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Abstract:

An electoral cycle created by governments is a phenomenon that seems to characterise, at least in some
particular occasions and/or circumstances, the democratic economies.

As it is generally accepted, the short-run electorally-induced fluctuations prejudice the long-run welfare.
Since the very first studies on the matter, some authors offered suggestions as to what should be done
against this electorally-induced instability. A good alternative to the obvious proposal to increase the
electoral period length is to consider that voters abandon a passive and naive behaviour and, instead, are
willing to learn about government’s intentions.

The electoral cycle literature has developed in two clearly distinct phases. The first one considered the
existence of non-rational (naive) voters whereas the second one considered fully rational voters. It is our
view that an intermediate approach is more appropriate, i.e. one that considers learning voters, which are
boundedly rational. In this sense, one may consider neural networks as learning mechanisms used by
voters to perform a classification of the incumbent in order to distinguish opportunistic (electorally
motivated) from benevolent (non-electorally motivated) behaviour of the government. The paper explores
precisely the problem of how to classify a government showing in which, if so, circumstances a neural
network, namely a perceptron, can resolve that problem.
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1. Introduction and Motivation

An electoral cycle created by governments is a pimamon that seems to characterise,
at least in some particular occasions and/or cistantes, the democratic economies.
As it is generally accepted, the short-run eledipiaduced fluctuations prejudice the
long-run welfare. Since the very first studies ¢w tmatter, some authors offered
suggestions as to what should be done againstliditorally-induced instability. For
some authors, ever since the seminal papero®oNAuUS (1975), a good alternative to
the obvious proposal to increase the electoralodelength is to consider that voters
abandon a passive and naive behaviour and, insexa&d,willing to learn about

government’s intentions.

The electoral cycle literature has developed in ¢tvearly distinct phases. The first one,
which took place in the mid-1970s, considered tkistence of non-rational (naive)
voters. In accordance with the rational expectatioevolution, in the late 1980s the
second phase of models considered fully rationakrgo It is our view that an
intermediate approach is more appropriate one that considers learning voters, which
are boundedly rational. In this sense, one mayidenseural networks as learning
mechanisms used by voters to perform a classificabf the incumbent in order to
distinguish opportunistic (electorally motivatedjorh benevolent (non-electorally
motivated) behaviour of the government. The maifjeaive of this paper consists
precisely on studying the problem of how to clasaifgovernment showing in which, if
so, circumstances a neural network, namely a pgorgpcan resolve that problem. To
achieve this objective we will consider a quiteergcversion of a stylised model of
economic policyj.e. a version based on an aggregate supply curve gnmgooutput
persistence. SeeABTNER (1996,1997,1999,2000).

The rest of the paper is structured as follows.ti®ec2 offers the analysis of the
bounded rationality approach as a motivation ferudke of neural networks as learning
devices. Section 3 then presents the characteristithe particular neural networike.
the perceptron, which will be used to perform thessification of the government task.
Section 4 explores the problem of how to classifpgernment showing in which, if so,

circumstances the perceptron can resolve that@molfbection 5 concludes.



2. The Bounded Rationality Approach

In the spirit of the bounded rationality research program, which is
really to put the economist and the agents in his model on an equal
behavioral footing, we expect that, in searching these literatures for
ways to model our agents, we shall find ways to improve ourselves. in
SARGENT (1993), pg. 33.

Generally speaking, learning models have been dpedlas a reasonable alternative to
the unrealistic informational assumption of ratioeapectations models. Moreover,
through learning models it is possible to study dy@amics of adjustment between
equilibria which, in most rational expectations ralsq is ignored. In fact, rational
expectations hypotheses are, in some sense andswitie exceptions, a limiting
property of a dynamic system which evolves from egeilibrium to another, this being
possible because it is assumed that agents knouaenodel of the economy and use
it to form their expectations which, in turn, inggithat agents are also able to solve the

model.

Interestingly, learning models also deal with aeotdiifficulty of rational expectations
models, namely the existence of multiple equilibtiais well known that for linear
models, where only expectations of current vargmbdee considered, the rational
expectations equilibrium is unique. Conversely, wlexpectations about the future
endogenous variables are required, multiple ratierpectations equilibria can occur.
Moreover, this is also a common feature of stoéba&sintrol/decision problems. In this
case, the lack of equilibrium uniqueness ariseanfran imperfectly specified
intertemporal decision problem under uncertaintige Bnalysis of learning processes
can, in fact, provide a way of selecting the ‘rewdze’ equilibrium or sub-set of
equilibria. On the one hand, if the learning medsanis choseroptimally, then a
desirable rational equilibrium is selected from the set of the rational expembati
equilibria; see MRCET and 3RGENT (1988,1989a,1989b). On the other hand, if the
learning mechanism is viewed under adaptive approach, in particular in
expectational stability models, it can also act as a selection criterion in mpidti
equilibria models involvingbubbles and sunspots;, see EANS (1986), E/ANS and
GUESNERIE (1993), B/ANS and HONKAPOHJA (1994,1995). To sum up, learning
mechanisms, whether optimally or adaptively cho&slect’ the particular steady state



as, in some sense, terminal conditions do.

Through this last point, one can already anticiplageusual distinction between learning
mechanisms. Although a number of different studiesdelling learning have been
presented, two main classes of models can be giissined: rational learning and
boundedly rational learning modéldn rational learning models, it is assumed that
agents know the trustructural form of the model generating the economy, but not
some of the parameters of that model. In boundedlipnal learning models, it is
assumed that agents, while learning is taking plase a ‘reasonable’ rule, for instance,

by considering theeduced form of the model.

Rational learning, which some authors identify whyesian learning, thus assumes
that the model structure is known by the agentdentiie learning process is taking
place. Given the difficulties that arise in modwdlithis kind of learning, the bounded
rationality approach has the appealing advantagbeoig (at least) more tractable.
Moreover, the assumption that agents use a midgzbenodel during the learning
process makes the bounded rationality approaclctegsoversial.

Obviously, the use of a misspecified model duregrhing has its consequences on the
formation of expectations. In fact, under the badhdationality approach, agents are
modelled as using an ‘incorrect’ rule, derived fram@ckward-looking reduced form
equations, to generate expectations while theyleaming about the true structural

form.

In the bounded rationality approach, various natiohexpectational stability and of
econometric learning procedures have been the main formulations. Istiegdy, the
distinction between these two main proceduresdas twith the ‘notion’ of time where
learning takes place. While thegpectational stability principle assumes that learning
takes place in ‘notional’, ‘virtual’ or meta-timesconometric learning procedures

3 WESTAWAY (1992) prefers to distinguish closed-loop learninpere agents learn about the parameters
of the decision rule, from open-loop learning, wehexgents form an expectation of the path for a
particular variable which they sequentially updafe. is pointed out, closed-loop learning will be
virtually identical to the parameter updating sckaming Kalman filtering.

> |f agents never discount past information, thennkél filtering can be seen as a rolling least-square
regression with an increasing sample. On the contifapast information becomes less importantnthe
‘forgetting factor’ can be included which givesdaling window, or more precisely a form of weighted



assume real-time learning.

The expectational stability approach considers the influence of — and thuslitenction
between — perceived laws on actual laws of motiocin® economic system. The actual
law of motion results from the substitution of tperceived law of motion in the

structural equations of the true model. It is thessible to obtain a mappirig(&) from
the perceived to the actual law of motion, whétedenotes the set of parameters.

Rational expectations solutior® are then the fixed points df(8). Finally, a given

rational expectations solutiof is said to be expectationally-stable if the difatial
equation:

dé _

e L(6)-6

is locally asymptotically stable #& , wherer denotes meta-time.

In adaptive real-time learning, agents are assuimede areconometric procedure for
estimating the perceived law of motion. Least-sgsidearning is widely used in this
formulation in spite of its apparent drawbacks; SeemMoN (1995) for a criticism of
this issue. A more sophisticated application ofséh@conometric procedures is the
consideration of the Kalman filter which, as is M@lown, nests least squares learning

and recursive least squares.

Given the above discussion we can question, @&sTAIVAY (1992) clearly and

naturally points out:

“How do policymakersreact to the fact that the private sector islearning?”

Paradoxically, this pertinent question has beerosingnored. In fact, the analysis of
the implications of learning mechanisms in policgkimg is far from being complete.
Some exceptions areABRELL et al. (1992), BxsAR and 3wLMON (1990a,1990b),

least squares.
" A more formal definition would consider a neuratmork < P, <> to be a directed graph over the set

P of processors (neurons), where a processor igogingfrom an input to an output space.



CRIPPS (1991), EvANS and HONKAPOHJA (1994), RHRER and HOOKER (1993),
MARIMON and $NDER (1993,1994), & MON (1995) and WESTAWAY (1992). 3LMON
(1995) is, to the best of my knowledge, one of weey few references where an
innovative bounded rationality approach suchnasral networks learning has been
applied in a policy-making problem. We propose $e this approach within a political
business cycles context. That being said, we vahsider thatbounded rationality
voters have to classify economic policies and outcomesoasing from opportunistic or

from benevolent government behaviour.

3. The Neural Networks Methodology

Given the characteristics aeural networks it, thus, seems appropriate to consider that
the above mentioned classification task can beopmdd under this formulation of
bounded rationality agents. Given that (artificisural networks are simulations of
how biological neurons are supposed to work, thectire of human brains, where
processing units, the so-callegurons, are connected bsinapses, is approximated by
these (artificial) neural networks. As such, theeioonnected network of processing
units describes a model which maps a set of gimputs to an associated set aditputs
values’ As the number of inputs does not have to be emutile number of outputs, a
neural network can, alternatively, be describednapping one set of variables onto

another set of a possibly different size.

The knowledge of the values for the input and outmriables constitutes, then, the
major part of the information needed to implemenheural network. Despite the
minimal information requirement, this constitutes motive for questioning the results
obtained; see &AMON (1995). In fact, this characteristic makes neumnatworks
particularly appropriate for cases where the stmgctonnecting inputs to outputs is
unknown® In this sense, neural networks can be classified ‘reon-structural’
procedural models. Furthermore, they are in good agreemenh vait typical

characteristic of bounded rationality: thdaptive behaviour. Indeed, the adaptation to

8 Take, for instance, ALL (1993) which pretends to bridge the gap betwaibstantive rationality and
procedural rationality. The fact that it is considered that the exact fafthe objective function is
unknown is what makes thisounded rationality model a good example of a possible application of
neural networks.



the environment as a crucial characteristic of aralenetwork makes it distinct from

many (standard) models of learnihg.
Neural networks are used mainly to learn in tweetypf tasks; seeMSNGLER (1996):

1. Continuous numeric functions — When the task isafproximate some

continuous function, as in the case afgnal extraction.

2. Classification — When the input is a descriptioranfobject to be recognised and
the output is amdentification of the class to which the object belongs. The most
common kind of neural network for classificationrposes is the so-called
perceptron.’® In what follows it will be shown how perceptronswid classify
policies and outcomes as ‘electoralist’ or notngsa recent stylised model of

economic policy.

Let us then clarify thenodus operandi of neural networks by a simple formalisation as
follows.** Given an input vectorx, the neural network determines a particular
parameterisation, say, which, in conjunction with a functioy — also possibly

determined by the neural network — leads to th@uiutector y = g(x, 8) ‘closest’ to
some target*. In other words, the output units(k), (k=L...,t), process, using a
function g, the inputs x(i), (i=1...r), previously amplified or attenuated by the

connection strengthg(i, k) .*

The simplest neural network structure described @bievusually relaxed to obtain
flexibility by considering a layer of, so-calledhidden units. In this case, the

transformation of inputs into outputs includes amteimediate processing task
performed by the hidden units. Each hidden unit) tipeoduces, by the consideration of

°In particular, neural networks relax the constimear reduced form assumption kdast squares
learning by considering a time varying possibly non-linsrchastic approximation of that reduced form.
Y For a clear explanation of the link between petrogys and the statistical discriminant analysisGee

and \RGENT (1996).

% To all of those whose scepticism only disappearth wi sound mathematical presentation see
ELLACOTT and BOse(1996). More advanced references include i/ (1989).

12 Implicitly assumed is &eedforward model wheresignals flow only fromx(i) to y(k). Nevertheless, it is
also possible to considsedback effects.



an activation or transfer function f(.), an intermediate outpsfj), ( = 1,...5), which is

finally sent to the output layét.This situation can be illustrated as follows.

x(1) x(2) x(3) x(r)

Input Layer

Hidden Layer

Output Layer

Figure 1 — The neural network structure
Mathematically the network then computes:

1. The input(s) to the hidden layén(j), as a weighted sum
h(i)=b(i)+ X wli, i)x() j=L..s
i=1

2. The output(s) of the hidden layer, which are thaui(g) to the output layer, are
subject to an output activation
s(i)= 1 (h(i))
wheref is the so-calledctivation function.
3. The output(s) of the output layér

S

y(k)="B(i.k)s(i) k=1..t

=1

Plainly the two crucial elements of a neural nekware the parameter sét=(w, /)

and the activation/transfer functidq). The transfer function usually has the role of

Btis also (and generally) possible to considbraa node ‘shifting’ the weighted sum of inputs by some
factorb (j). See Figure 1.

“tis possible to consider an activation functemmd/or a bias before the determination of the [fina
outputs.



normalising a node’s output signal strength betw@emd 1:> The most used are the
tanh or somesi gnoi d function f(h)=(1+exp(-h))™ and agaussi an function or

somer adi al basi s function. The differences between these functamesmade clear

by considering the following figure.

Si gnoi d

Hyper bol i ¢ Tangent
------ Radi al Basis

Figure 2 — Some squashing functions

As is clear, thai gnoi d and the anh functions are similar. Moreover, while the radial
basis function amplifies in-between values, $hgnoi d andt anh functions attenuate
or amplify extreme values. Clearly, their differescin practice result also from the

specific parameterisatiofl.

As usual, once the parameters have been seé,s’dlye neural network is able to predict

outputsy = g(i,é) for input valuesx which were not included in the training data.

3.1. The learning process

As pointed out in WITE (1989), the output vect0|y:g(x,0) can be viewed as
generating a family of approximations (# ranges over the se®, say) for the
unknown relation between inputx and their corresponding outputs The best
approximation can be determined byegursive learning procedure known as back-
propagation. The learning processtraining — is then an iterative procedure of

processing inputs through the neural network, d@teng the errors and back-

'3 This is why some authors designate these functiesguashing functions.



propagating the errors through the network to ddhesparameters in order to minimise
the error between the predicted and observed autpiitis method of learning is
referred to agradient descent as it involves an attempt to find the lowest pomthe

error space by a process of gradual descent ahengrtor surfac&®

In our case, a single-layer network knownpasceptron will be used to perform the

classification task or, in other words, will be ds® determine the vector of weights
and bias specifying a line on the space outpugiitih such that two sub-sets of points
— obviously the opportunistic and benevolent onese-defined. At this stage, a short
explanation about how the neural network will detiele the above-mentioned vector

seems appropriate.

In the particular case under study, tlearning process conducing to the above-

mentioned vector of weights and bias can thus kerdeed as follows:

1. Initial weights,w, and biasb, are generated in an interval with enough rdrge;
2. Given some target vectoy*, with binary values associated with the two
considered categories of governments, the egrds,computed as the difference
betweeny* and the perceptron outpwt
i) If there is no error in the classification, thaeis 0, thenAw=Ab= Q
i) If some pair of economic policies/states is clasdifis belonging to category
1, say benevolent, and should have been classifidaelonging to category
0, say opportunistic, them= -1. Therefore, in order to increase the chance
that the input vectox will be classified correctly, the weight vectar is
‘put farther away’ fromx by subtractingx from it; this meaning that
Aw=-x";
i) If some pair of economic policies/states is clasgdifs belonging to category
0 and should have been classified as belongingtegory 1 , there = 1.

Therefore, in order to increase the chance thatirthat vectorx will be

16 Two factors are used to control the training alponis adjustment of the parameters: thementum
factor and thdearning rate coefficient. Themomentum term, which is quite useful to avoid local minima,
causes the present parameter changes to be affgcted size of the previous changes. Tdaening rate
dictates the proportion of each error which is usedpdate parameters during learning.

" Note that anard 1init transfer function will be used and this giwes 1 whenwx + b > 0 andy = 1
whenwx+b<0

10



classified correctly, the weight vecter is ‘put closer’ tox by addingx to

it; this meaning thatw=x" .

To sum up, the perceptron learning rule will be dohsipon the following

updating rules:
Aw= (yD - y)xT —ex', (1)
and

Ab= (yD - y)lT —e 2)

Using (1) and (2) repeatedly — the so-calteaining process — the perceptron will
eventually find a vector of weights and bias, stitht all the pairs of inflation and
output are classified correctly. Indeed, it is walbwn that, if those pairs are linearly
separable, the perceptron will always be able tofope the classification by

determining a linear decision boundary.

4. The Classification of the Government

In the electoral business cycle literature, onghefmost crucial conclusions is that the
short-run electorally-induced fluctuations prejwithe long-run welfare. In fact,
because the electoral results depend on voterguai@an, we can consider that if
electoral business cycles do exist it is becaugerspthrough ignorance or for some
other reason, allow them to exist. This point idtroes a well-known problem of
electorally-induced behaviour punishment and its relatedoroblem of monitoring. In
reality, voters often cannot truly judge/classifam observed state/policy is the result of
a self-interested/opportunistic government or, on the contrary, results assacial-
planner/benevolent outcome, simply because voters do not know thectstre, the
model or the transmission mechanism connectingcpolialues to state values.
Moreover, a constant monitoring of government behavseemsot to be considered a

crucial practice by the electorate.

Even so, voters do ‘anticipate’ the possible ecdnodamage resulting from such

myopic behaviour by governments and, especially clostraaelections, start assify

11



policies and outcomes as potentially being thelredwan ‘electoralist’ strategy. This is
done in order not to be ‘fooled’ by the incumbeontvgrnment or simply to punish the
incumbent government in case of clegnals of electorally-induced policies. In other
words, a classification is made, so that for aicwifitly small sub-set of policies
classified as ‘electoralist’, voters usually do rnake that as a serious motive for
punishment, but others, regarded as serious dengtare punished.In general, this
classification task is made difficult by ignoranackthe structural form of the model
transforming policies in outcomes and also simmgduse information gathering costs

money and time.
4.1. The model

Recently some authors have assumed an extendedrnversthe standard aggregate
supply curvey, = 37+,8(77t —nf), where y, denotes the level of output (measured in

logarithms) that deviates from the natural level, whenever the inflation rater, ,
deviates from its expected levaf , by considering
Yi :(1_/7)7+’7Yt—1+5(77i _”te)’ (3)

wheren measures the degree of output persistence. 8ReNER (1999) for an output

persistence case and/anssoN(1997) for an unemployment persistence c¢ase

When normalizing the natural level of output subatty =0 the aggregate supply

curve reduces to:

Y = @ha +alz - 7). (4)
where, following the hypothesis of adaptive exptotes,
TG = YTy, (5)

18 Note the difference between this approach andtieeconsidered, for instance, iNNAORD (1995).
Here, it is assumed thatdters penalise absolutely any evidence that monetary policy has responded to
anything other than news’, by ‘absolutely’ meaning that there is enoughhditawal of voters to ensure
electoral defeat.

19 As acknowledged in BRTNER (1999), only quite recently authors have startegdy due attention to
the consequences of considering that relevant rmacrmmic variablesn reality, show some degree of
persistence over time. In fact, a casual obsenvabio reality shows that Europe has been facing a
problem in what concerns unemployment which indesiéécts persistence. Given the close connection
between unemployment and output, it should be plessb ‘translate’ our results in terms of outpat t
results in terms of unemployment.

12



where0<¢<1andO<y<l.

As said before, a most common kind of neural nétWor classification purposes is the
so-called perceptron. In order to perform the @istlassifying the government, in what
concerns its behaviour during the mandate, it guired the determination of the
opportunistic and benevolent solutions. These wolgtdiffer in accordance with the
way time periods are discounted: whereas for spctberefore also for a benevolent
government, future periods should be less importiaan present ones, this is not the
case with an opportunistic government, as futuramerds,i.e. those closer to the
election day, are more vital than present onesrder to explore the decay in the

memory of voters.

Having said that, concerning the government's dived¢unction, we make the standard
assumption that the incumbent faces a mandateediviito two periodst =1,2 such
that society’s welfare during the mandate, the benevolent government's objective
function is given by:

U=U,+0J,, (6)
where p is the social rate of discount, whereas opporticngovernment's objective
function is :

V = (N +V,, (7)

where u is the degree of memory of the electorate. Ira(®) (7) we also admit that

U, =V, :_%ntz + By, - (8)

In these circumstances it is worth immediately ¢iog that, in general, excepting if

M =1, the policies that maximise social welfare (6) aot the ones that maximise
popularity (7). As it plausible to assume that bgthand i do not exceed 1, it is
immediately clear that only in the case of perfeeimory,i.e. 1 =1, and both periods
being equally important for societiye. p =1, an opportunistic government will behave

exactly as a benevolent one. This fact allows fakimyg it plausible to ask the question:
how to classify a government?, whose answer is supposed to be given by a neural
network when separating optimal outcomes into twotg the opportunistic and the

benevolent ones. In other words, the opportunastid benevolent solutions (policies

13



and outcomes) will constitute the necessary infatghe neural network application.
Given the classification task format, let us prelisdefine what will be called
opportunistic or ‘electoralist’inputs, that is policies, andpportunistic outputs, that is
outcomes, to be compared wiienevolent inputs andbenevolent outputs.

Clearly, the opportunistic policy and outcomes vk, respectively, the values of
inflation and output which result from the maxintiea of (6) and (7) subject to (4) and

(5). This immediately leads to the optimal policies

e =ap(l-ply-9), (9)

m=ap, (10)

n = aﬁ(l-ﬂ), (11)
7]

m=ap. (12)

Those policies lead to the optimal output levels:

v =y, +alaBl- ply-)-ym), (13)
ys =dayo +alapl-ply-9)-ym)) +alap-yapl-ply-9). (14
e =@, +a{aﬁ(]—_%¢j_yﬂo} (15)

yS = w{% +a(aﬂ[1—y—;f”] - wron +a[aﬂ—yaﬁ(1—y—;f”jj . (e)

Before proceeding with the classification taskisitrelevant to note that there are, in
fact, two possible patterns for the political besis cycle:i) a typical one, where
inflationary expansions take place immediately befine elections anil) an atypical
one, where the inflationary expansions take planmediately after the electioRs.
Given that:

20 From this point onwards, the superscriptandO identify an element as, respectively, concernirgy t
benevolent and the opportunistic government.

2l This means that, in general, not possible to alwase the observed pre-elections expansions as
empirical evidence supporting the existence of gpodunistic behaviour of the government as, in,fac
even some experienced scholars incorrectly do.

14



7= =apoly-g), - =apt L,

the typical pattern will be observed whgn>¢ and the atypical one whep<g¢.

Plainly, wheny = ¢ there will be no cycle at all.

Given the optimal solutions, (9) to (16), it isssghtforward to verify that, because

e -nP =a/3(y—<o)1‘%, -7 =0,

1-up

1_
ye -y = azﬂ(y—co)T, ye-y2 = —a’Bly-of =2

the typical pattern will then be characterised by:
mE >t 7>, 1 i =
and
YO> Y Y <Yy
whereas the atypical pattern will be characterised
mE <t <, mE <A, i =
and

YO <Y Ys <Y

Given that, in the previous mandate, no mattekihe of government,

i, =ap, (17)
it is possible to further simplify the optimal outdevels expressions, (13) to (16), to:
YE =@ +a’BL-ply-9)-v), (18)
V8 = Py, +aBlo- 2007+ o - gy +1-y+ y2p), (19)
+ - -
yf :WO +a2ﬁM’ (20)
U
+ - — -
S = {wo ratptt j +a(aﬁ- yaﬁ(l——y /j”D . (21)

4.2. The classification task

The optimal inflation rates, (9) to (12), and outpevels, (18) to (21), define the

15



coordinates of four points in tk(ey, 72) plane. This space is to be partiondgossible,

in two sub-spaces by a linear decision boundarythat consists the classification task
— by the neural network. See figure 3.

»
»

Output

Perceptron
decision boundary

v

Inflation

Figure 3 — The neural network classification

Figure 3 allows visualising the opportunistic amshévolent trajectories in the inflation-
output, {,17, space, showing an example where the classiicaif the government is

possible to be achieved by that kind of neural netw

There are, therefore, four points located in tha)(space, two of each typ6, andB.
This makes possible to draw two line segments attimgethe two points of each kind.
If these two line segments cross, it is impossiblebtain a decision boundary. This can
be checked by a system of equations involving tarmvex combinations between these
points defining the intersection between the shiaighe segments. They cannot be

separated if the two paramete#s, A, in the convex combinations:

R B B R IR RV
Y

are both between 0 and 1.

Given the optimal inflation rates, (9) to (12), andtput levels, (18) to (21), the

solutions forA,, A, in (22) are:

16



Q@B lowy) 23
"o (-gly, +a’Bly-1) 23)

A, = a’pp (o-y) 22 o
9 -9y, +a’Bly-1) &9

Plainly, in general, the possibility to classifyetijovernment depends upon the initial

level of output,y, 2% Figure 4 thus represents those two solutions §28) (24) as a

function of y, .

Figure 4 — The influence of initial output level

In order to havel, = 1n (23),— point C in figure 4- the initial level of output must be:

_ anlp-y)f +di-yu
e T @5)

whereas, irorder to havel, = 1n (24),- point B in figure 4- the initial level of output

must be:

Yo = 0'2,8 :0(¢_ V)Z +dl_ ) (26)

dAl-¢)

2 l-pua’B  (y-4f
) _ 2 _
1o -gy+atply-1)
% When ¢ =), both /]1,/12 are equal to zero, meaning that both types of mowents behave the same.
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As y, given by (25) is higher thag, given by (26) this means that for

2 (9= y) +dll-y)u
Yo>a B ¢(1_ qo),u ) (27)

A, <1 and, therefore, also thdt < . Moreover,
Vo> a? L (28)
1-¢

guarantees that both, A, are positive. See point A in figure 4. After naiig that y,

given by (25) is higher thary, given by (28)° it is possible to consider an initial

condition

2 0= y) +dl-y)u
Yo>apB e : (29)

such that it is impossible to associatethe observed behaviours to the correct type of
government. In all the other cases, the classifinatask can be resolved by the

perceptron. See figure 5.

MA2<0 AN, >0 N>l A<l A >l M<1

[ »n <

Yo=>A1=A;=0 Yo=>A=1 Yo=>A =1
Figure 5 — The classification regions

Notwithstanding that conditionally, there is a fantental exception. When output does

not show any persistence over time, ¢ =0, which is, indeed, the most considered

case in the literature, it is possible to show thatraight line with intercept between
a2,8y(y,0—2) and crz,Byﬂ and slope equal tw(y+1) will always divide the
U

space in a correct way, this being eventually #sailt of the perceptron classification.
See the Annex.

Plainly, in practical terms, given that a learnprgcess takes place, from the training of

) Can ;2(;2()1#- N _ o p(¢-;()l:r¢¢s(1— N = o2 plo- ¢;1E1'L—1[;J) ~o
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the perceptron does not usually result a straigig Wwith the above mentioned
characteristics. Most importantly, given that the tstraight lines connecting the two

pairs of points in the output-inflation space aaegtlel, this guarantees that the space is
linearly separable. Figure 6 shows this situation.

Output

Inflation;

Figure 6 — A patrticular(ly interesting) case

As it is well known, if the space can be linearjparable, as it is the case when output
does not show any persistence, the perceptroraimihys determine a vector of values
for the weights and a bias value such that thegstrdine associated with these values

divide the space in a correct way. By the use of TMAB, a simple exercise was
performed, whose results are shown in figure 7.

Vectors to be Classified

Figure 7 — An example using Matlab
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5. Concluding Remarks

This paper explores a crucial aspect in the issafepolitical business cycles by
considering the effects of bounded rationality agpect that has been largely ignored. |

hope that this paper has contributed to fill soewen if in a little amount, of the gap.

As a direction for future improvements | would liteeexplore the possible dynamics of
convergence for output in order to check, for ttvegtrun, the real importance of the
initial level of output. Furthermore, other type$ meural networks may also be

considered.
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Annex — Mathematical details

In the caserg, = af3, the solutions are:

m=ap(l-p(y-9). ¥ =ay,+a’B(1-p(y-9)-y).

=ap, Vs = @Y, +a’B(g-29py+ p@? - gy +1-y+y’p),
— — + —
nlozaﬁ(l—y coJ, =gy +at gl YOI
H 7
=ap, ys =<0[¢fyo+a2ﬂ—”_y7_WJ+a[aﬂ—wﬂ(l-y—;f”D-

This means that:

1
m - =aB(y-9) ;’p -1 =0,

1-
) ,U,O

1-
ye-yo=a’B(y-¢ )2 HE

Y Y5 =—a’B(y-¢

Given the previous expressions, the slopes andciepits of the straight linesy, =a' +b'7z

fori = B,Oandt=1,2 are:

b = Av-1) yo+a* B~y v o-2401+ py+ pe+9-po)
B Bap(y-o)

B _ A-10r o -wy) yora®B(aov - 1o+ o-agpy+200*-yor 2y o+ ap Y = D Vp 2y b
- (o-v) p

h° = #Y Yo=a?B( o=y +200-y-0*-qui+9)
B Ba(y-9)

o _ HAF raw-u) oo Blaon-3y*+ piy+y o 2y ity Y-ney i - 2 )

a (py) u

Those two lines will cross at

a*Bo(p-y)’
(9-1) o +a*B(1-)) e )

m=apf|1
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Moreover,

) (p-1) y,—a*B(y-19)

b® —b° = p(1- pu
( aBo(y-9)

a_

@ (1-9) vo+a®B(-gu+gm—py’+ 3y’ - Ipg+ ¢'p)

=) (v-9) wpo

: _— 1-
In the particular case of an initial output lewg| = azﬁl—y we have

b® =b° =a(1-@+y)>0

B

a®-a’ =—(1-pu) azﬁ@<0

In case of no persistence at the output level,ishahen@= 0, the solutions are:

’ =ap(1-py), 1 =ap,
¥y =a’B(l-y-ip). ¥5 =a’B(Ll-y+y’p),
7210 :0’,3(1—1], n? =ap,
U
yo =gtV yo =arplty B

It is then straightforward to verify that:

-1 =afy _/j'p M~ 15 =0,
1
ye-ye =a?By(1+y) p>0, ys —y> =a’By(1+ y); >0,
—_ 1_
ye yl—a/:’y ZTHP 5, ye-y2 =-a’pr =P <o,
U U
Vs yl—aﬁyyﬂ”p>0

Given the previous expressions, the slopes andcipits of the straight linesy, =a' +b'7z
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fori = B,Oandt=1,2 are:

b® =a(y+1)
a® =a’By(w-2)
b° =a(y+1)

a’ =a’Byrt.
Plainly,

a’-a’ =a’By*=£>0.
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