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Abstract : 
 
 
This paper provides an integrated approach for estimating parametric models from endogenous stratified 
samples. We discuss several alternative ways of removing the bias of the moment indicators usually 
employed under random sampling for estimating the parameters of the structural model and the proportion 
of the strata in the population. Those alternatives give rise to a bunch of moment-based estimators which 
are appropriate for both cases where the marginal strata probabilities are known and unknown. The 
derivation of our estimators is very simple and intuitive and incorporates as particular cases most of the 
likelihood-based estimators existing in the literature. 
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1 Introduction

In many research settings, economists are often interested in estimating parametric

models based on endogenously stratified samples (ESS), where the probability of be-

ing sampled depends on the value of the variable of interest. In contrast to random or

exogenously stratified samples, with ESS the marginal distribution of the covariates

does not factor out from the likelihood of the observed data, so, unless that distrib-

ution is known, nonstandard estimation procedures are required to handle correctly

the data. The most well known estimators in this area result from likelihood-based

approaches which circumvent the formalization of the marginal distribution of the

covariates and only require, as usual, the specification of the conditional distribution

of the variable of interest given the covariates; see, for example, Manski and Lerman

(1977), Manski and McFadden (1981), Cosslett (1981a,b), and Imbens (1992), who

propose estimators for the particular case of choice-based samples (the stratifica-

tion is based on the discrete values of the dependent variable, which often represent

choices), and Imbens and Lancaster (1996), who address the general case of ESS.

While the estimators proposed in the two first papers require the availability of

exact information on the strata probabilities in the population, the others are also

appropriate for the case where those probabilities are unknown.

Despite their wider potential usefulness for applied researchers, to the best of our

knowledge, none of the estimators developed by Cosslett (1981a,b), Imbens (1992),

and Imbens and Lancaster (1996) has ever been used in empirical work. In ef-

fect, perhaps intimidated by the complex theoretical derivations of those estimators,

practitioners seem to prefer assuming that the proportions of the strata in the pop-

ulation are exactly known, using census or similar information, which allows them

to apply the much simpler Manski and Lerman’s (1977) weighted maximum like-

lihood (WML) or Manski and McFadden’s (1981) conditional maximum likelihood

(CML) methods (e.g. Artis, Ayuso and Guillen, 1999, Early, 1999, and Kitamura,

Yamamoto Sakai, 2003). While in some cases that assumption is admissible, in

others it may lead to biased estimates (if there are important differences between

the estimated and the actual population strata probabilities) or underestimation of
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standard errors (if the information available on the population probabilities of the

strata is not exact). Moreover, even when the available information on the popula-

tion strata probabilities is in fact correct, both the WML and the CML estimators

are not the best choice since they are not as efficient as Cosslett (1981a,b), Imbens

(1992), and Imbens and Lancaster’s (1996) estimators.

In this paper we develop a moment-based framework for estimating paramet-

ric models under ESS. Our estimators are based on bias-corrected versions of two

types of moment conditions which are valid under random sampling (RS): the score

functions usually employed for estimating the parameters of the structural model;

and a set of equations defining the population strata probabilities. Two alternative

principles are applied to correct the moment conditions in order to guarantee that

their expectation under the distribution of the data is zero. The first builds on the

idea of Manski and Lerman (1977) of reweighting each observation in such a way

that the structure of the target population is reconstructed by reducing (increasing)

in an appropriate manner the weight of oversampled (undersampled) strata. The

second, in the spirit of Manski and McFadden (1981), consists of subtracting from

each moment condition its bias under ESS. In both cases, the resulting moment con-

dition model may be estimated by Hansen’s (1982) generalized method of moments

(GMM) or any of the generalized empirical likelihood methods recently discussed

by Newey and Smith (2004).

These alternative simple corrections may be combined in a number of different

ways, giving rise to a bunch of alternative estimators, which may be employed both

when the marginal strata probabilities in the population are known and unknown.

As may be inferred from the discussion above, our estimators may be interpreted as

generalizations of Manski and Lerman (1977) and Manski and McFadden’s (1981)

estimators. They also encompass as particular cases most of Cosslett (1981a,b),

Imbens (1992), and Imbens and Lancaster (1996) estimators. However, in contrast

to them, our integrated approach is very simple and intuitive and, hopefully, will

encourage practitioners to choose the most adequate estimators in each particular

empirical analysis.

This paper is organized as follows. Section 2 briefly reviews the main charac-
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teristics of ESS. Section 3 derives some bias-corrected moment conditions which are

valid under ESS. Section 4 discusses how those moment conditions may be used to

give rise to alternative moment-based estimators. Section 5 compares our estimators

with those referred to above. Section 6 is dedicated to a Monte Carlo investigation

of the finite sample properties of most of the estimators discussed throughout the

paper. Finally, section 7 concludes.

2 Endogenous stratified samples

Consider a sample of i = 1, ..., N individuals and let Y be the variable of interest,

continuous or discrete, and X a vector of k exogenous variables. Both Y and X are

random variables defined on Y ×X with population joint density function

f (y,x; θ) = f (y|x, θ) f (x) , (1)

where the conditional density function f (y|x, θ) is known up to the parameter vector
θ and the marginal density function f (x) is unknown. Our interest is estimation of

and inference on the parameter vector θ in f (y|x, θ).
ESS involves the partition of the population into strata, which are defined accord-

ing to the values taken by Y . Assume the existence of J non-empty and possibly

overlapping strata, which are subsets of Y × X . Each stratum is designated as

Cs = Ys×X , with S ∈ S = {1, ..., J}, and Ys is defined as the subset of Y for which
the observation (Y,X) lies in Cs. The proportion of stratum Cs in the population is
given by

Qs (θ) =

Z
Ys

Z
X
f (y,x; θ) dxdy, (2)

where Qs (θ) > 0 and, in case of mutually exclusive strata,
P

s∈S Qs (θ) = 1. To

simplify the notation we define Qs ≡ Qs (θ).

One of the mechanisms which may be employed for drawing an ESS is the so-

called multinomial sampling. In this sampling scheme, considered, for example, by

Manski and Lerman (1977), Manski and McFadden (1981), and Imbens (1992), it is

assumed that the stratum indicators S are drawn independently from a multinomial
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distribution. The sampling agent randomly selects a stratum Cs with a pre-defined
probability Hs, where Hs > 0 and

P
s∈S Hs = 1, and, then, randomly samples

from that stratum.1 In this setting, the variable of interest, the covariates, and the

stratum indicator are observed according to

h (z) = bsf (y|x, θ) f (x) , (3)

where Z = (Y,X, S), Q0 ≡ [Q1, ..., QJ ] is a J-vector, and2

bs =
Hs

Qs
. (4)

On the other hand, the sampling distribution of X is given by

h (x) =
X
s∈S

Z
Ys
h (z) dy

= bxf (x) , (5)

where

bx =
X
s∈S

bs

Z
Ys
f (y|x, θ) dy. (6)

Both bs and bx may be interpreted as bias functions, reflecting the bias induced

by ESS over the population density functions f (y,x; θ), in the former case, and f (x),

in the latter. These distortions are eliminated only when the ESS is obtained by

self-weighting (Hs = Qs), in which case bs = bx = 1. Due to the presence of bs in

(3), maximum likelihood (ML) estimation of θ requires the specification of f (x),

since this density is contained in bs via Qs; see equations (2) and (4). For this

reason, and also because the bias bx that is present in (5) is a function of θ, X is

not exogenous for this parameter, which means that conditioning on it produces a

1Although its relevancy in practice may be questionable, in this paper we will deal with multino-
mial sampling because it generates a simple setup and, more important, it is observationally equiv-
alent to the two sampling schemes more popular in applied work, the so-called standard stratified
and variable probability sampling schemes; see Imbens and Lancaster (1996) for a discussion on
these alternative sampling schemes.

2Note that, in case of non-overlapping strata, as QJ = 1 −
J−1X
s=1

Qs, only the J − 1-vector
Q0 ≡ [Q1, ..., QJ−1] needs to be estimated.
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loss of information on θ. Therefore, all the estimation procedures suggested in this

paper are based on expectations taken with respect to the joint density function

h (z) but circumvent the need for specifying f (x).

The bias functions (4) and (6) have some interesting properties, which will be ex-

ploited later on in the derivation of the bias-corrected estimating functions. Namely,

E
¡
b−1s
¢
= E

¡
b−1x
¢
= 1, (7)

E

·
b−1s

Z
Yt
f (y|x, θ) dy

¸
= E

·
b−1x

Z
Yt
f (y|x, θ) dy

¸
= Qt, for t = 1, ..., J , (8)

EX

·
bx

Z
Yt
f (y|x, θ) dy

¸
= E

·
b−1s bx

Z
Yt
f (y|x, θ) dy

¸
(9)

and

EX (∇θbx) = E
¡
b−1x ∇θbx

¢
, (10)

where ∇θm (θ) = ∂m (θ)/ ∂θ and E (·) and EX (·) denote expectation taken with
respect to h (z) and f (x), respectively; see the derivations in the Appendix.

3 Moment conditions for parametric models un-

der ESS

The moment-based estimators proposed in this paper are based on bias-corrected

versions of the estimating functions defining θ and Q under RS. In this section

we start by deriving the bias of those functions under ESS, then we discuss two

alternative methods for adjusting them in order to eliminate their bias, and finally

we introduce a further moment condition that allows more efficient estimators to be

obtained.
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3.1 The bias of the estimating functions defining θ and Q

under random sampling

Under RS, all the analysis may be conditional on X, so the relevant log-likelihood

function for estimation of θ is simply

L (θ) =
nX
1=1

ln f (yi|xi, θ) , (11)

which implies that the ML estimator for θ may be defined as the solution to the

sampling counterpart of the set of equations

EY |X [g (θ)RS] = 0, (12)

where g (θ)RS ≡ ∇θ ln f (y|x, θ) and EY |X [·] denotes expectation taken with respect
to f (y |x, θ ). However, under ESS, as the observed data are described by h (z) of

(3), the relevant expectation of g (θ)RS is taken with respect to h (z), being given by

E [g (θ)RS] =
X
s∈S

Z
Ys

Z
X

∇θf (y|x, θ)
f (y|x, θ) bsf (y|x, θ) f (x) dydx

=

Z
X

X
s∈S

bs

Z
Ys
∇θf (y|x, θ) f (x) dydx

= EX (∇θbx) , (13)

which is not zero in general.

On the other hand, from (2), a consistent estimator for Qt, t = 1, ..., J , under

RS is

Q̂t =
1

N

NX
i=1

Z
Yt
f
³
yi|xi, θ̂

´
dy, (14)

which results from solving the sampling counterpart of

EY |X [g (Qt)RS] = 0, (15)

where g (Qt)RS ≡ Qt −
R
Yt f (y|x, θ) dy. Again, the expectation of g (Qt) taken with
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respect to h (z) is not zero but

E [g (Qt)RS] = Qt −
Z
X

X
s∈S

Z
Ys

Z
Yt
f (y|x, θ) dybs (Q) f (y|x, θ) f (x) dydx

= Qt −
Z
X

X
s∈S

bs

Z
Ys
f (y|x, θ) dy

Z
Yt
f (y|x, θ) dyf (x) dx

= Qt −
Z
X
bx

Z
Yt
f (y|x, θ) f (x) dydx

= Qt −EX

·Z
X
bx

Z
Yt
f (y|x, θ) dy

¸
. (16)

Naturally, unless the sampling is self-weighting, in which case, as bx = 1 and

∇θbx = 0, expectations (13) and (16) are zero, imposing (12) and (15) in the sample

yields inconsistent estimators for θ and Q.

3.2 Bias-adjusted moment conditions

The RS estimating functions (12) and (15) may be adjusted in order to produce

consistent estimators for θ and Q also under ESS. The analysis of the estimating

functions for θ proposed in the pioneering works of Manski and Lerman (1977)

and Manski and McFadden (1981) suggests two alternative ways of correcting the

estimating functions for RS. The first consists of reweighting each observation in

such a way that the population structure is reconstructed. The second involves

subtracting a term to the RS estimating functions, such that the expectations of

their modified versions are zero. Thus, the parameters of the structural model θ

may be consistently estimated from the weighted moment indicators

g1 (θ) = b−1s g (θ)RS . (17)

or, alternatively, using results (10) and (13), we may employ the modified estimating

functions

g2 (θ) = g (θ)RS − b−1s ∇θbx. (18)

The same approach used to obtain (17) and (18) may be followed to derive

estimating functions for Q. We derive four different modifications of g (Qt)RS of the
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type proposed by Manski and Lerman (1977), all of them based on results (7) and

(8). In fact, g (Qt)RS may be simply weighted by the inverse of the biases (4) and

(6), which yields,

ga (Qt) = b−1s g (Qt)RS (19)

and

gb (Qt) = b−1x g (Qt)RS , (20)

t = 1, ..., J . Alternatively, see (8), only the second term of g (Qt)RS is weighted,

which gives rise to

gc (Qt) = Qt − b−1s

Z
Yt
f (y|x, θ) dy (21)

and

gd (Qt) = Qt − b−1x

Z
Yt
f (y|x, θ) dy. (22)

On the other hand, to construct a Manski and McFadden (1981)-type of bias-

adjusted moment indicators, we propose the subtraction of the termQt−b−1s bx
R
Yt f (y|x, θ) dy,

whose expectation equals that of g (Qt)RS, see equations (9) and (16), to this esti-

mating function. The resulting moment indicators are

ge (Qt) =
¡
b−1s bx − 1

¢ Z
Yt
f (y|x, θ) dy. (23)

In all cases, it is straightforward to show that the expectations of (17)-(23) taken

with respect to h (z) are zero. Moreover, consistent estimators for those expectations

may be straightforwardly obtained since the empirical distribution function is the

nonparametric likelihood estimator of the distribution function based on h (z).

3.3 Moment conditions for Hs

Although not essential for obtaining consistent estimators for θ and Q under ESS,

Imbens (1992) stressed the importance of conditioning the analysis on the ancillary

statistics Ĥs = Ns/N , where Ns is the number of individuals included in stratum

Cs, in order to obtain efficient estimators. This is achieved through the utilization
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of the set of (J − 1) moment indicators3

g (Ht) = Ht − 1 (s = t) , t = 1, ..., J − 1 (24)

to estimate the vector H 0 ≡ [H1, ..., HJ−1]; see Imbens (1992) and Imbens and

Lancaster (1996) for a comprehensive discussion on this issue.

4 Moment-based estimators

Efficient estimators for θ and Q can be obtained by using in an appropriate manner

the bias-corrected moment indicators derived in the previous section. According to

the way the bias-corrected moment indicators are combined, different will be the

resulting moment-based estimator. In this section we analyze the main alternatives.

4.1 Alternative moment condition models

All the information regarding the bias-corrected moment indicators can be summa-

rized as

E [g (β0)] = 0, (25)

where β0 denotes the true value of the vector of parameters of interest β and g (·)
is a vector of moment indicators. The specific composition of β and g (β) depends

on several factors, which are discussed next.

In case the population strata probabilities are unknown, or the available aggre-

gate figures on Q do not seem to be reliable, β0 ≡ (θ0, Q0, H 0) is a (k + 2J − 1)-
dimensioned vector of parameters of interest, and g (β) comprises the k-vector g (θ)

[defined as g1 (θ) or g2 (θ)], the J-vector g (Q) [defined as ga (Q), gb (Q), gc (Q),

gd (Q), or ge (Q)], and the (J − 1)-vector g (H). In the opposite case of exact knowl-
edge on Q, we can still use g (β)0 ≡ £g (θ)0 , g (Q)0 , g (H)0¤ but now Q is replaced by

its known value and only the (k + J − 1) vector β0 ≡ (θ0, H 0) needs to be estimated.

Therefore, this second case gives rise to an overidentifying system of equations.

3Note that an estimating function for HJ is superflous since ĤJ = 1−
PJ−1

s=1 Ĥs.
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Note that only the estimators based on moment indicators which are equivalent

to the scores of a likelihood function based on the sampling density function of

(y, x, s) or (y, x) given s, i.e. based on g (β)0 ≡ £g2 (θ)0 , gb (Q)0 , g (H)0¤ or g (β)0 ≡£
g2 (θ)

0 , gd (Q)
0 , g (H)0

¤
, are efficient. Other consistent but inefficient estimators are

those based solely on g (θ)0 or
£
g (θ)0 , g (H)0

¤
(Q known), or g (β)0 ≡ £g (θ)0 , g (Q)0¤.

However, here the loss of precision is due to the suppression of moment indicators

for Q and/or H in the estimation.

4.2 GMM estimation

Various methods of estimation may be used for estimating the model specified by

the moment conditions (25). The standard method is the GMM, see Hansen (1982).

Let ĝ(β) ≡ PN
i=1 g(zi, β)

.
N and Ŵ denote a symmetric, positive definite matrix

that converges almost surely to a nonrandom, positive definite matrix W . When

the number of moment conditions and unknown parameters is identical, an efficient

GMM estimator is defined by

β̂ = argmin
β∈B

ĝ(β)0Ŵ−1ĝ(β), (26)

where B denotes the parameter space. On the other hand, in the overidentifying
case a two-step efficient GMM estimator is given by

β̂ = argmin
β∈B

ĝ(β)0Ω̂(β̃)−1ĝ(β), (27)

where Ω̂(β) ≡ PN
i=1 gi(β)gi(β)

0
.
N and β̃ is some preliminary estimator defined by

an equation similar to (26).

Under suitable regularity conditions, see Newey and McFadden (1994), we have

in both cases
√
N
³
β̂ − β0

´
d→ N

h
0,
¡
G0Ω−1G

¢−1i
, (28)

where d→ denotes convergence in distribution, G ≡ E [∇βg(β)], andΩ ≡ E [g(z, β)g(z, β)0].

Alternative estimation methods which share the first order asymptotic properties of

GMM are those in the generalized empirical likelihood (GEL) class. However, as
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often they are computationally more evolving, and in the just identified case they

yield estimates numerically identical to GMM, in this paper we only consider GMM

estimation. See Newey and Smith (2004) for more details on GEL estimation.

5 Comparison with other estimators

Among the several estimators produced by our methodology are most of the likelihood-

based estimators proposed previously by other authors. Indeed, the estimators sug-

gested by Manski and Lerman (1977), Manski and McFadden (1981), Imbens (1992),

Imbens and Lancaster (1996), and, only for unknown Q, Cosslett (1981a,b) may be

obtained as GMM estimators defined by (26) or (27). The only aspect that dif-

ferentiates them is the composition of the vectors β and g (β) in (25), as we show

below.

As most estimators were derived for the particular case of choice-based samples

(CBS), ESS where the variable of interest takes values on a set of (C + 1) mutually

exclusive alternatives, Y ∈ {0, 1, ..., C}, some notational modifications need to be
done to simplify the comparisons. First, due to the discrete nature of the variable

of interest, f (y|x, θ) must be replaced by Pr (y|x, θ) and integration over Ys is sub-
stituted by summation. Second, we may define the sampling and the population

probability of observing an individual choosing Y = y as, respectively, Hy and Qy =R
X Pr (y|x, θ) f (x) dx, 0 < Hy < 1, 0 < Qy < 1,

P
y∈Ys Hy = 1, and

P
y∈Ys Qy =

1, and write Hs =
P

y∈Ys Hy, Qs =
P

y∈Ys Qy, and bx =
P

y∈Y
Hy

Qy
Pr (y|x, θ). Of

course, when each choice defines one stratum such that Cs = Y ×X and Y = S, a

sampling scheme which we designate here as pure CBS, the notation may be further

simplified, since Qs = Qy, Hs = Hy, and the stratum indicator S may be suppressed.

5.1 Manski and Lerman (1977) andManski andMcFadden’s

(1981) estimators

Manski and Lerman (1977) and Manski and McFadden (1981) derived modified

ML estimators for pure CBS for the case where exact information on the marginal

probability Qy is available. In both cases, β = θ since they work with the true values
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of Qy and Hy. These estimators are numerically identical to the GMM estimators

(26) based on g (β) = g1 (θ) and g (β) = g2 (θ), respectively. Our framework shows

clearly that both Manski and Lerman (1977) and Manski and McFadden’s (1981)

estimators are consistent but not efficient, since the moment indicators g (Q) and

g (H) are omitted from g (β), and provides a simple way of extending both estimators

for the general case of ESS and for unknown Qy.

5.2 Imbens (1992) and Imbens and Lancaster’s (1996) esti-

mators

Imbens (1992) and Imbens and Lancaster (1996) proposed efficient GMM estimators

for, respectively, CBS and ESS, both of which are based on the set of moment

indicators g (β)0 ≡ £g2 (θ)0 , gd (Q)0 , g (H)0¤. These authors considered both the cases
where Q is known or otherwise, so the vector of parameters of interest is β0 =

(θ0, H 0) or β0 = (θ0, Q0, H 0), respectively. Note that the approach we followed in this

paper has two advantages relatively to theirs. First, the derivation of our estimators

was incomparably simpler since from the start they are typical GMM estimators.

In contrast, the theoretical derivations made by Imbens (1992) and Imbens and

Lancaster (1996) are much more complex, involving the assumption of a discrete

distribution for the covariates, which is in an initial step jointly estimated with the

parameters of interest, and the concentration of the log-likelihood h (z) of (3) with

respect to the mass point probabilities of X. Second, our method gives rise to many

other alternative estimators by combining in different ways the vectors (17)-(23).

5.3 Cosslett’s (1981a,b) estimators

Like Imbens (1992), Cosslett (1981a,b) proposed efficient estimators for CBS. How-

ever, in contrast to Imbens (1992), the estimator suggested by Cosslett (1981a) for

the case where Q is known differs markedly from the case where Q is unknown.

As we show now, the estimator developed for the latter case is also a particular

case of our estimators, although the comparison is not so straightforward as in the

previous cases, for two reasons. First, Cosslett (1981a,b) assumes that the sample is
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gathered by standard stratified sampling, a sampling scheme where instead of fixing

Hs, as in multinomial sampling, the sampling agent fixes Ns. Hence, instead of Hs,

which is now unknown, the term Ns/N appears explicitly in the likelihood function

to be maximized, so the analysis is automatically based on the ancillary statistics

Ĥs = Ns/N . Second, instead of Q, Cosslett (1981a,b) suggests the estimation of a

(J − 1)-dimensional vector of auxiliary parameters λs = Ĥs/Qs, λ = (λ1, λ2, ...,

λJ−1).

In order to estimate the parameters of interest (θ, λ), Cosslett (1981a,b) proposes

the maximization of the pseudo log-likelihood function

L (θ, λ) =
NX
i=1

ln

"
λsi Pr (yi|xi, θ)P

s∈S
P

y∈Ys λs Pr (y|x, θ)

#
,

subject to λs ≥ 0 and
PJ

s=1 λs = 1. If we derive this function with respect to θ and

λ, we obtain two score functions which are given by, respectively, g2 (θ) and gb (Q)

with bs replaced by λs and Qt of gb (Q) replaced by Ĥt

λt
, which shows, clearly, that

this estimator may also be seen as a particular case of ours.

6 Monte Carlo simulation study

To investigate the performance in finite samples of the bias-corrected GMM (BCGMM)

estimators discussed in this paper, we carried out two distinct Monte Carlo analy-

sis. First, we replicated the examples of stratified sampling in the normal linear

model analyzed by Imbens and Lancaster (1996). Then, based on some of Cosslett’s

(1981) designs, we considered some particular examples of endogenous stratification

in Probit models. In both cases, we computed 13 different estimators, as described

in Table 1: the conventional RS maximum likelihood (RSML) estimator, which is

inconsistent in all cases simulated, the popular WML and CML estimators, and 10

alternative BCGMM estimators. In the Appendix we present the moment indicators

associated to each estimator specialized to the models simulated.

Table 1 about here

14



For each estimator we report the mean and median bias, the standard error (SE)

across replications, and the root mean square error (RMSE). All experiments were

based on samples of N = 200 and 5000 replications.

6.1 Normal linear model

Similarly to Imbens and Lancaster (1996), we consider a normal linear model defined

by

y = α0 + α1x+ �, �|x ∼ N ¡
0, σ2

¢
,

that is f (y|x, θ) = 1
σ
φ
¡
y−α0−α1x

σ

¢
, where θ = (α0, α1, σ

2). We generated enriched

samples which combine a stratum corresponding to a RS, designated as stratum 0,

with one stratum including individuals for which the value of Y is larger than a

cut-off point C, designated as stratum 1. The proportion of each stratum in the

population is, respectively, 1 and Q. Four different combinations of cut-off points,

values for θ, and distributions for X were considered in order to produce different

proportions Q; see Table 2. In the four examples, the sampling proportions of both

strata are equal, i.e. H0 = H1 = H = 0.5.

Table 2 about here

The results of the experiments are reported in Tables 3-6. In all cases, it is clear

that the RSML estimator is upwardly biased. Even in design B, where only the pro-

portion of the stratum 0 is different in the sample and in the population, its bias is

above 30% for α0 and almost 9% for α1. In contrast, all the bias-corrected estimators

display very small biases in all cases. However, their performance in terms of effi-

ciency is not at all uniform. Indeed, according to this criterium, the estimators based

on g2 (θ) (BCGMM6-BCGMM10) are clearly superior to their counterparts based

on g1 (θ) (BCGMM1-BCGMM5), particularly regarding the estimation of α1. More-

over, in each one of those two sets of estimators, those based on ge (Q) (BCGMM5

and BCGMM10) exhibited systematically higher variability in the estimation of α0.

When Q is known, the simpler WML and CML estimators seem to be as efficient

as their extensions (BCGMM1-BCGMM5 and BCGMM6-BCGMM10, respectively)
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when estimating α1. In effect, the extra moment conditions used by the BCGMM

estimators leads to sizable gains only in the precision of the estimator for α0. Sim-

ilarly, knowledge on Q appears to be important only for gaining precision in the

estimation of the intercept.

Tables 3-6 about here

6.2 Probit model

In this second simulation study we generated a pure CBS of binary data, consider-

ing a Probit model, Pr (Y = 1|x, θ) = Φ (xθ), where x denotes a single exogenous

variable which was generated according to the normal distribution N (2, 0.5). Sev-

eral values for the proportion of the stratum containing individuals choosing Y =

1 in the population, Q1 = Q, were examined: 0.05, 0.1, 0.2, and 0.3. To produce

those probabilities, the parameter θ was set equal to -1.01095, -0.71879, -0.44077,

and -0.26682, respectively. Again, in all cases we generated a sampling design where

H1 = H0 = H = 0.5.

Tables 7-10 present the results obtained for these experiments. The conclusions

are very similar to those reported for the other design. Again, the RSML estimator is

clearly upwardly biased in all experiments, displaying biases ranging from 81.5% to

88.1%, and all the bias-corrected estimators assuming Q known exhibit only small

distortions in all cases. When Q is unknown, however, the BCGMM estimators

display now some bias for higher levels of stratification, particularly those based on

g1 (θ) and ge (Q). Also in contrast to the previous design, the gain in precision that

results from knowledge on Q is now enormous, although the BCGMM estimators

for Q are again approximately unbiased in all cases.

Tables 7-10 about here

7 Conclusion

In this paper we suggested several alternative BCGMM estimators to deal with ESS

in parametric models. Their derivation was very simple and intuitive, presenting also

16



the advantages of giving rise to a bunch of moment-based estimators appropriate

for both cases where the marginal strata probabilities are known and unknown and

including most of the likelihood-based estimators existing in the literature as partic-

ular cases. The results obtained in both the Monte Carlo experiments suggest that,

in small samples, the best BCGMM estimators result from combining the Manski

and McFadden (1981) bias-corrected moment indicators g2 (θ) with any one of the

four alternative Manski and Lerman (1981)-type bias corrections for the equations

defining the population strata probabilities, ga (Q), gb (Q), gc (Q) or gd (Q).
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8 Appendix

8.1 Derivation of the properties of the bias functions

The properties of the bias functions bs and bx presented in (7)-(10) are obtained as

follows:

E
¡
b−1s
¢
=

Z
X

X
s∈S

Z
Ys
b−1s bsf (y|x, θ) f (x) dydx

=

Z
X

X
s∈S

Z
Ys
f (y|x, θ) f (x) dydx = 1,
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¸
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and

E
¡
b−1x ∇θbx

¢
=

X
s∈S

Z
Ys

Z
X
b−1x

X
s∈S

bs

Z
Ys
∇θf (y|x, θ) dybz (θ,Q) f (y|x, θ) f (x) dydx

=

Z
X
b−1x

X
s∈S
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Z
Ys
∇θf (y|x, θ) dy

X
s∈S

bs

Z
Ys
f (y|x, θ) f (x) dydx

=

Z
X
b−1x

X
s∈S
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Z
Ys
∇θf (y|x, θ) dybx (θ,Q) f (x) dx

=

Z
X

X
s∈S

bs

Z
Ys
∇θf (y|x, θ) dyf (x) dx

= EX (∇θbx) .

8.2 Moment indicators for the Monte Carlo simulation

The main components of the moment indicators that characterize each estimator

may be specialized to the models simulated as described in Table 11.
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Table 1: Alternative estimators and moment indicators

Estimator g (β)
g (θ)RS g1 (θ) g2 (θ) ga (Q) gb (Q) gc (Q) gd (Q) ge (Q) g (H)

RSML ×
WML ×
CML ×
BCGMM1 × × ×
BCGMM2 × × ×
BCGMM3 × × ×
BCGMM4 × × ×
BCGMM5 × × ×
BCGMM6 × × ×
BCGMM7 × × ×
BCGMM8 × × ×
BCGMM9 × × ×
BCGMM10 × × ×

Table 2: Normal linear model

Design X θ C Q
A N (0, 1) (0, 1, 1) 0.954 0.25
B N (0, 1) (0, 1, 1) 0 0.5
C E (1)− 1 (0, 1, 1) 0.802 0.25
D N (0, 1) (0, 0.5, 1) 0.954 0.194
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Table 3: Normal linear model: Monte Carlo results for design A (5000 replications; N = 200)

α0 α1 Q
Estimator Q Bias SE RMSE Bias SE RMSE Bias SE RMSE

mean median mean median mean median
RSML – .445 .447 .077 .452 .011 .012 .073 .072 – – – –
WML known .002 .003 .081 .081 .001 .000 .085 .085 – – – –
CML known .004 .004 .075 .075 -.001 -.001 .073 .073 – – – –
BCGMM-1 known .003 .004 .072 .072 .001 .000 .086 .086 – – – –
BCGMM-2 known .002 .004 .068 .068 -.001 -.002 .086 .086 – – – –
BCGMM-3 known .006 .006 .074 .074 .000 -.001 .086 .086 – – – –
BCGMM-4 known .002 .004 .069 .069 -.001 -.002 .086 .086 – – – –
BCGMM-5 known .004 .004 .082 .082 .001 -.001 .087 .087 – – – –
BCGMM-6 known .006 .006 .067 .067 -.001 -.001 .073 .073 – – – –
BCGMM-7 known .003 .005 .065 .065 -.002 -.002 .073 .073 – – – –
BCGMM-8 known .008 .008 .070 .070 -.002 -.002 .073 .073 – – – –
BCGMM-9 known .003 .004 .065 .065 -.002 -.002 .073 .073 – – – –
BCGMM-10 known .006 .006 .075 .075 .000 .000 .073 .073 – – – –
BCGMM-1 unknown .000 .002 .096 .096 -.002 -.002 .086 .086 -.002 -.002 .032 .032
BCGMM-2 unknown .000 .000 .097 .097 -.001 -.003 .086 .085 -.002 -.002 .033 .033
BCGMM-3 unknown -.002 .000 .099 .099 -.003 -.003 .086 .086 -.003 -.003 .039 .039
BCGMM-4 unknown -.001 .000 .098 .098 -.002 -.003 .085 .085 -.002 -.002 .033 .033
BCGMM-5 unknown -.013 -.005 .132 .132 -.017 -.012 .102 .104 .011 -.006 .128 .129
BCGMM-6 unknown .002 .003 .091 .091 -.002 -.002 .073 .073 -.001 -.001 .032 .032
BCGMM-7 unknown .003 .002 .091 .091 -.002 -.002 .073 .073 .000 -.001 .029 .029
BCGMM-8 unknown .001 .003 .093 .093 -.002 -.002 .073 .073 -.001 -.002 .039 .039
BCGMM-9 unknown .003 .002 .090 .090 -.002 -.002 .073 .073 .000 -.001 .029 .029
BCGMM-10 unknown -.009 -.001 .133 .133 -.001 -.001 .073 .073 .015 -.005 .123 .124

22



Table 4: Normal linear model: Monte Carlo results for design B (5000 replications; N = 200)

α0 α1 Q
Estimator Q Bias SE RMSE Bias SE RMSE Bias SE RMSE

mean median mean median mean median
RSML – .306 .306 .068 .313 -.088 -.088 .074 .115 – – – –
WML known .001 .000 .077 .077 -.001 .000 .082 .082 – – – –
CML known .001 .000 .074 .074 -.002 -.002 .072 .073 – – – –
BCGMM-1 known -.003 -.004 .059 .059 -.001 .000 .081 .081 – – – –
BCGMM-2 known -.004 -.005 .057 .057 -.001 .000 .080 .080 – – – –
BCGMM-3 known -.001 -.001 .065 .065 -.002 -.002 .078 .078 – – – –
BCGMM-4 known -.004 -.005 .057 .057 -.001 .000 .080 .080 – – – –
BCGMM-5 known .001 .000 .078 .078 .000 .001 .080 .080 – – – –
BCGMM-6 known -.001 -.002 .056 .056 -.002 -.002 .072 .072 – – – –
BCGMM-7 known -.002 -.003 .056 .056 -.002 -.002 .072 .072 – – – –
BCGMM-8 known .001 .000 .063 .063 -.003 -.004 .072 .072 – – – –
BCGMM-9 known -.003 -.004 .056 .056 -.001 -.002 .072 .072 – – – –
BCGMM-10 known .003 .003 .075 .075 -.001 -.001 .073 .073 – – – –
BCGMM-1 unknown .000 .000 .087 .087 -.002 -.001 .082 .082 .000 .000 .037 .037
BCGMM-2 unknown .000 .000 .087 .087 -.002 -.001 .082 .082 .000 -.001 .038 .038
BCGMM-3 unknown .000 .000 .087 .087 -.002 .000 .082 .082 .000 .000 .045 .045
BCGMM-4 unknown .000 .000 .087 .087 -.002 -.001 .082 .082 .000 -.001 .038 .038
BCGMM-5 unknown -.018 -.012 .114 .116 .000 .001 .083 .083 .005 -.022 .195 .195
BCGMM-6 unknown .001 .000 .084 .084 -.002 -.002 .073 .074 .000 .000 .038 .038
BCGMM-7 unknown .001 .000 .084 .084 -.002 -.002 .073 .073 .000 .000 .037 .037
BCGMM-8 unknown .001 .001 .085 .085 -.002 -.002 .074 .074 .001 .001 .047 .047
BCGMM-9 unknown .001 .000 .084 .084 -.002 -.002 .073 .073 .000 .000 .037 .037
BCGMM-10 unknown -.022 -.014 .118 .120 .006 .005 .078 .078 .001 -.026 .201 .201
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Table 5: Normal linear model: Monte Carlo results for design C (5000 replications; N = 200)

α0 α1 Q
Estimator Q Bias SE RMSE Bias SE RMSE Bias SE RMSE

mean median mean median mean median
RSML – .474 .475 .073 .480 -.089 -.089 .057 .106 – – – –
WML known .001 .002 .078 .078 .003 .003 .070 .070 – – – –
CML known .003 .004 .071 .072 .000 .000 .056 .056 – – – –
BCGMM-1 known .001 .003 .068 .068 .001 .002 .067 .067 – – – –
BCGMM-2 known —.001 .000 .066 .066 .001 .002 .067 .067 – – – –
BCGMM-3 known .003 .004 .071 .071 .001 .001 .065 .065 – – – –
BCGMM-4 known -.001 .001 .066 .066 .001 .002 .067 .067 – – – –
BCGMM-5 known .005 .005 .080 .080 .002 .002 .066 .066 – – – –
BCGMM-6 known .004 .004 .064 .064 .000 -.001 .056 .056 – – – –
BCGMM-7 known .001 .001 .062 .062 .000 -.001 .055 .055 – – – –
BCGMM-8 known .007 .008 .067 .067 -.001 -.001 .056 .056 – – – –
BCGMM-9 known .001 .001 .062 .062 .000 -.001 .055 .055 – – – –
BCGMM-10 known .008 .009 .072 .073 .002 .001 .056 .056 – – – –
BCGMM-1 unknown .000 .001 .092 .092 .002 .002 .069 .069 -.001 -.001 .032 .032
BCGMM-2 unknown -.002 .000 .095 .095 .002 .002 .070 .070 -.002 -.002 .034 .034
BCGMM-3 unknown -.002 .000 .095 .095 .002 .002 .068 .068 -.002 -.003 .039 .039
BCGMM-4 unknown -.002 .000 .095 .095 .001 .001 .070 .070 -.002 -.002 .034 .034
BCGMM-5 unknown -.005 -.001 .121 .121 -.004 -.004 .072 .073 .015 -.006 .128 .129
BCGMM-6 unknown .002 .003 .088 .088 .000 .000 .057 .057 .000 .000 .032 .032
BCGMM-7 unknown .003 .003 .087 .087 .000 .000 .057 .057 .000 .000 .030 .030
BCGMM-8 unknown .001 .001 .090 .090 .000 .000 .057 .057 -.001 -.002 .040 .040
BCGMM-9 unknown .003 .003 .087 .087 .000 .000 .057 .057 .000 .000 .030 .030
BCGMM-10 unknown -.013 -.004 .142 .143 .004 .003 .062 .063 .019 -.006 .141 .142
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Table 6: Normal linear model: Monte Carlo results for design D (5000 replications; N = 200)

α0 α1 Q
Estimator Q Bias SE RMSE Bias SE RMSE Bias SE RMSE

mean median mean median mean median
RSML – .619 .620 .067 .623 .041 .040 .072 .083 – – – –
WML known .002 .002 .076 .076 .001 .001 .084 .084 – – – –
CML known .002 .001 .068 .068 .001 .000 .069 .069 – – – –
BCGMM-1 known -.006 -.003 .063 .064 .001 .000 .085 .085 – – – –
BCGMM-2 known -.007 -.005 .062 .062 .000 -.001 .085 .085 – – – –
BCGMM-3 known -.002 .000 .064 .064 .001 -.001 .085 .085 – – – –
BCGMM-4 known -.007 -.005 .062 .062 -.001 -.001 .085 .085 – – – –
BCGMM-5 known .003 .005 .078 .078 -.002 -.002 .088 .088 – – – –
BCGMM-6 known -.004 -.004 .056 .056 .000 -.001 .070 .070 – – – –
BCGMM-7 known -.006 -.005 .055 .055 -.001 -.001 .070 .070 – – – –
BCGMM-8 known .000 .000 .060 .060 -.001 -.002 .070 .070 – – – –
BCGMM-9 known -.006 -.006 .055 .055 -.001 -.001 .070 .070 – – – –
BCGMM-10 known .001 .000 .067 .067 -.005 -.005 .072 .072 – – – –
BCGMM-1 unknown .002 .004 .100 .100 .000 -.002 .086 .086 .002 .002 .030 .030
BCGMM-2 unknown .001 .004 .101 .101 .000 -.001 .084 .084 .001 .002 .031 .031
BCGMM-3 unknown -.001 .002 .106 .106 -.001 -.002 .086 .086 .001 .001 .036 .036
BCGMM-4 unknown .001 .004 .101 .101 .000 -.001 .084 .084 .001 .002 .031 .031
BCGMM-5 unknown -.005 .001 .137 .137 -.011 -.008 .097 .098 .012 .001 .094 .095
BCGMM-6 unknown .005 .004 .093 .094 .000 .000 .070 .070 .003 .003 .027 .027
BCGMM-7 unknown .006 .005 .093 .093 .000 .000 .070 .070 .004 .003 .025 .026
BCGMM-8 unknown .004 .004 .096 .096 .000 -.001 .070 .070 .003 .003 .032 .032
BCGMM-9 unknown .006 .005 .092 .093 .000 .000 .070 .070 .004 .003 .025 .026
BCGMM-10 unknown -.004 .002 .143 .143 .000 -.002 .070 .070 .013 .002 .086 .087

25



Table 7: Probit model: Monte Carlo results for Q = 0.05 (5000 replications; N = 200)

θ Q
Estimator Q Bias SE RMSE Bias SE RMSE

mean median mean median
RSML – .824 .824 .019 .825 – – – –
WML known -.002 -.001 .030 .030 – – – –
CML known -.002 -.002 .031 .032 – – – –
BCGMM-1 known -.002 -.001 .030 .030 – – – –
BCGMM-2 known -.003 -.002 .030 .030 – – – –
BCGMM-3 known -.002 -.001 .030 .030 – – – –
BCGMM-4 known -.005 -.004 .031 .031 – – – –
BCGMM-5 known -.002 -.001 .030 .030 – – – –
BCGMM-6 known .000 .001 .030 .030 – – – –
BCGMM-7 known -.002 -.001 .029 .029 – – – –
BCGMM-8 known .000 .001 .030 .030 – – – –
BCGMM-9 known -.003 -.002 .029 .029 – – – –
BCGMM-10 known .003 .004 .031 .032 – – – –
BCGMM-1 unknown -.029 -.013 .145 .148 .000 -.002 .021 .021
BCGMM-2 unknown -.050 -.050 .100 .111 -.005 -.008 .014 .015
BCGMM-3 unknown -.029 -.013 .145 .148 -.005 -.002 .021 .021
BCGMM-4 unknown -.054 -.052 .102 .115 -.006 -.008 .014 .015
BCGMM-5 unknown -.066 -.022 .240 .249 -.001 -.003 .027 .027
BCGMM-6 unknown -.016 -.008 .113 .114 .000 -.001 .019 .019
BCGMM-7 unknown -.014 -.009 .102 .103 .000 -.002 .017 .017
BCGMM-8 unknown -.016 -.008 .113 .114 .000 -.001 .019 .019
BCGMM-9 unknown -.014 -.009 .102 .103 .000 -.002 .017 .017
BCGMM-10 unknown -.045 -.019 .173 .179 -.001 -.004 .025 .019
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Table 8: Probit model: Monte Carlo results for Q = 0.1 (5000 replications; N = 200)

θ Q
Estimator Q Bias SE RMSE Bias SE RMSE

mean median mean median
RSML – .607 .607 .017 .608 – – – –
WML known -.001 -.001 .019 .019 – – – –
CML known -.002 -.001 .023 .023 – – – –
BCGMM-1 known .000 .000 .019 .019 – – – –
BCGMM-2 known -.001 -.001 .019 .019 – – – –
BCGMM-3 known -.001 .000 .019 .019 – – – –
BCGMM-4 known -.002 -.002 .019 .019 – – – –
BCGMM-5 known .000 .000 .019 .019 – – – –
BCGMM-6 known .000 .000 .019 .019 – – – –
BCGMM-7 known -.001 -.001 .019 .019 – – – –
BCGMM-8 known .000 .000 .019 .019 – – – –
BCGMM-9 known -.001 -.001 .019 .019 – – – –
BCGMM-10 known .001 .002 .021 .021 – – – –
BCGMM-1 unknown -.015 -.011 .110 .111 .000 -.003 .034 .034
BCGMM-2 unknown -.033 -.020 .113 .118 -.005 -.006 .032 .033
BCGMM-3 unknown -.015 -.011 .110 .111 .000 -.003 .034 .034
BCGMM-4 unknown -.039 -.024 .116 .123 -.007 -.007 .032 .033
BCGMM-5 unknown -.032 -.013 .147 .151 -.002 -.004 .040 .040
BCGMM-6 unknown -.011 -.010 .100 .100 .000 -.003 .032 .032
BCGMM-7 unknown -.009 -.010 .097 .097 .001 -.003 .031 .031
BCGMM-8 unknown -.011 -.010 .100 .100 .000 -.003 .032 .032
BCGMM-9 unknown -.009 -.010 .097 .097 .001 -.003 .031 .031
BCGMM-10 unknown -.020 -.011 .119 .121 -.001 -.004 .037 .037
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Table 9: Probit model: Monte Carlo results for Q = 0.2 (5000 replications; N = 200)

θ Q
Estimator Q Bias SE RMSE Bias SE RMSE

mean median mean median
RSML – .384 .384 .015 .384 – – – –
WML known .000 .000 .015 .015 – – – –
CML known .000 .000 .018 .018 – – – –
BCGMM-1 known .000 .000 .011 .011 – – – –
BCGMM-2 known .000 .000 .011 .011 – – – –
BCGMM-3 known .000 .000 .011 .011 – – – –
BCGMM-4 known .000 .000 .011 .011 – – – –
BCGMM-5 known .000 .000 .011 .011 – – – –
BCGMM-6 known .000 .000 .011 .011 – – – –
BCGMM-7 known .000 .000 .011 .011 – – – –
BCGMM-8 known .000 .000 .011 .011 – – – –
BCGMM-9 known .000 .000 .011 .011 – – – –
BCGMM-10 known .000 .001 .012 .012 – – – –
BCGMM-1 unknown -.002 -.004 .108 .108 .004 -.002 .059 .059
BCGMM-2 unknown -.003 -.006 .109 .109 .003 -.002 .058 .059
BCGMM-3 unknown -.002 -.004 .108 .108 .004 -.002 .059 .059
BCGMM-4 unknown -.009 -.007 .109 .109 .003 -.002 .058 .059
BCGMM-5 unknown -.007 -.005 .116 .116 .002 -.002 .062 .062
BCGMM-6 unknown .000 -.005 .105 .105 .004 -.002 .058 .058
BCGMM-7 unknown .000 -.003 .105 .105 .005 -.002 .058 .058
BCGMM-8 unknown .000 -.005 .105 .105 .004 -.002 .058 .058
BCGMM-9 unknown .000 -.003 .105 .105 .005 -.002 .058 .058
BCGMM-10 unknown -.003 -.005 .110 .110 .003 -.002 .060 .060
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Table 10: Probit model: Monte Carlo results for Q = 0.3 (5000 replications; N = 200)

θ Q
Estimator Q Bias SE RMSE Bias SE RMSE

mean median mean median
RSML – .235 .235 .014 .235 – – – –
WML known .000 .000 .014 .014 – – – –
CML known -.001 .000 .016 .016 – – – –
BCGMM-1 known .000 .000 .007 .007 – – – –
BCGMM-2 known .000 .000 .007 .007 – – – –
BCGMM-3 known .000 .000 .007 .007 – – – –
BCGMM-4 known .000 .000 .007 .007 – – – –
BCGMM-5 known -.001 .000 .008 .008 – – – –
BCGMM-6 known .000 .000 .007 .007 – – – –
BCGMM-7 known .000 .000 .007 .007 – – – –
BCGMM-8 known .000 .000 .007 .007 – – – –
BCGMM-9 known .000 .000 .007 .007 – – – –
BCGMM-10 known -.001 .000 .008 .008 – – – –
BCGMM-1 unknown -.002 -.003 .117 .117 .003 -.001 .079 .079
BCGMM-2 unknown -.002 -.003 .117 .117 .003 -.002 .079 .079
BCGMM-3 unknown -.002 -.003 .117 .117 .003 -.001 .079 .079
BCGMM-4 unknown -.003 -.003 .117 .117 .002 -.002 .079 .079
BCGMM-5 unknown .007 .004 .113 .114 .010 .003 .081 .081
BCGMM-6 unknown -.002 -.003 .116 .116 .003 -.002 .079 .079
BCGMM-7 unknown -.002 -.004 .115 .115 .003 -.003 .079 .079
BCGMM-8 unknown -.002 -.003 .116 .116 .003 -.002 .079 .079
BCGMM-9 unknown -.002 -.004 .115 .115 .003 -.003 .079 .079
BCGMM-10 unknown .012 .006 .111 .112 .013 .004 .081 .082
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Table 11: Moment indicators for the Monte Carlo study

.

Normal linear model Binary model

g (θ)RS

x0 y−x
0α

σ2

1
2σ2

·³
y−x0α

σ

´2
− 1
¸ x∇θ Pr(Y=1|x,θ)[y−Pr(Y=1|x,θ)]

Pr(Y=1|x,θ)[1−Pr(Y=1|x,θ)]

g (Q)RS Q− Φ
¡−C+x0α

σ

¢
Q− Pr (Y = 1|x, θ)

g (H) H − 1 (s = 1) H − y

bs (1−H) 1 (y < C) + Q(1−H)+H
Q

1 (y ≥ C) 1−H
1−Q + y

³
H
Q
− 1−H

1−Q
´

bx 1−H + H
Q
Φ
¡−C+x0α

σ

¢
1−H
1−Q + Pr (Y = 1|x, θ)

³
H
Q
− 1−H

1−Q
´

∇θbx

x0
σ
H
Q
φ
¡−C+x0α

σ

¢
−−C+x0α

2σ3
H
Q
φ
¡−C+x0α

σ

¢ x∇θ Pr (Y = 1|x, θ)
³
H
Q
− 1−H

1−Q
´
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