per year; resulting in a total production of around 13000 pigs per 

year, equivalent to 1500 tons of live pig weight per year.  

The floor surface area per pig is 0.8 m2, resulting in a total surface area for a pig house of 

around 4000 m2 (including corridors, office space, hygienic sluice, storage and sick-bay).  

The houses are insulated (Rc-value of walls and roofs of 2.5 (m2.K/W)) and the convex 

concrete floors (except for the 60% surface share of the concrete slatted floors) are heated 

by underfloor  warm water from a central heating unit. No bedding material is used. The 

feed conversion ratio (kg feed per kg live weight gain) is 2.65 kg/kg. Liquid manure is stored 

in deep manure pits under the slatted floors (7 month storage capacity is required). 

Table 21: Income and costs from a Dutch pig farm with 4200 fattening pigs 

Income/cost Amount 

Income products € 488040 

Costs:  

Feed cost € 212940 

Piglets € 161700 

Water €   3780 

Electricity €   4620 

Heating (gas) €   3780 

Healthcare €   5460 

Others €  12180 

Total costs 
(per 100 kg meat) 

€ 404460 
(€ 104.45) 

The investment for the building is estimated at € 285 per pig place and € 140 for the 

inventory and amenities (or € 450 per m2 or a total investment of € 1800000 for a pig house 

with 4200 places). In Table 21 the income and costs of a farm with 4200 fattening pigs are 

presented (2011 level). Costs for investment in housing should be paid from the difference 

between income and costs. 

Three measures were studied for a higher energy efficiency: 1) the Canadian Bedding 

System; 2) mixed natural and forced ventilation and natural lighting; 3) replacement of 50 % 
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compound pelleted feed by agro-industrial wet byproducts. 

The Canadian Bedding System 

The Canadian Bedding System (‘wroetstal’ in Dutch) is an alternative housing system without 

slatted floors and with regular provision of bedding material (sawdust or chopped straw) 

with the aim to provide extra comfort and distraction to the pigs and to reduce the 

emissions from the manure storage. The objective is to get a higher price for the meat from 

this certified animal friendly production method, since the costs for bedding material are 

higher than the savings on gas consumption for heating. Because of the insulating properties 

of the bedding material, no heating of the pig house is required. The final mixture of manure 

and bedding material is more or less solid and the pens have a gently sloping floor, which 

slopes down towards a slatted manure channel. The pigs play and root in the bedding 

material and gradually move the mixture of bedding material and manure towards the 

manure channel where a scraper moves to an outside store, thus avoid around 65 % of the 

methane emission from a traditional pig house with manure storage under a slatted floor.  

Mixed natural and forced ventilation and natural lighting 

Mixed natural and forced ventilation and natural lighting aims at reducing the electricity 

consumption for ventilation and lighting. Natural ventilation e.g. with an open ridge in the 

roof using free airflow during periods when the pigs are smaller and outside climatic 

conditions are suitable, reduces the need for forced ventilation to periods only when the 

pigs are bigger and ambient temperatures are higher. Shuttered windows in the sidewalls, 

an open ridge and light shafts in the roof can provide natural lighting and replace artificial 

lighting almost completely. 

Replacement of 50 % compound pelleted feed by agro-industrial wet byproducts 

Replacement of 50 % compound pelleted feed by agro-industrial wet byproducts can reduce 

the carbon footprint of the mixture (in kg CO2e) by almost 50 % since the direct and indirect 

energy contents of wet byproducts is more than 90 % lower compared with compound 

pelleted feed3. This is due to the calculation method for Greenhouse gas emissions where 

most energy inputs are attributed to the primary product from an agro-industrial process 

and not to the byproducts. Feeding byproducts requires facilities for storage, mixing, 

distribution and feeding of the liquid diet, causing a longer pay-back period, since the price 

difference between compound feed and wet byproducts on a nutritional base is decreasing 

due to competition from biogas installations. 

Relative Contribution of different inputs and process steps to energy use, total costs of 

production and greenhouse gas emissions 

In Table 22 the effects of the different measurements on the energy use, the costs and the 

emission of greenhouse gases are shown. The effects are calculated for a ‘standard’ Dutch 

                                                      
3
 for more information http://webapplicaties.wur.nl/software/feedprint/ 
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pig farm with 4200 fattening pigs and presented per 100 kg meat produced. 

Table 22: Annualized costs, PEC & GHG emissions with energy efficiency measures, based on a Dutch fattening pig farm. 

 Annualized Cost PEC*) GHG*) 

 €/100 kg 

meat 
% 

MJ/100 

kg meat 
% 

CO2e/100 

kg meat 
% 

Reference 104.45 100 3650 100 8624 100 

Canadian Bedding System 118.00 113 4232 116 8526 99 

Mixed natural and forced ventilation and 

natural lighting 
102.35 98 3597 99 1877 22 

Replacement of 50 % compound pelleted feed 143.10 137 2109 58 8586 99 

*) The PEC or CO2e emission is not known for all the input variables. 

Energy efficiency measures in Dutch broiler production  

Fridtjof de Buisonje, Hilko Ellen 

An average broiler farm in The Netherlands consists of three poultry houses of around 1400 

m2 for 30000 broilers each, for 90000 broilers in total. A production cycle lasts 42 days, 

followed by a 9 days vacancy period for manure removal, cleaning and disinfection. This 

corresponds to 7 production cycles per year. The stocking density at the start of a cycle is 22 

broiler chicks per m2. At a live delivery weight of 2.15 kg per broiler, this farm produces 

90000×7×2.15 = 1355 tons of live broiler weight per year (equivalent to 2709 Livestock Units 

(LU’s) of 500 kg each). 

The houses are insulated (Rc-value of walls and roofs of 2.5 (m2.K/W)) and heated with 

direct gas heaters (hot air guns). The feed conversion ratio (kg feed per kg live weight gain) is 

1.7 kg/kg. The concrete floors are littered with wood shavings or chopped straw at a 

quantity of 1 kg/m2 at the start of each round. No litter material is added afterwards. 

Manure is evacuated from the house after every production round and stored in a shed. 

Table 23: Income and costs from a Dutch broiler farm with 90000 broilers 

Income/cost Amount 

Income products € 987522 

Costs:  

Feed cost € 574749 

Chickens € 186361 

Water €   5054 

Electricity €  14214 

Heating (gas) €  28428 

Healthcare €  30702 

Others €  35314 

Total costs 

(per 100 kg birds) 

€  874821  

(€ 66.90) 
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The investments for buildings are estimated at € 200/m2 and for the complete inventory € 

87/m2, so the total investment for a broiler farm with three houses is estimated at € 

1,200,000. 

In Table 23 the income and costs of a farm with 90,000 broilers are presented (level 2011). 

Costs for investment in housing should be paid from the difference between income and 

costs. 

Three measures were studied for a higher energy efficiency: 1) integrated climate control; 2) 

heat exchanger with air mixing system; 3) central warm water heater with local heaters. 

Integrated climate control 

Integrated climate control ‘Terra Sea’ is a combination of different air treatment 

technologies (cooling, mixing, heating, scrubbing) with maximal energy saving and recovery. 

The aim is to control the climate in the house independently from the outside conditions and 

reduce emissions of ammonia, odor and particulate matter. It is a very complex and 

expensive system. The payback time is highly dependent on a predicted improvement of 

technical results of the broiler production. At the moment, this is the technology with the 

highest potential for reducing gas consumption for heating while increasing the electricity 

consumption by 25 %. 

Heat exchanger with air mixing system 

Heat exchanger with air mixing system is a combination of a heat exchanger that 

recuperates heat from the outgoing warm ventilation air, with an improved ventilation 

system that allows for a very efficient and even distribution of fresh warm air at animal level. 

The aim is to create favorable conditions for drying of the litter and therefore reduction of 

ammonia emission. The payback time is influenced by a predicted improvement of technical 

results of the broiler production. This system has a potential of 50 % savings on gas 

consumption for heating while increasing the electricity consumption by 10 %. 

Central warm water heater with local heaters and ventilators 

Central warm water heater with local heaters and ventilators is a combination of a high 

efficiency boiler, connected to a number of heat exchangers equipped with ventilators to 

ensure an energy efficient heating and an even distribution of warm air at animal level. The 

payback time is considered to be short because the yearly costs of this system are limited, 

compared to the yearly saving on gas consumption. 

Relative Contribution of different inputs and process steps to energy use, total costs of 

production and greenhouse gas emissions 

In Table 24 the effects of the different measurements on the energy use, the costs and the 

emission of greenhouse gases are shown. The effects are calculated for a ‘standard’ Dutch 

broiler farm with 90000 broilers and presented per 100 kg birds produced. 
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Table 24: Annualized costs, PEC and GHG emissions with energy efficiency measures, based on a Dutch broiler farm. 

 Annualized Cost PEC*) GHG*) 

 €/100 kg 

meat 
% 

MJ/100 kg 

meat 
% 

CO2e/100 

kg meat 
% 

Reference 66.90 100 4220 100 49640 100 

Integrated climate control 65.22 98 4240 101 60626 122 

Heat exchanger 65.62 98 4224 100 53722 89 

Central warm water heater 66.23 99 4215 100 49356 92 

*) The PEC or CO2e emission is not known Not from for all the input variables. 

4.3.3. Case studies – pig and poultry production systems in Portugal 

Energy efficiency measures in Portuguese Broiler production  

Fátima Baptista, Dina Murcho, Luis Leopoldo Silva, Carlos Marques 

Introduction  

According to the ministry of agriculture, rural development and planning (MADRP 2009), in 

2009 the poultry sector accounted for around 6.7% of the national agricultural output. Also 

in 2009, in accordance with the national statistics institute (INE 2011), Portugal had 20,254 

million broilers, approximately 60% of all poultry. Production is concentrated in the regions 

of Beira Litoral, Ribatejo and Oeste. Portugal is self-sufficient in poultry-meat production.  

In Portugal, broiler production is one of the sectors organized as a vertical integrated 

business. Companies provide production factors to farmers including chicks, feed, technical 

assistance and ensure the market supply. Most companies have their own feed production 

factories, slaughterhouses and distribution systems. The poultry industry uses various types 

of facilities, but typically only laying hens are kept in cages. Broilers are produced on the 

ground with a litter (rice husk, wood shavings etc.) or in less intensive outdoor production 

systems. 

The main objective of this case study is to analyse the effect in economic results, energy 

consumption and environmental impacts (GHG) of 1) changing the heating system and 2) 

introducing a heat exchanger integrated in the ventilation system. The basic scenario is a 

farm with a production of 110,000 broilers per year equipped with air heaters.  

Basic scenario 

The basic scenario is an aviary located in the Ribatejo and Oeste region with a production of 

20 000 broilers per flock, 5.5 flocks per year, producing a total of 110 000 broilers per year. 

The production cycle lasts in average 38 days reaching 1.8 kg of live weight. The feed 

conversion rate is 1.7 kg feed/kg broiler. One Livestock unity (LU) corresponds to 278 

broilers. After each cycle, manure is removed and cleaning and disinfection are performed. 

The poultry house area is 1200 m2, with 17 broilers per m2. Walls and roof are insulated 

(thermal resistance 2 m2K/W) and the floor is littered with rice husk. Environmental control 
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is achieved with mechanical ventilation, pad-and-fan cooling system and air heaters. Feed 

and water is automatically distributed. Electricity is the energy source for all the systems 

(0.03 € per broiler for ventilation, light, feed and water distribution and 0.04€ for the heating 

system). The total investment for housing and equipment is approximately 220 €/m2.  

Floor Heating/Underfloor Heating) 

The aviary has the same characteristics in all alternatives except for the heating system. For 

the floor heating system it is necessary to invest in the floor radiator and a boiler using 

biomass as fuel. The investment is approximately 25 000 € more than before and the heating 

costs 0.015 € per broiler, which is significantly lower than before. The total investment for 

housing and equipment is in this case approximately 245 €/m2.  

Heat recovery 

For this option a heat exchanger is integrated in ventilators, which allows recovery of the 

heat in the warm air that goes out through the ventilation system. The fresh air coming 

inside passes through the hot surfaces, without mixing with the outgoing air, and becomes 

warm and fresh. It is expected to decrease electricity consumption for heating in the order 

of 50% and the investment in this equipment is approximately 10 000 €. The total 

investment for housing and equipment is, in this case, approximately 230 €/m2. 

Impact of different energy efficiency measures on economics and the environment 

Figure 35 shows the relative contribution of the different inputs in the total costs, GHG 

emissions (CO2e) and energy consumption for the broiler farm assumed as the basic 

scenario. It is clear that different inputs contribute in different proportion to the total costs, 

primary energy consumption and GHG emissions. This implies that small changes may induce 

only a small change in costs but may have high impacts on energy use and GHG emissions. 

CO2 equivalent emission was calculated using data presented in van der Sluis (2007).  

 

Figure 35: Relative contribution of different inputs in the farm production to economics, energy use and greenhouse gas 
emissions (GHG). Other include bedding straw, veterinary and water. 

Concerning the costs structure it can be seen that feeding represents the highest value, 

around 70%. For the energy consumption it contributes for approximately 55% and diesel 
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and electricity 43%. For the GHG emissions the major responsible are the broilers, due to the 

manure fermentation, contributing with almost 75% of the emissions, followed by the 

feeding with approximately 20% and diesel and electricity with less than 10%. Feed is a very 

important input concerning economy, energy and environment, in spite of the feed 

conversion rate being already a good value. More research about diet composition and 

industrial processes less energy consumer could be important to reduce this.  

Table 26 presents the costs, energy consumption and GHG emissions per ton. Again, it can 

be seen that using the floor heating and the heat recovery will not cause high change in 

costs (2% and 1% respectively). However, the results concerning the energy consumption 

and GHG emissions are promising. Changing to floor heating allows reducing the energy 

consumption around 17% and 11% with the heat recover. Concerning the GHG emissions the 

reduction is not so high, 4% and 2%, for floor heating and heat recover, respectively, which is 

explained by the reduced amount of diesel and electricity and high contribution of animals 

to GHG emissions. 

Table 25 presents the costs and income for the basic scenario and the studied options. 

Again, it can be seen the high contribution of feed in the production costs, representing 

more than 70% of the variable costs, for all scenarios. In the fixed costs were considered the 

labour, amortization of machines, equipment and buildings. Income results from selling the 

broilers. The market price for the broiler was assumed 1.6 € per kg. The basic scenario 

presents a total costs per 100 kg of broilers around 100.6 €, using the floor heating it is 

reduced to 98.8 € and with the heat recover 99.8 €, which are not significantly different. In 

all the cases farms are economically sustainable.  

Table 25: Costs and income for a Portuguese broiler farm. 

    Basic scenario Floor Heating Heat recover 

    (€/year) % (€/year) % (€/year)  % 

Variable Costs       

  Poultry 33,000 19 33,000 20 33,000 19 

  industrial feed 121,429 70 121,429 72 121,429 71 

  bedding straw 2,112 1 2,112 1 2,112 1 

  veterinary drugs 5,500 3 5,500 3 5,500 3 

  water use 1,291 1 1,291 1 1,291 1 

  buildings - electricity 7,700 4 1,414 1 5,504 3 

  biomass for heating  0 1,651 1  0 

  diesel use  1,538 1 1,538 1 1,538 1 

    172,570 100 167,934 100 170,374 100 

Fixed costs 26,586  27,752  27,252  

Total costs  199,156  195,687  197,627  

Income 316,800  316,800  316,800  

Net margin  117,644  121,113  119,173  



  Agriculture and Energy Efficiency 

Economics and Environment: Case studies and trade offs 

76 

Figure 36 shows the differences between the basic scenario and the options studied, on 

energy consumption, GHG emissions and farm profit per ton of broilers produced. Again, it is 

possible to see that using floor heating or the heat exchanger can contribute to lower energy 

consumption and GHG emissions and consequently to increased farm profit per unit of 

production. 

Table 26: Annual costs, PEC and GHG emissions with energy efficiency measures. 

  Annual Cost PEC GHG 

  €/t % MJ/t % CO2e/t % 

Basic Scenario 1006.64 100.00 13461.72 100.00 4028.54 100.00 

Floor Heating 989.11 98.26 11230.33 83.42 3869.64 96.06 

Heat recover 998.91 99.23 11923.89 88.58 3949.27 98.03 

 

Figure 36: Differences of costs, profit increase, energy use and greenhouse gas emissions (GHG) savings per ton of 
broilers between the basic scenario, the floor heating and the heat exchanger. 

Energy efficiency measures in Portuguese Pig production  

Fátima Baptista, Dina Murcho, Luis Leopoldo Silva, Carlos Marques 

Introduction 

According to the Ministry of Agriculture, Rural Development and Planning (MADRP, 2009), 

pork is the meat with the highest consumption in Portugal and the pig production sector 

represented in 2009 around 8.5% of the national agricultural production. For the same year 

and, in accordance with the National Statistics Institute (INE, 2011), Portugal had a total 

number of 1,913 million pigs. Production is concentrated in the regions of Ribatejo and 

Oeste (45% of livestock), Alentejo (25%) and Beira Litoral (21%). In Ribatejo and Oeste are 

located the biggest pig production farms with an average of 264 pigs per farm.  

It is a sector based mainly on the intensive livestock production, with a high degree of 

industrialization. Pigs are kept in buildings in order to control production conditions allowing 

reduced mortality and increased animal productivity. Buildings are adapted to the 

production phase, with separate areas for sows, maternity and fattening. Around 70% of the 

pig housing has partial slatted floor, with a solid area for animal resting. The slatted floor has 

the advantage of direct manure collection to pits located below the floor, which creates a 

barrier between the gas emissions (CH4 and NH3 that results from manure fermentation) and 
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the air inside the housing. It implies frequent cleaning of the pits to avoid contamination and 

odour emissions. Heating is used only in the maternity and rearing of the piglets. Ventilation 

is natural or mechanical by extraction fans. 

The main objective of this case study is to analyse the effect in the economic results, energy 

consumption and environmental impacts (GHG) of introducing new feeder equipment. The 

basic scenario is a farm dedicated to fattening with a production of 6,000 pigs per year. 

Basic scenario 

The studied farm, dedicated to fattening, has a building with 42 pens for 48 pigs each, 

fattening a total of approximately 2000 pigs. The average number of production cycles is 3 

per year, which results in a total production of around 6000 pigs per year, with an average 

weight of 100 kg live weight. Assuming a mortality rate of 2% total production per year is 

588 ton. Pigs are fattened from weaners of 20 kg to 100 kg pigs, ready for slaughter. During 

the fattening period pigs eat an average of 200 kg of industrial concentrate. The feed 

conversion ratio is 2.5 (kg feed per kg live weight gain).  

The pig house area is 1545 m2, including corridors, office and other areas. The floor surface 

area per pig is 0.75 m2. Walls and roofs are insulated, with a thermal resistance of 1.7 

m2K/W. No heating is used and ventilation is achieved naturally, automatically controlled. 

The floor is partially slatted and no bedding material is used. Liquid manure is stored in deep 

manure pits under the slatted floors. Feed (ad libitum) and water are automatically 

distributed. Electricity is the energy source for all the systems (1 € per pig for ventilation, 

light, feed and water distribution). Total investment for housing and equipment is 

approximately 210 €/m2. 

Feeder equipment: Controlled access 

The building has the same characteristics as the basic scenario except for feeding 

equipment. With the alternative feeder it is possible to reduce by approximately 100 g of 

concentrate per pig and per day (Aguiar, 2012). When the animal goes to eat, it touches a 

sensor and a small quantity of concentrate falls each time, helping to reduce food waste.   

The investment in these feeders is 31,500 € (8000 € more than before). The total investment 

for housing and equipment, in this case, is approximately 215 €/m2. 

Impact of different energy efficiency measures on economics and the environment 

Figure 37 shows the relative contribution of the different inputs in the total costs, GHG 

emissions (CO2eq) and energy consumption for the pig farm assumed as the basic scenario. 

It is clear that different inputs contribute in different percentages to the total costs, primary 

energy consumption and GHG emissions. This implies that small changes in factors may have 

small effects in costs but different impacts on energy use and GHG emissions. Energy 

consumption for piglet production (feeding and heating) was assumed as 150 MJ/piglet. 
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CO2eq emission was calculated using data presented in Amon et al. (2007) and Lesschen et 

al. (2011).  

Concerning the cost structure it can be seen that feeding represents the highest share, 

around 59% followed by the piglets themselves with 36%. For the energy consumption 

feeding contributes for approximately 73% followed by the piglets and electricity with 14% 

and 13%, respectively. Regarding the GHG emissions, as expected, pigs account for the 

largest share, mainly due to enteric fermentation and also due to the manure fermentation, 

contributing to 83.5% of the emissions, followed by feeding to approximately 14.8% and 

electricity to 1.7%. Feed is a very important input concerning economy, energy and 

environment, in spite of the feed conversion rate being already a good value. Research into 

diet composition and industrial processes with less energy consumption could be important.  

 
Figure 37: Relative contribution of different inputs in the farm production to economics, energy use and greenhouse gas 

emissions (GHG). Other includes veterinary and water for drinking and cleaning. 

Table 27: Costs and income for a Portuguese pig fattening farm. 

  

  

Basic scenario Feeders 

(€/year) % (€/year) % 

Variable Costs     

  

  

  

  

  

  

piglets 205,800  36.0 205,800  37.3 

Feeding 336,571  58.9 317,520  57.5 

veterinary 8,820  1.5 8,820  1.6 

water 14,300  2.5 14,300  2.6 

buildings - electricity 5,880  1.0 5,880  1.1 

  571,371  100 552,320  100 

Fixed costs 27,827   28,617   

Total costs 599,198   580,937   

Income 789,684   789,684   

Net margin 190,485   208,747   

Table 27 presents the costs and income for the basic scenario and the alternative option. 

Again the high contribution of the feeding in the production costs can be seen, representing 
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near 60% of the variable costs, for both scenarios. In the fixed costs are considered labour 

and amortization of equipment and buildings. Income results from selling the pigs. Weaners 

cost 35 € each and sale price for fattened pigs is 1.7 €/kg carcass (21% reduction). The basic 

scenario presents a total cost per pig around 100 € and using the feeder with controlled 

access costs are reduced to 97 €, which is not significantly different. In both cases farms are 

highly profitable and are economically viable under present product and input prices.  

Table 28 presents the costs, energy consumption and GHG emissions per ton. Again, it can 

be seen that using the feeder alternative will not cause a high change in costs (3%). The 

same happens with the GHG emissions, with a reduction of less than 1% because of the high 

contribution of the pigs themselves. Concerning the energy consumption using the feeder 

option allows a reduction of almost 4% in energy consumption.  

Table 28: Annual costs, PEC and GHG emissions with energy efficiency measures. 

  Annual Cost PEC GHG 

  €/t % MJ/t % CO2e/t % 

Basic Scenario 1019.04 100.00 10732.36 100.00 4376.96 100.00 

Feeders 987.99 96.95 10291.55 95.89 4340.23 99.16 

Figure 38 shows the differences between the basic scenario and the option analyzed, on 

energy consumption, GHG emissions and farm profit per ton of pigs produced. Again, it is 

possible to see that the use of the feeder with controlled access can contribute mainly to 

lower energy consumption per unit of production.  

 
Figure 38: Differences of profit, energy use & GHG emissions (per ton) between the basic scenario and the studied option. 

4.3.4. Energy efficiency measures in Finnish Poultry and Pork production 

Hannu Yli-Kojola, Jussi Esala, Hannu Mikkola, Mari Rajaniemi, Tapani Jokiniemi, Jukka Ahokas 

Pork production in Finland 

Pork production is the second most important animal production sector in Finland, after milk 

production. In both sectors, a strong structural change is going on, and the number of pork 

producing farms is predicted to halve from 2010 to 2020 (Pyykkönen et al. 2010). The 

number of pig farms was 2,200 in 2009 and it is predicted to be less than 900 in 2020. The 
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number of animals per farm will double from 275 fattening pigs per farm in 2010 (Maa- ja 

metsätalousministeriön tietopalvelukeskus – TIKE 2011) to over 500 in 2020. The volume of 

the Finnish pork production is supposed to stay at the present 200×106 kg level (Maa- ja 

metsätalousministeriön tietopalvelukeskus – TIKE 2011) if investment support for the 

structural development continues (Pyykkönen et al. 2010). Finnish pork farms are still small 

compared with e.g. Danish ones but they are developing from small family enterprises to 

bigger units using more paid employees. Pork production is concentrated in the southern 

and western part of Finland (Niemi & Ahlstedt 2012).  

Feed for pigs is produced and prepared mainly on the farm but there are also farms which 

use industrially made compound feed. Farms produce on their own barley for pig feed. 

Milled barley flour is mixed with protein concentrate (soya) and other feed components.  

The number of animals on a farm is limited by the requirements for a manure spreading 

area. This area requirement depends on the nutrient content of manure and soil. The higher 

the nutrient content in manure and soil the more area is needed for manure spreading 

because terms of the environmental support do not allow to exceed the regulated N and P 

application rates (kg/ha) (Maaseutuvirasto 2012). These regulations concern all animal farms 

not only pig farms. Pig manure is handled mainly as liquid slurry.  

In a typical piggery layout for fattening pigs pens for 10 – 15 pigs each are located at both 

sides of the central passage which lies lengthwise in the building. Feeding troughs are 

located at the passage side of the pens and dung channels are at the opposite side of the 

pens at the outer walls. Ventilation is normally a forced negative pressure ventilation with 

outlet fans above the central passage and inlets at the upper edge of the walls or in the roof 

at the wall side. The piggery is subdivided into compartments of 250 – 300 pigs with 

partition walls. Feed is delivered to pigs dry or in bigger piggeries as liquid feed.  

Energy consumption in pork production  

An energy analysis made for Finnish pork production indicated that energy input for feed 

production (47%) and energy for piggery heating (34%) were the major energy inputs (Figure 

39). They covered together over 80% the total energy input. The energy input for renewable 

animals (piglet production) was excluded from this analysis because very little data was 

available from piglet production.  

 
Figure 39: Distribution of the energy input in pork production in Finland. 
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However, a preliminary estimation was made for energy consumption for piglet production 

and it indicated that about 100 kg feed was needed to produce one piglet (from birth to the 

weight of 25 – 30 kg). The major part of the feed was consumed by the sow during the 

periods of gestation and lactation. In piglet production more energy is needed for heating 

than in pork production because piglets require higher inside temperature than fattening 

pigs and they generate less heat than fattening pigs. For these reasons it was concluded that 

energy input for replacing one fattening pig may be as high as half of the energy needed to 

raise one fattening pig.  

Energy saving measures 

A case study was made for a pork farm of 500 pig places. Three batches of 500 pigs were 

raised per year, totalling 1,500 pigs. Barley was the most important feed and it was 

cultivated on the farm. In average 221 – 225 kg barley was needed to raise one pig to 105–

110 kg live weight and totally 340,000 kg barley was needed for feeding 1,500 pigs. Pig feed 

was mixed on the farm and delivered as liquid to the pigs.  

In Finnish conditions it is necessary to heat pig houses because it ensures acceptable 

temperature and indoor air quality for pigs and people working in the pig house. In many 

cases farmers use wood chips as fuel because it is one of the cheapest fuels and it can be 

harvested from their own forests on the farm. It is common that there is a district heating 

system heating both the pig house and the domestic house. The same heating plant could be 

used also for grain drying because there is no demand for heating buildings at the time of 

grain harvesting. Peat sods are also used locally for heating piggeries and light fuel oil in 

some cases.  

Two energy saving measures were chosen for a closer inspection. They were: 1) conserving 

fodder cereal in an airtight silo instead of drying and 2) a ventilation system with a heat 

exchanger in order to recover heat from the outlet air.  

An airtight silo instead of drying 

Drying is not necessary for barley which is used for pig feeding. Barley can be stored fresh in 

an airtight silo and the quality of the feed is as high as the quality of the feed made of dried 

grains (Siljander-Rasi et al. 2000). Energy input for drying is 10 – 11% of the total energy 

input of barley cultivation chain (Mikkola et al. 2010) and the expected energy saving was 

10–11% respectively. The saving would decrease the total energy consumption in pork 

production 5% in maximum because the share of feed was 47% of the total energy 

consumption. 

The costs of grain drying and airtight storage were compared in Table 29. In the column 

headed ‘An airproof silo’ there is a cost for grain drying also because some drying is needed 

anyway. A danger exists that grains spoil in the airtight silo at summer time when the air 

temperature is high. 
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Costs of these two conservation methods indicate that airproof storage is a more 

economical conservation method than drying. On the other hand, it is sensible to use any 

existing grain drier because operating costs for grain drying are lower than the total costs of 

airproof storage.  

A Finnish grain drier is typically a building with integrated concrete foundation, steel made 

silos, and the drier itself. It is quite impossible to move the grain dryer economically to 

another place. It is more sensible to use the drier as long as it is usable and no major repairs 

are needed. An airproof silo is a good investment in cases where there is no grain drier on 

the farm at all, or the capacity of the old drier is inadequate, or the drier is in such bad 

condition that it should be replaced with a new one.  

Table 29: Investment and operating costs of a grain dryer and an airproof grain silo. These are alternative methods for 
conserving cereal on a pork farm. 

 A hot air grain dryer, 
batch volume 20 m3 

An airproof grain silo, 
volume 400 m3 

Basics of the investment   

Investment, € 130 000 40 000 

Write-off period, years 20 20 

Salvage value, 20% of the investment, € 26 000 8 000 

Interest rate, % 5 5 

   

Costs   

Annual amortization, € 8 345 2 568 

Operating costs (grain dryer: 1.5 
eurocent/kg), € 

5 100 400 

Drying, 30% of the grain yield, 6.0 
eurocent/kg, € 

- 6 000 

Total, € 13 445 8 968 

Heat recovery from outlet ventilation air 

Heating of the pig house was the second highest energy input in pork production. An earlier 

study (Karhunen et al. 1983) indicated that recovering heat from the outlet ventilation air 

could substitute up to 90% of the heating energy. By means of a heat recovering system up 

to 30% of the total energy input could be saved in pork production. Suppliers of heat 

recovery systems emphasize that non-draughty conditions inside the piggery are even more 

important than energy saving. When inlet air is preheated the temperature differences in 

different places of the piggery are less and the animals thrive better. Though heat recovery 

improves welfare, it is difficult to calculate a monetary value for it.  

Figure 40 and Figure 41 show that the heat recovery system would save more energy and 

costs than the airproof storage but the pay-back time for heat recovery is unacceptably long 

(66 years). Heat recovery caused additional costs to the case study farm but airtight storage 

as a substituting investment for the grain dryer resulted in a profit. Drying was the default 

method (business-as-usual) and airproof storage was found to be a cheaper choice. For this 
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reason there is no pay-back time for the airproof storage and the cost for GHG emission 

saving is zero. As stated in the previous paragraph this assessment does not take into 

consideration welfare advantages of preheated ventilation air. These advantages can be 

considerable in the form of better health, faster growth, and lower feed consumption but 

more research would be needed to quantify the economic significance of these advantages.  

 
Figure 40: The impact of airproof storage on the energy and cost savings and the reduction of GHG emissions per 1 kg live 

weight in pork production. Average and high are production intensities. 

 
Figure 41: The impact of heat recovering from outlet ventilation air on the energy and cost savings per 1 kg live weight 

and the pay-back time of the investment. Average and high are production intensities. 

Broiler production in Finland 

Finnish broiler production is based on contracts between slaughter-houses and private 

farms. The production chain as a whole-from the import of broilers’ grandparents to a meat 

package at a shop shelf-is carried out following a national quality system. Prevention of 

animal diseases (especially salmonella) and promotion of animal welfare are the vital goals 

of this system. The structure of the broiler production chain is presented in the Figure 42. 

Scottish Ross is the genotype of broilers raised in Finland. Broilers are raised in batches of 

some 30 000 birds. The length of the raising period is 32 – 42 days. Population density in 

broiler houses is defined as the mass of living animals per square metre (Valtioneuvosto 
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2011). There is no exact upper limit for the population density but there are requirements 

for the air quality and temperature when the population density is over 33 kg/m2. There 

must be a heating and cooling system which guarantees that the lowest and highest 

temperatures given in the decision of the Council of The Finnish State (Valtioneuvosto 2011) 

are not exceeded. The ventilation system has to keep the content of carbon dioxide, 

ammonia and air humidity under regulated limits. Additionally, if the population density is 

over 39 kg/m² (Valtioneuvosto 2011) the average mortality rate of seven preceding batches 

must be less than 1%.  

 
Figure 42: A scheme of the broiler production chain in Finland (Siipikarjaliitto 2012). 

A typical broiler house is a heat insulated building with central heating, and forced 

ventilation. It is a windowless building. Light programs are used to optimize effective meat 

production. Broilers are free on the floor and a layer of 10 cm peat is used for littering. Birds 

get feed and water from feeding cups and drinking cups or nipples on the floor. In the 

beginning of the raising period the inside temperature is 32°C and it is lowered gradually to 

22°C towards the end of the period. Ventilation is needed to keep the temperature, 

moisture, and the content of carbon dioxide and ammonia below recommended levels. 

Between batches there is a period when the broiler house is cleaned, disinfected, and 

littered for the next batch.  

Broiler producing farms produce part of the feed (wheat) on their own fields but in general 

they buy a considerable part of the feed i.e. compound feed and protein. The feed mix is 

precisely tailored according to the raising phase of the birds. 

The energy input for raising replacement chicks was excluded from this analysis accordingly 

as the energy input for raising piglets in pork production analysis because there is no data 

available. As the scheme in the Figure 42 shows there are many energy consuming steps 
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before the actual raising period. A rough estimation based on the number of farms in the 

production chain before and during the raising period (55-60 farms producing chicks and 190 

producing meat) indicated that the energy input for replacement could be up to 30% of the 

total energy input for raising broilers. This conclusion can be made if the energy input is on 

the same level on farms producing replacement animals and on farms producing broiler 

meat. This subject would need more research anyway, in the same way as energy input for 

replacement animals on all animal production sectors.  

Energy consumption in poultry production 

An energy analysis made for poultry production indicated similar distribution of energy 

inputs as in pork production (Figure 43). Feed was the major energy input (59%) and heating 

was the second (37%). Possibilities to save energy in feed production are more limited in 

broiler production than in pork production because a significant part (75%) of the feed is of 

industrially produced.  

 
Figure 43: Distribution of the energy input in broiler production in Finland. 

Energy saving measures 

Suggested energy saving measures were the same as they were in pork production. 

Replacing grain drying with airproof conservation and heat recovery from the outlet 

ventilation air were seen as the most potential energy saving measures. In this case airtight 

conservation could save 1.5% from the total energy consumption maximum. Costs of drying 

and airproof storage are compared in Table 30. Figure 44  presents the impact of airproof 

storage on energy and cost saving and on reduction of GHG emissions. 

Heat recovery was the second potential ES measure and the ES of heating energy was 

estimated to be 60% on the grounds of experiences in pig houses (Karhunen et al. 1983). In 

broiler houses there is demand for thermal energy especially in the beginning of the raising 

period when the temperature requirement is 32°C and small chicks generate little heat (less 

than 1 W, when their weight is below 150 g at the age of 1 – 7 days). The energy saving of 

the heat recovery system could be 19 – 22% of the total energy input of the broiler 

production chain at a maximum. Figure 45 represents the energy and cost saving as well as 

the pay-back time for heat recovering systems.  
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Table 30: Investment and operating costs of a grain dryer and an airproof grain silo on a poultry farm. Drying and 
airproof conserving are optional methods to conserve grain for broiler feed. 

 A hot air grain dryer, 
batch volume 20 m3 

An airproof grain 
silo, volume 400 m3 

Basics of the investment   

Investment, € 140 000 40 000 

Write-off period, years 20 20 

Salvage value, 20% of the investment, € 28 000 8 000 

Interest rate, % 5 5 

Costs   

Annual amortization, € 8 987 2 568 

Operating costs (grain dryer: 1.5 eurocent/kg), € 6 000 400 

Drying, 30% of the grain yield, 6.0 eurocent/kg, € - 6 000 

Total, € 14 987 8 968 

 
Figure 44: The impact of airproof storage on the energy and cost savings and the reduction of GHG emissions per 1 kg live 

weight in broiler production in Finland. 

 
Figure 45: The impact of a heat recovering system on the energy and cost savings per 1 kg live weight and the pay-back 

time of the investment in broiler production in Finland. 

4.3.5. Synthesis trade-off analysis and conclusions in pork and poultry production systems  

Tommy Dalgaard 

The case studies in pig and poultry production systems illustrate a number of interesting 

examples of trade-offs between the effects of measures to reduce energy consumption, 

GHG emissions, and their economic costs. 
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In general the systems for pig and poultry production are among the most industrialized and 

intensive agricultural systems of the countries studied, and cover a significant part of the 

total farm economy (for example about 20% in Poland, 15% in Portugal, and a similar or 

even higher proportion of the total farm economy in Finland, Denmark and The 

Netherlands). In total Gołaszewski et al. (2012) estimated a Primary Energy Consumption 

(PEC, in PJ) for broiler versus pig production of about 1 PJ vs. 6 PJ in Finland, 7 PJ vs. 43 PJ in 

Germany, 9 PJ vs. 33 PJ in The Netherlands, 12 PJ vs. 23 PJ in Poland, and 4 PJ vs. 3.89 PJ in 

Portugal. Consequently, in the countries studied, there is a significant potential for energy 

saving measures in these sectors. However, it must be noted that the total dairy production 

PEC in all countries was about 1.5 to 2 times higher than the summed PEC for pig and poultry 

production, except for Denmark, which has a high production of pig and poultry meat () 

compared to dairy and beef, and a similar total PEC in the dairy sector compared to the pig 

production sectors (Dalgaard et al. 2002).  

As summarized in Table 31, the case studies of production system improvements show large 

differences between trade-offs between associated costs and the effect on energy 

consumption (PEC) and GHG emissions, emphasizing the importance of a case by case 

systems evaluation of such measures. 

Table 31: Summary of estimated trade-offs between costs, primary energy consumption (PEC) and total CO2 equivalent 
GHG Emissions (measured in % point difference compared to the reference) for the case studies selected in Poland (PL), 
The Netherlands (NL), Portugal (PT) and Finland (FI). 

 Costs PEC GHG 

Poultry:    

Energy generation from manure (PL) -1.3% -0.7% -0.4% 

Integrated climate control (NL) -2% +1% +22% 

Heat exchanger (NL) -2% 0% -11% 

Central warm water heater (NL) -1% 0% -8% 

Floor heating (PT) -1.7% -12.6% 0% 

Heat recovery (PT) -0.8% -11.4% -2.0% 

Airtight feed storage (FI)  -1.6%  

Heat recovering system (FI)  -18%  

Fattening pigs:    

Canadian bedding system (NL) +13% +16% -1% 

Natural ventilation and lighting (NL) -2% -1% -78% 

Wet feed system (NL) +37% -42% -1% 

Controlled feed access (PT) -3.0% -4.1% -0.8% 

Airproof feed storage (FI)  -0.6%  

Heat recovery system (FI)  -21%  

Discussion and perspectives 

In general, the mitigation measures included in the case studies have been selected for two 

different main reasons:  
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1) Either because of a desired reduction in the net energy use (for example via heat 

recovery systems, more efficient heating systems, more energy efficient feeding systems, 

natural ventilation or energy generation from manure), or  

2) Because of other types of desired effects (for example better animal welfare in new 

bedding systems, or reduced costs and greenhouse gas emissions via more integrated 

climate control systems).  

For the first category it is interesting to study possible synergy effects between reduced 

energy consumption, and reduced costs and GHG emissions. Consequently, the most 

interesting measures to promote are those energy saving measures which in addition reduce 

both costs and greenhouse gas emissions. In general this is the case for all the category one 

cases shown (except for the Dutch wet feeding system case, with a high implementation 

cost) , and we can thereby conclude that they are good examples of a potential big gain and 

that there is scope for further promotion of such measures in European farming. However 

the question is still whether there could be other measures with even higher potentials for 

reducing the energy consumption, but at substantial economic costs and undesirable effects 

on the emissions of other types of greenhouse gasses other than the energy linked CO2-

emissions (i.e. emissions of nitrous oxide or methane, in particular). 

For the category two measures it is also interesting to see whether  types of objectives other 

than reduced energy consumption, could also lead to energy savings or even reduced costs. 

However, in general monetary costs as well as energy costs and increased greenhouse gas 

emissions of such measures could be expected, and the agenda for the evaluation of 

category two measures is thereby how to reduce these derived disadvantages, and also in 

this respect the systems analyses illustrated gain useful results for decision making. 

To compare the system level effect of measures like the cases studied here (Table 31) it is 

often not enough to calculate the partial effects of the single mitigation measures, but also 

to estimate the extent to which it may be expected that these measures can be 

implemented in the different livestock production sectors. Table 32 shows an example of 

such an estimation of plausible extents of three different measures to reduce GHG emissions 

from agriculture in Denmark. In this study it was furthermore discussed and concluded how 

far such measures could be combined to achieve a positive energy balance and a significant 

reduction of the GHG emissions (Dalgaard et al. 2011). 

These results indicate the very different importance of various types of GHG-emissions 

effects from the exemplified measure options, and the importance of including fossil energy 

consumption related CO2-emissions as well as emissions related to soil carbon pool changes 

in the accounts. To interpret the results and trade-off analyses it is consequently of vital 

importance to define and discuss the system boundary for the results synthesized and 

accounted, and especially for the energy related mitigation measure cases studied in this 

present report, the two categories of CO2 emissions from respectively fossil energy 

combustion and negative soil carbon pool balances may be of special importance. 
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Table 32: Example on trade-offs between the net energy use and the effects on GHG emissions in the form of nitrous 

oxide (N2O), methane (CH4) or changes on the soil carbon pool (C) in a Danish study (Dalgaard et al. 2011).  The total 
effect of each mitigation option is derived from the partial effect per Livestock Unit (LU) and the expected extent to 
which the single measure can be implemented. 

Mitigation option Partial effect Extent  (103 t CO2e y-1) 

   N2O CH4 C Energy 

Cooling of pig slurry 230 kg CO2e LU-1 30 % 11 70 0.8 -10 

Separation 

- Pig manure 

- Cattle manure 

 

330 kg CO2e LU-1 

285 kg CO2e LU-1 

 

50 % 

50 % 

 

0 

0 

 

161 

117 

 

1.8 

1.3 

 

-5.8 

-5.3 

Incineration, fibre fraction  

- Pig manure 

- Cattle manure 

 

290 kg CO2e LU-1 

415 kg CO2e LU-1 

 

50 % 

50 % 

 

-1.6 

-1.1 

 

9.0 

6.1 

 

-116 

-144 

 

250 

313 

The overall system and the various subsystems of pig farming and pig meat production are 

illustrated in Figure 46, and a similar overview could be made for poultry farming. The trade-

off cases studied in this report all relate to different subsystems/sub-processes of either pig 

or poultry farming (for example the manure system, the heating system, or the feeding 

system). It is clear that these systems are interlinked, and that affecting one sub-system may 

also have influence on energy consumption and GHG emissions in other subsystems, and 

eventually the overall cost of the product. Consequently, a chain perspective is often useful 

in the evaluation of pork and poultry production systems, as well as for other type of 

products, and explicitly discussed in the synthesis and conclusion of results. 

 
Figure 46: Overview of the product chain of pork (adapted from Nguyen et al. 2010). 
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In conclusion, the pig and poultry system cases studies of measures to reduce the net energy 

consumption showed remarkable potentials for reduced energy consumption and potentials 

for positive trade-offs to both lower costs and lower greenhouse gas emissions. However, 

some cases also revealed negative trade-offs, and costs both in term of economy, energy 

and greenhouse gas emissions. This was especially the case when the primary goal of the 

measure was not energy consumption mitigation but for instance animal welfare or 

production cost reductions. However, in all cases the system analyses yielded important 

information for the further development of environmentally sound and economically 

efficient production systems. 

4.4. Case studies–greenhouse production systems 

4.4.1. Case studies–greenhouse production systems (The Netherlands) 

Cecilia Stanghellini 

Relative contribution of processes to environmental impact 

Of the various processes in a heated glasshouse in the Netherlands, the one that contributes 

most (by far) to the environmental impact is burning gas for heating. That was shown in the 

simple analysis of WP2, and has been analyzed through Life Cycle Analysis of all processes, 

including structure and transport of all production means, by Torrellas et al. 2012 (FP7-

EUPHOROS), see Figure 47. 

 
Figure 47: Relative contribution of the production processes (direct and indirect) in a standard Dutch glasshouse to global 

warming (measured by kg CO2 equivalent, left) and total energy use (PEC, right). (Torrellas et al. 2012) 

Therefore, the only significant way to save energy, and in general to decrease environmental 

impact in Dutch glasshouse production is to decrease heating requirement.  

Description of the options considered  

As gas for heating is also one of the largest cost components in glasshouse production, the 

fact that we are still so dependent on it is not for lack of trying to reduce its use. Indeed, the 

main topic of research about Dutch glasshouse production in the past 20 years or more, has 

been on energy saving.  

Our reference case was a 1.5 ha multispan Venlo glasshouse producing either tomato or 

sweet pepper or cucumber. The glasshouse is fitted with the climate control that is standard 
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in The Netherlands, that is: fully automated ventilation; heating, CO2 enrichment and one 

energy screen. As the purpose of this exercise is to analyze possible energy saving measures 

for the primary production processes, our reference case is not fitted with combined heat 

and electricity production, although most Dutch growers are presently electricity producers 

as well. Three possible energy-saving measures are considered, with respect to this 

reference: 

1. The use of an innovative, double layer cover, coupled to forced dehumidification 
2. The new cultivation management system 
3. The use of a diffusive glass cover 

The first option analysed for this report is the most advanced energy-saving greenhouse 

design, the “Venlow” greenhouse, a prototype of which was built and tested at the facilities 

of Wageningen UR Greenhouse Horticulture in Bleiswijk, The Netherlands. The name 

“Venlow” combines Venlo (the most common glasshouse in The Netherlands) with “low” 

(energy requirement). That prototype realizes a reduction of more than 50% in heating 

requirement by coupling an innovative cover to innovative dehumidification. The cover is 

double-glazed, coated with an anti-reflection layer to attain a total light transmissivity 

comparable to the transmissivity of standard single glass. This is necessary as a loss of light 

would result in loss of production, because light is the limiting factor for production in Dutch 

greenhouses. One of the four glass-surfaces, however, is coated with a low-emissivity (rather 

than anti-reflection) layer, which limits energy losses at night. In addition, the chamber 

between the layers is filled with Argon, for further lowering heat transmission.  

Besides light (and then production) loss, the reason that double glazing is rarely used in 

Holland is that most of the expected energy saving does not occur, as more ventilation is 

needed to remove the vapor that would condense on the cold inner surface of a standard 

glass cover. Dehumidification in the Venlow greenhouse is done by aspiring dryer external 

air through a cross-flow heat exchanger, whereby the humid air extracted from the 

greenhouse heats-up the air entering it. An additional advantage is that this kind of de-

humidification is possible also while the energy screens are closed. Of course the fans entail 

an increase in electricity consumption but this is negligible with respect to the huge 

reduction in gas use (from 39.8 to 14 m³ m-2/year for tomato).  

The second scenario analyzed is known as “the new cultivation” in Dutch, which entails more 

flexible climate set-points which is something that does not require additional investment, 

and is coupled to the dehumidification method described above. More flexibility in climate is 

attained by allowing higher temperatures in sunny days (ventilating less) compensated for 

by less heating on cold nights. Indeed, it has been shown in extensive experiments that, in so 

far as the mean temperature as is usually desired, is maintained, some flexibility in climate 

does not reduce yields but does save on gas use for heating. 

The third scenario is the application of a diffusive glass cover, which has been shown to 

increase productivity of most crops by some 10%, which of course only reduces energy 

consumption per unit yield, but not per unit surface.  
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As the energy requirement of all non-heating processes is negligible (see Figure 47), we did 

not consider the energy costs of coating, nor the possible increase in fertilizer use in the 

scenario that increases yield, that is scenario 3. 

Results 

The results for tomato are summarized in Table 33. It may be surprising that none of the 

options, including current practice, yields a positive financial result. This is known and, 

indeed, it is generally acknowledged that Dutch greenhouse production is profitable only 

through combined generation of heat and power, whereby excess electricity is sold.  

Table 33: Annualized costs, PEC and GHG emissions per ha, with EE measures in greenhouse tomato production. 

Scenario 
Total company 

income 
Total company 

costs 
Total energy use 

(PEC) 
Total GHG-
emission 

 €/ha % €/ha % MJ/ha % kg CO2e/ha % 

Current practice 437,100 100 550,900 100 13,070,581 100 750,855 100 

Double glazed & innovative 
dehumidification 

437,100 100 531,214 96 4,671,514 36 272,801 36 

Additional screen & innovative 
dehumidification 

437,100 100 541,327 98 8,903,602 68 557,399 74 

Light diffusive cover 478,720 110 565,900 103 13,070,581 100 750,855 100 

Table 34: Annualized costs, PEC and GHG emissions per ha, with EE measures in greenhouse sweet pepper production. 

Scenario 
Total company 

income 
Total company 

costs 
Total energy use 

(PEC) 
Total GHG-
emission 

 €/ha % €/ha % MJ/ha % 
kg 

CO2e/ha 
% 

Current practice 414,375 100 470,000 100 10,406,651 100 598,410 100 

Double glazed & innovative de-
humidification 

 414,375 95 456,278 97 3,681,162 35 215,386 36 

Additional screen & innovative 
dehumidification 

414,375 95 463,386 99 6,989,303 67 403,967 68 

Light diffusive cover 455,812.5 104 485,000 103 10,246,549 98 588,571 98 

Table 35: Annualized costs, PEC and GHG emissions per ha, with EE measures in greenhouse cucumber production. 

Scenario 
Total company 

income 
Total company 

costs 
Total energy use 

(PEC) 
Total GHG-
emission 

 €/ha % €/ha % MJ/ha % 
kg 

CO2e/ha 
% 

Current practice 469,600 100 573,500 100 12,192,915 100 700,687 100 

Double glazed & innovative de-
humidification 

469,600 107 560,019 98 4,944,657 41 288,337 41 

Additional screen & innovative 
dehumidification 

469,600 107 565,053 99 8,521,795 70 492,134 70 

Light diffusive cover 514,800 118 588,500 103 12,505,554 103 717,921 102 
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A light diffusive cover does not reduce energy consumption but does increase production; 

therefore the effect on energy does not show in Table 33, which refers to hectares. The 

results per ton produced, Table 36, are slightly more promising in this respect. 

The results for all greenhouse crops considered are very similar. That is: there is a significant 

potential for energy saving and reduction of greenhouse gas emissions, but the gains are too 

marginal for the presently cash-strapped growers to consider. As Figure 48 shows, all options 

add to the fixed costs (capital) of the enterprise, which represent the largest fraction also in 

the reference case, whereas the gain is in the variable costs.  

Table 36: Annualized costs, PEC and GHG emissions per ton product, with EE measures in greenhouse tomato production 

Scenario 
Total company 

income 
Total company 

costs 
Total energy 

use (PEC) 
Total GHG-
emission 

 €/t % €/t % MJ/t % kg CO2e/t % 

Current practice 683 100 861 100 20,423 100 1,173 100 

Double glazed & innovative 
dehumidification 

683 100 830 96 7,299 36 426 36 

Additional screen & innovative 
de-humidification 

683 100 846 98 13,912 68 871 74 

Light diffusive cover 680 100 804 93 18,566 91 1,067 91 

Table 37: Annualized costs, PEC and GHG emissions (per ton), with EE measures in greenhouse sweet pepper production. 

Scenario Total company 
income 

Total company 
costs 

Total energy 
use (PEC) 

Total GHG-
emission 

 €/t % €/t % MJ/t % kg CO2e/t % 

Current practice 1,275 100 1,446 100 32,020 100 1,841 100 

Double glazed & innovative 
dehumidification 

1,275 100 1,404 97 11,327 35 663 36 

Additional screen & 
innovative dehumidification 

1,275 100 1,426 99 21,506 67 1,243 68 

Light diffusive cover 1,275 100 1,357 94 28,662 90 1,646 89 

Table 38: Annualized costs, PEC and GHG emissions (per ton), with EE measures in greenhouse cucumber production. 

Scenario Total company 
income 

Total company 
costs 

Total energy 
use (PEC) 

Total GHG-
emission 

 €/t % €/t % MJ/t % kg CO2e/t % 

Current practice 241 100 294 100 6,253 100 359 100 

Double glazed & innovative 
dehumidification 

241 100 287 98 2,536 41 148 41 

Additional screen & 
innovative dehumidification 

241 100 290 99 4,370 70 252 70 

Light diffusive cover 240 100 274 93 5,830 93 335 93 

Figure 49 shows the environmental impact (total energy use and global warming) of the 

production of 1 kg sweet pepper, in current practice and in the three energy saving options 
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considered. The figures for the other crops would be very similar. 

 
Figure 48: Cost distribution (fixed and variable) and income (€/m

2
.year) for a greenhouse cucumber operation. 

 
Figure 49: Environmental impact of the production of 1 kg sweet pepper for all options. The energy use (MJ/kg) is on the 

left axis and the emission of greenhouse gases (kg CO2e/kg) is on the left. 

Discussion 

Given the overwhelming contribution of heating to the energy requirement of glasshouse 

production in The Netherlands we have only considered energy efficiency measures related 

to the issue of heating requirements. We have established that present technology allows 

for a reduction of more than 50% of gas use. However, that would require an investment 

that is presently out of the scope of most Dutch growers, even though it may deliver gains in 

the long term. As mentioned above, the primary production would be at a loss, were it not 

for the sale of electricity. Unfortunately, that income is also under pressure given the 

downward trend of electricity prices on the world’s/national market. The whole sector 

(including the Dutch greenhouse builders association) does not expect investment in 

greenhouse construction in the Netherland to pick-up anytime soon. Unfortunately, the 

same bleak outlook applies also to intermediate options, since the smaller capital 

requirement would be coupled to a smaller reduction in running costs. 

 Although unheated greenhouse production is out of the scope of this project, it is worth 

observing that the energy requirement of un-heated greenhouses is about evenly split 

among production of structure; of equipment; and of fertilizers (Torrellas et al. 2012). 

Savings of some 40% of fertilizers (and 25% of irrigation water) have been attained by 



  Agriculture and Energy Efficiency 

Economics and Environment: Case studies and trade offs 

95 

applying closed-loop irrigation in greenhouse tomato on substrate (García-Victoria et al. 

2012) and by improving irrigation of soil-grown cucumber (Tuzel et al. 2012). This means 

that a better management of fertigation could bring about a significant reduction in energy 

requirement in the Mediterranean greenhouse production, but not in The Netherlands 

where, re-circulation of drain water is already commonly applied.  

4.4.2. Energy efficiency measures in a Greek greenhouse production system 

Antonis Mistriotis, Athanasios Balafoutis, Demetres Briassoulis 

Introduction 

Greenhouses in Greece cover a total agricultural area of 4900 ha approximately, out of 

which 4000 ha concern vegetables production (EL.STAT 2006). The majority is concentrated 

in Crete, where more than 40% of greenhouses are located (EL.STAT 2006; Ministry of Rural 

Development 2006), with emphasis in vegetables (tomato, cucumber, sweet pepper, 

eggplant etc) and flower production (recent data for greenhouses area in Crete: 2,332 ha).  

The vast majority, more than 90%, are plastic covered (94% according to Ministry of Rural 

Development 2006). About half of the Greek greenhouses are unheated and 26% are lightly 

heated (Ministry of Rural Development 2006). However, in the case of heated greenhouses, 

heating is the most important energy consumption (Figure 50). On the contrary, unheated 

greenhouses consume much less energy, but provide low productivity. A typical productivity 

of an unheated greenhouse for tomatoes is 150 tons/year/ha, while for heated ones it can 

reach 230-380 tons/year/ha.  

Considering the above data, two general strategies may be proposed aiming at reducing 

energy consumption in greenhouses. If fully heated greenhouses are considered (only 25% in 

Greece), measures aiming at improving heating efficiency and reducing heat losses have to 

be proposed.  

On the other hand, in the most important for the Greek case of unheated greenhouses 

attention should be given towards the improvement of the indoor microclimate. In this way 

their productivity can improve. Since low temperature during the winter nights is the most 

important problem of unheated and lightly heated greenhouses, heat storage or other 

passive systems have to be added. Despite the fact that heat storage in greenhouses has 

been extensively studied in the last twenty years (Sethi & Sarma, 2008), the technology is 

rarely used due to higher installation cost and the more sophisticated operational skills 

required by the farmer. Further research is required on this topic for adding heat storage 

equipment as a standard component of unheated greenhouses in S. Europe. 

Methodology 

The current report focuses on energy saving measures for two cases: a) an average input 

heated greenhouse in S. Greece (Attica) and b) a typical unheated greenhouse in Crete.  

There are several types of energy efficiency measures that could be applied in a greenhouse 

system (see Energy efficiency measures report for Greece in WP2, Gołaszewski et al. 2012a), 
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but in this report it was selected to analyse the case of insulation of the side towards the 

main wind, the case of wind brake installation in front of the side towards the main wind and 

change of heating system from electricity to biomass as possible energy efficiency measures. 

The impact of these measures on greenhouse gas (GHG) emissions and on the economics of 

the farm are also examined.  

The basic scenario that was chosen for this report is a typical greenhouse of 1 hectare, 

where tomato or cucumber is cultivated.  

Basic scenario–Heated greenhouse in Attica  

The greenhouse surface is in total 1 ha (50 m x 200 m). It is constructed in year 1 and in this 

report we consider a lifetime of 20 years.  

The cultivation procedure in the greenhouse under investigation follows the steps below: 

Greenhouse installation 

1. Preparation  

The land parcel selected for the greenhouse installation is prepared (earth moving if 

necessary) and the foundations are installed (cement basis for the frame). 

2. Frame and plastic cover installation 

The frame is assembled and installed in the foundations. The roof windows, together with 

the automated mechanisms, are also adjusted on the frame. Then, specialised workers 

install the plastic cover. 

3. Mechanisms installation 

After the frame is ready, then all mechanisms are installed. In particular: 

 Electric circuit for all the greenhouse requirements (accompanied by an electric 
generator for electricity cuts) 

 Thermal screen  

 Aeration (fans) and cooling (panels) equipment  

 Automatic drip irrigation system is installed (pumps + drip pipes + automatic 
control). 

 Plant suspension system 

Annual work 

 Soil treatment 

Preparation of the soil by using the following machinery: 

1. Light cultivator 

2. Rotary cultivator 

 Solarisation 

Solarisation film is installed every year for 4–8 weeks during the summer period (July–
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August). Before installing the film the soil is cleared of plant residues and the irrigation drip 

pipes are put in the future plant lines. Then, the soil is irrigated heavily and is covered with 

the film. The solarisation film is kept in the greenhouse for the whole cultivation period, 

aimed at weakening or eliminating disease, weeds and nematodes harmful to plants in the 

soil. At the end of the period, it is sent for recycling and new solarisation film is installed. 

There are solarisation films available that last for several cultivation seasons. (Cascone et al 

2012). 

 Planting 

Planting is executed manually. When the period of solarisation is finished, then small holes 

are opened in the film for the new plants to be planted (in-line distance: 0.3 m, between 

lines distance: 0.6 m). Planting requires 53300 plants/ha combined with irrigation. Chemical 

fertilizers are also diluted in the irrigation water (light fertilizer application with 50 kg N/ha, 

20 kg P/ha and 40 kg K/ha).  

 Chemical application 

There are many enemies of tomato and a lot of chemical substances to control them. In this 

report the fungicide and insecticide applications that were given by the farmer were 

recorded. The main fungicides used were Bacillus thuringiensis, sulphur and copper. It 

should be mentioned that sulphur evaporators are installed in the greenhouse. As for 

insects, the most important enemies of tomato are Nematodes (Meloidogynae spp, 

Heterodera rostochiensis), Aphids, Liriomyza solani, Tetranychus urticae, Thrips tabaci, 

Traleurodes vaporariorum. Sticky paper traps are widely used for small insects and 

insecticides are used only when the population is extensive. For Tuta Absoluta (which is a 

new insect for the Mediterranean affecting tomato plantations) there are several 

insecticides that are used (active ingredient: emamectin benzoate, metaflumizone, 

clorantranipole, flubendiamide, spinosad, indoxacarb). 

 Weed control 

Weed control is covered by the solarisation film.  

 Fertilizer application 

Fertilizers are applied throughout the year following the irrigation plan. Total post-planting 

application of fertilizer is 1660 kg N/ha, 330 kg P/ha, 1220 kg K/ha) 

 Irrigation 

Irrigation is executed using a drip irrigation system. Total water quantity 18330 m³/ha. 

 Heating 

Heating in this case study is conducted with electric fan heaters spread evenly in the 

greenhouse. The total installed heating capacity is 800 kW. The energy consumption to keep 

the greenhouse temperature above 14 oC during the night and above 20 oC during the day 

time is about 3.6 GJ. 
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 Ventilation and cooling 

Basic ventilation is conducted using automatic roof windows operated by electric motors 

controlled by a double thermostat. In Greece though, from April to October, this ventilation 

is not enough during day time and it is required to have mechanical ventilation. In the 

greenhouse of this case study, 46 fans of 1.1 kW power are installed on one of the wide sides 

(200 m) with total air supply of 1750000 m³/h and have the ability of changing the air in the 

greenhouse 27 times/h. Cooling is also required during this period. It is conducted in 

collaboration with the fans, using panels sprayed with water on the opposite side of the 

fans.  

 Harvesting  

Harvest is executed manually throughout the year for about 8 months of the total 11.  

Farm machinery 

The farm owns the following machinery: 

 Small scale agricultural tractor 30 kW 

 Light cultivator (2 m) 

 Rotary cultivator (1.5 m) 

 Trailer (7 t) 

 Irrigation machinery (pump, auxiliary parts, 33 m³/h) 

 Drip irrigation pipes 

EU financial aid 

There are no EU subsidies for tomato production.  

Methods used for cost calculations 

The average value per kg of fertilizer component (N, P, K) was calculated based on the prices 

of combined fertilizers that are used for the fertilizing on this farm. The same approach was 

used for chemicals (fungicides and insecticides). Irrigation cost was calculated based on 

electricity consumption, as water was considered as a free resource.  

Considering greenhouse facilities, the annual cost was calculated based on the replacement 

value and life span of the construction and equipment for greenhouses in Greece (Table 39). 

The greenhouse of this case study is consisted of the items shown in Table 39 below. 

Considering machinery, the rate and value  were calculated based on the replacement value 

and life span of the agricultural machinery and equipment in Greece (see Table 40). The life 

span considers the durability of the item, the time between its first and last use.  

Total energy consumption in the basic greenhouse reaches 18654 GJ ha-1 y-1. The GHG 

emissions produced in total are in the level of 2373 t CO2e ha-1 y-1. As for the total cost of 

production for tomato, this is about 147000 € ha-1 y-1. The energy profile of the existing 

situation in the greenhouse is illustrated in Figure 50. In the same figure, GHGs and costs 

distribution for the main energy consuming activities in the greenhouse are also shown. 
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Table 39: Greenhouse construction and equipment 

 Cost (€) Useful lifetime (years) 

Construction 

Frame 100000 20 

Land moving + foundations 20000 20 

Roof windows  25000 20 

Aeration + cooling 40000 20 

Electric installation 30000 20 

Irrigation system 15000 20 

Electricity generator 20000 20 

Fan heaters 50000 20 

Plant suspension system 15000 20 

TOTAL 315000  

Periodic consumables 

Plastic cover (LDPE) 10000 4 

Thermal screens 10000 5 

Solarisation film 4900 1 

Table 40: Agricultural equipment of the selected farm and their useful life span 

Agricultural Equipment Years of useful life 

Tractor 

4wd tractor, 30 kW 15 

Tillage machinery 

light cultivator, 3.00 m 20 

Rotary cultivator, 1.50 m 12 

Other machinery 

Tipping trailer, 7 ton 20 

Irrigation machinery, 33 m³/h 15 

drip pipes 5 

 
Figure 50: Energy, GHGs and Cost profile of the basic scenario. 

It can be seen that Energy and GHGs follow the same trend. Electricity for heating covers 
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about 88% of the total primary energy needs of the greenhouse. All electricity needs account 

for 99% of total energy requirements. 

The cost analysis though is different. Electricity for heating accounts for 69.3% and in total 

electricity covers 78% of total costs. Other main cost sections are the plants (5.7%), the 

solarisation film (5.2%), the fertilizers (4.6%) and the pesticides (2.5%). 

Alternative option 1–Insulated north greenhouse side  

Energy Analysis 

The improvement of the insulation of a plastic covered greenhouse can be easily 

implemented by using a double inflated LDPE film. The overall heat insulation of a wall is 

described by the overall heat transfer coefficient K (W m-2 K-1), which is defined as following: 

Q = K ΔT 

Where Q is the heat flux (Wm-2) through the wall, and ΔT is the temperature difference 

across the wall. The heat transfer coefficient describes collectively all the mechanisms 

involved in heat transfer through a wall, namely conduction, convection, radiation, etc. The 

K-value for a LDPE-film made wall is 9 Wm-2K-1, while if a double layer LDPE film is 

considered, the K-value drops to 6.4 W m-2 K-1 (Papadakis et al, 2000).  

For estimating the importance of such an energy saving technique, we consider the 

greenhouse of this case study (dimensions 50mx200m, with total area 1 ha) and height at 

the gutter 4 m as a typical example. Assuming a uniform heat loss from all covering area of 

the greenhouse, the energy saving which can be obtained if the north wall has dimensions 

4mx200m (800 m2), is roughly estimated to be 2.5% of the total heating cost. Therefore, the 

saving in terms of final energy consumption is 90 GJha-1y-1 (3600 GJha-1y-1×2.5% = 90 GJ). In 

primary energy basis the saving is 407.7 GJha-1y-1 (as we are referring to a greenhouse 

heated by electrical fan heaters, it is required to multiply with 4.53 MJp/MJel that 

corresponds to the Greek electricity mix). The energy input corresponding to the use of the 

additional plastic is estimated to 13.6 GJha-1 (800 m2×17 MJ/m2), but after considering the 

useful life of the plastic cover (4 years), the total energy added in the system is 3.4 GJha-1y-1. 

Therefore, the expected net energy saving is estimated equal to 2.2%. In this example, 

additional insulation was added only at a wall with minimal contribution in the overall light 

transmittance of the greenhouse, since increase of insulation performance always results in 

a decrease of transmitted PAR radiation.  

GHG Analysis 

On a GHG basis, the insulation of the north side of the greenhouse would result in a 

reduction of the electricity used for heating of 2.5%, which is reflected in GHG emissions 

with a reduction of about 52.155 t CO2e ha-1 y-1 (90 GJ ha-1 y-1 × 0.5795 t CO2e/GJ electricity). 

On the other hand, the addition of 800 m2 of cover plastic would increase the GHG emissions 

by only 29.7 kg CO2e ha-1 y-1 (800 m2 × 0.1485 kg CO2e/m2 / 4 years). Therefore, the total 

avoided GHG emission reach 2.2%.  
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Cost Analysis 

The impact of such change in the cost of the greenhouse is also significant in annual costs. 

The investment for the extra plastic cover in the insulated side of the greenhouse is about 

1200 €. In order to repay the investment in a 5-year period, with interest rate of 5.2% (rate 

for agricultural loans in Greece), it is required to pay 340 € y-1. However, the 2.5% electricity 

reduction for the fan heaters translates to 1635 € y-1 (90 GJ × 0.018164 €/MJ). Therefore, 

there is an annual profit of 1295 € y-1, which accounts for a cost reduction of 0.9%. 

Table 41: Reduction in cost, energy and GHG emissions due to Alternative 1 

Scenario Total company costs Total energy use (PEC) Total GHG-emission 

 % % % 

Insulated north side 1 2.4 2.2 

Remark 

The use of a double layer LDPE film cover may influence productivity by reducing the solar 

radiation reaching the canopy. However, if the analysis of the local climatic conditions shows 

that the solar radiation exceeds the required level, a double layer inflated roof cover can be 

considered. The energy savings could be much higher under specific conditions if the whole 

greenhouse is covered by a double layer LDPE film. The use of such insulation will result into 

final energy saving of about 1000 GJ ha-1 y-1. In primary energy basis, the energy saved is 

4530 GJ ha-1 y-1 (as we are referring to a greenhouse heated by electrical fan heaters and it is 

required to multiply with 4.53 MJp/MJel that corresponds to the Greek electricity mix). On 

the other hand, the energy consumption corresponding to the use of the additional film 

layer is 192.1 GJ ha-1 and adding in the calculation the useful life of the plastic cover (4 

years), the final annual energy contribution will be about 48 GJ ha-1 y-1. The energy for 

compensating leakages and maintaining a pressure of 50-80 Pa in the inflated cover is 

roughly estimated equal to 15 MJ ha-1 y-1, so it may be considered negligible. Therefore, the 

expected net energy saving is estimated to be equal to 24%. This value roughly agrees with 

estimates given in the literature, where the heat loss reduction due to an inflated double 

film cover was measured equal to 30% (Weimann 1985). Further research is needed to 

confirm experimentally these results under Greek climatic conditions. 

Alternative option 2–Windbreak against the dominant wind direction  

Energy Analysis 

The most important mechanism of heat transfer through the greenhouse cover is 

convection. The colder external wind takes away heat from the hotter greenhouse cover due 

to its speed. If the air velocity at the greenhouse cover is reduced, heat losses can be 

reduced. Therefore, the construction of a windbreak, natural (tree) or artificial (made of 

plastic netting) may contribute to important energy savings for greenhouses. 

A recent numerical (CFD) study (Mistriotis et al, 2011) indicates that the construction of an 

artificial windbreak against the dominant wind direction with height equal to the sidewall of 
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the greenhouse at a distance of one height of the sidewall upstream, may result in an 

important reduction of the wind speed along the greenhouse cover. More specifically, the 

wind speed is reduced by 50% at the wall facing the wind, and about 12% along the roof as 

an average. This air velocity reduction can be transformed into energy savings by a rough 

approximate calculation. 

The convection energy transfer along a flat plat is proportional to Re0.8 (Mills 1992), where 

Re is the Reynolds number defined as: 



vL
Re   

where ρ is the density of air, L is the dimension of the wall parallel to the air velocity, v is the 

air velocity, and μ is the dynamic viscosity of air. 

Therefore, the heat losses through a wall are proportional to v0.8 where v is the wind speed 

along this wall. Assuming that roughly all walls and the roof contribute to the heat losses of a 

greenhouse proportionally to their area, we may estimate that a 12% reduction of heat loss 

along the roof may result in an important energy saving. The energy savings due to reduced 

convection at the roof can be as high as 10% of the overall heating cost. Moreover, the 

reduction of heat losses at the sidewall which is exposed to the wind can contribute by 2% 

more to the overall energy savings.  

Therefore, a windbreak with optimal height and position can provide final heat savings as 

high as 432 GJ ha-1 y-1. In primary energy basis, the energy saved is 1957 GJ ha-1 y-1 (as we 

are referring to a greenhouse heated by electrical fan heaters and it is required to multiply 

with 4.53 MJp/MJel that corresponds to the Greek electricity mix). The energy needed for the 

construction of such a windbreak is 6.24 GJ ha-1 (800 m2 × 7.8 MJ/m2). Therefore, annual 

energy consumption is 624 MJ ha-1 y-1, assuming that the life time of the plastic net is 

approximately 10 years. Consequently, the expected net energy saving is estimated equal to 

about 10.5%. If the artificial windbreak is replaced by a natural one (trees) there is no energy 

consumption. In this case, an artificial wind break can be constructed for protection during 

the initial period, when the protecting trees are short. 

GHG Analysis 

On a GHG basis, the addition of a windbreak against the dominant wind to the greenhouse 

would result in a reduction of the electricity used for heating of 12%, which is reflected in 

reduced GHG emissions of about 250.37 t CO2e ha-1 y-1 (432 GJ ha-1 y-1 × 0.5795 t CO2e/GJ 

electricity). On the other hand, the addition of 800 m2 of plastic net for the construction of 

the windbreak would increase the GHG emissions by only 12 kg CO2e ha-1 y-1 (800 m2 × 

0.1485 kg CO2e/m2/10 years). Therefore, the total avoided GHG emission reach 10.5%.  

Cost Analysis 

The impact of such change in the cost of the greenhouse is also significant in annual costs.  

The investment for the windbreak is about 5000 €. In order to repay the investment in a 5-

year period, with interest rate of 5.2% (rate for agricultural loans in Greece), it is required to 
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pay 654 € y-1. However, the 12% electricity reduction for the fan heaters is translated to 

7847 € y-1 (432 GJ × 0.018164 €/MJ). Therefore, there is an annual profit of 7193 € y-1, which 

accounts for a cost reduction of 5%. 

Table 42: Reduction in cost, energy and GHG emissions due to Alternative 2. 

Scenario Total company costs Total energy use (PEC) Total GHG-emission 

 % % % 

Windbreak against the dominant 
wind direction 

5 10.5 10.5 

 Remark 

The use of a windbreak could help in reducing the total cost of the greenhouse if the wind is 

the dominant load. In this case, the greenhouse structure may be designed with a lighter 

frame. Such an option would be preferable for areas where snow is rare, because the light 

frame can allow the greenhouse to collapse more easily.  

Alternative option 3–Heating system replacement with biomass  

Energy Analysis 

The third alternative refers to the change of the heating system from electrical fan heaters 

to biomass boiler heating system. In this case, in order to cover the energy needs for heating 

(around 3600 GJ ha-1 y-1 in final energy terms), it is required to combust 265 t of biomass (16 

MJ/kg) annually in a boiler of 85% efficiency. Total biomass energy input would be 4240 GJ 

ha-1 y-1 (265 t × 16 GJ/t), adding 18 GJ ha-1 y-1 for the fuel consumed to transport the biomass 

from production (olive oil mills, nut and almond industry) to the greenhouse (0.36 t × 50 

GJ/t). If we consider the fact that when electrical fan heaters are used, the total heating 

energy consumption was 16308 GJ ha-1 y-1, alteration to biomass heating would reduce total 

primary energy consumption by 64.8%.  

GHG Analysis 

On a GHG basis, the result is even better, as it could be assumed that biomass do not emit 

GHG emissions based on the carbon cycle (there is a low GHG emission level that is not 

taken into account in this report). Therefore, biomass combustion will result only in the 

GHGs that transporting trucks emits, which is 1.312 t CO2e ha-1 y-1 (0.36 t of diesel × 3.646 t 

CO2e/t diesel). In the basic scenario of electrical fan heaters, total GHG emissions due to 

heating system were in the level of 2086 t CO2e ha-1 y-1 (3600 GJ ha-1 y-1 × 0.5795 t CO2e/GJ 

electricity). Having in mind that total GHG emissions of the basic scenario is 2384 t CO2e ha-1 

y-1, it can be seen that if biomass would replace electricity for the heating purposes of the 

greenhouse, then total GHG emission reduction would reach 87.5%. 

Cost Analysis 

The impact of such change in the cost of the greenhouse is also significant in annual costs. 

However, as an important investment for the new heating system is required (about 80000 
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€), the final annual profit from this replacement is reduced considerably due to loan 

payments. In particular, in order to repay the investment in a 10-year period, with interest 

rate of 5.2% (rate for agricultural loans in Greece), it is required to pay 10460 € y-1. The 

annual cost of operation of the new biomass heating system is 39750 € y-1 (265 t biomass 

×150 €/t). However, the existing electricity heating system requires 65400 € y-1 (3600 GJ × 

0.018164 €/MJ). Therefore, there is an annual profit of 15190 € y-1, which accounts for a cost 

reduction of 11.2%. 

Table 43: Reduction in cost, energy and GHG emissions due to Alternative 3. 

Scenario Total company costs Total energy use (PEC) Total GHG-emission 

 % % % 

New biomass heating system 11.2 64.8 87.5 

Relative Contribution of different energy efficiency measures to energy use, total costs of 
production and greenhouse gas emissions 

All the above analysis for the three alternatives of the greenhouse of the basic scenario can 

be seen in total in Table 44.  

Table 44: Annualized costs, PEC and GHG emissions per ha, with EE measures in greenhouse tomato production. 

Scenario Total company costs Total energy use (PEC) Total GHG-emission 

 €/ha % GJ/ha % t CO2e/ha % 

Current practice 146850 100 18654 100 2373 100 

Insulated north side 145555 99.1 18250 97.8 2321 97.8 

Windbreak against dominant wind 
direction 

139657 95.1 16697 89.5 2123 89.5 

New biomass heating system 130376 88.8 6568 35.2 288 12.1 

The case of unheated greenhouse in Crete 

The main energy consumption in unheated greenhouses concerns fertilizers and 

agrochemicals. These two categories roughly correspond to 60% of the overall energy 

consumption in such a greenhouse. In contrast, the covering material represents only 20% of 

the total energy. The remaining 20% of the energy consumption represents other materials 

and operations, such as pumping of irrigation water, thermal screens, solarisation films, 

cooling by evaporation, etc. 

Therefore, the introduction of organic or integrated production cultivation techniques may 

also contribute to important energy savings besides the increase of the value of the produce 

itself. However, the reduction rate of the energy consumption is difficult to quantify due to 

the limited information concerning the energy equivalence of organic fertilizers and pest 

management techniques. For example, the use of manure as organic fertilizer may 

correspond to zero energy consumption if it is naturally processed. Additional energy is 

needed if manure and /or compost are industrially processed to be transformed into 

fertilizer which is not easily calculated. Similarly, the use of predator insects for controlling 
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pests is a measure with uncertain and difficult to estimate energy equivalence. The use of 

sulfur in the place of several agrochemicals is also estimated to result in energy savings.  

Organic or IP cultivations cause a low energy consumption with respect to fertilizers and 

agrochemicals. However, an optimized internal microclimate, which requires using energy, is 

needed to support the health of the plants. For example, under certain conditions the 

reduction of internal relative humidity can only be achieved by energy consuming air drying 

systems. Therefore, energy savings can be obtained by advanced design techniques, which 

lead to structural and functional optimization of the greenhouse with minimal use of energy. 

Conclusions 

In this report, there was an attempt to apply three of the EE measures that were proposed in 

WP2 list for greenhouses in Greece. The two first analysed scenarios (insulation of the north 

side and windbreak installation in the side against the dominant wind) were based on simple 

adjustments on the existing greenhouse system. Therefore, the result in energy, GHG 

emissions and costs were not very significant. However, in comparison to the investment 

required, they provide a good result. The last alternative energy efficiency measure 

(replacement of the heating system with biomass boiler system) gave very good results in 

terms of energy use reduction (which was the driver for this report), with more positive side 

effects on environmental impact (GHG emissions decline). The reason was the fact that the 

greenhouse was heated with electrical fan heaters and the Greek electricity mix is based on 

fossil fuels of low efficiency (on lignite, and less on diesel and natural gas) that increase 

significantly the primary energy and GHG emissions derived by electricity production. As for 

the costs of the farm, the impact was also important, but not as much as in energy and GHG 

emissions, due to high investment cost for the new biomass heating system. 

The above examples are very rough preliminary estimates of the efficiency of the proposed 

energy saving measures for greenhouses in Greece. The calculated energy savings are 

approximate since very simple models were used. The commercial success of any proposed 

energy saving measures requires detailed analysis of the characteristics (design, orientation, 

local climate etc.) of the specific greenhouse where they are to be applied. The application 

of energy saving innovations in greenhouses is not straightforward and generic in most 

cases. As a result, greenhouse builders have to invest in design methodologies and software 

for modeling the greenhouse performance, similar to building simulation tools used for the 

design of offices, houses and industrial buildings. The academic and research community 

may contribute to the development of such design methodologies and software tools. 

4.4.3. Energy Efficiency Measures in Portuguese Greenhouse Tomato Production  

Fátima Baptista, Dina Murcho, Luis Leopoldo Silva, Mário Louro, Carlos Marques 

Introduction  

Tomato is one of the most important greenhouse crops in Europe. The majority of fresh 

tomatoes marketed in the European Union are produced as protected crops. In 2005, the 
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greenhouse area for vegetable and flower production reached 53 800 ha in Spain and 2 550 

ha in Portugal (Meneses & Castilla 2009). According to the National Statistics Institute, in 

2011, tomato greenhouse crop occupied approximately 1 400 ha (INE I.P., 2012). Most 

tomato greenhouse production use soil in unheated greenhouses, but hydroponics using 

substrate is increasing. The main production regions are Ribatejo and Oeste (approximately 

50%), Algarve and Entre Douro e Minho. 

Mediterranean greenhouses are very different from those used in Northern countries. In the 

North most greenhouses are heated and covered with glass. In the South, where the air 

temperature is warmer and solar radiation is considerably higher, greenhouses are usually 

not heated and covered with plastic film. Environmental control in such greenhouses is 

essentially achieved using various ventilation techniques to control temperature and 

humidity (Baptista et al. 2011). 

According to Afonso (2012) the regular production consists in two crops per year, one in 

winter-spring (planting in December; harvesting by the end of April) and the other in 

summer-autumn (planting in June; harvesting after the end of August). Many producers are 

now prepared to better exploit market opportunities. Producers in the Oeste region know 

that the big export window opportunity is from June to September, when the production is 

difficult in other regions of south Europe due to high temperatures. 

The main objective of this case study is to analyse the effect in economic results, energy 

consumption and environmental impacts of: 1) hydroponics with substrate; 2) hydroponics 

and fertilizer and water doses adjusted; 3) rationalised use of fertilizers, pesticides and water  

in soil production and 4) use of an integrated control system. 

Basic scenario 

The basic scenario is a real farm with 7 ha of unheated greenhouses producing tomato crops 

grown in soil. The structural material of the greenhouses is galvanized steel and the covering 

material consisted of low density polyethylene (LDPE). The climate is controlled by natural 

ventilation, using continuous vents located on the roof over the entire length of the 

greenhouses. 

Before planting the soil is prepared and ridges for the young tomato plants are made. 

Tomato plants are planted in twin rows. The growing technique is usual for greenhouse 

tomatoes in Portugal, which means that the plants are trained to a single stem; pollination is 

made by bumblebees, fruit pruning and defoliation to allow better air circulation between 

plants, in accordance with normal horticultural practice, allowing adjacent fruits to be 

perfectly formed.  

Plant density is 22 000 plants per ha. The crop is irrigated with a drip irrigation system, with 

an average amount of 7 500 m3/ha of water. Fertigation is used to supply the necessary 

nutrients to the plants during the crop cycle with approximately 290 kg/ha N, 160 kg/ha P 

and 570 kg/ha K. Also a micronutrients solution (manganese, molybdenum, iron, boron, 

cobalt and zinc) is applied. These characteristics and data refer to one crop cycle. Since 
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regular production consists of two crops per year, for computing energy, GHG emissions and 

economics values per year, all values are doubled. 

Tomato cultivation techniques are mainly related to the crop  training, defoliation and 

pruning on the trellis, weed control, fertigation, crop protection against pests and diseases 

and harvesting. This farm is equipped with all the necessary equipment, such as a tractor (70 

hp), irrigation and fertigation systems and sprayers.  

In the mechanisation item, the rate and value were calculated based on the replacement 

value and life span of each machine and the agricultural equipment. The life span considers 

the durability of the item, i.e., the number of years of use. The greenhouse structure 

material is assumed to be an investment for 20 years and the cover material, since it is used 

only for 3 years, was considered as an input for each year (total value divided by three). The 

same split was considered for energy consumption and GHG emissions. Total annual 

production (for the two crops/year) is 180 ton per ha. Total investment (greenhouse 

structure, ventilation and irrigation/fertigation systems) is approximately 130,000 € per ha.  

Alternative option 1–hydroponics with substrate (hydro) 

In Portugal, the interest in hydroponic cultivation of tomato is increasing, mainly in regions 

with high concerns about pollution in subterranean aquifers, (i.e., Vila do Conde and Entre 

Douro e Minho regions) and also due to problems caused by soil fungi and insects or soil 

salinization (Mourão et al. 2010). 

This option is also based on information of a real farm. The greenhouse structure and cover 

material are the same, the main difference being the production system, which was 

hydroponics with substrate, in this case rockwool. Total investment is approximately 

142,000 € per hectare. 

The crop is planted in the rockwool substrate with a density of 26,000 plants per ha. Water 

consumption is on average 4,000 m3/ha. This technology allows great water efficiency, as 

mentioned in Rosa et al. (2006). All nutrients, approximately 635 kg/ha N, 200 kg/ha P and 

625 kg/ha K, are supplied through the water. A micronutrients solution (manganese, 

molybdenum, iron, boron, cobalt and zinc) is also applied. As in the basic system these data 

refer to one crop cycle. Hence, for the energy, GHG emissions and economics calculations 

per year, everything was doubled.  

Since the substrate is used for two years (four crops cycles) it was considered as an input for 

each year (total value divided by two). The same was considered for the energy consumption 

and GHG. Total annual production (for the two crops/year) is 200 ton per ha.  

Alternative option 2–hydroponics with adjustment of fertilizers doses and water 
(hydro_FW) 

As mentioned before option 1 considered is based on a real farm. However, studies 

conducted by Reis (2012) suggested that it is possible, using closed systems, to reduce the 

amount of fertilizers and water supplied to the crop. This author found consumption 
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reductions of 35% in N, 20% in P, 17% in K and 20% in water. These were the adjustments 

considered for option 2. For this it is necessary to invest in a recirculation and disinfection 

system, at in approximately 30,000 €.  

Alternative option 3–Adjustment of fertilizers, pesticides and water (FPW)  

The basic scenario is the most representative of tomato greenhouse production in Portugal. 

However, several studies indicate that it is possible to improve the efficiency of  the use of 

fertilizers, pesticides and water used for tomato greenhouse production. Concerning 

fertilizers a reduction of 30% was considered (Montero et al. 2012) and for water application 

20% (Tüzel et al. 2009). For pesticides a reduction of 20% was also assumed, based on the 

experience of the research team.  

Nocturnal ventilation offers a great potential for the control of humidity dependant diseases 

in greenhouse vegetables in Mediterranean regions. Furthermore, this does not imply great 

changes in cropping practices, which could facilitate their adoption by growers, as well as 

their integration with other control methods (Baptista et al. 2011). In unheated greenhouses 

Baptista et al. (2012) have shown that nocturnal ventilation was able to reduce Botrytis 

cinerea severity by 50% when compared with a traditional ventilation system.  

Alternative option 4–Integrated Control System (ICS) 

The last option analysed is the implementation of an integrated control system, which allows 

automatic control of irrigation and fertigation systems, pumps, ventilation and the energy 

consumption controls. This implies an investment in equipments, such as sensors, 

meteorological station and software, to a total value for this farm of approximately 15 000 €. 

Based on practical experience it is expected that a reduction in 20% of water and energy 

consumption is achievable. 

Impact of different energy efficiency measures on economics and the environment 

Figure 51 shows the relative contribution of the different inputs in the variable costs, GHG 

emissions (CO2eq) and energy consumption for the farm assumed as the basic scenario. It is 

clear that different inputs contribute in different percentages to the total costs, primary 

energy consumption and GHG emissions. As in other crop and livestock systems this implies 

that small changes may have little effects on costs but high impacts on energy use and GHG 

emissions. 

Concerning the business variable cost structure it can be seen that plants (42%), materials 

(20%), fertilizers (11%) and others (12%) are the most important. Other costs include the 

bumblebees (10%) and water. Direct energy (diesel and electricity for irrigation) and 

pesticides both contribute 8% to the variable costs. In terms of energy consumption direct 

energy (diesel and electricity) used for the field operations and the electricity used for the 

irrigation represents the most important factor, contributing approximately 68% and 

materials and fertilizers, with approximately 19% and 12%, respectively. The same order 

applies for the GHG emissions, with diesel and electricity responsible for 69%, fertilizers 20% 
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and materials 10%. Pesticides do not have a great contribution on energy consumption or 

GHG emission, which  agrees with a previous study of Antón et al. (2012).  

 
Figure 51: Relative contribution of different inputs in the farm production to economy, energy use and greenhouse gas 

emissions (GHG). (Materials are the LDPE and raffia for tutoring. Others include bumblebees and water). 

Table 45 presents the costs and income for the basic scenario and the alternative options. 

Again, it can be seen the high contribution of plants, fertilizers and materials in the 

production costs, the sum representing from 73% to 78% of the variable costs. The higher 

variable costs are in the hydroponic options due to higher material costs, which include the 

substrate. The material costs in these options are higher than in the basic scenario, 

representing 28 to 29% of total variable costs, when in the basic scenario they represented 

around 20%. The fixed costs were considered as labour, amortization of machines and 

equipment, greenhouse structure and irrigation/fertigation systems. The hydroponics 

options present a decrease in labour cost to nearly half of the labour costs of the other 

options, which decreases significantly the fixed costs. Production in a soil system has higher 

labour costs due to crop maintenance operations, such as weed control and harvesting since 

these operations are less mechanised. Income comes from the sale of tomato at a price of 

500 € per ton. In all cases farms are economically sustainable, presenting a positive net 

margin, with highest values for the hydroponic options. In fact, minimal tomato price for 

breakeven is approximately 330 €/t for the basic scenario and the integrated control system 

option and around 310 €/t in all the other options, hydroponics and rational use of fertilizers 

and water.  

Table 46 presents total costs, energy consumption, GHG emissions and profit per ha and 

year. The basic scenario presents total costs per hectare around 58 500 € and the only 

option that allows reducing costs is option 3, with the reduction of fertilizers, pesticides and 

water, to approximately 56 600 €. All other alternatives have higher production costs that 

vary between 0.2 to 7.2%. Concerning energy consumption, options 1 and 2 (hydroponics) 

show an increase of 64 and 39%, while options 3 and 4 allow a decrease, from the basic 

scenario, of 15 and 9%, respectively. The same occurs with GHG emissions, expressed as 

CO2eq. Options 1 and 2 increased emissions by 65 and 36%, respectively and options 3 and 4 
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decreased it around 17 and 8%, respectively. Concerning profit, the best results are attained 

with the hydroponic options. Option 2 presents the best results, with an increase of 23%. 

Option 4, using an integrated control system to improve greenhouses management, does 

not significantly change farm profit which is explained by the necessary investment in 

equipment, not translated into sufficient input savings. More research is necessary to 

improve the efficiency of this alternative.  

Table 45: Costs and income for a Portuguese tomato greenhouse farm. 

  

  

  

  

Basic scenario Hydro Hydro_FW FPW ICS 

(€/year) % (€/year) % (€/year) % (€/year) % (€/year) % 

Variable Costs                     

  

  

  

  

  

  

  

Plants  92,400  42 109 200  36 109,200  38  92, 400  44  92,400  42 

Fertilisers 24,236  11 41,554  14 31,389  11 17,550  8 24,236  11 

Pesticides 16,774  8 18,874  6 18,874  7 13,419  7 16,774 8 

Diesel and 
electricity 

 18,039 8 22,750  8 19,390  7 15,395  8 16,359  8 

Materials 43,885  20 83,384  28 83,384  29 43,885  21 43,886  20 

Others 26,015  11 24,304  8 23,923  8 25,292  12 25,292  11 

Total 221,349  100 300,066  100 286,160  100 207,942  100 218,946  100 

Fixed costs 188,345    139,063    142,063    188,345    191,345    

Total costs 409,694    439,129    428, 223    396,286    410,290    

Income 630,000    700,000    700,000    630,000    630,000    

Net margin 220,307    260,871    271,777    233,714    219,710    

Figure 52 shows the impact on costs, profit, energy use and greenhouse gas emission (GHG) 

per ton of tomatoes produced. We can observe the same trend as mentioned before. The 

major difference is related to costs/t, which decreased in the two hydroponics options, due 

to higher crop yields.  

Table 46: Total annual costs, PEC, GHG emissions and Profit with energy efficiency measures. 

  Annual Cost PEC  GHG  Profit  

€/ha % MJ/ha % CO2e/ha % €/ha % 

Basic 
Scenario 

58528 100 364165 100 21037 100 31472 100 

1 -1Hydro 62733 107 597312 164 34785 165 37267 118 

2 -Hydro_FW 61175 105 505915 139 28559 136 38825 123 

3-FPW 56612 97 309611 85 17418 83 33388 106 

4-ICS 58613 100 330908 91 19322 92 31387 100 

Figure 53 shows the differences between the basic scenario and the other options on 

energy, GHG emissions and farm profit per ton of yield. It is possible to conclude that a more 

rational use of input factors can contribute to save energy, to lower GHG emissions and to 
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increase farm profit. It is also possible to increase productivity and consequently to improve 

the efficiency of resources use. However, several factors interact in the production system, 

and more research is needed in order to obtain experimental data that could allow a more 

detailed analysis.  

 
Figure 52: Impact of different energy saving measures on costs, profit, energy use and greenhouse gas emissions (GHG) 

per ton of tomato. 

 
Figure 53: Differences of profit, energy use and greenhouse gas emissions (GHG) savings per ton of tomato between the 

basic scenario and the different options studied. 

4.4.4. Synthesis trade-off analysis of case studies in greenhouse production systems 

Greenhouse production possesses obvious basic differences across Europe depending on the 

production region. Most greenhouses in the relatively cold northern region are heated and 

covered with glass, whereas the Mediterranean or the southern regions mostly produce in 

non-heated plastic-film covered greenhouses. Greenhouse areas dedicated for tomato 

production amount to approximately 2,500 hectares in Greece and 1,440 in Portugal, where 

the majority of the tomato is soil-grown, in unheated greenhouses. In the Netherlands 

tomato is grown on 1,702 hectares, usually soilless and in heated glasshouses. Therefore, in 

the central and northern EU countries distribution of energy consumptions is dominated by 

the supply of heating unlike the production system in the southern EU countries. In Northern 
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Europe the direct energy input (heating and electricity) is predominant, accounting for over 

99% of the total energy input, while in the southern countries it accounts for 10-40% of total 

energy consumption. In Portugal, the indirect energy input is mainly associated with 

application of fertilizers and greenhouse materials, while in Greece it is associated with 

auxiliary equipment (thermal screens, solarisation and LDPE films) and fertilizers.  

In the case studies from different countries all the different production scenarios were 

covered. Netherlands dealt with heated greenhouses, Portugal focused on non-heated ones, 

whereas Greece showed a combination of both types. This broad analysis enabled an 

opportunity to bring all the scenarios across Europe under one roof. 

In the heated greenhouses the energy consumption, as well as environmental impact of 

heating, is evidently dominant over other production steps/units. Therefore, the 

Netherlands concentrated their study in reducing the heating requirement. In their analysis 

of three different possibilities the most promising one was the double glazed & innovative 

dehumidification. It showed the most potential of saving energy (up to 50% reduction in 

fossil fuel consumption) as well as GHG emission at similar costs as the reference case. 

However, it should be noted that the reference state of the analysis excluded the use of 

combined heat and power plant (CHPP), which on the other hand is the only means of 

economic survival for the present production system of the Dutch greenhouse industry. 

Without selling the electricity the firms have little chance of economic sustainability not only 

in the present, but also in the foreseeable future. Although the investment for the analysed 

options in the case-studies is not feasible from the current Dutch perspective, it showed 

some environment friendly options for other circumstances. 

The case studies in Greece involved both heated and non-heated systems. No quantitative 

analysis was performed for the non-heated systems due to limited information regarding 

energy equivalence. It was suggested that the non-heated systems may have a potential of 

improvement through organic or integrated production cultivation techniques and 

optimized internal microclimate by advanced design techniques. On the other hand for the 

heated systems, all three options were economically (although marginal), energetically and 

environmentally viable. The most promising option was to replace the conventional heating 

system with biomass heating. A 64.8% reduction in energy consumption along with 87.5% 

decrease in GHG emission was reported for this option at 11.2% reduced cost. Although high 

investment cost for the new biomass heating may be considered as a drawback, the energy 

and environmental prospects are well capable of overwhelming any second-guess. In the 

Greek case studies the need for further research and development in the field of design 

methodology and software for modeling was also pointed out. The support of the academic 

and research community in this was recommended. 

In their analysis of non-heated greenhouse production systems Portugal focused on a more 

rational use of input factors (fertilizer, water etc.) in order to save energy. In the case-studies 

the increasing popularity of hydroponic cultivation of tomato was mentioned, although the 

alternatives involving hydroponics were, despite their water saving, more energy intensive. 
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The alternatives involved mainly saving water and decreasing fertilizer usage. The best 

results were derived by adjusting the fertilizers, pesticides and water for a conventional 

greenhouse production system. 15% saving in energy and 17% reduction in GHG emission 

was achieved with a 6% increase of profit. An integrated control system was also reported to 

be more energy efficient with good environmental aspects. Further requirement in research 

was mentioned  to increase the productivity as an energy efficiency measure. 

4.5. Case studies–Permanent crop production systems 

4.5.1. Energy efficiency measures in German vineyard production 

Andreas Meyer-Aurich, Manfred Stoll, Hans-Peter Schwarz4 

Introduction  

Energy input in viticulture systems which can be cultivated with tractors is dominated by fuel 

use and post-harvest processing. Since the vegetative growth of grape vines is greater than 

that needed for wine production, traditionally the grapes are pruned in winter time. The cut 

canes and grape wood often are mulched and left in the vineyard. The energy of the wood 

and canes, however, may reduce the energy use from fossil resources and thus contribute to 

higher energy efficiency of the whole system. While the gains in energy efficiency are 

obvious and easy to identify, it is more difficult to assess the impact of the use of the 

mulched prunings on humus and nutrient supply in the soil.  

Technology for energy use of grape canes  

Different technologies are available, which can be used to collect and transport the canes 

out of the vineyard. The canes can be either baled as large round bales or chopped and 

collected in a wagon for transport to an energy use facility. The technologies differ with 

regard to mass of the implement, operating speed and costs. 

Economic assessment of energy use of grape canes 

The lower heating value of grape canes with a water content of 15 % water can be estimated 

at 4.1 kWh/kg (Schwarz 2012). With cane yields of 1400 to 1800 t/ha total energy yields to 

5700 to 7400 kWh/ha. This equals the energy of 570 to 740 L of heating oil, equaling 570 to 

740 € per ha (assuming a fuel price of 1.00 € per l). In order to keep the humus level 

balanced, additional carbon should be added to the vineyard, if cane wood is removed. 

Schwarz (2012) suggests the application of straw or animal manure to the fields as a 

substitute for the grape canes. 

The total costs for substituting humus and nitrogen losses due to the energetic use of the 

canes were estimated at 100 €/ha, costs for collecting the canes were estimated at 51 €/ha, 

including variable costs. Including costs for storage and transport the costs sum up to 186 

€/ha. Compared to the energy costs for heating oil with the same energy content, the energy 

use of the canes results in additional revenues of 384 to 554 €/ha. 

                                                      
4
 Fachgebiet Technik der Forschungsanstalt Geisenheim, Von-Lade-Straße 1, D-65366 Geisenheim 
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Table 47: Cost analysis energetic use of grape canes (Schwarz, 2012). 

 Total cost Annualized cost 

Costs for substitution of humus and nutrients  100.- €/ha 

Cane collecting implement 1550.- € 31.- €/ha 

Variable costs for collecting the canes  25.- €/ha 

Transport and storage  30.- €/ha 

Sum of costs  186.- €/ha 

Environmental - economic trade-off analysis 

Based on the energy saving potentials due to the use of the grape canes the economic and 

environmental trade-offs can be calculated. We assumed additional fuel efforts (40 L/ha) for 

collecting, transport, storage of the canes and broadcasting of substitute mulch material. 

The net effect of the use of the canes sums up to 530 to 700 L. The GHG mitigation potential 

is based on the net fuel saving effect as 2.9 kg per L fuel use. The results are shown in Figure 

54 for low and high cane yields. 

 
Figure 54: Net effects of energetic cane use on environmental and economic indicators. 

Conclusions energy efficiency measures in vine-production 

The proposed energy use of the vine canes proves to be a win-win solution for the farmer 

and the environment also when taking efforts for maintaining the soil fertility with additional 

supply of organic material into account. 

4.5.2. Energy efficiency measures in a Greek vineyard production farming system 

Athanasios Balafoutis, Panagiotis Panagakis, Demetres Briassoulis 

Introduction  

This section presents the analysis of scenarios of different energy efficiency measures 

regarding vineyard farming systems in Greece. Vineyards are considered as one of the most 

important permanent crops in Greece, with olive groves being the most significant one. 

Vineyards are found in most parts of the country in many different terrain types. 
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Due to its importance and its specific crop production system, it is one of the selected crops 

to be investigated in the framework of the AGREE project. There are several types of energy 

efficiency measures that could be applied in a vineyard (see Energy efficiency measures 

report for Greece in WP2). In this report two case studies were selected to be analysed as 

possible energy efficiency measures for vineyards: organic farming and precision farming. 

The impact of these measures on greenhouse gas (GHG) emissions and on the economics of 

the farm are also examined.  

Organic farming was selected based on the fact that this agricultural practice is strongly 

supported by EU through the subsidised environmental friendly agricultural practices, even if 

the final yield of all organic crops is being reduced significantly due to significant restrictions 

in the types and quantities of chemical pesticides and fertilizers allowed. However, organic 

farming provides consumers with high quality agricultural products that can receive higher 

prices in the market while it contributes to the protection of natural resources. 

Precision farming is also one of the agricultural practices that focus on reduction of chemical 

pesticides and fertilizer inputs. It also attempts to reduce consumption of irrigation water 

based on improved technologies. In comparison to organic farming the final yield of the 

grown crop is not affected and sometimes it is even increased due to spatial and time 

application precision of chemicals and water. Therefore, the target of this practice is to 

utilize the least quantities of agricultural inputs to achieve the same or even higher yields 

than with conventional farming.  

A new agricultural practice that has been applied in vineyards recently, but is still at an early 

stage of development, is the use of biodegradable mulching film to cover the soil along each 

line of vines. Although this practice is not very common and it does not provide an apparent 

energy efficiency improvement (see below), it is a practice that is under consideration as it 

provides the farm with positive economic results and labour savings. Research on energy 

consumption reduction and the associated environmental and financial benefits resulting 

from the application of biodegradable mulching films in vineyards production is needed to 

analyse systematically all aspects of this new agricultural practice and promote its 

application by EU farmers. Research is also needed in the direction of energy efficiency of 

biodegradable films processing and bio-based raw material production. 

In this report, the main objective was to analyse the effect of 3 alternative agricultural 

practices for vineyards in Greece. The focus was primarily placed on how much energy 

consumption is reduced and secondly on the economic results and the environmental 

impacts. The selected alternative energy efficiency measures were: 

1. Organic farming 

2. Precision farming 

3. Biodegradable mulching film along the vine rows  
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Methodology 

The Central Macedonian plain is the second largest agricultural region of Greece after 

Thessaly. The crops that are mainly cultivated in the area are wheat, cotton, tobacco, 

peaches, apples, olives and wine grapes. Mean annual precipitation, temperature and 

relative humidity are 610±124.2 mm, 19.2±2.0 oC, 57.0±8.3% respectively (EMY, 2012).  

The basic scenario that was chosen for this report is a typical farm of 15 hectares, with 

irrigation potential and sandy-clay soils where a “Roditis” native grape variety is cultivated in 

Katerini area of Central Macedonia region.  

Basic scenario–Traditional Crop system  

The traditional vineyard production system is shown below.  

Conventional wine grapes “Roditis”: 

The cultivation procedure in the farm under investigation follows the steps below: 

1. Vineyard installation 

The land area selected to be the vineyard is prepared for the new wine grape vines to be 

planted. 

 Soil treatment 

Preparation of the soil by using the following machinery: 

1. Plough for deep ploughing (35 cm)  

2. Heavy cultivator 

3. Light cultivator 

 

 Planting  

Planting is executed manually. The land plot is measured and holes are opened along parallel 

lines in equal distances of 1.2 m. The distance between rows is 2.7 m. Metal poles are set 

along every line of vines to support the new plantation. Planting requires 3000 plants/ha 

combined with light fertilizer application (30 kg N/ha, 40 kg P/ha and 40 kg K/ha). 

 Chemical applications 

Usually, the vineyards are sprayed with Bacillus turingiensis, sulphur, copper, Topsin M 

(thiophanate methyl 97% w/w), dithane M-45 (mancozep 72% w/w), thiodan (endosulfan 

47% w/w). 

 Weed control 

For weed control, the soil is cultivated with light cultivator and sprayed with Paraquat (20% 

v/v) and Glyphosate (36% v/v).  

 Fertilizer applications 

Two post-planting applications of fertilizers (total fertilizer application of 25 kg N/ha, 35 kg 

P/ha, 35 kg K/ha) 
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 Irrigation 

1-2 irrigations using drip irrigation systems. Total water quantity 1600 m3/ha. 

 Harvesting  

Harvest is executed by the end of September manually (in this period of vine development 

the mean yield for a period of 4 years is 4 t/ha of grapes).  

2. Vineyard operation  

The cultivation procedure of the vineyard follows the steps below: 

 Inter-row cultivations 

Three inter-row cultivations per year for weed control without chemical applications using 

the light cultivator. 

 Chemical application 

The same as above. 

 Fertilizer application 

Three applications of fertilizer per year (total fertilizer application of 55 kg N/ha/y, 75 kg 

P/ha/y, 75 kg K/ha/y) 

 Irrigation 

1-2 irrigations using drip irrigation systems. Total water quantity 800 m3/ha/y.  

 Harvesting  

Harvest is executed by the end of September manually (this is the period of high yield for the 

grown vines with an annual mean yield 14 t/ha of grapes). 

Farm machinery 

The farm owns the following machinery: 

 Agricultural tractor 50 kW 

 Rigid-tine cultivator (2 m) 

 Light cultivator (2 m) 

 Crop sprayer (mounted, 500 L, turbo-air assisted) 

 Trailer (7 t) 

 Centrifugal fertilizer spreader (12–36 m, 500 L) 

 Irrigation machinery (pump, auxiliary parts, water supply of 33 m3/h) 

 Drip irrigation pipes 

The farm contracts: 

 Plough for preparing land for new plantings  

EU financial aid 

The selected farm receives, each year, EU subsidies for wine grape production. The value 

received is different for each farm and it is calculated based on the farm history of producing 

the specific crop. The average value of subsidies in the selected farm is 330 €/ha.  

Methods used for cost calculations 
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The average value per kg of fertilizer component (N, P, K) was calculated based on the prices 

of combined fertilizers that are used for this farm. The same approach was used for 

chemicals (herbicides, fungicides and insecticides). The irrigation cost was calculated based 

on electricity consumption, as water was considered as a free resource.  

Considering machinery, the rate and value  were calculated based on the replacement value 

and life span of each machine or agricultural equipment in Greece, based on personal 

communication with farmers (see Table 48). The life span considers the durability of the 

item, the time between its first and last use. 

Table 48: Agricultural equipment of the selected farm and their useful life span 

Agricultural Equipment Years of useful life 

Tractor 

4wd tractor, 50 kW 15 

Tillage machinery 

rigid-tine cultivator, 2.00 m 15 

light cultivator, 3.00 m 20 

Other machinery 

crop sprayer, suspended, 500 L, turbo 15 

Tipping trailer, 7 ton 20 

certrifugal fertilizer spreader, 12-36 m, 500 L 15 

Irrigation machinery, 33 m3/h 15 

drip pipes 5 

Alternative energy efficiency option 1: organic farming 

One of the energy efficiency measures to be applied in the traditional farming system was 

organic farming. In general, organic farming is not widely applied in vineyards as farmers still 

believe that the “green revolution” standard of high chemical input should continue to be 

followed to ensure high yields and profits. However, organic farming could help to conserve 

water in arid and semiarid areas (Altieri, 1992) and reduce GHG emissions (Dalgaard et al, 

2001) while the price of the product is higher to counterbalance the lower yields.  

Organic farming in the vineyard reduces fuel consumption by 20%, because several 

agricultural practices of the conventional farming are not applied in organic farming. In 

particular, chemical pesticides are zero and fungicides (copper and sulfur) are applied but 

34% less than in the conventional farming system. In addition, fertilizer application is 

reduced by 45.7%. Therefore, labour is also reduced by 4 h/ha/y (tractor operator). All the 

rest of the agricultural practices are the same as in the conventional system. Harvesting is 

scheduled for September, but the average yield is reduced by 31% due to lower inputs and 

higher disease and pest impact on the crop. These data are based on the work of Kavargiris 

et al, 2009. 

Regarding the economics of this alternative, it should be noted that the Greek government 

provides the organic vineyards with a 5-year higher subsidy of 900 €/ha and then it drops to 

330 €/ha as regular.  
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Farm machinery 

One of the positive effects of organic farming systems is that the farmer does not have to 

invest in new machinery of agricultural equipment. Also the useful life time of some of the 

equipment increases because of reduced use. 

Alternative energy efficiency option 2: precision farming  

The second option to reduce the energy input is the application of a precision farming 

system to minimize the use of fertilizers, pesticides and water.  

Unfortunately, precision farming in vineyards is not widely used in Greece. At the moment, 

there is activity in this subject, but data are not yet published. Thus, the expected input 

reduction was estimated based on personal communications with specialists in the field in 

Greece and using the published data from the University of Evora, Portugal (AGREE project 

partner).  

According to the data provided, it was estimated that by applying precision farming 

techniques it is possible to obtain 20% fertilizer reduction, 10% pesticide reduction and 10% 

of irrigation water consumption reduction. It has to be mentioned that the yield is not 

affected and sometimes it can increase. 

Farm machinery 

One of the negative effects of precision farming systems is that important investment has to 

be made by the farmer and the machinery needs to be operated and maintained by trained 

personnel. In this case, the sensors, the computer, the printer and most importantly the 

software to produce the yield maps have to be purchased with a cost of about 15000€. 

However, as this equipment could be used for a farm of at least 100 ha, such an investment 

could bring an extra income in this particular case-study by hiring the precision farming 

services to neighbouring farms. Alternatively, the specific farm could use available precision 

farming systems service through subcontracting. However, the cost of such service is not yet 

known as it is not an extensive service in Greek agriculture.  

Alternative energy efficiency option 3: biodegradable mulching film covering soil under vines  

The third option is the use of biodegradable mulching film for soil coverage along the vine 

rows. This alternative production system has shown very positive results in terms of yields 

and labour cost savings, but not enough to reduce the energy input in comparison to the 

conventional production system. However, it was selected to be examined to show the 

needs of further research on the potential of using biodegradable mulching film in vineyard 

production. The target of such research could be twofold: a) to optimise the use of 

biodegradable mulching films in vineyards and b) minimize energy use in biodegradable 

mulching film processing and raw material production.  

It is expected that irrigation water consumption will be reduced by 30% due to better water 

utilization by the plants (reduced soil evaporation in combination with elimination of weeds 
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under the vines). In addition, fuel use is expected to be lowered by 10% due to less soil 

cultivation. Labor is reduced significantly, as weed control under the vines in the traditional 

system is executed manually (with mulching film application this practice is stopped and 

translates into 44 h/ha/y of work reduction). Furthermore, an increase in average yield is 

expected due to in the vines reaching full production one year earlier. 

However, in this alternative case it is necessary to install the biodegradable mulching film 

that costs about 0.1 €/m2 and needs 13 h/ha of labor to be installed. The biodegradable 

mulching film also represents an indirect energy input of 44 MJ/kg and GHG emissions of 

1.35 kg CO2e/kg. The use of thicker conventional fossil-oil based mulching films of at least 

two years duration may change these data accordingly. 

Relative Contribution of different inputs and process steps to energy use, total costs of 
production and greenhouse gas emissions 

Figure 55 shows the relative contribution of the different inputs in the energy consumption, 

the GHG emissions (CO2e) and the total costs for the vineyard considered in the 

conventional production system of this farm, assumed as the basic scenario.  

 
Figure 55: Relative contribution of different processing units and inputs in the farm production to energy use, GHG and 

economics 

This figure can give several results about the vineyard. First of all, it is obvious that diesel 

fuel is the biggest energy consumer (52%) on this farm with the very similar effect on GHG 

production (51%). Also, it can be observed that electricity for irrigation follows in importance 

concerning energy consumption (25%) and GHG emissions (25.5%). Fertilizers and pesticides 

follow with energy contribution of 13.6% and 8.3% respectively and GHG emissions 

contribution of 17.7% and 4.5%. From the Figure 55, it can be seen that in general energy 

and GHG emissions follow more or less the same trend on the effect of each component.  

However, it is very interesting to analyse the difference between the energy and 

environmental impact of this farm in comparison to the costs. The most significant example 

would be the electricity consumption that even if it requires high primary energy to be 

produced with respective high GHG emissions (mainly due to lignite use for electricity 

production that is of very low efficiency and of very high GHG emissions), it has a very low 
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cost (natural resource) especially for agricultural production systems (2.5%). This favours the 

Greek farmer, but in some cases it is the reason for irrational use of water with the only 

target being the expected maximizing of yield (which in most cases is not achieved and the 

water is wasted) and no consideration of sustainability, especially in a Mediterranean 

country where water is a limited resource.  

Another notable result is that diesel is very expensive (imported) and contributes to the farm 

costs considerably. As for the consumables (seeds, fertilizers and pesticides), they are also 

expensive influencing significantly the final income of the farm. Finally, it should be noted 

that the vines installed on the land are very important economically, whereas  their impact 

on the energy use of the system is insignificant.  

Environmental and economic impact of different energy efficiency measures for vineyards 

The two first alternative scenarios had a significant reduction in energy consumption, 

achieving the target set for them. As was expected, the reduction of energy consumption 

was also translated into GHG emission reduction. In the third alternative scenario (mulching 

film), energy use was increased by 7.6%. 

Figure 56 shows the farm results concerning energy consumption per tonne of produced 

grapes. It can be observed that organic farming reduced energy consumption by 2.46%, 

precision farming reduced energy by 4.83% and mulching film application increased energy 

consumption by 7.59%.  

 
Figure 56: Energy consumption reduction using the three alternative scenarios 

Figure 57 shows the farm results concerning GHG emissions. It can be observed that organic 

farming reduced GHGs by 2.18%, precision farming reduced GHGs by 5.2% and 

biodegradable mulching film application reduced GHGs by 4.87%. In this case, GHG 

emissions are reduced in the case of biodegradable mulching film application in contrast 

with energy use. This is because the energy to produce biodegradable films is high, but on 

the other hand the fact that the materials used to produce them are not fossil-oil based raw 

materials as in conventional films, this makes GHG production much lower.  

Regarding the profit of the farm, there was a change in comparison to the results of energy 
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and GHG emissions. In particular, in the first scenario of organic farming, profit was reduced 

by 25.51% due to the fact that the yield reduction produced an income 12% less than the 

conventional farming system, but the vineyard production costs were only reduced by  9%. 

In precision farming, the reduction in profit is due to the combination of maintaining yield, 

but increasing costs due to new equipment.  

In Figure 58, it can also be seen that the highest mean annual profit increase was obtained 

by the biodegradable mulching film application scenario due to higher production, caused by 

achieving a regular yield one year earlier, and keeping the costs at almost the same level. 

 
Figure 57: GHG emissions reduction using the three alternative scenarios 

 
Figure 58: Profit increase using the three alternative scenarios 

Conclusions 

Three alternative EE measures, selected from those proposed in the WP2 for vineyards in 

Greece, are analysed for a vineyard in northern Greece. The first two analysed scenarios 

(organic farming and precision farming) gave good results in terms of energy use reduction, 

with positive side effects on environmental impact (GHG emissions decreased). However, 

the economics of the farm was affected negatively in both cases (lower final profit). The 

third scenario (biodegradable mulching film application) did not give good results on energy 

basis. However, it resulted in lower GHG emissions than conventional farming and in a 

higher profit for the farmer. Therefore, it is believed that more EE measures should be 
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evaluated by field experiments and the biodegradable mulching film technology should be 

examined more carefully in both aspects: its application in vineyards, which is still at an early 

stage of development, and in reducing the energy required to produce it. 

4.5.3. Energy efficiency measures in Portuguese vineyards production 

Fátima Baptista, Dina Murcho, Carlos Marques, Luis Leopoldo Silva, José Rafael Silva 

Introduction  

Vineyards are a very important crop in Portuguese agriculture. The estimated area of 

vineyards was 177 831 ha (4.8%) in 2009 of the Portuguese utilized agricultural area (INE, 

2011), and was the second most important permanent crop. Due to its importance and its 

specific crop production system, it has been one of the crops in which several precision 

agriculture studies have being developed in Portugal (Marques da Silva et al. 2009). The 

objectives of these studies have been to identify possibilities to improve efficient application 

of production factors, such as fertilizers and irrigation water. 

Another agricultural practice that has been applied in vineyards is organic farming. Although 

not very common, it’s a practice encouraged by European policies and it should be studied, 

particularly with respect to aspects involving  energy consumption, greenhouse gas 

emissions (GHG) and costs. It is expected that a reduction in productivity will occur but 

income could be compensated for by higher expected market prices for these products.  

The main objective of this case study is to analyse the effect in economic results, energy 

consumption and environmental impacts of two options: 1.Organic farming, and 2. Precision 

agriculture.  

Methodology 

Alentejo is the largest agricultural region of Portugal, with a Mediterranean climate 

characterized by mild winters and dry and hot summers. Mean annual precipitation is 550 to 

650 mm concentrated in autumn and winter. Average maximum temperature is around 21 

ºC with an absolute value of 42 ºC. Average minimum temperature is 12 ºC and minimum 

absolute -5 ºC. Insolation is approximately 3000 h per year (Marques da Silva et al. 2010).  

A typical farm of 300 hectares and a traditional vineyard cropping system in the Alentejo 

region was chosen as the basic scenario. The two alternatives  studied were the effect of 

using precision agriculture techniques for differential, spatial, application of fertilizers and 

pesticides and an organic cropping system which uses alternative crop protection products. 

Basic scenario–Traditional Crop system  

The basic scenario is a vineyard in its full production stage, with a 7 t/ha grape yield for 

quality wine production. Mean plant density is 4000 plants/ha, planted on a grid of 2.5 x 1.0 

m. The vineyard is irrigated by a drip irrigation system.  

Vineyard installation is initiated with several operations for soil preparation, followed by a 

fertilizer application using 200kg/ha of P and K complemented with the application of 500 
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Kg/ha of an organic fertilizer. Soil is marked and holes are opened for the vines. The support 

system is installed. These operations take place only in the first year but they have been 

considered when taking into account the costs, energy consumption and GHG emissions. The 

vineyard life time is assumed to be 20 years.  

Vineyard cultivation techniques are mainly related to soil maintenance and weed control, 

fertilizer application, irrigation, pruning, thinning fruits, crop protection against pests and 

diseases and harvesting. Fertilizer application is approximately 35 kg/ha N, 80 kg/ha P and 15 

kg/ha K. In early spring there is an application of herbicide along the row (glyphosate) and 

usually in April there start several pesticide treatments that continue until August, according 

to weather or climatic conditions. In May there is a green harvesting operation in order to 

control excess vegetation and to define the final grape production target according to the 

farmer’s goals for quantity and quality of the grapes. 

Vines are irrigated from May to July with an average annual amount of 2000 m3/ha of water, 

and with the application of a liquid fertilizer. The amounts of applied water depend of the 

meteorological conditions each year, but are mostly supplemental irrigation practices. Grape 

harvest is from August to September. 

Farm machinery 

This farm is equipped with tractors (between 145cv and 70cv), a harvesting machine, 

sprayers,  grass cutters, vine breaks or cutting mulchers and all the necessary equipment.  

EU financial aid – Common Agricultural Policy 

All farms receive, each year, an EU subsidy, the RPU (“Single Payment Scheme”). The value 

received is different for each farm and it is calculated based on the average farm planting 

historical area of specific crop and on the number and type of livestock.  In 2011, the 

national average RPU value was 174 €/ha. Additionally, farmers receive a PRODER subsidy, 

with an average value of 59.58 €/ha (for the 300 ha), for vineyards.  

Methods used for cost calculations 

Since we have the installation of the vineyard and then the system operation, the 

calculations include vineyard operation and vineyard installation financial and energy 

estimates for the different inputs. Variable Costs, PEC and CO2 final values are the sum of the 

values of vineyard operation per ha and vineyard installation also per ha and per year.  

In the mechanisation item, the depreciation rate and value were calculated based on the 

replacement value and life span of each machine. The life span considers the durability of 

the item, i.e., the expected length of time that it lasts in use.  

Alternative option 1–Organic farming 

Organic farming relies on a number of practices designed to minimise the impact on the 

environment, while ensuring that the agricultural system operates as naturally as possible. 

Typical organic farming practices in vineyards include the limitation in the use of synthetic 
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chemical pesticides and fertilisers and takes advantage of on-site resources, such as livestock 

manure for fertiliser. However, usually this system leads to lower production. In this option 

it is assumed a 5 t/ha grape yield for quality wine. Farm machinery is the same as in the basic 

scenario. The PRODER subsidy has an average value of 116.78 €/ha (for the 300 ha). 

Alternative option 2–Precision agriculture 

As an alternative option to the traditional farming system the introduction of precision 

agriculture techniques such as the differential application of fertilisers, pesticides and water 

were also studied. Based on data obtained by experimental research (Marques da Silva, 

2012), a reduction of 20% in fertilisers, 10% in pesticides and 10% in water was used. 

Additional investment in specific equipment is required as well as costs related to soil 

analysis and elaboration of maps to study field variability. These are estimated to need an 

investment of 18 000€ and a variable cost per ha of 7.5 €. Yield is assumed to be the same as 

in the basic scenario. 

Relative Contribution of different inputs and process steps to energy use, total costs of 
production and greenhouse gas emissions 

Figure 59 shows the relative contribution of the different inputs in costs, GHG emissions 

(CO2e) and energy consumption for the vineyard farm production system assumed as the 

basic scenario. It is clear that different inputs contribute in different proportions to the total 

costs, primary energy consumption and GHG emissions. Hence, factor levels may have 

different impacts on costs, energy use and GHG emissions. Pesticides, diesel and fertilizers 

are the most important factors concerning GHG emissions and energy consumption. 

Materials are also a relevant component of costs. These materials refer to the support 

system and plants used in the crop installation. These investment costs were divided over 

the 20 years in order to have an annual value. 

 
Figure 59: Relative contribution of different processing units and inputs in the farm production to economics, energy use 

and greenhouse gas emissions (GHG). 

Impact of different energy efficiency measures on economics and the environment 

Table 49 and Figure 60 present the total costs, energy consumption and GHG emissions per 

hectare. In an overall analysis it can be stated that options 1 (organic production) and 2 
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(precision agriculture) decrease costs, energy consumption and GHG emissions relative to 

basic system. In fact, production costs decrease about 12% with organic production and 5% 

with the precision agriculture technologies. The same is observed in energy consumption 

and GHG emissions. Organic production allows a reduction in energy consumption of about 

22% and precision agriculture around 7%. For the CO2eq emissions a decrease of 25% is 

obtained with organic production and approximately 8% with precision agriculture. These 

reductions are explained in the first case with the use of products with organic origin, with 

reduced or none contribution for the GHG emissions and in the second case with the 

reduction of the quantity of inputs due to the differential rate application. 

Table 49: Annual costs, PEC and GHG emissions with energy efficiency measures. 

  Annual Costs PEC GHG 

  €/ha % MJ/ha % CO2e/ha % 

Reference 2874.86 100.0 20391.68 100.0 1109.20 100.0 

Organic 2539.20 88.3 15873.06 77.8 831.65 75.0 

Precision Agriculture 2738.10 95.2 18875.88 92.6 1019.12 91.9 

Figure 60 also shows the impact of the different options on farm profit. It is possible to see 

that organic production results in a decrease of the farm profit (approximately 17%) but with 

precision agriculture profit increases around 12%. The decrease in organic production is 

explained by lower yield levels of this production system. In fact, higher market prices do not 

compensate for the negative effects of reduced production on profits. This question must be 

addressed for this kind of productions because farmers will not invest to adopt these 

systems. In the case of precision agriculture, the yield is the same but with lower costs, so 

profit obviously increases.  

 
Figure 60: Impact of different energy saving measures on costs, profit, energy use and GHG emissions per ha. 

Figure 61 presents the impact on costs, profit, energy use and greenhouse gas emissions 

(GHG) per ton of grapes produced. Alternative systems analysis, per hectare, lead to 

different conclusions. In fact, when considering the production obtained with those costs, 

energy consumption and GHG emissions we obtained a completely different picture for each 

of the studied options. 

Organic production leads to an increase of costs (24%), energy consumption (9%) and GHG 
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emissions (5%) due to the lower productivity per ha (5t instead of 7t). An increase of profits 

(16%) indicated in the figure are due to the higher price paid for the grapes. The use of 

precision agriculture technologies allows reduced production costs (5%), energy 

consumption (7%) and GHG emissions (8%) and, therefore, increases farm profit (11%). 

 
Figure 61: Impact of different energy saving measures on costs, profit, energy use and GHG emissions per ton of grapes. 

Figure 62 shows the differences between the basic scenario and the analysed options, on 

energy, GHG emissions, costs and farm profit per ton of yield. It is possible to see that the 

introduction of precision agriculture can contribute to save energy, to lower GHG emissions 

and to increase farm profit. Organic production system does not have similar effects, due to 

the reduction of productivity. However, this production system may have advantages, and it 

should be considered as an option. For instances, some studies are being developed in order 

to find adapted varieties with higher productivity. Improved technologies could also help to 

obtain better results.  

 
Figure 62: Differences of costs, profit, energy use and greenhouse gas emissions (GHG) savings per ton of grapes between 

the basic scenario and the different options studied. 

Conclusions 

The analysed options show a good potential to reduce costs, energy consumption and GHG 

emissions per hectare contributing to increase the efficient use of resources, thus 

contributing to increase farm profits. However, in the case of organic production, the 
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productivity is lower and the results, per ton of production are not favourable. However, as 

we all know, several factors interact in the production system, and more research is needed 

in order to obtain experimental data that allows a more detailed analysis, turning this 

system into a real alternative for farmers. 

4.5.4. Energy efficiency measures in Greek olive groves 

Athanasios Balafoutis, Panagiotis Panagakis, Demetres Briassoulis 

Introduction  

This section presents the analysis of various energy efficiency scenarios regarding olive 

farming systems in Greece. Olive groves represent the most significant permanent crop in 

the country and they are found in most parts of the country under different terrain types. 

The indigenous olive tree (wild olive tree) first appeared in the eastern Mediterranean but it 

was in Greece that it was first cultivated. Since then, the presence of the olive tree in the 

Greek region has been uninterrupted and closely connected with the traditions and the 

culture of the Greek people. 

Over 100 different types of olive trees are cultivated in Greece and that thrive in the Greek 

climate of long hot summers and mild winters with very little frost. The majority of trees 

yield ‘oil olives’ from which olive oil is extracted. Also, there are a great number of types 

which are cultivated for eating. Some particularly important cultivars of Olea europaea in 

Greece include5: 

 Amfissa is a Greek table olive grown in Amfissa, Central Greece near the oracle of 

Delphi. Amfissa olives enjoy protected designation of origin (PDO) status, and are 

equally good for olive oil extraction. The olive grove of Amfissa, which consists of 

1,200,000 olive trees is a part of a protected natural landscape. 

 Hondroelia Halkidikis ('hondro=thick' olive from Halkidiki or 'donkey-olive', due to its 

size), a large green olive with a strong bitter taste, originated in the Halkidiki 

peninsula in North Greece. 

 Kalamata, a large, black olive with a smooth and meatlike taste, is named after the 

city of Kalamata, Greece, and is used as a table olive. These olives are usually 

preserved in wine, vinegar or olive oil. Kalamata olives enjoy PDO status. 

 Koroneiki originated from the southern Peloponese, around Kalamata and Mani in 

Greece and in Crete. This small olive, though difficult to cultivate, has a high yield of 

olive oil of exceptional quality. 

 Patrinia olive, is a Greek variety of olive tree grown primarily in Aigialeia, Greece. 

Olive production in Greece is reported at 1809800 tonnes and the area cultivated at 834200 

ha, with an average production of 2.17 t/ha (FAO 2010).  

Due to its importance and its specific crop production system, it was selected to be 

                                                      
5
 http://en.wikipedia.org/wiki/Olive - cite_note-46 

http://en.wikipedia.org/wiki/Olive#cite_note-46
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investigated in the framework of AGREE. There are several types of energy efficiency 

measures that could be applied in an olive grove (see Energy efficiency measures report for 

Greece in WP2), however in this report two case studies were selected and analysed so as to 

investigate possible energy efficiency measures, namely organic farming and non-irrigated 

organic farming. The impact of these measures on greenhouse gas (GHG) emissions and on 

the economics of the farm are also examined.  

Organic farming was selected based on the fact that this agricultural practice is strongly 

supported by EU through the subsidised environmental friendly agricultural practices, even if 

the final yield of all organic crops is significantly reduced due to substantial restrictions in 

types and quantities of chemical pesticides and fertilizers used. However, organic farming 

provides consumers with high value agricultural products that can receive better prices in 

the market, while it contributes to the protection of natural resources. 

Methodology 

Sterea Ellada region is a traditional agricultural region of Greece. The crops mainly cultivated 

in the area are wheat, cotton, tobacco, olives and wine grapes. The basic scenario chosen for 

this report is a typical farm of 10 ha at the Lamia area, with irrigation potential and sandy-

clay soils wherein a Koroneiki native olive variety is cultivated.  

Basic scenario–Traditional Crop system  

The traditional olive grove production system is shown below.  

Conventional olive trees of Koroneiki variety: 

The cultivation procedure in the farm under investigation follows the steps below: 

1. Olive grove installation 

The land area selected to install the olive grove is prepared for the new olive trees to be 

planted. 

Soil treatment 

Preparation of the soil is by using the following machinery: 

1. Plough for deep ploughing (35 cm)  

2. Heavy cultivator 

3. Light cultivator 

Planting  

Planting is executed manually. The plot is measured and holes are opened along parallel 

rows in equal distances of 6 m. The distance of the rows is also 6 m. Planting requires ≈250 

plants/ha combined with light fertilizer application (5.5 kg N/ha, 7.5 kg P/ha & 7.5 kg K/ha).  

Chemical application 

Usually, the conventional olive groves are sprayed 2–4 times from August to October with 

insecticides (dimethoate or fenthiol with 0.3%). 
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Weed control 

For weed control, the soil is cultivated with light cultivator 4 times every year.  

Fertilizer application 

Every second year, an 11-15-15 fertilizer is applied. The quantity required is 0.2 kg/tree for 

every year of the tree growth. The total quantity of fertilizers for the first 15 years of the 

olive grove is estimated to be 352 kg N/ha, 480 kg P/ha, 480 kg K/ha. 

Irrigation 

3-5 irrigations using drip irrigation systems. Total water quantity 120 m3/ha/y. 

Harvesting  

Harvest is executed manually from mid November to late December (in this period of olive 

trees development the mean yield for a period of 15 years is about 2.25 t/ha of olives). 

Plastic olive nets or olive mats (textile or cloth) are used for olives harvesting. The olive nets’ 

fabric technology is high density polyethylene (HDPE) monofilament (100 g/m2) and the olive 

mats’ fabric is woven PP cloth (100 g/m2) with a minimum life of 5 years. They are moved 

from tree to tree in order to collect the olives harvested from the tree. The average olive 

mat and net surface is 50 m2, in order to cover a surface larger than the canopy area of the 

tree harvested. 

2. Olive grove operation  

The cultivation procedure of the olive trees after the first 15 years follows the steps below: 

Weed control 

Three inter-row cultivations per year for weed control, without chemical applications, with a 

light cultivator.  

Chemical application 

Same as in the installation of olive grove section. 

Fertilizer application 

Three applications of fertilizer are executed every second year (3 kg/tree). Indicatively, the 

total quantity of fertilizers for the next 95 years (for a 100 years old grove, although olive 

groves can have productive life of 500 years) is 3465 kg N/ha, 4725 kg P/ha, 4725 kg K/ha. 

Irrigation 

1-2 irrigations using drip irrigation systems. Total water quantity 180 m3/ha/y.  

Harvesting  

Harvest is executed manually from mid November to late December (this is the period of 

high yield for the grown olive trees with annual mean yield 6.5 t/ha of olives). Olive mats are 

used as in the installation of olive grove section. 
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Farm machinery 

The farm owns the machinery below: 

 Agricultural tractor 40 kW 

 Light cultivator (2 m) 

 Crop sprayer (mounted, 500 L, turbo) 

 Trailer (7 t) 

 Irrigation machinery (pump, auxiliary parts, water supply of 33 m3/h) 

 Drip irrigation piping 

The farm contracts: 

 Plough for plant installation 

 Rigid tine cultivator (3 m)  

EU financial aid 

The selected farm receives, each year, EU subsidies for olives production. The value received 

is different for each farm and it is calculated based on the farm history of producing the 

specific crop during the period 2001–2003. Note that during that period many areas of the 

country suffered heavy winters with frost resulting in very low olive production when many 

trees were destroyed. Therefore, when subsidies were calculated from the “Payment and 

Control Agency for Guidance and Guarantee Community Aid (OPEKEPE)”, these areas were 

assigned with low subsidies, when other areas (e.g. Crete) received higher subsidies due to 

more or less unchanging production throughout this period. The average value of subsidies 

in the area where the selected farm is situated is 200 €/ha.  

Methods used for cost calculations 

The average value per kg of fertilizer component (N, P, K) was calculated based on the prices 

of combined fertilizers that are used for fertilizing this farm. The same approach was used 

for chemicals (herbicides, fungicides and insecticides). Irrigation cost was calculated based 

on electricity consumption, as water was considered a free resource.  

Table 50: Agricultural equipment of the selected farm and their useful life span. 

Agricultural Equipment Years of useful life 

Tractor 

4wd tractor, 50 kW 15 

Tillage machinery 

light cultivator, 3.00 m 20 

Other machinery 

crop sprayer, suspended, 500 L, turbo 15 

Tipping trailer, 7 t 20 

Irrigation machinery, 33 m3/h 15 

drip pipes 5 

Manure spreader 15 

With regards to machinery, the rate and value were calculated based on the replacement 

value and life span of each machine or agricultural equipment in Greece, based on personal 
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communication with farmers (see Table 50). The life span concerns the durability of the 

item, namely the time between its first and last use.  

Alternative energy efficiency option 1: organic farming 

One of the energy efficiency measures to be applied in the traditional farming system was 

organic farming. In general, organic farming is not widely applied in olive groves in Greece, 

but there is a tendency to increase due to higher product prices, especially for high quality 

exported certified olive-oil, and environmental awareness of the farmers. Organic 

cultivations are mostly concentrated in some specific regions of the country. 

Organic farming impact on olive yield is negative, but the percentage of this reduction is 

within a wide range (1.6–35%), according to Guzman and Alonso (2008) and Kaltsas et al. 

(2007). However, the reduction for mature olive trees that are properly treated (i.e. pruned 

correctly and fertilized with animal and green manure) can be limited down to 5%. 

Organic farming will result in 29% fuel consumption increase. In the primary system there 

were three cultivation applications. In the alternative system, manure is spread using a 

trailed manure spreader (20 t/ha every second year). Then, one cultivation application is 

applied, followed by the sowing process for the installation of legumes (green manure of 

trifolium sp., vicia sativa). Sowing requires 135 kg seed/ha/y. Finally, one more cultivation is 

applied to incorporate the legumes at the end of their cycle; therefore labour is also 

increased by 2 h/ha/y (tractor operator).  

In addition, chemical pesticides are zeroed and bait [Elcophon (plastic bottle)] or bait-

pheromone [BIORYL (paper envelope)] and traps for olive fruit fly are applied. Therefore, 

labour is also reduced by 1 h/ha/y [(no tractor operator (4 h/ha/y), but manual work to 

install the baits and traps (3 h/ha/y)] is added to the system. As for fertilizer application, the 

chemical fertilizers are substituted by sheep/goat manure that is spread using a manure 

spreader, as mentioned above. All the rest of the agricultural practices are the same as in 

the conventional system. Harvesting is scheduled for November-December, but the average 

yield is reduced by 35% due to lower fertilizer inputs. These data are based on the work of 

Kaltsas et al. (2007); Guzman and Alonso (2008) and a report of the Ministry of Agriculture 

(see reference website in the reference section). 

Regarding the economics of this alternative, it should be noted that the Greek government 

provides the organic olive groves with a higher subsidy for the first five years when the 

subsidy is 756 €/ha before reducing to 415 €/ha, the same as the regular subsidy.  

Farm machinery 

One of the positive effects of organic farming systems is that the farmer does not have to 

invest in new machinery or other equipment, except a manure spreader (possibly owned for 

other crops). However, in the calculations regarding this report, the manure spreader is 

imported into the system as a new investment. Also the useful life time of some of the 

equipment increases because of reduced use. 
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Alternative energy efficiency option 2: non-irrigated organic farming  

The second option to reduce the energy input is to keep the same cultivation techniques as 

in organic farming and also convert this farm from irrigated into non-irrigated. The impact on 

the final olive yield is 29–37%, according to Guzman and Alonso (2008) and private 

interviews of olive growers in Greece. In this report it was assumed that the reduction in 

yield in comparison to organic farming would be 30%. 

This energy efficiency measure zeroes the mechanization cost for the pumping facility and 

the plastic drip pipes. In addition, there is a reduction of the total variable cost of the olive 

grove due to less electricity consumption for pumping.  

Farm machinery 

One of the positive effects of conversion into non-irrigated farming systems is that there is 

no need for irrigation system.  

Relative Contribution of different inputs and process steps to energy use, total costs of 
production and greenhouse gas emissions 

Figure 63 shows the relative contribution of various energy consumption inputs, the GHG 

emissions (CO2e) and the total costs for the olive grove considered in the conventional 

production system of this farm, assumed as the basic scenario.  

This figure gives several results for the olive grove. It is obvious that the highest energy 

consumption in this farm is related to fertilizers (39%) with a slightly higher effect on GHG 

production (45%). It can also be observed that pesticides follow in importance concerning 

energy consumption (24%). This is not seen in the GHG production putting pesticides in the 

4th place of importance (12%), because despite the high energy (268.4 MJ/kg a.i.) needed for 

pesticides to be produced, the relevant GHG emissions are low (10.97 kg CO2e/kg a.i.). 

Electricity for irrigation accounts for 19% of the total energy consumption, but due to the 

high environmental impact of the Greek energy mix its GHG production effect is much higher 

(29%). On the other hand, fuel follows with 15% and 13% in terms of energy contribution 

and GHG emissions, respectively. 

 
Figure 63: Relative contribution of different processing units and inputs in the farm production to energy use, GHG 

emissions and economics 

It is very interesting to analyse the difference between the energy and environmental impact 
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of this farm in comparison to the costs. The most significant example would be the electricity 

consumption that even if it requires high primary energy to be produced with respective 

high GHG emissions (mainly due to lignite use for electricity production that is of very low 

efficiency and of very high GHG emissions), it is of very low cost (natural resource) especially 

for agricultural production systems (0.5%). This is to the benefit of Greek farmers, but in 

some cases it is the reason for irrational use of water with the main target being the 

expected maximization of yield, which in most cases does not occur and the water is wasted, 

and is not sustainable, especially in a Mediterranean country where water is a limited 

resource.  

Another notable result is that pesticides are very expensive and contribute considerably 

(53%) to the farm costs (it is noticed that in the last two years the use of agrochemicals in 

Greece has been reduced in general, due to the crisis; this fact has not been considered in 

the present analysis). It should also be noted that the plants installed are financially 

important (2.5%) but their impact on the energy system is insignificant.  

Environmental and economic impact of different energy efficiency measures for the 
vineyard 

The two alternative scenarios had a significant reduction on energy consumption, achieving 

the target set for applying them. As was expected, the reduction of energy consumption was 

also translated into a reduction of GHG emission.  

Figure 64 shows the farm results concerning energy consumption per tonne of produced 

olives. It can be observed that organic farming reduced energy consumption by 13.2%. The 

main reason for this reduction was the fact that chemical fertilizers and pesticides are not 

applied as they are substituted by less energy consuming materials.  

Non-irrigated organic farming application decreased energy consumption by 11%. The 

difference from the irrigated organic farming scenario is due to the fact that primary energy 

consumption for electricity production is reduced significantly (8407 MJ/ha for the whole 

period), but this does not compensate for the greater reduction in olive production.  

 
Figure 64: Energy consumption reduction using the three alternative scenarios 
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Figure 65 shows the farm results concerning GHG emissions. It can be observed that organic 

farming reduced GHGs by 37.8% and non-irrigated organic farming reduced GHGs by 56.8%. 

It can be seen that GHG reduction is significantly higher than energy reduction. The main 

reason for this result is the fact that the chemical fertilizers applied in the primary scenario 

are substituted by manure (zero GHG emissions as the sheep/goat farms manage the 

manure in piles and then deposit it nearby; this means that manure GHGs are emitted 

anyway, even if used in the farm or not). Another reason is that pesticides that are not 

applied in the organic system are substituted by paper traps that emit insignificant amount 

of GHGs. 

The difference between the irrigated and non-irrigated system results in the very important 

amounts of GHGs that are avoided due to not using electricity for water pumping.  

 
Figure 65: GHG emissions reduction using the three alternative scenarios 

The farm profit was increased however in both organic scenarios but was higher in the 

irrigated organic cultivation one. The main reason was the higher subsidy for organic farming 

that contributes considerably to the final farm income, but also the higher price of the 

product.  

 
Figure 66: Profit increase using the three alternative scenarios. 

In particular, the organic cultivation scenario was more profitable by 46.2%, due to the fact 

that yield reduction was very low and was combined not only with higher product price of 
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40%, but also with lower inputs. In non-irrigated organic farming, the increase in profit was 

39.3%, due to the fact that the significant yield reduction was compensated for by the 

reduced inputs.  

Conclusions 

Two alternative energy efficiency measures for olive groves in Greece, selected from those 

proposed in WP2 list, are analysed for an olive grove in Southern continental Greece. The 

two analysed scenarios (organic farming and non-irrigated organic farming) gave good 

results in terms of energy use reduction (which was the driver for this report), with positive 

side effects on environmental impact (GHG emissions decline) and economics.  

It should be pointed out that the profit gained from the selected farm of 10 ha is rather low 

and cannot support financially the farm business viability, even when converted into an 

organic farm. The main reason for the low income from olive groves (a situation concerning 

the majority of the conventional olives production and olive oil production in Greece, with 

several exceptions) is the intervention of a series of intermediates in the olive and olive oil 

market in Greece. In particular, farmers sell their product (olives and olive oil) in bulk 

quantities. For example, in the case of olive oil the average market price of 2.5 €/l and in the 

case of organic farming an average price of 3.5 €/l, when the product ends up in the retail 

shops at double or even triple prices. Packaging, distribution and marketing of certified 

olives and olive oil products benefit from much higher prices. Certification and marketing 

enhancement has been set as a major goal for the Ministry of Agriculture and the regional 

farmers’ cooperatives, especially for young farmers. 

4.5.5. Energy efficiency measures in Portuguese Olive Groves production  

Fátima Baptista, Dina Murcho, Luis Leopoldo Silva, Carlos Marques, José Rafael Silva, José 

Oliveira Peça 

Introduction  

Olive groves are a typical crop of Mediterranean regions and acording to INE (2011), it is the 

permanent crop with more utilized agricultural area in Portugal, occupying 52% of the total 

area with permanent crops (excluding pines). This area was, in 2009, 335 841 ha, 99% for 

olive oil production, corresponding to 9.2% of the total Portuguese utilized agricultural area 

(UAA). Alentejo is the region with the highest area (49%), followed by Trás-os-Montes (22%) 

and Beira Interior (14%). Intensive and super-intensive production systems, with tree 

densities higher than 300 trees per ha, are present in approximately 9% of the olive groves 

area, located mainly in Alentejo (79%). Almost 40% of the olive grove area is concentrated in 

2000 farms, with an average area greater than 20 ha. In recent years this sub–sector has 

been particularly dynamic, with the introduction of new technologies and new irrigated 

plantations located near the dams built in the last decade and where irrigation is available. 

Olive mills have presented also a positive evolution with modernization and technological 

adaptation to respond to the European Community rules concerning hygiene and 
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environmental requirements. Mills are scattered and relatively well located in the 

production regions, which contributes to improving the olive oil quality (MADRP, 2009). 

A typical farm located in the Alentejo region with 143 hectares was chosen to represent the 

basic scenario. It is an intensive plantation, with an average of 314 trees per ha. Alternatives 

considered were 1) a reduction of water for irrigation, fertilizers and pesticides through 

improved irrigation scheduling and fertilizer and pesticide application strategies and 2) the 

super intensive production. The main objective of this case study is to analyse the effect on 

the economic results, energy consumption and environmental impacts of the alternative 

systems based on more efficient application production factors and a super intensive 

production system.  

 Basic scenario 

The basic scenario is an olive grove in its full production stage, with a production of 8.8 t/ha 

olives for olive oil production. Mean plant density is 314 trees/ha, with a tree spacing of 8 x 4 

m. The crop is irrigated by a drip irrigation system.  

The installation is initiated with several operations regarding soil preparation. Land is 

marked and holes are opened for planting. The plant supports and protectors are installed. 

These operations take place only in the first year and it is considered here to take into 

account crop installation costs, energy consumption and GHG emissions. The olive grove’s 

life was assumed to be 30 years.  

Olive grove cultivation techniques are mainly related to soil maintenance and weed control, 

fertilizer application, irrigation, pruning, crop protection against pests and diseases and 

harvesting. Fertilizer application is approximately 72 kg/ha N, 16 kg/ha P and 70 kg/ha K. In 

early spring there is an application of herbicide along the row (glyphosate) and usually in 

May there are several pesticide treatments that continue until September, depending on 

climate conditions.  

Trees are irrigated from May to October with an average annual amount of 2000 m³/ha of 

water, and with the application of a liquid fertilizer. The amounts of applied water depend 

on each year specific meteorological conditions, but are mostly supplemental irrigation 

practices. Olives harvest is from November to December. 

 This farm is equipped with all the necessary equipment, namely tractors (between 145cv 

and 70cv), a vibrator with a collecting umbrella, sprays, cut grass, and trailer. The materials 

used in the farm include harvesting canvas, protectors and tutors used during the 

installation. 

All farms receive, each year, an EU subsidy, the RPU (“Single Payment Scheme”). The value 

received is different for each farm and it is based on the farm historical area of production of 

specific crops, and animal numbers. In 2011, the national average value attributed was 174 

€/ha.  

Since we have the installation of the olive groves for 30 years life time, calculations include 
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olive operation and olive installation financial and energy estimates for the different inputs. 

Costs, PEC and CO2 final values are the sum of the values of operation and installation per ha 

and per year.  

In the mechanisation item, depreciation values and rates were calculated based on the 

replacement value and life span of each machine or agricultural equipment. The life span 

considers the durability in years of the item.  

Alternative option 1  

Alternative option 1 was to investigate the improvement of the irrigation scheduling and the 

use of differential application of fertilisers and pesticides by using simple technologies of 

precision agriculture, with the use of soil analysis, climatic information and risk of 

pest/disease occurrence. It was expected that a reduction of 10% in use of fertilizers, 

pesticides (Marques da Silva 2012) and water (Silva 2012). This system requires 

consideration of the costs related to the soil analysis and the investment in a meteorological 

station (4000€). A variable cost per ha of 7.5 € was considered. Yields are assumed to be the 

same as in the basic scenario. 

Alternative option 2 – super intensive 

The second option analysed is the super intensive system. This system was first initiated in 

Spain in the early 1990s and has been introduced into Portugal in the early 2000s. The super 

intensive olive groves have become more common in Portugal in the last few years, mostly 

in Alentejo region, where it occupies an area of over 10000 ha (Paço et al. 2012). It is 

characterized by an elevated planting density, higher than 1500 plants/ha, and seems to be 

promising since it guarantees high yield within a few years of planting and has full 

mechanization (De Gennaro et al. 2012).     

We assumed an olive grove in its full production stage, with a production of 11 t/ha olives 

for olive oil production. Mean plant density is 1975 trees/ha (3.71 m x 1.35 m). The crop is 

irrigated with a drip irrigation system.  

The operations for the crop installation are similar to those described before. The olive 

grove’s life time was assumed to be 15 years. Fertilizer application is approximately 150 

kg/ha N, 60 kg/ha P and 100 kg/ha K. Weed control takes place in spring by applying 

herbicide and pests and diseases are controlled with several pesticide treatments, 

depending on climate conditions. The trees are irrigated with an average annual amount of 

2400 m3/ha of water, and with the application of a liquid fertilizer. The olives are harvested 

by a fully mechanized system using a straddle harvester. 

Impact of different energy efficiency measures on economics and the environment 

Figure 67 shows the relative contribution of the different inputs in total costs, GHG 

emissions (CO2e) and energy consumption for the farm assumed as the basic scenario. It is 

clear that different inputs contribute in different proportions to the total costs, primary 
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energy consumption and GHG emissions. This implies that small changes may induce only 

small changes to costs but high impacts on energy use and GHG emissions.  

Concerning the cost structure it can be seen that direct energy use (diesel and electricity) 

and fertilizers and are the most important, with 38 and 26%, respectively, followed by the 

costs for pesticides (21%) and water (7%). For energy consumption the most important 

inputs are diesel used for the field operations and electricity used for irrigation, contributing 

approximately 57% of total energy consumption, and then materials and fertilizers, both 

with approximately 16% and pesticides with 11%. The same picture can be seen for the GHG 

emissions, with diesel and electricity responsible for 56%, fertilizers 27%, materials 11% and 

pesticides 7%. Materials include harvesting canvas, tree protectors and supports used during 

the installation. Several studies have been realized to develop mechanical harvesting 

equipment (Peça et al. 2004) adapted to intensive and super-intensive plantations with the 

objective of improving the equipment in order to allow more efficient operations, by 

increasing harvesting capacity, decreasing diesel use, etc.  

Table 51 presents the costs and income for the basic scenario and the studied options. 

Again, there is a high contribution of direct energy and fertilizers in the production costs, the 

sum representing more than 50% of the variable costs for the basic scenario and option 1 

and about 50% for option 2. In this last option (super intensive olive grove production) there 

is a significant increase in the variable costs (from 76 – 80,000 € to almost 140,000 €). The 

high quantity of materials used in the super intensive olive grove farm, that have a 

significant value increase, include the protectors and supports used for olive planting. In the 

fixed costs are the labour, amortization of machines and installation are considered. The 

values are similar for all considered options. The income results from selling olives. The 

market price for the olives was assumed as 0.25 €/kg of olives sold for olive oil. Total costs 

are similar in the basic scenario and option 1, but increase around 12% in option 2. Since 

income also increases, this option presents the highest net margin of all. In all cases the 

farms are economically sustainable.  

 
Figure 67: Relative contribution of different inputs in the farm production to economics, energy use and greenhouse gas 

emissions (GHG). 
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Table 51: Costs and income for a Portuguese olive groves farm.  

 Basic scenario Option 1 Option 2 

(€/year) % (€/year) % (€/year) % 

Variable Costs 
      

  

  

  

  

  

  

  

  

Plants 3,292.81 4 3,292.81 4 16,571.52 12 

Materials 3,127.72 4 3,127.72 4 19,858.20 14 

Fertilisers 20,572.34 26 18,515.11 24 35,770.31 26 

Pesticides 16,654.18 21 14,988.76 20 24,093.36 17 

Diesel & electricity 30,728.93 38 30,059.69 39 36,149.00 26 

Water 5,806.08 7 5,225.50 7 6,970.54 5 

Other 
  

1,072.50 1 
  

  80,182.06 100 76,282.09 100 139,412.92 100 

Fixed costs 173,268.28  
 

168,535.95 
 

168,574.92 
 

Total costs 253,450.34  
 

244,818.04 
 

307,987.84 
 

Income 339,339.00  
 

339,339.00 
 

418,132.00 
 

Net margin 85,888.66  
 

94,520.96 
 

110,144.16 
 

Table 52 presents the costs, energy consumption, GHG emissions and profit per ha. The 

basic scenario presents total costs per hectare around 1,772 €, option 1 has a small 

reduction (3.4%) to 1,712 € (3.4%), while for the option 2 it increased to 2,154 € (21.5%). 

Concerning energy consumption and GHG emissions the results are more promising, with a 

reduction of approximately 5%. Regarding the super intensive system costs, energy 

consumption and GHG emissions increase between 15 and 26%, due to the incorporation of 

more inputs in the production factors (plants, fertilisers, pesticides, direct energy etc.).  

Table 52: Annual costs, PEC and GHG emissions with energy efficiency measures. 

  Annual Cost  PEC  GHG  

  €/ha % MJ/ha % CO2e/ha % 

Basic Scenario 1772.38 100.0 28819.08 100.0 1898.08 100.0 

Option 1 1712.01 96.6 27383.18 95.0 1800.87 94.9 

Option 2 2153.76 121.5 33113.84 114.9 2399.90 126.4 

Figure 68 shows the impact on costs, profit, energy use and GHG emissions per ton of olives 

produced. In this case we can observe a different picture. In fact, when we consider the 

values per unit of olives produced, both options allow a reduction of production costs and 

energy consumption, between 5% and 3% and 5% and 8%, respectively for options 1 and 2. 

Concerning the GHG emissions the first option allows a reduction of 5% and the second an 

increase of 1%. Profit increases in the two cases, 10% (option 1) and 3% (option2). This is 

explained by the decrease of inputs used (fertilisers, pesticides and water) in option 1 and 

with the higher productivity in option 2. However, we believe that some more research 

should be done in order to understand better the impacts of the super intensive olive grove 

production system, mainly in its effects on soil fertility, biodiversity, olive oil quality, etc. Also 
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it must be stated that this analysis refers only to one year of full production and a deeper 

analysis should be done considering the full productive life cycle, which is completely 

different in intensive and super intensive systems.  

 
Figure 68: Impact of different energy saving measures on costs, profit, energy use and greenhouse gas emissions (GHG) 

per ton of olives. 

Figure 69 shows the differences between the basic scenario and the analysed options on 

energy, GHG emissions and farm profit per ton of attained yield. Again it is possible to see 

that a more rational use of input factors can contribute to save energy, to lower GHG 

emissions and increase farm profit. It is also shown that increasing productivity is another 

way to increase energy efficiency per unit of product attained. However, several factors 

interact in these production systems, and more research is needed in order to obtain 

experimental data that could allow a more detailed analysis. 

 
Figure 69: Differences of costs, profit, energy use and greenhouse gas emissions (GHG) per ton of olives between the 

basic scenario and the different options studied. 

4.5.6. Synthesis trade-off analysis of case studies in permanent crop production systems 

Fátima Baptista  

Vineyards: 

The case studies suggested different promising and economically viable options for energy 

efficiency measures in vineyard production. Greece and Portugal studied the options of 
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organic cultivation and precision farming and Germany evaluated the energy use of grape 

vine trimmings from pruning. Greece also analyzed the use of biodegradable mulching film 

to cover the soil along the vine rows. 

Organic cultivation, a practice stimulated by government subsidies, presents different results 

in each of the two countries. In Greece organic cultivation allowed a decrease of 2.5% in 

energy consumption, 2.2% GHG emissions and a 25.5% drop in profit, all per ton of produced 

grapes. In Portugal, this option showed an increase in energy consumption (9%) and GHG 

emissions (5%) explained mainly due to lower productivity per hectare obtained with this 

production system. An increase in profit (16%) was found due to the higher price paid for 

grapes. 

Concerning precision farming, in Portugal this option showed an increase in farm profit 

(11%) and a decrease in energy consumption and GHG emissions, 7% and 8% respectively. In 

Greece, the same picture was found concerning energy consumption (less 4.8%) and GHG 

emissions (less 5.2%). However, in Greece profit decreased, due to the necessary investment 

in new equipment. 

In fact, these results prove the importance of more research and studies in this subject since 

several factors interact in the production system and should be studied with more detail. 

Another interesting energy saving measure proposed by Greece is the use of mulching 

biodegradable films, which did not give good results on an energy basis (increased by 7.6%). 

However, GHG emissions decreased (4.9%) and farm profit increased (13.9%). This Greek 

study also mentions that other energy efficiency measures should be evaluated by field 

experiments and that biodegradable mulching film technology should be examined more 

carefully in both aspects: its application in vineyards (still at an early stage of development) 

and in reducing the energy to produce it. 

Germany suggested using vine trimmings as a biomass to produce energy  and this proves to 

be a win-win solution for the farmer and the environment even accounting for the effort to 

maintain soil fertility with additional supply of organic material.  

For future analysis and research it is important to mention that quality in wine production 

nowadays means producing fewer grapes, which implies an increase in energy use per kg of 

output. It is the case of the vineyard production in Portugal, since the wine technology 

begins in the field. Grape production is reduced in the field with the pruning of fruits in the 

early growth stages to decrease yields in order to attain better fruit quality required for 

producing quality wines. The challenge for the future will be to produce more grapes but 

maintaining a high quality standard. Another important statement is that post-harvest 

energy use, used for example for cooling juice during fermentation, in southern Europe is 

very important, but it was not considered here, since it was assumed that this study would 

only consider grape production and not wine processing. 
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Olive Groves: 

Olive groves were considered in Portugal and Greece as the most important perennial crop. 

In Portugal, simple precision agriculture methods were selected to be analysed for energy 

consumption mitigation and it was shown that energy consumption and GHG emissions was 

reduced by approximately 9%, while the farm profit increased around 11%. In Greece, the 

impact of organic farming (irrigated or non-irrigated) was investigated in a typical farm in the 

central part of the country. It was found that organic farming has positive effects in energy 

(13.2 and 11% reduction respectively) and greenhouse gas emissions (37.8 and 56.8% 

reduction respectively) with a significant profit increase of 46.2% and 39.3% respectively. 

The result in energy and greenhouse gases was based on the fact that the inputs were highly 

reduced (especially in terms of chemical fertilizers that were substituted by animal manure) 

in combination with a lower yield (but not as much as the inputs decrease). Profit was 

increased significantly, mainly due to higher olive prices gained from organic farming. 
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5. Summary and Conclusions 

This report illustrates case studies with an in-depth analysis of the interactions of energy 

efficiency measures with farm economics and the environmental impact (GHG) of the 

measures across Europe. The analyses followed a common methodology considering the 

farm gate as the system boundary. Therefore, considerable energy use in the post-

processing of agricultural products were only taken into account, when they can be assumed 

to be realized on the farm. The analyses of the energy use, economic and environmental 

effects follow an LCA approach taking into account all costs of the production, including 

those for machines according to the concept of “useful life” of the machines used. The 

environmental effects of energy saving were illustrated with the greenhouse gas emission 

effect of the energy efficiency measures.  The case studies are only a selection of specific 

energy saving measures across Europe and therefore cannot be regarded as representative 

for all Europe. Nevertheless, they will help to understand constraints and opportunities for 

increased energy efficiency in agriculture, which can be used to translate to an agenda of 

practical action or applied research. The findings are valid sometimes only in the specific 

regional settings, sometimes they are of general validity.   

The analyzed case studies are grouped by production systems, which are arable cropping 

systems, dairy and beef production systems, pork and poultry production systems, 

greenhouse production systems and permanent crops systems. Each of the production 

systems uses different energy sources which results in different potentials for energy savings 

or energy efficiency potential. In arable systems the focus of energy efficiency measures is 

put on diesel fuel and nitrogen fertilizer saving technologies. Precision Farming is one of the 

technologies, which may contribute to improved energy efficiency. The analyses showed, 

however, that the limited economic effect of the technologies may be a major constraint for 

the adoption of these technologies. Therefore, a research need for identifying economically 

viable Precision Farming solutions, which furthermore contribute to energy efficiency and 

other environmental benefits can be seen. Rather simpler measures, which target the 

fertilizer supplied to arable production systems have shown a strong effect on both energy 

saving and greenhouse gas emissions but are difficult to implement because of often 

negative economic effects at the farm level. In dairy and beef production systems a focus of 

energy efficiency measures was laid on efficient feeding strategies. These contribute to farm 

economic gains, energy saving and greenhouse gas mitigation effects. However, the limits of 

energy efficient feeding strategies in ruminant production systems should be investigated. 

There is evidence that the economically most efficient feeding strategy may be not effective 

from an energy efficiency and greenhouse gas emission point of view. These trade-offs need 

to be analyzed in more detail in the specific regional settings to derive strategies for energy 

efficient dairy and beef systems across Europe. In pig and poultry production systems most 

attention has been given to the heat management. While in northern Europe insulation and 

heat recovery is of biggest importance in southern Europe ventilation techniques and 

cooling is most important. Since pork and poultry production systems are the most 
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industrialized agricultural production systems all measures on energy efficiency should be 

checked for compliance with the consumers’ demand for animal welfare.  Greenhouse 

production systems use a huge amount of energy especially in northern Europe, which 

indicates great energy saving potentials. Most of the saving measures target added 

insulation and heat recovery systems, which mostly are beneficial from economic and 

environmental perspectives. However, typically, significant investments are necessary for 

most efficient greenhouse systems. The Dutch case shows that the combination of electricity 

generation in combination with greenhouse production may create a win-win situation for 

the environment and farm economic. This, however, requires regulation from the 

government.  The permanent crop production systems showed a variety of different 

promising energy efficiency measures including precision agriculture, improved irrigation 

and energy generation  from the biomass of the vine trimmings. 

In general indirect energy use has been identified as an important driver for energy use at 

the farm level in many cases. Especially the use of nitrogen fertilizer has been shown as a key 

factor in improved energy efficiency across different production systems and countries. 

Nitrogen is not only important in crop production systems, but also in animal production 

systems, since indirect energy use in animal production systems is often related to nitrogen 

use in feed production. In addition to the energy related effect nitrogen management has an 

even more important role for greenhouse gas emissions. Therefore, even though studied for 

long, nitrogen in agricultural systems still requires most attention when targeting a more 

energy efficient agriculture.  

Even though it is true that efficiency measures concerning the use of indirect energy should 

be targeted at the industry level, which is responsible for the primary energy use, the impact 

of management systems on the use of indirect energy should not be left out of focus. It may 

be more effective to adapt the management of the use of indirect energy than to reduce 

direct energy use in agriculture. This is true for many situations where the effect of efficiency 

measures targeted at fuel use are compared with efficiency measures targeted at mineral 

fertilizer use.  

Energy efficiency measures targeting direct energy are most effective in post-harvest 

operations like drying and storage in northern, cooler and wetter countries, while cooling 

and irrigation are more relevant in southern countries. Since the system boundary of this 

report is set to the farm gate relevant energy efficiency measures beyond the farm gate 

should be addressed in further investigations to identify the most efficient energy saving 

measures across the whole production chain.   

The report illustrates that it is important to identify trade-offs of specific energy saving 

measures, to identify bottlenecks of an energy efficient development. For example as can be 

seen from the Greek case study apparently the economic cost structure of irrigation in many 

situations may cause inefficient irrigation patterns with very high energy input. A further 

task is to elaborate solutions for more efficient energy use taking into account cost and 

environmental issues.  
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