
 

UNIVERSIDADE DE ÉVORA 
 

DEPARTAMENTO DE ECONOMIA 

 
 
 
 

DOCUMENTO DE TRABALHO Nº 2005/09 
May 

 
 
 
 

How to Classify a Government? 
Can a Neural Network do it? 

1st version: February 09, 2005 
This version: April 25, 2005 

 
António Caleiro * 

Universidade de Évora, Departamento de Economia 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 

 
* Paper given at the XII Jornadas de Classificação e Análise de Dados, Universidade dos Açores, Ponta 
Delgada (April 22, 2005). 
 I would like to thank Steffen Hörnig for an extremely useful suggestion. Obviously, the usual disclaimer applies. 
 
 
 
 
 

 

UNIVERSIDADE DE ÉVORA 
DEPARTAMENTO DE ECONOMIA 

Largo dos Colegiais, 2 – 7000-803 Évora – Portugal 
Tel.: +351 266 740 894  Fax: +351 266 742 494 

www.decon.uevora.pt    wp.economia@uevora.pt 
 
 
 



Abstract: 
 

An electoral cycle created by governments is a phenomenon that seems to characterise, at least in some 
particular occasions and/or circumstances, the democratic economies. 
As it is generally accepted, the short-run electorally-induced fluctuations prejudice the long-run welfare. 
Since the very first studies on the matter, some authors offered suggestions as to what should be done 
against this electorally-induced instability. A good alternative to the obvious proposal to increase the 
electoral period length is to consider that voters abandon a passive and naive behaviour and, instead, are 
willing to learn about government’s intentions. 
The electoral cycle literature has developed in two clearly distinct phases. The first one considered the 
existence of non-rational (naive) voters whereas the second one considered fully rational voters. It is our 
view that an intermediate approach is more appropriate, i.e. one that considers learning voters, which are 
boundedly rational. In this sense, one may consider neural networks as learning mechanisms used by 
voters to perform a classification of the incumbent in order to distinguish opportunistic (electorally 
motivated) from benevolent (non-electorally motivated) behaviour of the government. The paper explores 
precisely the problem of how to classify a government showing in which, if so, circumstances a neural 
network, namely a perceptron, can resolve that problem. 
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1. Introduction and Motivation 

 

An electoral cycle created by governments is a phenomenon that seems to characterise, 

at least in some particular occasions and/or circumstances, the democratic economies. 

As it is generally accepted, the short-run electorally-induced fluctuations prejudice the 

long-run welfare. Since the very first studies on the matter, some authors offered 

suggestions as to what should be done against this electorally-induced instability. For 

some authors, ever since the seminal paper of NORDHAUS (1975), a good alternative to 

the obvious proposal to increase the electoral period length is to consider that voters 

abandon a passive and naive behaviour and, instead, are willing to learn about 

government’s intentions. 

 

The electoral cycle literature has developed in two clearly distinct phases. The first one, 

which took place in the mid-1970s, considered the existence of non-rational (naive) 

voters. In accordance with the rational expectations revolution, in the late 1980s the 

second phase of models considered fully rational voters. It is our view that an 

intermediate approach is more appropriate, i.e. one that considers learning voters, which 

are boundedly rational. In this sense, one may consider neural networks as learning 

mechanisms used by voters to perform a classification of the incumbent in order to 

distinguish opportunistic (electorally motivated) from benevolent (non-electorally 

motivated) behaviour of the government. The main objective of this paper consists 

precisely on studying the problem of how to classify a government showing in which, if 

so, circumstances a neural network, namely a perceptron, can resolve that problem. To 

achieve this objective we will consider a quite recent version of a stylised model of 

economic policy, i.e. a version based on an aggregate supply curve embodying output 

persistence. See GÄRTNER (1996,1997,1999,2000). 

 

The rest of the paper is structured as follows. Section 2 offers the analysis of the 

bounded rationality approach as a motivation for the use of neural networks as learning 

devices. Section 3 then presents the characteristics of the particular neural network, i.e. 

the perceptron, which will be used to perform the classification of the government task. 

Section 4 explores the problem of how to classify a government showing in which, if so, 

circumstances the perceptron can resolve that problem. Section 5 concludes. 
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2. The Bounded Rationality Approach 

 

In the spirit of the bounded rationality research program, which is 
really to put the economist and the agents in his model on an equal 
behavioral footing, we expect that, in searching these literatures for 
ways to model our agents, we shall find ways to improve ourselves. in 
SARGENT (1993), pg. 33. 

 

Generally speaking, learning models have been developed as a reasonable alternative to 

the unrealistic informational assumption of rational expectations models. Moreover, 

through learning models it is possible to study the dynamics of adjustment between 

equilibria which, in most rational expectations models, is ignored. In fact, rational 

expectations hypotheses are, in some sense and with some exceptions, a limiting 

property of a dynamic system which evolves from one equilibrium to another, this being 

possible because it is assumed that agents know the true model of the economy and use 

it to form their expectations which, in turn, implies that agents are also able to solve the 

model. 

 

Interestingly, learning models also deal with another difficulty of rational expectations 

models, namely the existence of multiple equilibria. It is well known that for linear 

models, where only expectations of current variables are considered, the rational 

expectations equilibrium is unique. Conversely, when expectations about the future 

endogenous variables are required, multiple rational expectations equilibria can occur. 

Moreover, this is also a common feature of stochastic control/decision problems. In this 

case, the lack of equilibrium uniqueness arises from an imperfectly specified 

intertemporal decision problem under uncertainty. The analysis of learning processes 

can, in fact, provide a way of selecting the ‘reasonable’ equilibrium or sub-set of 

equilibria. On the one hand, if the learning mechanism is chosen optimally, then a 

desirable rational equilibrium is selected from the set of the rational expectations 

equilibria; see MARCET and SARGENT (1988,1989a,1989b). On the other hand, if the 

learning mechanism is viewed under an adaptive approach, in particular in 

expectational stability models, it can also act as a selection criterion in multiple 

equilibria models involving bubbles and sunspots; see EVANS (1986), EVANS and 

GUESNERIE (1993), EVANS and HONKAPOHJA (1994,1995). To sum up, learning 

mechanisms, whether optimally or adaptively chosen, ‘select’ the particular steady state 
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as, in some sense, terminal conditions do. 

 

Through this last point, one can already anticipate the usual distinction between learning 

mechanisms. Although a number of different studies modelling learning have been 

presented, two main classes of models can be distinguished: rational learning and 

boundedly rational learning models.3 In rational learning models, it is assumed that 

agents know the true structural form of the model generating the economy, but not 

some of the parameters of that model. In boundedly rational learning models, it is 

assumed that agents, while learning is taking place, use a ‘reasonable’ rule, for instance, 

by considering the reduced form of the model. 

 

Rational learning, which some authors identify with Bayesian learning, thus assumes 

that the model structure is known by the agents while the learning process is taking 

place. Given the difficulties that arise in modelling this kind of learning, the bounded 

rationality approach has the appealing advantage of being (at least) more tractable. 

Moreover, the assumption that agents use a misspecified model during the learning 

process makes the bounded rationality approach less controversial. 

 

Obviously, the use of a misspecified model during learning has its consequences on the 

formation of expectations. In fact, under the bounded rationality approach, agents are 

modelled as using an ‘incorrect’ rule, derived from backward-looking reduced form 

equations, to generate expectations while they are learning about the true structural 

form. 

 

In the bounded rationality approach, various notions of expectational stability and of 

econometric learning procedures have been the main formulations. Interestingly, the 

distinction between these two main procedures has to do with the ‘notion’ of time where 

learning takes place. While the expectational stability principle assumes that learning 

takes place in ‘notional’, ‘virtual’ or meta-time, econometric learning procedures 

                                                      
3 WESTAWAY (1992) prefers to distinguish closed-loop learning, where agents learn about the parameters 
of the decision rule, from open-loop learning, where agents form an expectation of the path for a 
particular variable which they sequentially update. As is pointed out, closed-loop learning will be 
virtually identical to the parameter updating scheme using Kalman filtering. 
5 If agents never discount past information, then Kalman filtering can be seen as a rolling least-squares 
regression with an increasing sample. On the contrary, if past information becomes less important, then a 
‘forgetting factor’ can be included which gives a rolling window, or more precisely a form of weighted 



 5 

assume real-time learning. 

 

The expectational stability approach considers the influence of – and thus the distinction 

between – perceived laws on actual laws of motion of the economic system. The actual 

law of motion results from the substitution of the perceived law of motion in the 

structural equations of the true model. It is then possible to obtain a mapping ( )θL  from 

the perceived to the actual law of motion, where θ  denotes the set of parameters. 

Rational expectations solutions θ  are then the fixed points of ( )θL . Finally, a given 

rational expectations solution θ  is said to be expectationally-stable if the differential 

equation: 

( ) θθ
τ
θ −= L

d

d
 

is locally asymptotically stable at θ , where τ  denotes meta-time. 

 

In adaptive real-time learning, agents are assumed to use an econometric procedure for 

estimating the perceived law of motion. Least-squares learning is widely used in this 

formulation in spite of its apparent drawbacks; see SALMON  (1995) for a criticism of 

this issue. A more sophisticated application of these econometric procedures is the 

consideration of the Kalman filter which, as is well known, nests least squares learning 

and recursive least squares.5 

 

Given the above discussion we can question, as WESTAWAY (1992) clearly and 

naturally points out: 

 

“How do policymakers react to the fact that the private sector is learning?” 

 
Paradoxically, this pertinent question has been almost ignored. In fact, the analysis of 

the implications of learning mechanisms in policy-making is far from being complete. 

Some exceptions are BARRELL et al. (1992), BAŞAR and SALMON  (1990a,1990b), 

                                                                                                                                                            
least squares. 
7 A more formal definition would consider a neural network >< p,P  to be a directed graph over the set 

P  of processors (neurons), where a processor is a mapping from an input to an output space. 
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CRIPPS (1991), EVANS and HONKAPOHJA (1994), FUHRER and HOOKER (1993), 

MARIMON and SUNDER (1993,1994), SALMON  (1995) and WESTAWAY (1992). SALMON  

(1995) is, to the best of my knowledge, one of the very few references where an 

innovative bounded rationality approach such as neural networks learning has been 

applied in a policy-making problem. We propose to use this approach within a political 

business cycles context. That being said, we will consider that bounded rationality 

voters have to classify economic policies and outcomes as coming from opportunistic or 

from benevolent government behaviour. 

 

3. The Neural Networks Methodology 

 

Given the characteristics of neural networks it, thus, seems appropriate to consider that 

the above mentioned classification task can be performed under this formulation of 

bounded rationality agents. Given that (artificial) neural networks are simulations of 

how biological neurons are supposed to work, the structure of human brains, where 

processing units, the so-called neurons, are connected by sinapses, is approximated by 

these (artificial) neural networks. As such, the interconnected network of processing 

units describes a model which maps a set of given inputs to an associated set of outputs 

values.7 As the number of inputs does not have to be equal to the number of outputs, a 

neural network can, alternatively, be described as mapping one set of variables onto 

another set of a possibly different size. 

 

The knowledge of the values for the input and output variables constitutes, then, the 

major part of the information needed to implement a neural network. Despite the 

minimal information requirement, this constitutes no motive for questioning the results 

obtained; see SALMON  (1995). In fact, this characteristic makes neural networks 

particularly appropriate for cases where the structure connecting inputs to outputs is 

unknown.8 In this sense, neural networks can be classified as ‘non-structural’ 

procedural models. Furthermore, they are in good agreement with a typical 

characteristic of bounded rationality: the adaptive behaviour. Indeed, the adaptation to 

                                                      
8 Take, for instance, WALL  (1993) which pretends to bridge the gap between substantive rationality and 
procedural rationality. The fact that it is considered that the exact form of the objective function is 
unknown is what makes this bounded rationality model a good example of a possible application of 
neural networks. 
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the environment as a crucial characteristic of a neural network makes it distinct from 

many (standard) models of learning.9 

 

Neural networks are used mainly to learn in two types of tasks; see SWINGLER (1996): 

 

1. Continuous numeric functions – When the task is to approximate some 

continuous function, as in the case of a signal extraction. 

 

2. Classification – When the input is a description of an object to be recognised and 

the output is an identification of the class to which the object belongs. The most 

common kind of neural network for classification purposes is the so-called 

perceptron.10 In what follows it will be shown how perceptrons would classify 

policies and outcomes as ‘electoralist’ or not, using a recent stylised model of 

economic policy. 

 

Let us then clarify the modus operandi of neural networks by a simple formalisation as 

follows.11 Given an input vector x, the neural network determines a particular 

parameterisation, say β, which, in conjunction with a function g – also possibly 

determined by the neural network – leads to the output vector ( )β,xgy =  ‘closest’ to 

some target y*. In other words, the output units ( ),ky  ( ),,...,1 tk =  process, using a 

function g, the inputs ( ),ix  ( ),,...,1 ri =  previously amplified or attenuated by the 

connection strengths ( )ki,β .12 

 

The simplest neural network structure described above is usually relaxed to obtain 

flexibility by considering a layer of, so-called, hidden units. In this case, the 

transformation of inputs into outputs includes an intermediate processing task 

performed by the hidden units. Each hidden unit, then, produces, by the consideration of 

                                                      
9 In particular, neural networks relax the constant linear reduced form assumption of least squares 
learning by considering a time varying possibly non-linear stochastic approximation of that reduced form. 
10 For a clear explanation of the link between perceptrons and the statistical discriminant analysis see CHO 
and SARGENT (1996). 
11 To all of those whose scepticism only disappears with a sound mathematical presentation see 
ELLACOTT and BOSE (1996). More advanced references include WHITE (1989). 
12 Implicitly assumed is a feedforward model where signals flow only from x(i) to y(k). Nevertheless, it is 
also possible to consider feedback effects. 
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an activation or transfer function f(.), an intermediate output s(j), (j = 1,…,s), which is 

finally sent to the output layer.13 This situation can be illustrated as follows. 

x(2) x(3) x(r)

.........

..............

x(1)

w(1,1) w(r,s)

b(1) b(s)
1 1

Input Layer

Hidden Layer

............Output Layer

y(1) y(t)

β (1,1) β (s,t)

Σ Σ

f f

 

Figure 1 – The neural network structure 

 

Mathematically the network then computes: 

 

1. The input(s) to the hidden layer, h(j), as a weighted sum 

( ) ( ) ( ) ( ) ;,...,1,
1

sjixjiwjbjh
r

i

=+= ∑
=

 

2. The output(s) of the hidden layer, which are the input(s) to the output layer, are 

subject to an output activation 

( ) ( )( ),jhfjs =  

where f is the so-called activation function. 

3. The output(s) of the output layer14 

( ) ( ) ( ) .,...,1,
1

tkjskjky
s

j

==∑
=

β  

 

Plainly the two crucial elements of a neural network are the parameter set ( )βθ ,w=  

and the activation/transfer function f(.). The transfer function usually has the role of 

                                                      
13 It is also (and generally) possible to consider a bias node ‘shifting' the weighted sum of inputs by some 
factor b (j). See Figure 1. 
14 It is possible to consider an activation function and/or a bias before the determination of the ‘final’ 
outputs. 
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normalising a node’s output signal strength between 0 and 1.15 The most used are the 

tanh or some sigmoid function ( ) ( )( ) 1exp1 −−+= hhf  and a gaussian function or 

some radial basis function. The differences between these functions are made clear 

by considering the following figure. 

 

0

0.5

1

-3 -1 1 3h

Sigmoid

Hyperbolic Tangent

Radial Basis
 

Figure 2 – Some squashing functions 

 

As is clear, the sigmoid and the tanh functions are similar. Moreover, while the radial 

basis function amplifies in-between values, the sigmoid and tanh functions attenuate 

or amplify extreme values. Clearly, their differences in practice result also from the 

specific parameterisation θ . 

 

As usual, once the parameters have been set, say θ̂ , the neural network is able to predict 

outputs ( )θ̂,ˆ xgy =  for input values x  which were not included in the training data. 

 

3.1. The learning process 

 

As pointed out in WHITE (1989), the output vector ( )θ,xgy =  can be viewed as 

generating a family of approximations (as θ  ranges over the set ,Θ  say) for the 

unknown relation between inputs x and their corresponding outputs y. The best 

approximation can be determined by a recursive learning procedure known as back-

propagation. The learning process – training – is then an iterative procedure of 

processing inputs through the neural network, determining the errors and back-

                                                      
15 This is why some authors designate these functions as squashing functions. 
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propagating the errors through the network to adjust the parameters in order to minimise 

the error between the predicted and observed outputs. This method of learning is 

referred to as gradient descent as it involves an attempt to find the lowest point in the 

error space by a process of gradual descent along the error surface.16 

 

In our case, a single-layer network known as perceptron will be used to perform the 

classification task or, in other words, will be used to determine the vector of weights 

and bias specifying a line on the space output-inflation such that two sub-sets of points 

– obviously the opportunistic and benevolent ones – are defined. At this stage, a short 

explanation about how the neural network will determine the above-mentioned vector 

seems appropriate. 

 

In the particular case under study, the learning process conducing to the above-

mentioned vector of weights and bias can thus be described as follows: 

 

1. Initial weights, w, and bias, b, are generated in an interval with enough range;17 

2. Given some target vector y*, with binary values associated with the two 

considered categories of governments, the error, e, is computed as the difference 

between y* and the perceptron output y. 

i) If there is no error in the classification, that is e = 0, then 0=∆=∆ bw ; 

ii)  If some pair of economic policies/states is classified as belonging to category 

1, say benevolent, and should have been classified as belonging to category 

0, say opportunistic, then e = -1. Therefore, in order to increase the chance 

that the input vector x  will be classified correctly, the weight vector w  is 

‘put farther away’ from x  by subtracting x  from it; this meaning that 

Txw −=∆ ; 

iii)  If some pair of economic policies/states is classified as belonging to category 

0 and should have been classified as belonging to category 1 , then e = 1. 

Therefore, in order to increase the chance that the input vector x will be 

                                                      
16 Two factors are used to control the training algorithm’s adjustment of the parameters: the momentum 
factor and the learning rate coefficient. The momentum term, which is quite useful to avoid local minima, 
causes the present parameter changes to be affected by the size of the previous changes. The learning rate 
dictates the proportion of each error which is used to update parameters during learning. 
17 Note that a hard limit transfer function will be used and this gives y = 1 when wx + b > 0 and y = 1 
when wx + b ≤ 0 
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classified correctly, the weight vector w  is ‘put closer’ to x  by adding x  to 

it; this meaning that Txw =∆ . 

 

To sum up, the perceptron learning rule will be based upon the following 

updating rules: 

 ( ) ,TT exxyyw =−=∆ ∗  (1) 

and 

 ( ) .T eyyb =−=∆ ∗ 1  (2) 

 

Using (1) and (2) repeatedly – the so-called training process – the perceptron will 

eventually find a vector of weights and bias, such that all the pairs of inflation and 

output are classified correctly. Indeed, it is well known that, if those pairs are linearly 

separable, the perceptron will always be able to perform the classification by 

determining a linear decision boundary.  

 

4. The Classification of the Government 

 

In the electoral business cycle literature, one of the most crucial conclusions is that the 

short-run electorally-induced fluctuations prejudice the long-run welfare. In fact, 

because the electoral results depend on voters’ evaluation, we can consider that if 

electoral business cycles do exist it is because voters, through ignorance or for some 

other reason, allow them to exist. This point introduces a well-known problem of 

electorally-induced behaviour punishment and its related problem of monitoring. In 

reality, voters often cannot truly judge/classify if an observed state/policy is the result of 

a self-interested/opportunistic government or, on the contrary, results as a social-

planner/benevolent outcome, simply because voters do not know the structure, the 

model or the transmission mechanism connecting policy values to state values. 

Moreover, a constant monitoring of government behaviour seems not to be considered a 

crucial practice by the electorate. 

 

Even so, voters do ‘anticipate’ the possible economic damage resulting from such 

myopic behaviour by governments and, especially closer to the elections, start to classify 
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policies and outcomes as potentially being the result of an ‘electoralist’ strategy. This is 

done in order not to be ‘fooled’ by the incumbent government or simply to punish the 

incumbent government in case of clear signals of electorally-induced policies. In other 

words, a classification is made, so that for a sufficiently small sub-set of policies 

classified as ‘electoralist’, voters usually do not take that as a serious motive for 

punishment, but others, regarded as serious deviations, are punished.18 In general, this 

classification task is made difficult by ignorance of the structural form of the model 

transforming policies in outcomes and also simply because information gathering costs 

money and time. 

 

4.1. The model  

 

Recently some authors have assumed an extended version of the standard aggregate 

supply curve ( )e
ttt yy ππβ −+= , where ty  denotes the level of output (measured in 

logarithms) that deviates from the natural level, y , whenever the inflation rate, tπ , 

deviates from its expected level etπ , by considering  

 ( ) ( )e
tttt yyy ππδηη −++−= −11 , (3) 

where η  measures the degree of output persistence. See GÄRTNER (1999) for an output 

persistence case and/or JONSSON (1997) for an unemployment persistence case.19 

 

When normalizing the natural level of output such that 0=y  the aggregate supply 

curve reduces to: 

 ( )e
tttt yy ππαφ −+= −1 , (4) 

where, following the hypothesis of adaptive expectations, 

 1−= t
e
t γππ , (5) 

                                                      
18 Note the difference between this approach and the one considered, for instance, in MINFORD (1995). 
Here, it is assumed that “voters penalise absolutely any evidence that monetary policy has responded to 
anything other than news”, by ‘absolutely’ meaning that there is enough withdrawal of voters to ensure 
electoral defeat. 
19 As acknowledged in GÄRTNER (1999), only quite recently authors have started to pay due attention to 
the consequences of considering that relevant macroeconomic variables, in reality, show some degree of 
persistence over time. In fact, a casual observation on reality shows that Europe has been facing a 
problem in what concerns unemployment which indeed reflects persistence. Given the close connection 
between unemployment and output, it should be possible to ‘translate’ our results in terms of output to 
results in terms of unemployment. 



 13 

where 10 ≤≤ φ  and 10 ≤≤ γ . 

 

As said before, a most common kind of neural network for classification purposes is the 

so-called perceptron. In order to perform the task of classifying the government, in what 

concerns its behaviour during the mandate, it is required the determination of the 

opportunistic and benevolent solutions. These solutions differ in accordance with the 

way time periods are discounted: whereas for society, therefore also for a benevolent 

government, future periods should be less important than present ones, this is not the 

case with an opportunistic government, as future moments, i.e. those closer to the 

election day, are more vital than present ones, in order to explore the decay in the 

memory of voters. 

 

Having said that, concerning the government's objective function, we make the standard 

assumption that the incumbent faces a mandate divided into two periods, t =1,2, such 

that society’s welfare during the mandate, i.e. the benevolent government's objective 

function is given by: 

 21 UUU ρ+= , (6) 

where ρ  is the social rate of discount, whereas opportunistic government's objective 

function is : 

 21 VVV += µ , (7) 

where µ  is the degree of memory of the electorate. In (6) and (7) we also admit that  

 tttt yVU βπ +−== 2
2
1 . (8) 

 

In these circumstances it is worth immediately noticing that, in general, excepting if 

1=µρ , the policies that maximise social welfare (6) are not the ones that maximise 

popularity (7). As it plausible to assume that both ρ  and µ  do not exceed 1, it is 

immediately clear that only in the case of perfect memory, i.e. ,1=µ  and both periods 

being equally important for society, i.e. ,1=ρ  an opportunistic government will behave 

exactly as a benevolent one. This fact allows for making it plausible to ask the question: 

how to classify a government?, whose answer is supposed to be given by a neural 

network when separating optimal outcomes into two parts: the opportunistic and the 

benevolent ones. In other words, the opportunistic and benevolent solutions (policies 
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and outcomes) will constitute the necessary inputs for the neural network application. 

Given the classification task format, let us precisely define what will be called 

opportunistic or ‘electoralist’ inputs, that is policies, and opportunistic outputs, that is 

outcomes, to be compared with benevolent inputs and benevolent outputs. 

 

Clearly, the opportunistic policy and outcomes will be, respectively, the values of 

inflation and output which result from the maximisation of (6) and (7) subject to (4) and 

(5). This immediately leads to the optimal policies:20 

 ( )( )φγραβπ −−= 11
B , (9) 

 αβπ =B
2 , (10) 

 






 −−=
µ

φγαβπ 11
O , (11) 

 αβπ =O
2 . (12) 

 

Those policies lead to the optimal output levels:  

 ( )( )( )001 1 γπφγραβαφ −−−+= yy B , (13) 

 ( )( )( )( ) ( )( )( )φγργαβαβαγπφγραβαφφ −−−+−−−+= 11 002 yy B , (14) 

 









−






 −−+= 001 1 γπ
µ

φγαβαφyyO , (15) 

 
















 −−−+






















−






 −−+=
µ

φγγαβαβαγπ
µ

φγαβαφφ 11 002 yyO . (16) 

 

Before proceeding with the classification task, it is relevant to note that there are, in 

fact, two possible patterns for the political business cycle: i) a typical one, where 

inflationary expansions take place immediately before the elections and ii) an atypical 

one, where the inflationary expansions take place immediately after the elections.21 

Given that: 

                                                      
20 From this point onwards, the superscripts B and O identify an element as, respectively, concerning the 
benevolent and the opportunistic government. 
21 This means that, in general, not possible to always use the observed pre-elections expansions as 
empirical evidence supporting the existence of an opportunistic behaviour of the government as, in fact, 
even some experienced scholars incorrectly do. 
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( )φγαβρππ −=− BB
12 , 

µ
φγαβππ −=− OO

12 , 

the typical pattern will be observed when φγ >  and the atypical one when φγ < . 

Plainly, when φγ =  there will be no cycle at all. 

 

Given the optimal solutions, (9) to (16), it is straightforward to verify that, because 

( )
µ
µρφγαβππ −−=− 1

11
OB , 022 =− OB ππ , 

( )
µ
µρφγβα −−=− 12

11
OB yy , ( )

µ
µρφγβα −−−=− 122

11
OB yy , 

the typical pattern will then be characterised by: 

BB
12 ππ > , OO

12 ππ > , OB
11 ππ > , OB

22 ππ =  

and 

OB yy 11 > , OB yy 22 < , 

whereas the atypical pattern will be characterised by: 

BB
12 ππ < , OO

12 ππ < , OB
11 ππ < , OB

22 ππ =  

and 

OB yy 11 < , OB yy 22 < . 

 

Given that, in the previous mandate, no matter the kind of government,  

 αβπ =0 , (17) 

it is possible to further simplify the optimal output levels expressions, (13) to (16), to:  

 ( )( )γφγρβαφ −−−+= 12
01 yy B , (18) 

 ( )ργγφγρφφργφβαφ 222
0

2
2 12 +−+−+−+= yy B , (19) 

 
µ

γµγφµβαφ −−++= 2
01 yyO , (20) 

 
















 −−−+






 −−++=
µ

φγγαβαβα
µ

γµγφµβαφφ 12
02 yyO . (21) 

 

4.2. The classification task 

 

The optimal inflation rates, (9) to (12), and output levels, (18) to (21), define the 
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coordinates of four points in the ( )π,y  plane. This space is to be partioned, if possible, 

in two sub-spaces by a linear decision boundary – in that consists the classification task 

– by the neural network. See figure 3.  

 

O
u
tp
u
t

Inflation

(B,1)

(B,2)

(O,2)

(O,1)

Perceptron

decision boundary

 

Figure 3 – The neural network classification 

 

Figure 3 allows visualising the opportunistic and benevolent trajectories in the inflation-

output, (y,π), space, showing an example where the classification of the government is 

possible to be achieved by that kind of neural network. 

 

There are, therefore, four points located in the (y,π) space, two of each type, O and B. 

This makes possible to draw two line segments connecting the two points of each kind. 

If these two line segments cross, it is impossible to obtain a decision boundary. This can 

be checked by a system of equations involving two convex combinations between these 

points defining the intersection between the straight line segments. They cannot be 

separated if the two parameters, 21,λλ  in the convex combinations: 

 ( ) ( )











−+












=












−+












O

O

O

O

B

B

B

B yyyy

2

2
2

1

1
2

2

2
1

1

1
1 11

π
λ

π
λ

π
λ

π
λ , (22) 

are both between 0 and 1. 

 

Given the optimal inflation rates, (9) to (12), and output levels, (18) to (21), the 

solutions for 21,λλ  in (22) are: 
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( )

( ) ( )11 2
0

22

1 −+−
−=

γβαφ
γφ

φµ
βαλ

y
, (23) 

 
( )

( ) ( )11 2
0

22

2 −+−
−=

γβαφ
γφ

φ
βραλ

y
.22 (24) 

 

Plainly, in general, the possibility to classify the government depends upon the initial 

level of output, 0y .23 Figure 4 thus represents those two solutions (23) and (24) as a 

function of 0y . 

 

1

y0

λ1,λ2 

A B C

λ1 

λ2 

 

Figure 4 – The influence of initial output level 

 

In order to have 11 =λ  in (23), – point C in figure 4 – the initial level of output must be: 

 
( ) ( )

( )µφφ
µγφγφβα

−
−+−=

1
12

2
0y , (25) 

whereas, in order to have 12 =λ  in (24), – point B in figure 4 – the initial level of output 

must be: 

 
( ) ( )

( )φφ
γφγφρβα

−
−+−=

1
12

2
0y . (26) 

 

                                                      
22 ( )

( ) ( )11
1

2
0

22

21 −+−
−−=−

γβαφ
φγ

φ
βα

µ
ρµλλ

y
 

23 When γφ = , both 21,λλ  are equal to zero, meaning that both types of governments behave the same. 
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As 0y  given by (25) is higher than 0y  given by (26),24 this means that for  

 
( ) ( )

( )µφφ
µγφγφβα

−
−+−>

1
12

2
0y , (27) 

11 <λ  and, therefore, also that 12 <λ . Moreover, 

 
φ
γβα

−
−>

1
12

0y  (28) 

guarantees that both 21,λλ  are positive. See point A in figure 4. After noticing that 0y  

given by (25) is higher than 0y  given by (28),25 it is possible to consider an initial 

condition 

 
( ) ( )

( )µφφ
µγφγφβα

−
−+−>

1
12

2
0y , (29) 

such that it is impossible to associate all the observed behaviours to the correct type of 

government. In all the other cases, the classification task can be resolved by the 

perceptron. See figure 5. 

 

y0 => λ1 = λ2 = 0 y0 => λ2 = 1 y0 => λ1 = 1

λ1,λ2 > 0λ1,λ2 < 0 λ2 < 1λ2 >1 λ1 >1 λ1 < 1

 

Figure 5 – The classification regions 

 

Notwithstanding that conditionally, there is a fundamental exception. When output does 

not show any persistence over time, i.e. 0=φ , which is, indeed, the most considered 

case in the literature, it is possible to show that a straight line with intercept between 

( )22 −γρβγα  and 
µ

µγβγα 22 −
 and slope equal to ( )1+γα  will always divide the 

space in a correct way, this being eventually the result of the perceptron classification. 

See the Annex. 

 

Plainly, in practical terms, given that a learning process takes place, from the training of 

                                                      
24 ( ) ( )

( )
( ) ( )

( ) ( ) ( ) .0
1

1

1

1

1

1 22
2

2
2

2 >
−

−−=
−

−+−−
−

−+−
φφµ

µργφβα
φφ

γφγφρβα
µφφ

µγφγφβα  

25 ( ) ( )
( )

( )
( ) .0
11

1

1

1 2
22

2
2 >

−
−=

−
−−

−
−+−

φφµ
γφβα

φ
γβα

µφφ
µγφγφβα  
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the perceptron does not usually result a straight line with the above mentioned 

characteristics. Most importantly, given that the two straight lines connecting the two 

pairs of points in the output-inflation space are parallel, this guarantees that the space is 

linearly separable. Figure 6 shows this situation. 

 
O
u
tp
u
t

Inflation

(B,1)

(B,2)

(O,2)

(O,1)

B

O

 

Figure 6 – A particular(ly interesting) case 

 

As it is well known, if the space can be linearly separable, as it is the case when output 

does not show any persistence, the perceptron will always determine a vector of values 

for the weights and a bias value such that the straight line associated with these values 

divide the space in a correct way. By the use of MATLAB, a simple exercise was 

performed, whose results are shown in figure 7. 

 

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
-5

0
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10
x 10

-3 Vectors to be Classified

P(1)

P
(2

)

 

Figure 7 – An example using Matlab 



 20 

 

5. Concluding Remarks 

 

This paper explores a crucial aspect in the issues of political business cycles by 

considering the effects of bounded rationality, an aspect that has been largely ignored. I 

hope that this paper has contributed to fill some, even if in a little amount, of the gap. 

 

As a direction for future improvements I would like to explore the possible dynamics of 

convergence for output in order to check, for the long-run, the real importance of the 

initial level of output. Furthermore, other types of neural networks may also be 

considered. 
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Annex – Mathematical details 

 

In the case 0π αβ= , the solutions are: 

 

( )( )1 1Bπ αβ ρ γ φ= − − , ( )( )2
1 0 1By yφ α β ρ γ φ γ= + − − − , 

2
Bπ αβ= ,   ( )2 2 2 2

2 0 2 1By yφ α β φ φργ ρφ φγ γ γ ρ= + − + − + − + , 

1 1O γ φπ αβ
µ

 −= − 
 

,  2
1 0
Oy y

µ γ φ γµφ α β
µ

− + −= + , 

2
Oπ αβ= ,   2

2 0 1Oy y
µ γ φ γµ γ φφ φ α β α αβ γαβ

µ µ
    − + − −= + + − −    

    
. 

 

This means that: 

 

( )1 1

1B O µρπ π αβ γ φ
µ

−− = − , 2 2 0B Oπ π− = , 

( )2
1 1

1B Oy y
µρα β γ φ

µ
−− = − , ( )22

2 2

1B Oy y
µρα β γ φ

µ
−− = − − . 

 

Given the previous expressions, the slopes and intercepts of the straight lines, i i i i
t ty a b π= + , 

for i = B,O and t = 1,2 are: 

 
( ) ( )

( )

2 2 2
01 2yBb

φ φ α β γφ γ ρ φργ ργ ρφ φ ρφ

βαρ γ φ

− + − + − + + + −

−= , 

( ) ( )
( )

2 2 2 2 2 2 2 2 2 2 2 3 3 2
01 4 2 2 3 3yBa

φ φ ρφ φργ α β φργ γρφ φ φργ ρφ γφ γ ρ φρ γ φ ρ γ ρ φ γ ρ

φ γ ρ

− + + − + − + − + − + + − + −

−= , 

( ) ( )
( )

2 2 2
01 2yOb

φµ φ α β φγµ γ γφ γ φ φµ φ

βα γ φ

− − − + − − − +

−= , 

( ) ( )
( )

2 2 2 2 3 3 2 2 2 2 2 2
0 4 3 3 2 2yOa

µφ φ φµ γφ µ α β φγµ φγ φ γ γ φ µγ µ φγ µφ γ µφγ µ φ φ µ

φ γ µ

+ − − − − + + − − + + − − −

−= . 

 

Those two lines will cross at 

 

( )
( ) ( )( )

32

2
0

1
1 1y

α βρ φ γ
π αβ

φ α β γ µφ

 −
 = −
 − + − 

. 
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Moreover, 

 

( ) ( ) ( )
( )

2
01 1

1B O y
b b

φ α β γ
φ ρµ

αβρ γ φ
− − −

− = −
−

, 

( ) ( ) ( )
( )

2 3 2 2 3
01 3 3

1B O
y

a a
φµ φ α β φµ φγµ ργ φργ γρφ φ ρ

ρµ
γ φ µρ

− + − + − + − +
− = −

−
. 

 

In the particular case of an initial output level 2
0

1

1
y

γα β
φ

−=
−

 we have 

 

( )1 0B Ob b α φ γ= = − + > , 

( ) ( )2
21 0B Oa a γ φ

µρµ α β −− = − − < . 

 

In case of no persistence at the output level, that is when 0φ = , the solutions are: 

 

( )1 1Bπ αβ ργ= − ,  2
Bπ αβ= , 

( )2
1 1By α β γ γρ= − − , ( )2 2

2 1By α β γ γ ρ= − + , 

1 1O γπ αβ
µ

 = − 
 

,  2
Oπ αβ= , 

2
1
Oy

µ γ γµα β
µ

− −= ,  
2

2
2
Oy

µ γ γµα β
µ

+ −= . 

 

It is then straightforward to verify that: 

 

1 1

1
0B O µρπ π αβγ

µ
−− = > ,  2 2 0B Oπ π− = , 

( )2
2 1 1 0B By y α βγ γ ρ− = + > ,  ( )2

2 1

1
1 0O Oy y α βγ γ

µ
− = + > , 

2
1 1

1
0B Oy y

µρα βγ
µ

−− = > ,   0
122

22 <−−=−
µ
µρβγαOB yy , 

2
2 1 0O By y

γ µρα βγ
µ

+− = > . 

 

Given the previous expressions, the slopes and intercepts of the straight lines, i i i i
t ty a b π= + , 
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for i = B,O and t = 1,2 are: 

 

( )1Bb α γ= +  

( )2 2Ba α βγ γρ= −  

( )1Ob α γ= +  

22Oa γ µ
µα βγ −= . 

 

Plainly,  

 

12 2 0O Ba a µρ
µα βγ −− = > . 

                                                      




