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Abstract:

This paper proposes novel methods for the construction of tests for models specified by unconditional
moment restrictions. It exploits the classical-like nature of generalized empirical likelihood (GEL) to define
Pearson-type statistics for over-identifying moment conditions and parametric constraints based on
constrasts of GEL implied probabilities which are natural by-products of GEL estimation. As is increasingly
recognized, GEL can possess both theoretical and empirical advantages over the more standard
generalized method of moments (GMM). Monte Carlo evidence comparing GMM, GEL and Pearsontype
statistics for over-identifying moment conditions indicates that the size properties of a particular Pearson-
type statistic is competitive in most and an improvement over other statistics in many circumstances.
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1 Introduction

This paper proposes novel methods for the construction of tests for models specified by
unconditional moment restrictions. The generalized method of moments (GMM), Hansen
(1982), is the conventional method of fit for such models. In view of increasing Monte
Carlo evidence indicating that GMM estimators may be badly biased in finite samples
and that the empirical and nominal size of associated tests may differ substantially, see,
for example, the Special Issue of the Journal of Business & Economic Statistics (July
1996), a number of alternative estimators which are asymptotically first-order equivalent
to efficient GMM have been suggested. These estimators include empirical likelihood
(EL) [Qin and Lawless (1994), Imbens (1997), Owen (2001)], exponential tilting (ET)
[Kitamura and Stutzer (1997) and Imbens, Spady and Johnson (1998)] and the continuous
updating estimator (CUE) [Hansen, Heaton and Yaron (1996)].

These estimators share a common structure, being members of a class of generalized
empirical likelihood (GEL) estimators [Newey and Smith (2004) and Smith (1997, 2001)].
GEL estimation seems to possess many attractive theoretical features relative to GMM.
Large sample analysis, Newey and Smith (2004), indicates that GEL estimators may
be less prone to bias than those based on GMM. GEL also appears to have diverse
advantages over GMM in finite samples. Imbens (1997) and Newey, Ramalho and Smith
(2002) report promising Monte Carlo results concerning the small sample bias of GEL
estimators, while Imbens, Spady and Johnson (1998) find that particular GEL tests
of overidentifying moment conditions, although also oversized in finite samples, possess
actual sizes closer to nominal size than Hansen’s (1982) test.

GEL bears certain similarities to likelihood-based methods, allowing the construc-
tion of classical-type tests of hypotheses in the moment condition framework. These
include overidentifying moment conditions, for which only Hansen’s (1982) test is typi-
cally available in the GMM setting. This paper exploits the classical-like feature of GEL
and proposes new specification tests for moment condition models similar in spirit to

the standard Pearson tests for goodness of fit. In particular, a set of implied or em-
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pirical probabilities which incorporate the moment condition information are associated
with each GEL estimator, which by reweighting the data impose exactly all moment
conditions on the sample, rather than particular linear combinations as in the GMM
case. See Newey and Smith (2004). Implied probabilities based on GMM may also be
be constructed in a likewise fashion by utilising the GEL criterion function evaluated
at an efficient GMM estimator as discussed in Brown and Newey (1992, 2003). The
resultant GEL distribution function estimator formed from the implied probabilities is
an efficient estimator of the distribution of the data, in particular, it dominates the em-
pirical distribution function (EDF) implicitly used by GMM. Contrasts between GEL
implied and EDF probabilities allow the construction of classical Pearson-type tests of
over-identifying moment conditions. A similar approach can be used to construct tests
for parametric restrictions based on contrasts of restricted and unrestricted GEL implied
probabilities.

In a set of Monte Carlo experiments based on those considered in Imbens, Spady and
Johnson (1998), we compare the finite sample size behaviour of Pearson-type statistics
for over-identifying moment conditions with other existing GMM and GEL tests, such
as Hansen’s (1982) test and those proposed in Smith (1997).

This paper is organized as follows. Section 2 briefly reviews GMM and GEL estima-
tion. Pearson-type tests for over-identifying moment conditions are presented in section
3 while parametric restrictions are considered in section 4. The Monte Carlo experiments
are discussed in section 5. Section 6 concludes. Proofs of the results contained in the

paper are provided in the Appendix.

2 The Model and Estimators

This section briefly reconsiders the model and estimators. The set-up considered and
notation used here is similar to that in Newey and Smith (2004), which is henceforth

abbreviated as NS.

Let z;, (i = 1,...,n), denote independent and identically distributed observations on

2]



the k-vector z. Also, let g(z, 3) be an m-vector of known functions of the data observation
z and the p-vector of parameters (3, where m > p. The model has a true parameter 3,

satisfying the unconditional moment condition

Elg(z,50)] =0, (2.1)

where E[.] denotes expectation taken with respect to the distribution of z.

Various methods of estimation have been proposed for models specified by moment
conditions of the type (2.1). The standard method is two-step GMM estimation, see
Hansen (1982). Let g:(8) = g(z1. 8), §(8) = 0, 0:(8)/n and (8) = Y, 0:(D)gi(8)'/n
or the centred estimator 31", [g:(8) — §(5)][g:(8) — §(B)]' /n. Also, let § be some prelim-
inary estimator given by 3 = arg mingeg §(5)’ W’lg(ﬁ) where B denotes the parameter
space and W is a random matrix with properties to be specified below. The two-step

efficient GMM estimator is defined by

Bannr = arg min (Y Q(3)4(5). (22)
Alternative estimation methods which share the first order asymptotic properties of two-
step GMM are those in the generalized empirical likelihood (GEL) class, as in NS and
Smith (1997, 2001). To describe them let p(v) be a function of a scalar v that is concave
on its domain, an open interval V containing zero with derivatives p;(v) = & p(v)/0v?
and p; = p;(0), (j = 0,1,...). Also let A,(8) = {\: Ng;(8) € V,i=1,...,n}. The GEL
estimator is the solution to a saddle point problem

BGEL = argmin sup P(ﬁ? )‘)a (23)
BEB \chn(B)

where P(3,\) = S p(Ngi(B))/n. Each of the elements of the m-vector A of auxiliary
parameters is associated with an element of the moment indicator vector g;(/3) and may be
interpreted as Lagrange multipliers for the sample moment constraint Y ., p1(Ng:(8))g:(8) =
0. We define the optimal auxiliary parameter estimator

A =arg max P(3,\). (2.4)
AEAR(B)
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Let A(3) = arg max, i (s P(3,\).

The GEL class includes as special cases the empirical likelihood (EL) estimator,
p(v) =log(l —v) and V = (—o0, 1), (Qin and Lawless, 1994, Imbens, 1997, and Smith,
1997), and the exponential tilting (ET) estimator, p(v) = —exp(v), (Kitamura and
Stutzer, 1997, Imbens, Spady and Johnson, 1998, and Smith, 1997). The continuous up-
dating estimator (CUE) of Hansen, Heaton and Yaron (1996) By s = arg ming.s §(6)'Q(6)~4(3),
where A~ denotes any generalized inverse of a matrix A satisfying AA~A = A, is also a
special case with p(v) quadratic as are members of the Cressie and Read (1984) power
divergence family of discrepancies, p(v) = —(14+~v)*V/7/(y+1), see NS, Theorem 2.2.

We impose the following innocuous normalization on p(v). We set p; = py = —1.
If p1 # 0 and py < 0, this normalization can always be imposed by replacing p(v) by
[—p2/p3]p([p1/p2]v). Tt does not affect the estimator of 3 and renders the estimator for A
comparable for different choices of p(v). It is satisfied by the p(v) given above for CUE,
EL, ET and Cressie and Read (1984) discrepancies.

In the following because of their first order asymptotic equivalence, the notation B
is used to denote both efficient GMM and GEL estimators of ;. Consistency of B
is obtained under the following identification and regularity conditions; for GEL, see

Theorem 3.1 of NS. Let Q(3) = FEl[g;(8)g:(0)] or in the centred case E[g;(3)g:(5)'] —
Elg;(B)])E]g:(8)] and Q = Q(5).

Assumption 2.1 There exists W such that W = W + 0p(1) and W is positive definite.

This assumption is only required by GMM which together with the next assumption

ensures the consistency of the preliminary estimator 3.

Assumption 2.2 (a) By € B is the unique solution to E[g(z, 3)] = 0; (b) B is compact;
(c) g(z,B) is continuous at each B € B with probability one; (d) E [supseg|lg(z, B)||"] <
oo for some o > 2; (e) Q is nonsingular; (f) p(v) is twice continuously differentiable in

a neighborhood of zero.

The restriction on the parameter a may be set to the weak inequality o > 2 for GMM.

Assumption 2.2 also implies §(3) = O,(n~/2), A (2.4) exists w.p.a.1 and X = O,(n"'/?).
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The following additional conditions are needed for asymptotic normality. Let G(3) =

E[0g:(8)/0p] and G = G(fh).

Assumption 2.3 (a) Gy € int(B); (b) g(z,3) is continuously differentiable in a neigh-
borhood N of By and E[supse ||09:(8)/08'|]] < oo; (c) rank(G) = p.

Let ¥ = (G'Q7'G)™, H = ¥G'Q7Y and P = Q' — Q7 IGEG'Q7L. If Assumptions
2.1-2.3 hold,

n'2(8 = o) % N(0,%),

n'2X % N(0, P),

and are asymptotically independent. Moreover, defining the normalised and centred

optimised GEL criterion as GELR,, = 2n[P(3,\) — po], we have
GELR, % X2 (m — p).
See Theorem 3.2 of NS.

3 Goodness of Fit Tests for Over-Identifying Mo-
ment Conditions

In the GMM and GEL frameworks there are several ways of assessing the validity of
the over-identifying moment conditions (2.1). Classical-like GEL statistics, suggested
by Smith (1997, 2001), also see Imbens, Spady and Johnson (1998) and Kitamura and

Stutzer (1997), are the GEL criterion function statistic given above

GELR, = 2n[P(3,\) — pol, (3.1)
the Lagrange multiplier form
LM, =nXNQ(B)A, (3.2)
and the score statistic
Sn=ng(By R 3(5) (3.3)



The last statistic is of course identical in form to Hansen’s (1982) GMM test statistic for
over-identifying moment restrictions. Given the asymptotic equivalence between GMM
and GEL estimators, these statistics may also be equivalently evaluated at an efficient
GMM estimator defining A as in (2.4) above. If Assumption 2.2 is satisfied the matrix
Q(fB) evaluated at a consistent estimator for B, is a consistent estimator for Q. Conse-
quently, GELR,,, LM, and S,, are asymptotically equivalent and thus from above possess
a chi-square limiting distribution with m — p degrees of freedom.

This section considers alternative statistics for testing the moment conditions (2.1)
based on implied probabilities 7; (3.4), (i = 1,...,n), and an associated GEL distribution
function estimator fi,(-) (3.5) defined below.

3.1 Implied Probabilities

Implied or empirical probabilities for the observations which incorporate the moment
restrictions (2.1) may be associated with each GMM and GEL estimator. These prob-
abilities form the basis for the statistics developed below so we briefly describe them
here. For a given function p(v), an associated efficient GMM or GEL estimator ( and

A

g;: = g:(P), they are given by
= (N gi)/ Zpl(j‘/gj)a (t=1,..,n), (3-4)
j=1

where \ is defined in (2.4). The empirical probabilities 7;, (i = 1,...,n), sum to one
by construction and are positive when N g; is small uniformly in ¢ as is the case with
probability approaching 1, see Lemma A1l of NS. Moreover, they impose the sample mo-
ment condition Y7, (3, A)gi(B) = 0, where m;(3,A) = p1(Ng:i(8))/ 35—1 p1(Ng;(8)),
(¢ = 1,...,n), when the first-order conditions for A hold, mirroring the population mo-
ment condition (2.1). For EL the implied probabilities were given by Owen (1988), for
ET by Kitamura and Stutzer (1997), for quadratic p(v) by Back and Brown (1993), and
for the general case by Brown and Newey (1992). Also see Brown and Newey (2003), NS
and Smith (1997, 2001).



For any function a(z, 3) and efficient GMM or GEL estimator B the implied prob-
abilities can be used to form an efficient estimator . ; T;a(z;, B) of the expectation
Ela(z, B)] as in Brown and Newey (1998). Of particular interest here is the cumulative
distribution function p(z) = P{z; < z} of the observation vector z which may also be
written in expectation form as p(z) = E[1(z; < z)], where 1(.) denotes the indicator
function, 1(z; < z) = 1 if z; < z and 0 otherwise. The efficient estimator for the observa-

tion distribution function p(-) obtained from the implied probabilities 7;, (i = 1,...,n),

defined in (3.4), is therefore given by

fin(2) = Zm(zi < 2). (3.5)

In particular, fi,(z) is a more efficient estimator for p(z) than the empirical distribution

function (EDF)

pn(2) = Z 1(z; < z)/n. (3.6)

It is well known that when 2z is univariate and continuous the empirical process
n/?[u,(2) — p(2)] weakly converges to a Brownian bridge, a Gaussian process with mean
zero and covariance function pi(z1) A p(z2) — p(z1)u(22), see, for example, Durbin (1973)
and Shorack and Wellner (1986). We need to develop a similar result for the normalised
contrast n'/2[fi,(z) — un(2)] between the GEL distribution function estimator and the
EDF to obtain a particular form of Pearson-type test statistic for the over-identifying

moment restrictions (2.1). Let Z denote the sample space of z and also let

~

n'2lfin(2) = pn(2)] = An(2), 2 € Z.

Lemma 3.1 If Assumptions 2.1-2.3 are satisfied then A, = A where A is a Gaussian

~ ~

process on Z with zero mean and covariance function E[A(z1)A(z2)] = b(21) Pb(22) where

b(z) = E[l(zi < 2)gi(6o)]-
3.2 Pearson-Type Tests

Suppose that the sample z;, (i = 1,...,n), is drawn from a discrete distribution with

support (z',...,2°) and that the distinct value 27 arises n; > 1 times. In a parametric

[7]



context, we may wish to test whether a given distribution function u(z’) = P{z = 27},
(j = 1,...,s), correctly characterizes the distribution of z. To this end, two versions of
the Pearson statistic are usually applied, viz. 37, (nu(27) —n;)?/n; and D75 (npu(27) —
n;)?/nu(z?), where n; and nu(z7) are, respectively, the actual and expected numbers of
observations of the distinct value 27, (j = 1, ..., s), under the assumed distribution pu(-).
For the latter statistic it is assumed that pu(27) > 0 for all j = 1, ..., s. If the distribution
(+) is correctly specified, then differences between the observed and expected numbers of
outcomes arise solely because of random fluctuations. Both statistics are asymptotically
equivalent and have a limiting chi-square distribution with s — 1 degrees of freedom.

In the GEL framework, we can dispense with the assumption of a discrete distribution
and instead think in terms of probabilities associated with individual observations; see
inter alia Owen (2001). In other words, we proceed as if a single data point was observed
in each cell of a n-cell contingency table. That is, GEL versions of the above statistics
may be obtained directly by setting s =n, n; =1, 2/ = z; and u(z?) = 7;, (j = 1, ..., n).
The consequent versions of the standard Pearson statistics to test the moment restrictions
(2.1) are based on the normalised contrasts nw; — 1, (i = 1,...,n), comparing predicted
probabilities from the GEL distribution function fi,(-) and those from the unrestricted

EDF pn(-); viz.
Py =" (n#; —1)° (3.7)

and

proy 1) (33)

- n;
=1
Theorem 3.1 If Assumptions 2.1-2.3 are satisfied then P* and P° are asymptotically

equivalent to GELR,,, LM, and S,,. Therefore P%, P <, Xip-

Therefore, an « asymptotic level test of the over-identifying moment restrictions (2.1)
has critical region {P, > x7,_,(a)} where P, is P¢ or P} and x2, () denotes the 1 —«

quantile from the chi-square distribution with m — p degrees of freedom.
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Alternative forms of Pearson-type tests for the over-identifying moment conditions
(2.1) may be based on a discretization of the distribution of z obtained by employing
a finite partition of the sample space Z. These statistics are similar in spirit to those
discussed by Andrews (1988a, 1988b) but are adapted for the moment condition setting
considered here. As shown in Lemma 3.1 above, the distribution function p(-) of the data
observation vector z is consistently estimated under (2.1) by both the moment restricted
estimator fi,(-) of (3.5) and the EDF pu,(-) of (3.6). Test statistics for the validity of
the over-identifying moment conditions (2.1) proposed below exploit this result and are
based on quadratic forms suitably defined in terms of the contrast fi,(-) — un(+).

Let the sample space Z of z be partitioned into the subsets Z;, (j = 1,2, ...). Consider
the (arbitrary) finite collection of subsets Z;, (j = 1, ..., s), whose union may not equal
Z, that is, Ui_, Z; C Z. We impose the order condition s > m and require u(Z;) > 0,
(j =1,...,8). Define

fin(Z;) = Zml (zi € Z;) (3.9)

and

n

pn(Z)) =Y 1(z € Z;) /n. (3.10)

i=1
Because the choice of the collection {Z;}3_, is arbitrary, an advantage of this approach
is that these subsets Z;, (j = 1,...,s), may be chosen judiciously by the researcher to
explore the validity of the moment restrictions (2.1). Andrews (1988a, 1988b) provides
an extensive discussion and references for such choices in a fully parametric setting.
However, unlike there, we restrict ourselves to consideration only of a non-stochastic
partition Z;, (j = 1,2,...), for ease of exposition. This assumption may be relaxed
though but at the expense of some additional complexity by adopting the approach
used in Andrews (1988b). This would permit a random partition which would weakly
converge to one with the properties ascribed below for Z;, (j = 1,2,...). See Andrews
(1988b, Assumption RC1, p.1425, and Section 3.1, pp.1427-1431).

Let 5, = (fin(Z1), . in(Z2))' and s, = (j1n(Z2), - pn( Za))'- Alsolet B, = (b(Z1), ., b(Zy))

[9]



where b(Z;) = E[1(z € Z;)g(z,00)], (j = 1,...,s). The test statistics defined below are
based on the normalised contrast fif — pf from (3.9) and (3.10). It follows immediately
from Lemma 3.1 that n'/2(3 — u?) <, N(0, BLPBy). Now if By is full row rank m then
B!(B;B.)™'Q(B,B.)"'B; is a g-inverse for B,PB,. Therefore, we consider the statistic

Pyt = n(f, — u3) By(B,By) T UB,BY) T By, — i), (3.11)
where B, = (b(Z1), .., b(Z,)), b(Z;) = 321, Uz € Zj)gs/n ov 321, wil(=2 € Z))gi, (5 =
1,....s), and Q = 30 Gigt/n, S50 [Gi — 9)[g: — a1 /m, § = 9(B), or o0 #idid-

Theorem 3.2 If Assumptions 2.1-2.8 are satisfied and rk(Bs) = m then the statistic P
is asymptotically equivalent to GELR,,, LM, S, and P%, P°. Therefore P* <, anﬂ,.

An « asymptotic level test of the over-identifying moment restrictions (2.1) has critical
region { P2 > x2 _ (a)}. If in addition s = m then B, is nonsingular so that B;'QB,™

is a g-inverse for B! P B;.

Corollary 3.1 If Assumptions 2.1-2.3 are satisfied, rk(Bs) = m and s = m then the
statistic P = n(j — p8) ByYQB! (38 — ) is asymptotically equivalent to GELR,,,
LM,, S, and P%, P°. Therefore P% < Xon—p-

Limiting distributional and asymptotic equivalence results between P¢, P’ and P!
similar to those described above may be shown under the local alternatives H,, : E,[g(z;, 5o)] =
n1%n 4+ o(n"Y?), (i = 1,...,n), n = 1,2,.... Then, n'/?§(5) LR N(n,Q) under H,
and consistency of the GEL and auxiliary parameter estimators B and \ for B, and 0
still obtains. Moreover, the expansions n'/2(3 — o) = —XG'Q'n'/2§(5,) + 0,(1) and
n'2X = —Pn/2§(By) 4 0,(1) remain valid under H,,. Therefore, the statistics P%, P? and

P are asymptotically equivalent to GELR,,, LM,, S,, and converge in distribution to a

'More generally the limiting distribution of the statistic n(i3 — us )2~ (45 — 1), where 2~ denotes
a consistent estimator for a g-inverse of B, P B, is that of a chi-square random variable with rk(B, P Bj)
degrees of freedom.
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non-central chi-square random variable with m — p degrees of freedom and non-centrality
parameter 7' Pr).

We conclude this section by briefly considering the consistency of the tests P2, P
and P%. As detailed in section 2, the GEL criterion is optimised with respect to A
such that Ng(z,5) € V, (i = 1,...,n). Therefore, because V is bounded, p(5,\) =
Elp(Ng(z,0))|Ng(z,0) € V] exists and so by a uniform weak law of large numbers
P(ﬁ, A) 2 p(B,\) uniformly 3 € B and A with p(8,\) continuous in § € B and .

Let \(8) = argmaxy p(3,)), 8 € B. For GMM g(8YQ(B)"'3(8) > g(8)QBu)"9(8)
uniformly # € B where B LN OG-

Assumption 3.1 (a) no f € B exists such that Elg(z, ()] = 0; (b) B is compact; (c)
9(z,3) is continuous at each 3 € B with probability one; (d) E [supsegs|lg(z, B)||*] < oo
for some a > 2; (e) QBix) is nonsingular; (f) p(v) is twice continuously differentiable

onV; (g) AN(B) is the unique mazimiser of p(3,\) and is continuous in 3 € B; (h) B is
the unique minimiser in B of p(3,\(3)) or g(B)Q(B.w) Lg(B).

Assumptions 3.1(g)(h) are convenient high level assumptions made to simplify the exposi-
tion. Uniqueness of A() is required for the consistency of A(3) = arg max, i (s P(,))
for A(8). Continuity of A(3) and uniqueness of 3, guarantee consistency of the GEL esti-
mator 3 for f,. Now, E[pr(A\(8)'g(z, 8))g(z, B)|A(B)'g(z, 8) € V] = 0 from the first order
conditions determining A(3). Therefore, A(3) # 0 for all # € B otherwise a contradiction
with Assumption 3.1(a) would result. In particular, A, = A(f,) is non-zero. We are now

able to establish the consistency of tests based on the statistics P% and P°.
Theorem 3.3 If Assumptions 2.1 and 3.1 are satisfied then P2, PP 2 .

For the consistency of P¥ we require additional assumptions as in Andrews (1988b,
Section 4.2). Let b.(Z;) = E[l(z € Z;)g(z, B:)|Neg(z, i) € V] or E[p1(N.g(z,5:))1(z €
Z)9(2 BINg(2, B.) € VI/piy (7 = 1,08, and Bae = (b(Z1), .., ba(Z4), where i —
Elpi(Xg(z,8.))Neg(z,8.) € VI Also let Q. = FElg(z,08.)9(z, 0.)[Nog(z,6:) € VI,
El(g(z,8.) = 9:)(9(z, B:) = 9.)'|Xg(2,8.) € VI, g. = Elg(z B.)[Ng(z B.) € V], or
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Elp1(X,g(2,8.))g(z, B.)9(z, B.)|\.g(z,8.) € V]/pj. Then By & By, and Q@ & Q..
Define 6.; = E[(p1(X.9(z,8.)) — p))1(z € Zj) |Nog(2,8:) € V]/pi, (j = 1,...,5), and

O = (O41y vy Oks)-

Theorem 3.4 If Assumptions 2.1 and 3.1 are satisfied, rk(Bs) = m and Q,(Bs«B.,) ™ Bs.by #

0, then P 2 0.

The condition Q,(Bs.B.,) ' Bsd, # 0 is critical for test consistency and requires that
8, does not lie in the null space of Q. (B B.,) !B If rk(Q,) = m, then this condi-
tion may be abbreviated to B8, # 0. If s = m as in Corollary 3.1 and B; QB! re-
places B.(B,B.)"'Q(B,B") B, in the definition of P4 (3.11), the consistency condition
Q.B16, # 0 [or 6, # 0 if rk(Q,) = m] should be substituted for €, (Bs.B.,) ' Bs6s # 0
of Theorem 3.4.

4 Goodness of Fit Tests for Parametric Restrictions

This section adapts the goodness of fit statistics of the previous section to test the

parametric restrictions defined by the null hypothesis

Ho T (ﬁo) = 0, (41)

where r(.) is a r-vector of functions.
The following assumptions modify Assumptions 2.2 and 2.3 appropriately for the
results of this section and are adapted from Smith (2001).

Assumption 4.1 (a) Gy € B is the unique solution to E[g(z,3)] = 0 and r(3) = 0; (b)
B is compact; (c) g(z,5) and r(B) are continuous at each 3 € B with probability one;
(d) E{supgeg |lg(2, B)||*} < oo for some o > 2; (e) Q is nonsingular; (f) p(v) is twice

continuously differentiable in a neighborhood of zero.
Let R(3) = 0r(B)/0p" and R = R(().

Assumption 4.2 (a) Gy € int(B); (b) g(z,8) is differentiable in a neighborhood N
of Bo and Elsupsep [|109(2,58)/08'||] < oo; (c) r(B) is continuously differentiable in a
neighborhood N of 3y and supgep | R(B)|| < oo; (d) rank(G) = p and rank(R) = r.

[12]



4.1 Restricted GEL Estimation

The GEL framework is easily adapted to deal with parametric constraints expressed in

contraint equation form. We redefine the GEL criterion function as

P(B,X\n) = Zp 'g: (B) +n'r (8))/n. (4.2)

The first order conditions corresponding to n are Y ., p1(Ng; (B) + n'r (8))r (8) = 0
which imply that the constraints r(3) = 0 of (4.1) are imposed. Therefore, this formula-
tion (4.2) of the optimisation problem is equivalent to that based on the GEL criterion
15(/8 , A) subject to () = 0. The corresponding GEL, auxiliary parameter and Lagrange
multiplier estimators are denoted by 3 , X and 1) respectively.

Let B = {6 : 7(3) = 0, 3 € B}. Then, defining the solution \(3) = arg max,ci (s P(B,)),
B € B, we have A(3) = A(3) for 3 € B", where A(3) is defined below (2.4). Therefore,
also let 3 = arg mingegr P(ﬁ, 5\(5)) and \ = arg max,ci, (3 ]5(6, A).2

For completeness, we detail the limiting properties of the GEL, auxiliary parameter

and Lagrange multiplier estimators in the following result.

Proposition 4.1 If Assumptions 4.1 and 4.2 are satisfied, then B L Bo, A2 0 and
750 and
n'?(5 — fo) = N(0, K),

12 A\ d 0 Q-0 IGKG'QY Q7 'GER/(RXR)!
n'/ — N

n 0 )’\ —(RXR)'REG'Q! (RER)' -1, ’
where K = S—YXR(RYR')"'RY. Moreover, the restricted GEL estimator 3 and auziliary

parameter and Lagrange multiplier estimators (5\, 1) are asymptotically uncorrelated.

An efficient restricted GMM estimator for 3, and Lagrange multiplier estimator associ-

ated with the constraints r(3y) = 0 may also be defined straightforwardly from (2.2) and

2L et the Lagrange multiplier estimator 77 = (3, A). Also let 7;(6,A) = pr(Ng;(3))/ Z?Zl p1(Ng;(5))
as in (3.4). Then, from the Proof of Proposition 4.1, (A.2), 7(8,)\) satisfies 7(3,\) = —(> 1,
(B, ) (R(B)QR(B)) ' R(B)QG;(B)")\ with probability approaching one where @) is an (arbitrary)
nonsingular matrix. Hence, the auxiliary parameter estimator A\(3) satisfies (327, mi(8, \(8))[Ip —

R(B)(R(B)QR(B)) ' R(B)Q]G:(B))N(3) = 0 with probability approaching one.

[13]



(4.1). Under Assumptions 2.1, 4.1 and 4.2 they are asymptotically equivalent to the GEL
estimators 3 and 71 given above. An auxiliary parameter estimator based on an efficient
restricted GMM estimator which is asymptotically equivalent to the GEL estimator A
may then be obtained in a similar fashion to A. We therefore adopt the common notation

§3 for both restricted efficient GMM and GEL estimators.

4.2 Implied Probabilities

Let g; = gi(ﬁ), (1t =1,...,n). As the restricted GMM or GEL estimator (3 satisfies the

constraints (4.1), we define the constrained implied probabilities as

. p1(XN;) i n
Z Z?_lpl(ﬂ'gj)’( 1, ..n). (4.3)

The efficient estimator of the observation distribution function p(-) incorporating both

constraint (4.1) and moment restriction (2.1) information is given by

fin(2) = Zfril(zi < z2). (4.4)

Both the EDF p,,(2) and the unconstrained GMM or GEL estimator fi,(z) remain
consistent estimators of the observation distribution yu(z), whether or not the null hypthe-
sis Hy : 7(8p) = 0 is true. Therefore, similar to the previous section alternative statistics
appropriate for testing the restrictions (4.1) may be based on contrasts of the restricted
and unrestricted implied probabilities 7; and 7;, (¢ = 1,...,n), (4.3) and (3.4), and the
GEL distribution function estimators fi,,(-) and fi,(+), (3.5) and (4.4). Let

Il
=1

! [fin(2) = ()]

n'/? [f1n(2) — fin(2)]

n(2),
Ay (2),z € Z.

Lemma 4.1 If Assumptions 2.1, 4.1 and 4.2 are satisfied then A, = A and A, = A

where A and A are Gaussian processes on Z both with zero mean and respective covari-

ance functions E[A(z1)A(22)] = b(21)(Q7! — Q'GKG'Q Nb(22) and E[A(21)A(z)] =
b(21)'Q 'GER (RER) ' REGQ0(22) where b(z) = E[1(z; < 2)gi(60)]-

[14]



4.3 Pearson-Type Tests

The statistics suggested below for testing the parametric restrictions (4.1) are based on
the contrasts nf; — n#;, (i = 1,...,n), and adapt the statistics P? (3.7) and PP (3.8) to
this context. Therefore, replacing the (implicit) unrestricted EDF divisor unity in P? by
n#; and the restricted divisor n#t; in P? by ni;,
- (7’L7~T P nm i)2
Py = - 4.5
oy (5
and

n ~ A 2
pPhr = Z M (4.6)

nT;
i=1 ¢

Of course, the EDF divisor unity can also be employed; viz.

n

Pem =" (nft; — na). (4.7)

i=1
In the Appendix we show that these three statistics are asymptotically equivalent to the

Wald statistic
W, = nr(B) (RSR) () (4.8)

for testing the parametric restrictions Hy : 7(8y) = 0 of (4.1), where R = R(f), & =
(G'QIG) Y, G = Gi(B)/n or S0 7:Gi(B) and Q is defined above Theorem 3.2.

Therefore:?

Theorem 4.1 If Assumptions 2.1, 4.1 and 4.2 are satisfied, the GEL Pearson-type
statistics P&", P2 and PS" are asymptotically equivalent to W,,. Therefore P37, Pb",

d
c,T 2
per 42,

3Lemma 4.1 may be exploited to provide a test of the joint hypothesis given by the contraints (4.1)
and moment restrictions (2.1). Pearson-type statistics are defined similarly to P? (3.7) and P’ (3.8)
as Y o (n7; —1)?/n7; and Y . (n7; — 1)?. Under Assumptions 2.1, 4.1 and 4.2, these statistics are
asymptotically equivalent to the corresponding GMM and GEL statistics and have a limiting chi-square
distribution with m — p 4+ r degrees of freedom.

[15]



As in section 3.2 consider the partition Z;, (j = 1,2, ...), of the sample space Z of
z and the (arbitrary) finite collection of subsets Z;, (j = 1,...,s), whose union may
not equal Z, that is, Ui_;Z; C Z. We impose the order condition s > m and require

w(Z;) >0, (j =1,...,s). Define the distribution function estimator
in(Z) =Y Fil(z € Z),5=1,..,s. (4.9)
i=1

Let 8 = (fin(Z1), ..., in(Zs)). Also let By = (b(Z1),...,b(Z,)) where b(Z;) = E[1(z €
Z)g(z,Bo)], (j =1,...,s). The test statistics defined below are based on the normalised
contrast i — f2 from (4.9) and (3.9). It follows immediately from Lemma 4.1 that
nV2(i — 2) <5 N(0, BQ'\GSR (RSR) "' REG'Q ' B,). Now if B, is full row rank m
then B!(B,B.)"'\GXG'(B;B.)™' B is a g-inverse for B.Q 'GXR'(RER)'REG'Q ! B,.

A test for the restrictions (4.1) may be based on the alternative statistic

Pt = (i~ ) BUBB) N OSC BB B - i), (410
where B,, G and ¥ are defined above Theorems 3.2 and 4.1.%5 The statistic P“*" of

(4.10) may be further simplified using Lemma 4.1 by noting that G'(Q'—Q'GKG'Q ™) =
R(RXR)™'REG'Q7! yielding the statistic

Pyttt = nlfiy, — 3) BB BY) " GEG (BB Bulfn, — ). (4.11)

Theorem 4.2 If Assumptions 2.1, 4.1 and 4.2 are satisfied and rk(Bs) = m then the
GEL Pearson-type test statistics P and P> are asymptotically equivalent to PO",

d
PY" and PS". Therefore, Paltr  pbhaltr 2 42,

4More generally the limiting distribution of the statistic n(fif — i3 )2~ (i, — 5 ), where 2~ denotes a
consistent estimator for a g-inverse of B.Q " !GXR/(RXR')"'REG'Q 1By, is that of a chi-square random
variable with 7k(B.Q " 1GZR/ (RSR') "1 RXG'Q71 B;,) degrees of freedom.

5By a proof similar to those of Lemmas 3.1 and 4.1 n'/2(g5 — pu?) <, N(,BL(Q7! —
QO IGKG'Q Y)B,). If By is full row rank then B.(B,B.)"'Q(BsB.)!B; is a g-inverse for B,(Q~! —
QO 'GKG'Q1)B,. Therefore a test for the joint hypothesis given by the contraints (4.1) and mo-
ment restrictions (2.1) is given by a Pearson-type statistic defined similarly to P (3.11), that is,
n(is — ps) BL(BsB,) " 'Q(B,B.) ' By(iif, — pf). Under Assumptions 2.1, 4.1 and 4.2, this statistic is
asymptotically equivalent to the corresponding GMM and GEL statistics and Pearson-type statistics
defined in fn. 3 and has a limiting chi-square distribution with m — p + r degrees of freedom.

[16]



If in addition s = m then B, is nonsingular so that B;'GXG'B,! is a g-inverse for

B/ 'GER(RER) ' REGQB,.

Corollary 4.1 If Assumptions 2.1, 4.1 and 4.2 are satisfied, rk(Bs) = m and s = m
then the statistics P = n(fis — p3) ByA\GRG' BN — j3) and Pt — n(fs —
18 By A GRGY B (18 — s are asymiptotically equivalent to P&, PY" and PS". Therefore

alt,r b,alt,r d 2
Pt Pl — X

Consider the local alternatives to the constraints (4.1) H, : r(8) = n~/2¢ +o0(n"1/?),
(i =1,..,n), n = 1,2,... As above, n'/24(3) KR N(0,9) remains valid under H,,.
Consistency of the restricted GEL and auxiliary parameter estimators 3, A and Lagrange
multiplier estimator 7 for By, 0 and 0 still obtains. The expansions n'/ 2(5 — Bo) =
—YR(RER) Y€ - KG'Q n12§(5y) +0,(1) and n'2\ = —Q 'GER/(RER) ¢ —(Q 1 —
QIGKG'Q N 25(5y) +0,(1) and n/?j = (RER') "X+ (RER) ' REG'Q 0t 24(8,) +
0,(1) become appropriate under H,. Hence, the statistics P%", P> PS" and Poetr,
PY4tT yemain asymptotically equivalent to W, and other GMM or GEL statistics for
testing the constraints r (3y) = 0 (4.1). Therefore, P%", Pbr P&™ and P&t pbaltr
converge in distribution to a non-central chi-square random variable with r degrees of
freedom and non-centrality parameter ¢'(RELR')~1¢ under H,.

When considering the consistency of the tests using the statistics P&, Pb" P and
pattr - pbaltr e firstly need to examine the limiting behaviour of the restricted GMM or
GEL estimator 3 and associated auxiliary parameter and Lagrange multiplier estimators
A and 7 when r(By) # 0. Because the hypothesis r(3) = 0 is imposed, P(8,\,n) =
P(B,)), B € B'. Therefore, P(8,\,1) & p(8,)) = E[p(Ng(z,5))|Ng(z 8) € V]
uniformly § € B" and A with p(3,\) continuous in # and A. As in section 3 let
A(B) = argmax, p(B3,)). For GMM, as 3 = fBo, §(8)'Q(B)"4(8) > g(B8)U5%) 'g(5)
uniformly 5 € B".

We modify Assumption 3.1 appropriately.

Assumption 4.3 (a) r(Gy) # 0; (b) r(B) is continuous at each B € B"; (c) N(B) is the

[17]



unique mazximiser of p(3,X) and is continuous in 3 € B"; (d) B, is the unique minimiser

in B" of p(B3,A(8)) or g(B)2B)9(8).

The consistency of tests based on the statistics P#", P>" and PS" now follows.
Theorem 4.3 If Assumptions 2.1-2.8 and 4.3 are satisfied then P®", P’" PoT 2 .

Under Assumptions 2.1, 2.2 and 2.3, G 2 G, Q 2 Q and B, & B,. Let A\, = A(By).

Recall that 6,; = E[(p1(N.g(2, B:)) — pD)1(2 € Z;) [Nog(2,8:) € V]/p1, (5 = 1,...,8),
where p = E[p1(N,g(z, 5:))|N.g(z, B.) € V], and 6, = (641, ..., 0us)"-

Theorem 4.4 If Assumptions 2.1-2.3 and 4.3 are satisfied, rk(Bs) = m and G'(B;B.,) ™' Bs6, #

p
0, then P®altr  pbaltr 2, o,

If s = m as in Corollary 4.1 and thus B; GG’ B! replaces B'(B,B.) '\GLG'(B,B.)™
in the definition of P&%4" (4.10) and P>4" (4.11), the consistency condition of Theorem
4.4 becomes G'B.716, # 0.

Alternatively, B;, G and ¥ may be estimated consistently under Hy : 7(G) = 0
(4.1) using the restricted estimator 3 and implied probabilities 7;, (¢t = 1,...,n), that
is, by By = (b(Z1),.,b(2y)), b(Z;) = Yi,1(z € Z)Gi/n or Y Fil(z € Z))g,
(= Lwws), B = (@G, G = Y0, GulB)fn or S0, #Gi(B), @ = Y0, Gidi/m.
S 13— 3llg — ) /n, § = §(B), or 31, 7:3:3,. No alteration is necessary to either the
conclusions stated in Theorem 4.2 and Corollary 4.1 or the following discussion regard-
ing the limiting behaviour of the Pearson-type statistics P»" and P>¥" under local
alternatives. Some modification, however, is required for test consistency. Let b.(Z;) =
E[l(z € Z;)g(z 8.)|N.g(2,8.) € V] or E[p1(XNg(z,8.))1(z € Z;)g(z B)|Xg(z B.) €
VUi (G = 1,0 8), Boo = (bu(Z2), 0, bu(Z0)), Gu = Eldg(z, 8.) /05 N.g(2,8,) € V)] or
Elp1(XN.g(z, 8.))09(z, 8.) /08| X.g(2, B:) € V]/pi and Q. = Elg(z, 8.)g(z, 8.)'[X,9(z, Bi) €
VI, Elg(z,8.) = 9)(9(z,8.) — 9:)'[Nog(z, B) € V], g. = Elg(z, B)[Ng(z, B) € V],
or Elpi(N.g(z, 8.))g(z B.)g(2, B.) |X.g(2, ) € VI/pi. Then G = G, & & Q, and
B, % B,,. The hypotheses of Theorem 3.4 require the additional conditions rk(2.) = m,
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rk(G,) = p, 7k(Bsy) = m and G.(By,B.,) "By, # 0. Hence, P&etr  pbatr Py o 1f
s = m as in Corollary 4.1 and B;'GEG' B! replaces B)(B,B.)'GXG'(B,B")~" then
the test consistency condition is G’ B/, 18, # 0 substituting for G,(Bs.B.,) ! B # 0.

5 Simulation Evidence: Finite Sample Properties of
Tests of Over-Identifying Moment Conditions

This section investigates the finite sample properties of some of the Pearson-type tests
proposed in previous sections. In particular, we examine the size properties of the P?
(3.7), PP (3.8) and P! (3.11) test statistics for overidentifying moment restrictions. We
assess their performance in comparison with tests based on the GEL criterion function:

GELR, (3.1), Lagrange multiplier LM,, (3.2) and score S,, (3.3) statistics.

5.1 Experimental Designs

The simulation study in Imbens, Spady and Johnson (1998) forms the basis for our
comparison of the finite sample properties of the aforementioned tests. In particular,
we use their first two experimental designs for our investigation. The first design is a

simplified version of an asset-pricing model, characterized by the moment indicators

B exp [—0.72 — (21 + 22) + 329 — 1
9(z.0) = ( zo(exp[—0.72 — B(z1 + 2) + 32] — 1) ) 7

after partitioning z = (z1,29)’, where z; and zy are generated independently from a

(5.1)

N (0,0.16) distribution and the true value fy = 3. The second experiment is based on

the moment indicator

se = (757 0 ) 52)

where z has a chi-square distribution with one degree of freedom and Gy, = 1. We
considered samples of size n = 100, 200, 500 and 1000 observations, each experiment
being replicated 10000 times.

Tests evaluated at GEL estimators (GELR,,, LM,,, P%, P’ and P) use either ET
or EL estimation. Consistent estimators for the matrices G and ) required in the com-

putation of the LM, and P statistics were obtained in three different ways:
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e gel(n): sample means, for example:
Q=" 6(8)g:B) /n: (5.3)
i=1
e gel(s): GEL implied probabilities 7;, (i = 1, ...,n), for example:

Z #:9:(3)9:(B)’; (5.4)

e gel(r): G as in gel (s) with €2 estimated robustly by:

)= Zﬁ-zgz(ﬁ) (nzﬂ 9:(8)9:(8) ) ng’ (B)gi(B)" (5:5)
=1

These estimators for the variance matrix €2 were also used in the computation of the
GEL score statistic S,. Additionally, S, was also evaluated at two-step (S52%), iterated
(S!) and continuous updating (S“¢) GMM estimators. In these cases, however, only the
consistent estimator for €2 based on sample means was used; see Hansen, Heaton and
Yaron (1996).

In their Monte Carlo simulation study, Imbens, Spady and Johnson (1998) analyzed
the finite sample behaviour of a test based on the following statistics: S2%, St Scue
S LM v, GELR® and GELR?. We replicate their results for the two
experimental designs described above and examine whether their conclusions remain valid
when other estimators are employed to evaluate the LM, and S,, statistics. In particular,
we study the effects of using EL instead of ET estimation [SS®, LM and LM,
We confirm their conjecture that robust estimation of {2 results in a deterioration in the
performance of the score statistic S, [SE" and SZ] for reasons explained below. We
also investigate the consequences of using the sample mean estimator for {2 when GEL
estimation is utilized [SE™, 5&™ | LME™ and LME™].

The implementation of P* examined here used the complete partition of the sample
space Z, that is, the partition of Z consists of s subsets. To examine the sensitivity of
P to s, we considered two values for s, s = 8 and 16. The definition of each subset
constituting the partition of Z was such that in each Monte Carlo sample each subset

contained approximately (100/s) % of the observations.
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5.2 Results

Tables 1 and 2, for the asset-pricing model, and 3 and 4, for the chi-square moments
case, report the estimated size of each test at seven different levels of significance 0.200,
0.100, 0.050, 0.025, 0.010, 0.005 and 0.001. For each significance level, sample size and

model considered, the actual size closest to the nominal size is underlined.

Tables 1, 2, 3 and 4 about here

The results displayed in Tables 1 and 3 conform with those presented by Imbens, Spady
and Johnson (1998) for the tests analyzed in their paper.® They show that all these
tests are significantly oversized in almost all cases, even when n = 1000, particularly

) registers the best behaviour in

for the chi-square moments model. The statistic LM
most experiments, the only exceptions being for the largest nominal sizes, where S5,
in the first model, and LMﬁl(T), in both models, achieve superior performances. The
size behaviour of the S, statistic evaluated at the two-step GMM estimator, which is
most commonly used to assess overidentifying moment condition models, is generally
disastrous in these experiments. In particular, it is the worst of all versions [S2%, S¢,
Seve 5™ and Sﬁl(n)] using the sample mean estimator for  in the asset-pricing model.
The GELR, tests also produced very modest results, with the EL version performing
substantially better than that using ET, particularly for the chi-square moments model
and for the smallest nominal sizes.

As noted by Imbens, Spady and Johnson (1998), estimation of the variance matrix 2
exerts a decisive influence on the performance of the tests. However, the extraordinary
benefits from the use of robust estimation reported there for the Lagrange multiplier
statistic LM do not extend to all tests, not even to LM for the smallest nominal

sizes considered. The size behaviour of the score statistic S,, also deteriorates consider-

ably. Although a theoretical analysis of the effects of using robust estimation is beyond

6The following correspondence holds between the notation used here and that utilized by Imbens,

Spady and Johnson (1998): S2* = TAM, Si = TAM, Sgve = TAM, S = TAM | LM = TEM

LM = TLM  GELRS = TSE ) and GELRY = TCE, .

et(r)’
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the scope of this paper, it is clear that LM, and S,, are affected in an opposite manner
because an estimator for €} appears as an inverse in the latter statistic.

Estimated sizes for the Pearson-type statistics are reported in Tables 2 and 4. The
P® and P? statistics perform very modestly, being substantially oversized in all cases.
Their size behaviour does not differ much from that described above for the other tests.”
In contradistinction, however, P4 is more promising. Whichever number of classes
s is chosen, the general effects of evaluation at different estimators are similar in all
cases. Analogously to LM, the least number of rejections of the null hypothesis occurs
when robust estimation of €2 is employed. This is unsurprising since {2 appears in the
expressions for both tests in a similar manner. Overall, robust et(r) and el(r) versions

of P record most of the best size properties.

Figure 1 about here

Figure 1 displays QQ-plots comparing the six versions of P¥ for s = 8. Vertical
coordinates are Monte Carlo estimates of quantiles of the finite sample distribution of
those statistics and horizontal coordinates are quantiles of a chi-square variable with
one degree of freedom. The vertical solid line marks the asymptotic critical value for

P;Lzlt,et(r) and

a nominal size of 0.05. Clearly, the best performances are obtained by
P Note that for n > 500 (first model) or n = 1000 (second model) the estimated
and asymptotic quantiles of these statistics are very close while other versions of P!
are still significantly oversized. It is also worthy of notice how, for small sample sizes,

all three EL versions of P¥ tend to reject significantly less than the corresponding ET

variants.
Figure 2 about here

The size performance of P¥ did not appear to be affected significantly by s for

different sample sizes. This was particularly evident for the asset-pricing model case.

"The estimated sizes for the EL version of P? test are numerically equal to those calculated for Sfll(s)
and LMfll(S). This is due to the particular form assumed by the EL implied probabilities (3.4): 7#; =
n 1+ Ngi(8)™', (i = 1,..,n). For example, as Ng;(8) = nft; — 1 and Q = Y1, 7,0:(8)g:(B)’,

LMY =N QA = Y0 (Ni(8))?/(1 + Ngi(B)) = PL.
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For the chi-squared moment model the differences between s = 8 and s = 16 cases were
more important but were attenuated by increasing sample size. Figure 2 illustrates this

Pglt,et(r

situation for ) displaying QQ-plots for both values of s.

Figure 3 about here

Figure 3 compares the robust forms of LM, and P for s = 8 evaluated at ET and
EL estimators. Of the statistics considered by Imbens, Spady and Johnson (1998) and
here LM registered the best behaviour. The statistic P% clearly performs better
for both models with estimated and asymptotic quantiles being closer in most cases.
Furthermore, while P% is relatively indifferent to the use of ET or EL estimation, at
least for the larger sample sizes, EL estimation does not work well for LM,,, even for

n = 1000.

6 Conclusions

This paper develops new Pearson-type statistics appropriate for testing over-identifying
moment conditions and parametric restrictions. The Pearson-type statistic contructed
using a partition of the sample space performed very well in Monte Carlo simulation
experiments comparing tests for over-identifying moment conditions. The size behaviour
for this statistic based on robust estimation of the moment indicator variance matrix
appears to be superior to that of alternative competitor tests. Moreover, this statistic
seems to be insensitive to the number of classes comprising the partition of the sample

space.

Appendix: Proofs

Throughout the Appendix, with probability approaching one will be abbreviated as
w.p.a.1, UWL will denote a uniform weak law of large numbers such as Lemma 2.4 of

Newey and McFadden (1994), CS Cauchy-Schwartz and CLT will refer to the Lindeberg-

Lévy central limit theorem.
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Lemma A.1 If Assumptions 2.1, 2.2 and 2.3 are satisfied, then nit; =1+ 0,(1) and

1 1 “
w2 (= ) = S AL 1) + 0075,

uniformly (i =1,...,n).

Proof: Let b; = supgep [|9:(6)|. From the Proof of Lemma Al and Theorem 3.1 in
}/gi(g)) = 0,(n (373)).

NS, as maxi<i<, b = Op(n=) and A = O,(n""/2), supgep1<icn

A first order order Taylor expansion for py(X§;) yields

pi(N§:) = =1+ p2(Na)N G,

p
—

j\/gi(ﬁ )

where )\ is on the line joining M and 0. Now, max;<;<p

02(j\/§li) + 1‘ 5 0as SUPgeB,1<i<n
0 and so pa(NGi)N g = —N§;(1 + 0p(1)) uniformly (i = 1,...,n). Therefore,

pr(NG) = —1— Ngi(1+0,(1)), (A1)
uniformly (i = 1,...,n). Similarly,
zﬁﬂ;d@>::_%_%<;;MMM%m>x
= 1+ 0,7,
as Y"1 §j/n = Oy(n~'/?) by Theorem 3.1 of NS. Combining eqgs. (A.1) and (A.2)
i = (1 + N1+ 0, (1)1 + Oy(n™)

and, therefore, from Lemma A1l of NS,

nii—1 = Ngi(1+0,(1)) +Op(n7t)

uniformly (i = 1,...,n). Similarly

wﬂ(@—l)zlaMﬂM1+%u»+oawW%
n n
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uniformly (i =1,...,n). R
Proof of Lemma 3.1: By Lemma A.1 and noting from Theorem 3.2 of NS that
n'2X = —Pn'/?§(650) + 0p(1),

W) =) = w2 (5= 2 )10 <

=1
n

= Y g 2R + 0p(1)) + Oy(n )1z < 2)

i=1

= (Z 1(z < z)ﬁé/ﬂ) "ML+ 0,(1)) + Op(n %)

= [b(z:) + Op(n ™)) 'n!23 4 0,(1)

= A(2)

where A is Gaussian stochastic process on R* with mean zero and covariance function

~

E[A(z1)A(22)] = b(2) Pb(z,). @

Proof of Theorem 3.1: Our method of proof is to demonstrate that the statistics
P (3.7) and P? (3.8) are asymptotically equivalent to the Lagrange multiplier test LM,
(3.2) for the over-identifying moment conditions (2.1). Using Lemma A.1

(nft; = 1)* = (NGi(1 + 0,(1)) + Op(n))?,

uniformly (i = 1,...,n). Summing over i = 1,...,n,

n

~

Y (i —1)* = ni’(z 395 /mML + 0p(1)) + 02X (Y gi/n' ) (L + 0,(1))Op(n ")

£ — i=1
+0,(n™ )
— nﬂ’(i Gidl/n)A + 0p(1)
= LM,;:+1 op(1).
From Lemma A.1, . n . 9
R



Proof of Theorem 3.2: From a UWL, the matrix estimators Bs, G and Q are
consistent estimators for their population counterparts By, G and €2. From the Proof of

Lemma 3.1, n'/2(fi5, — p3) = Bin'/?A + 0,(1) = =B, Pn'/23(f) + 0,(1) and thus
n!2(@5 — p5) > N(0, BLPB,).

If rk(B,) = m then B.(B,B.) 'Q(BsB.)"'B, is a g-inverse for B.PB, as PQP = P.
Therefore,

Pt = n(jiy, — ) By(BsBy) T By By) 7 By(fiy, — py) + 0p(1)

= ng(Bo) PQP§(Bo) + 0p(1)

= LM, + o0,(1),

as PQP=P. 1
Proof of Theorem 3.3: From Assumption 3.1, it follows by standard consistency
results for concave objective functions (e.g. Newey and McFadden, 1994, Theorem

2.7) that \(8) = arg max,c; (g P(3,)) exists w.p.a.l and A(3) 2 A(3). By a UWL

supses [ P(3,A(8)) = (5, 7())
Theorem 2.1 of Newey and McFadden (1994). As V is bounded, S°7, p1(Ng:(8))/n 2
y (1994) > i (N ai

Elpy(Ng(z,0))Ng(z,5) € V] and 31, pi(Ngi(8))*/n = Elpr(Ng(z, 8))*|Ng(2, ) € V]
uniformly 3 and X. Therefore, by a UWL, S>7%  p(XNd:)/n 2 E[pr(XN.g(z, 5.))|N.g(z, Be) €
V] and S p(NG:)?/n 2 Elpi(N.g(z, 8.))%[\.g(z, B.) € V]. Consider the statistic P?.

n

n P = Z (n#; —1)* /n

D VOV L
(i m(Ngy)/n)?
2 vorln (e, Bl ) € V)
Elpi(Ng(z, ) Nog(z, B.) € VP

Therefore, the conclusion follows as P¢ 2 co. Similarly, for P?,

n P = a7t y mz_l Zpl (Nai)/ Z;_l

i=1 i= 171,01()\’9])
= Elpy(A *g(z,ﬁ*)) IA*g(z,ﬁ*) e VIE[p1(X.g(z,8.) " [N.g(z,6.) € V| =1 >0

. using e.g.

> 0.

[26]



by CSso P2 2 co. W
Proof of Theorem 3.4: Follows immediately as 5 — p° 2 6,. R
Proof of Proposition 4.1: The first order conditions determining the GEL and

auxiliary parameter estimators $ and ) and Lagrange multiplier estimator 7 are

n ) . 9:(8) . 0
Y ooNa+ir(B) | GiBYA+RB)T | = 8 : (A:2)
= r(5)

It is immediate from eq. (A.2) that the constrained GEL estimator § satisfies the para-
metric constraints; viz. 7’(/3’) = 0. Hence, a similar proof to that for Theorem 3.1 of
NS establishes that, if Assumption 4.1 holds, 8 2 Gy and A 2 0. Therefore, from
(A.2), as maxi<i<p [pr(Ngi(5)) + 1| £ 0 as in Lemma A1l of NS, using a UWL 77 2 0 by
Assumption 4.2 (c¢)(d). Arguments like those in the proof of Theorem 3.2 of NS give

n'25(6o) + ' PA+ Gn' (B — o) = o0,(1),

G'n'2X+ Rn'?i = o,(1), (A.3)
RnY2(6 = Bo) = o,(1). (A.4)
From eq. (A.3),
n'/%j = —(RER)"'RYG'nY?\ 4 0,(1) (A.5)
and, thus, substituting back,
KG'nY2) = 0,(1). (A.6)

Therefore, premultiplying eq. (A.3) by KG'Q™! and using (A.6),
KG'Q'n'?4(00) + KX 'n'?(3 — o) = 0,(1).
Hence, from eq. (A.4),
n'2(B — By) = —KG'Q'n'24(Bo) + 0p(1). (A.7)
Substituting (A.7) back into eq. (A.3),
n'2\ = —(Q7' — QT IGKG'Q Y 25(60) + 0p(1), (A.8)

[27]



and, thus, from eq. (A.5),
n1/2'r7 _ (RER/) 1REG/Q 1 1/2 (50) +Op(1), (Ag)

as R = 0. The result follows immediately from eqs. (A.7)-(A.9) as n2/2§(3) % N(0, Q)
by a CLT. R

Lemma A.2 If Assumptions 4.1 and 4.2 are satisfied, then nir; = 1+ 0,(1),

1 1 ~
w2 (= 1) = SR 1) + Oy,

and

W (5= ) = (= D)1+ 0,(1) + Opln ),

uniformly (i =1,...,n).

Proof: The first and second conclusions follow by a similar argument to that of

Lemma A.1. Therefore,

WP w) = (g g PR+ 0p(1) + Oyl )
1A, _
a3 = 21+ 0,(1)) + Opln )

)

uniformly (i = 1,...,n) as Gi(3) = 0,(1), § — 8= Op(n~Y?) and A = O,(n~"/?). m

Proof of Lemma 4.1: From Lemma A.2 and similarly to the Proof of Lemma 3.1,

n' (i, (2) — pa(2)] = nlﬂi (7?7; - %) 1(z < 2)

=1
n

= Xl 0 1)+ Oyl <
_ (Z 1 < z>§;/n> W2A(L+ 0,(1)) + Oy(n 1)

= [b(z) + Op(n_l/Q)],nlmj‘ + 0p(1)
= A(2)

28]



where A is Gaussian stochastic process on R¥ with mean zero and covariance function
E[A(2)A(2)] = b(z1) (2" — Q'GKG'Q1)b(2,) using eq. (A.8). From eq. (A.10) and
Lemma A.2

1/2[:“71( ) lan(z)] = 1/22 _7Tz zi < Z)

n

— Z[(l =1 1/2)\ nA/ 1/2)\)(1+0p( ))+Op(n_3/2)]1(zi SZ)

i=1

- (Z 1z < 2)gh/n + op<n1/2>> (X = 2L+ 0,(1) + Oy(n7?)

= [b(2) + Op(n*)'n'? (X = X) + 0p(1)
= A(z)

where A is Gaussian stochastic process on R¥ with mean zero and covariance function

E[A(21)A(22)] = b(21)'Q'GEZ R/ (RER) ' REGQ'0(2,) as
n'2 (A = \) = —Q'GER'(RER) T REGQ ' 24(30) + 0,(1)

using eq. (A.8) and n/2\ = —Pn'/24(3,) + 0,(1) from the Proof of Theorem 3.2 in NS.
Proof of Theorem 4.1: From Lemma A.2, it follows immediately that

(ndt; —n#i)” = (A= Ngi(1+ 0,(1) + Op(n1))?,
uniformly (i = 1,...,n). Summing over i = 1, ..., n,

n

> (nd; —ndy)? = Zgz )N = X)(1+ 0,(1))

i=1

+nt? (A~ X)’(Z 3i/n"?) (1 + 0,(1)0p(n~1) + Op(n ™)

= Zgzgz/n 5‘ )‘ +Op( )
= n()\—)\)Q()\—)\)—I—op( )
= ng(B) QU 'GER(RER) 'REGQ 1 §(5o) + 0,p(1)

= nr(ﬁ)/(ﬂeiél)fl'f’(g) + 0p(1),

[29]



the first term of which is the Wald test statistic for () = 0 which has a limiting chi-
square distribution with r degrees of freedom. See Newey and West (1987) and Smith
(2001, section 5). From Lemmas A.1 and A.2

n

n ~ A \2
A ~ nm; — nm;
Sy — i) = SIS )

=1 i=1

|
Proof of Theorem 4.2: From Lemma 4.1, as n'/2(ji$ — fi5,) = —B\n'/2(A=\)+o0,(1),

PotT — (X = A)YGLG' (A — A) + 0,(1)
— n§(3)'Q 'GER(RER) " REGR3(6) + 0,(1)
= nr(B)(RER) 7 (B) + op(1),
which from the Proof of Theorem 4.1 is asymptotically equivalent to P%", P%" and
Per. Similarly, from Lemma 4.1, n'/2(38 — i5) = Bin'/2) + 0,(1). Therefore, from
the Proof of Proposition 4.1, as n'/?X\ = —(Q~! — Q" '\GKG'Q " )n'/24(5y) + 0,(1) and
G'Q - Q'GKGQ™) = R(RER)'REG'Q™,

prattr — pNGEG'A + 0,(1)

= ng(Bo) QU GER(RSR) RGO 4(5) + 0,(1).

|
Proof of Theorem 4.3: The proof is very similar in outline to that of The-
orem 3.3. Firstly, A\(3) = argmax,.z (s P(ﬁ, A), B € B, exists w.p.a.l and thus
5\(5) Lo X(B), B € B'. Secondly, the restricted GEL estimator 6% 8., B e B
As in the Proof of Theorem 3.3, "7 p1(Ngi(B))/n 2 E[p1(Ng(z,3))|Ng(2,8) € V] and
S m(Ngi(8)?/n = Elpi(Ng(z,8))*Ng(z, 8) € V] uniformly 8 € B” and A. There-
fore, by a UWL, 3_1, p(N'gi(53))/n = Elp1(N.g(z, 5.)) [ Ng(2, B.) € V] and 31, p(Ngi(53))?/n £
Elpr(X.g(z, 8.))*Xg(2, B.) € V].



Consider the statistic PS".

n

nlPoT = Z (n7t; —ni;)? /n

25;1 p1(§'g¢(5~))2/n _9 Z?z} ,01(f\'gi(/é))Pl(j\'gi(BA))/"A
o m(Ng(B)/m)? (5 p(Ngi(6))/n) (3=, p(Ng;(B))/n)

+ ZZ o1 (Ngi(B))?/n
S i (Ngi(B))/n)>
o 11P1)\gz ))2/n 0
- ( S m(Ng(B))/n)? 1>+ o
gvarm (N.g(z,8.))[N.g(z, )6V1>0

Elpi(N.g(z, 8.))1Xg(2, B) € V]2
The third equality follows as p;(Ng(z;,3)) = —1 + 0,(1), uniformly (i = 1,...,n), from
Lemma Al in NS, 370, p1(Ng(z,3)?/n % 1 and > i p(Ng(z,8))/n & —1. The

conclusion Po" 2, 0 is then immediate. Similarly, for P
n—lpa,r o z": (nﬁ-l B nﬁ-z)2
! N =1 ﬁ-z
(s (N5 npi (N §:) (25, p1(Ngy) /)
(>2j1 p1(NGj)/m)?

_ (S L,
E (@Lpl(ﬂfgj)/n)z 1>+ »(1)

= nLPeT 4 oy(1).

b,r
For P)",

P i (7 ;'nﬁz’f
XL p1(N3:)* /npr(Ng:) () (Vg5 /) )
(30 (N gy)/n)?

= Elp1(X.g(z,6.))|N.g(z,8.) € V]
X E[p1(Ng(z,8.)) INg(z,6.) € V|—1>0

by CS so P'" 2 0o, W

[31]



Proof of Theorem 4.4: Follows immediately as fi;, — ji5 2, 8, and e — s L |

References

Andrews, D. W. K. (1988a): “Chi-Square Diagnostic Tests for Econometric Models:

Introduction and Applications”, Journal of Econometrics, 37, 135-156.

Andrews, D. W. K. (1988b): “Chi-Square Diagnostic Tests for Econometric Models:
Theory”, Econometrica, 56, 1419-1453.

Back, K. and D. P. Brown (1993): “Implied probabilities in GMM estimators”, Econo-
metrica, 61(4), 971-975.

Brown, B.W. and W.K. Newey (1992): “Bootstrapping for GMM”, mimeo, M.I.T.

Brown, B.W. and W.K. Newey (1998): “Efficient Semiparametric Estimation of Expec-
tations,” Fconometrica 66, 453-464.

Brown, B.W. and W.K. Newey (2003): “Generalised Method of Moments, Efficient
Bootstrapping, and Improved Inference,” Journal of Business and Economic Statis-

tics, 20, 507-517.

Cressie, N., and T. Read (1984): “Multinomial Goodness-of-Fit Tests”, Journal of the
Royal Statistical Society Series B, 46, 440-464.

Durbin, J. (1973): Distribution Theory for Tests Based on the Sample Distribution
Function. CBMS-NSF Regional Conference Series in Applied Mathematics No.9.
SIAM: Philadelphia.

Hansen, L. P. (1982): “Large sample properties of generalised method of moments

estimators”, Econometrica, 50(4), 1029-1054.

[32]



Hansen, L. P., J. Heaton and A. Yaron (1996): “Finite-sample properties of some al-
ternative GMM estimators”, Journal of Business €& Economic Statistics, 14(3),

262-280.

Imbens, G. W. (1997): “One-step estimators for over-identified generalised method of

moments models”, Review of Economic Studies, 64, 359-383.

Imbens, G. W., R. H. Spady and P. Johnson (1998): “Information theoretic approaches

to inference in moment condition models”, Econometrica 66, 333-357.

Kitamura, Y. and M. Stutzer (1997): “An information-theoretic alternative to gener-

alised method of moments estimation”, Econometrica, 65(4), 861-874.

Newey, W.K. and D. McFadden (1994): “Large Sample Estimation and Hypothesis
Testing,” in Engle, R. and D. McFadden, eds., Handbook of Econometrics, Vol. 4,
New York: North Holland.

Newey, W. K., J. J. S. Ramalho, and R. J. Smith, (2002): “Asymptotic Bias for GMM
and GEL Estimators with Estimated Nuisance Parameters”. Forthcoming in Iden-
tification and Inference in Econometric Models: Essays in Honor of Thomas J.
Rothenberg, eds. D.W.K. Andrews and J.H. Stock. Cambridge University Press:
Cambridge..

Newey, W. K. and R. J. Smith (2001): “Higher Order Properties of GMM and Gener-
alized Empirical Likelihood Estimators”, Econometrica, 72, 219-255.

Owen, A. (2001): Empirical Likelihood. New York: Chapman and Hall.

Qin, J. and J. Lawless (1994): “Empirical Likelihood and General Estimating Equa-
tions”, Annals of Statistics, 22, 300-325.

Rao, C. R. and S. K. Mitra (1971): Generalized Inverse of Matrices and Its Applications.
Wiley: New York.



Shorack, G.R., and J.A. Wellner (1986): Empirical Processes with Applications in Statis-
tics. Wiley: New York.

Smith, R. J. (1997), “Alternative Semi-Parametric Likelihood Approaches to Gener-
alised Method of Moments Estimation”, Economic Journal, 107, 503-519.

Smith, R. J. (2001): “GEL Methods for Moment Condition Models”, working paper,

Department of Economics, University of Bristol.

[34]



*PAUT[ISPUN ST OZIS [EUTWIOU 0} }SISO[D dZIs [edtndwy :0JoN

€0 S0 [0 €0 SL FO0 20 /20 [¢b €0 90 <ZV L0 90 90 /O 70 10

0L €L gL 0L ¥Z 90 LV LV ST OV LV vZ LV oLV 9L LV L) G0

6L ¢z | 9L ¥€ T ¥Z 97 |ve 8L vZ &€ ST ¥ €T VI ve 0l

6 LV ey 6¢€ 2SS 0¢ ¥v 0S VG 6¢€ v¥ GG 8v €% ¥ €V ¥y GZ

89 69 99 L'/ 08 6G 89 18 €8 1L 89 G8 08 L9 S9 89 /19 06

€ZL €ZL [TV LZL S2L T 6Ll €€l |9€L LZL 6L 6EL ZTEL 8L 9LL 8Ll 611 00}

/['7Z S22 |80 922 €22 02Z 8\ G€Z |[2€Z 922 6l G€Z S¢€Z LlZz 9lZ 8Lz 812 00z | 000}

¥0 G0 [8L G0 ¥Z¢ FO0O 80 <ZI 8L S0 80 Z1 VI 20 ¥0 60 80 10

€L 9L 82 ¥IL L€ 90 0C GC [g¢ ¥IL LT €¢ ¥z 61 SlL LT 1T G0

2T ST L't vZ Sv €L 0¢ L€ [T¥v ¥Z 0¢€ v¥ L¢ 6C €C 0¢ 0¢ 0l

9v Lv [¥S 9v 99 ve& 6v T9 (99 9v 6% 69 T9 Lv v 6% 0§ GC

', 9, 6. 6L €6 €9 8. v¥6 (L6 6L 8. L0 €6 9L €L 6. 08 0'S

9¢l ¥elL [¥2h S€L ¥¥lL 0ZL 0€L OGL [0GL G€L 0€L 9GL 0GL 82L ¥2L 0€L L€l 00l

v'¥Z Ove |L'2Z L'vZ Tve L€C 622 L'ST |L'SZ LvZ 622 ¥'SZ 9GZ 82 122 0¢€Z L€ 00z | 00S

[0 VL [z 20 Z¢ 2¢O 9L Lz loe 20 GIL 0¢€ 0Z €L ¥0 Gl 61 10

6L SZ [9¢ 61 8v 60 L€ 9¢ 8¥Y 61 L€ 6% G¢ 6C ¥lL L€ S¢ G0

0¢ 9¢ 9y 6C 6S Gl €v 0S (09 6C €¥ T9 0§ OF ¥Z ¢€v 9F 0l

96 86 99 8G 18 8¢ S9 8§/ |8 85 G9 L6 9L T9 Sv 99 89 Gz

1'6 €6 68 ¥6 L. L'L G6 €LL|6LL ¥6 G6 GZL ZLL T6 9L S6 66 06

G'GL ZGL [6€L 2GL S9L 9€L Syl vIL |€LL LSL L¥L 08L €L ¥¥L €€L LYl 06l 00l

8'9Z 09z |96 892 092 LSZ Lve 1'8C |2/Z 892 06GZ L/Z 08Z 8% TvZ L'SZ €62 00z | 00z

ZV 8L [z VI 0¥ v0 ¥Z S¢€ [9v VL L2 L¥ €¢ L1 L0 €T 6¢ 10

8z 9¢ (0¥ 6C L9 €L ¥v 9S (0L 6C T¥ TL ¥S Lt 9L v¥ LS G0

'y 0S €6 €v 9. 27T 89S €. [V8 €% LS 18 69 TS GC 6§ 69 0l

€. L/ |92 ¥. ¥0L 9% €8 €0l 80L ¥.2 €8 GlL 66 8. Sv G8 G6 Gz

L'LL O'LL [P0L ZLL 9€L €8 O0LL 8€L |0Vl ZLL TLL 9%l 2€L 90L TL €L 2T 0'S

0ZL 69L [€GL 9L 28l 8¥L L9l 86l |[€6L 9ZL ¥9L L0Z 96L 6SL 82L L9l G/l 00}

6.2 2.2 |8¥Z €82 1L'8C 692 €S2 667 |S8C €82 662 T6Z 862 SSC 0vZ L9Z L9 00z | ool
/o @ [ (e (she (e (e (she (U] (e (s)he (u)e (1)1 (she (u)o endo | sz 9zIS u
4739 ‘Wi ‘s [EUILUON

[PPOJAl SUIILIJ-)ISSY :SUONIPUO)) JUIWOA SUIAJIUIPT-IIAQ) JO SISAL, ] dqeL

"ATAD pue "W s 71§ [edrnduy




"paul[IopUN ST 9ZIS [EUILIOU 0} }S9SO[0 dZIS [eolidwy 910N

10 S0 ¥0 0L ¥0 [0 G0 +0 10 0L S0 [0 OV [¢L 20 10
vo ¥1L VL G0 Lz 2L [0 SL 2L 90 Lz <TL 0L Lz |sT 8l G0
60 ¢z 8L 0F 0¢ <z [0F €z 02 L 0¢ €T [ 0¢ [ye 92 oL
S¢ Oov 6¢€ Lz Lv Vv |92 Ov Vv LT 8v <Tv |6€ ¥S |¥S 9V GC
€6 €9 0. TS 0L VL |95 S9 VL TS VL TL |VL v8 g8 TL 0'S
€0l gLl zelb 1oL Gl 92l [90L 6Lk €2h T0L GLL 22l |2k 9€L |9¢L €2l 00l
L'LlZ L'LZ 922 60z 90C 0€Z |2LZ 0¢C 122 L'z 802 0€Z |92C 8€Z |[2€2 L'ZZ | 00Z | 0001
00 90 %0 10 L %0 (L0 20 90 10 2L G0 [s0 /21 [8L O} 1’0
€0 LV 2L G0 92 SL |SO0O 8L SL G0 9¢ GV |[¥L e |ze ¢€¢ G0
L0 9¢ g 0F 9¢ ¥z [0V L2 ¥Z OV 9¢ G¢ |¥z 2¢¥ [gv ¢€¢ ol
ve vv €v S¢ 96 9v (92 Sv ¥ 9¢ 9S LY [9r 89 |99 €76 G2Z
€s 0. 9. 06 18 82 |96 7L 62 LS L8 08 |[6L 66 [L6 €8 0S

o
~
~

0L €¢lL 8¢l volL €¢L g€l L¢L veEL G0L vel L€l |g€L 961 0GL G€l 00l
0¢C 9¢¢ ¢cve €1 01l¢ ¢¥e |ccc 8¢ v¥e 9l Vi vve |[L¥C 09 |[L'SC 9€C 0°0c 00§

00 0L €0 00 91 20 (00 LI ¥0 00 ¥IL 90 (L0 L¢ |[0€ 61 L0
0O G¢ 0L ¥0 g€ L} |VO 9¢ VI €0 ve LV |61 €%y |8y G¢€ G0

€0 8¢ 8L 0L 8¥ L¢ (¥0O L€ ¢ 80 8v 8¢ (6¢ LG |09 LV 0l
€L 09 €y 9¢ ¢, 0S¢ (VL 09 Gy G¢ ¢/L G (86 L8 |98 0. g'¢
Oy 68 91 ’ 0L 98 |¥¥ 88 08 6% L0l L8 (¥6 0¢l |61 00l 0'S

0'S
L0l vEL 0¥l C0L €vlL Gl |L0L vEL €L €01 CvL Lyl (2'GL L8L |€LL V'Sl 00l
v'¢c 6¢¢ SSC vlc 9lc ¥SC |L'ce ¥ec 8GC Sl 9lc 96C |89¢ §'8C |clc G'SGC 00¢c 00¢

00 'L 20 00 2L 80 |00 20 20O 00 80 SO [L'L €¥ |9v 8¢ 1’0
00 0¢ L L0 9¢ L2 |00 G2 80 00 6¢C¢ Ll |62 29 |02 06 G0
L'0 LY 61 0 €S 1€ |00 Vv L1 20 6v 6¢C¢ |€¥ 6L [L'8 V9 ol
90 9. €v 0¢ ¥8 8S [0 V.2 ¥ ¥L 08 96 |[¥Z 60l |80l 68 Gz
.2 90l 6L & ZW 26 |92 V¥OL 8L TV OLL 26 (2L 9Vl |0Vl 8L 0S
98 LSl L'vL 86 LSL 6Vl |88 8vL S¥L 96 GSL O0GL [9ZL ¥0Z |[€6L 0Ll 00l
9LZ 0€C LGZ ¥O0Z S2¢ LGZ [L'Zz 0€Z L'92 S0Z G2Z 6GC |€82 ¥0€ (982 292 | 00Z | 00l

(e (she (U)o (e (she (uhe| (e (She (e (e (she (ue| 18 1 | 18 0 8zIS

u u u u Q
(9L =5) ,,d (8=9) ,»d wd [EUIUON

LS

$1S9 I, 9dA | ~uosaedd :971§ [edrarduyy
[OPOJAl SUILIJ-)ISSY :SUONIPUO)) JUIWOJA] SUIAJIUIPI-IIAQ) JO SISAL, 1T dIqBL



"pauI[IopUN ST 9ZIS [EUIWIOU 0} }S9SO[0 dZIS [eotnidwy 910N

¥0 60 [90 ¥0 Ltz 10 L1 L0 [§¢ vO0 LV Tec L0 LV LV LV Ll 10

€L Ve 8¢ TL ve 90 zTe LV |€v L e V¥ Ll 7€ TE€ TE TE S0

¢z 7€ |9¢ 0T v VL T¥ Lz |S§ 0T €v €9 LT €v €7 €F €% 0l

Sy 95 [g§ Vv 8 6C ¥9 8% |LL Vv §9 6L 0§ §9 S9 G9 9 5T

6, 68 (0. ¥. 08 19 16 €8 [€0L ¥, L6 80L ¥8 L6 L6 L6 L6 0g

¢el 6°€L [L0L 6CL 0Zh 9LL O%L L€L |LGL 62 LvL 09L 6€L L'vL 0¥l 0%l 0%l | 00l

S'€C 8'€C [8'8) 9'€C 802 GeC L'€C ZT¥Z |9V 9€C €€¢ 1'SZ v¥Z T€ TE€ TE€Z TE€Z | 00z | 000k

0V 0c¢ [0c L0 Lz €0 Ve ¢ [L¥ L0 Z¢€ T¥ ZbL L€ 0¢€ 0€ O0¢ 10

€z 9¢ [ge 8L Ov 0L TS 9 |99 8L €§ T9 9T TS5 TS TS TS S0

€e 06 [0V Lz ev L1 €9 9¢ |[LL LT v9 §L L€ v9 €9 €9 €9 0l

66 L. (86 €S L9 L€ S8 G9 [20L €5 98 €0L 99 98 98 98 98 5T

1'6 0L (8L L8 06 69 ¥l L6 [0€L 28 9Ll €€l 86 Gl GLL Sl Sl | 0§

8yl LGl [€LL ¥vL V€L G2l €9L 6L €8l vpL G9L 88l 9GL G9L ¥9L 9L ¥9L | 00l

1’9z _v'9z |16l €S2 Lz Ove TSz L9z |€/¢ €52 §GC 6/¢ €92 v'SZ ¥'S¢ ¥'SZ ¥z | 00z | 00§

6 Lv [8€ Lz Lv L1 99 G¢ [06 LT 69 ¥8 G€ G9 €9 €9 €9 10

V'S 2L (€6 V¥ S9 L€ T6 L9 [ L'v S6 80L L9 Z6 06 06 L6 50

9 L8 (€9 €S 8L v¥ 90L 9L [LEL 85 0L LTb 9L 90L ¥OL ¥OL ¥OL | O

L6 L1L|58 68 86 69 6€l 60L [LGL 68 vl 8GL 0Ll 8€L 8€L 8€L 8EL | §T

9¢€L L'GL [80L 62L 8CL GOL S9L vyl [Pl 6L 89L 06L 9YL S9L ¥9L 9L ¥9L | 0§

86l ¢0Z [L¥L S6L ¥LL 89L 80C 80C |62C G6L L'lz §€C L'l 0Lz 602 602 602 | 00l

00€ 962 [I'€C 962 092 282 S8C G0 [CLE 962 162 61€ 60¢ 062 062 062 062 | 002 | 00T

89 68 [€. 6S 68 ¥S 80l 98 [€¥L 6G €Ll 0€L L8 Z0L 86 86 86 10

66 0cL |56 06 8LL 08 vl LLL|€L 06 LvL ¥9L GLL 8€L ¥EL ¥EL ¥EL | SO

SLL 6€L (€L UL vEL 96 TOL GeL 68 L'LL L9L Z'8lL vEL 8GL GGl §SL §SL | O

SGL VAL Pyl 8WL L9l LTl €6l 9LL (8l 8L 86L Ll 9L L6l 88l 88l 88l | §T

€6l L0z |82 €6l €0z 69l €2C €1z |6V €6l L€ TSZ Gl 92 € €2C €2C | 0§

09z §'9¢ |8 6SC ¥'SC ve€C 0LZ 9.z |56 6'G¢ Gl L'OE 08¢ Tl 692 692 0.2 | 00l

€98 L'GE [T1€ G998 8'€€ L'GE L'vE LU€ |2/ G9¢ 0'GE 0'8C 0'8€ LYE 9¥E 9vE 9ve | 00z | 00l
38 [ (e (She (uhe (he (she (upe| (o (she (ue (he (she (upe eno | sz | @z u
‘4739 ‘W1 'S [EUILLON

"ATAD pue "WT s 721§ [edrnduy

[PPOJAl SIUSWOTA] d1enbG-1Y ) :SUONIPUO)) JUIWOJA] SUIAJIIUIP[-IIAQ JO SISAL, :€ d[qeL




*PAUT[ISPUN ST OZIS [EUTWIOU 0} }SISO[D dZIS [edrndwy :0JoN

10 ¥L G0 ¥0 ZZ 90 [cO 80 90 20 <¢¢ vO0 [¥0 O} [sC 61 10

S0 8z v¥I 60 v 9L |80 6L ¥iI 90 Vv 2L [T LT |[gv G¢€ G0

ZL 6¢€ V¢ GL 09 &GZ €L 6¢ €z 0F ¥S LT |02z V€ |§S 9F 0l

12T V9 €% 7¢ 18 6% |62 TS Ov S¢ SL Vv |V¥ GS |LL 89 GC

€6 98 G/ 19 G0l €8 | 9. 89 ¥S 86 9L |¥L 06 |€0L G6 06

G0l L€l 82L €L SvL 9¢€L [ZOF L€l 2TZL 80L 6€L TEL |62L ¥¥L |LGL 9¥L | 00

€1z 2€C TEZ 612 02 8¢z |S0C Z€Z STz 9l 612 S€C |9 Lv¥Z |9ve 9€Z | 00Z | 000L

10 ¢¢ L0 G0 0G 2l |[FO 0Z 90 20 O%¥ 90 [Z0 91 [Lv 9¢ 10

G0 26 LV GL 69 92 [90 ¢ ¥IL 80 19 61 |8L L€ |g9 9§ G0

60 29 9Z vz v8 6¢ [V 6v L2 VL €L 8T |L'z S¥ |L'L 99 0l

IZ S8 6§ S¥ 0L €9 (€2 0L €¥y €€ 66 ¥S |€6 <L [ZO0L L6 Gz

86 Ll v8 0L 8¢l S§6 [8¥ L6 GL 8G LZL S8 |L8 GOl |0€L 0CL | 0§

€Ll 19l Ly 6LL 221 €GL [00F OSL O0€L LLL OZL ZvlL [¥PL L9L |€8L TZL | 00

1'2C TSZ VST TEZT Lve L9z |V'lz €SZ 1'€Z 92 8€Z ¥Sc |£€62 89z |€42 09Z | 00Z | 00S

10 §2 91 2L 06 0¢ [10 9% L0 v0 89 9L |1z Lv |06 VL 10

S0 coL ve 6C 6LL ¥S |YO TL Lz ¥L 86 €€ |[L'v 89 (€Ll 86 G0

€L 02L V'S Gv 6¢€ 69 (80 06 €€ ¢T 8Ll 8¥y |85 v8 |[LEL SLL | 01

G¢ 6L €8 €. 991 86 (€ 02V 8S Lv VSL L. |68 LLL |[LSL ¥¥L | G¢C

9L S/LL TZL LOL ¥6L 9¢€L |6V <CSL G6 8L 6/LL vLL |62L GSL |[b8L TZLL | 06

Lyl €12 88L 6GL Z¢Z €6l |60L 26l 09L S€L 612 9Ll |S6L 81Z |62C GLZ | OO0

/192 S82 76Z 0GZ 982 L6Z |6€2 €82 v/Z 8€C 8.2 1L'8Z |96Z €1€ |€LE 862 | 00Z | 002

€0 827l 9¢ 0L G2 vS [00 6S ZIL 00 8S 0¢€ [6S 06 |c¥l 02Tl 10

Gl G9L 99 6¢ 89L L6 (SO OLL €€ 9L G2 vS |06 T2 |€LL TSL | SO

§C¢ 78l 88 ¥9 68L LLL|[ZF S€L 9v 6¢C €6l v.Z |LLL TvL |68k LLL | 01

G 9lz 6¢CL VL STz 8Vl [T Tl 8L €9 G6L 60 [8VL Z8L (8l 002 | ST

L0l 6ve €.L GGL 8SZz 98l [§S <ClZz vZL SOL ¥e€T v'SL |€6L LTZ |6¥C S€T | OG

6L 88 S¥Z CTlc 66Z 8V¥C [Lck L'9Z 66l CTLL 08 91Z |65C S8 |S6C 6.2 | 00l

'8 TvE GSE 00¢ 6% 9ve |IZ¢c L€ v'Ze 082 L€¢ 12¢ |S9¢ +'8¢ [2/€ 96¢ | 00z | 00)

(e (she (u)s (1o (she (upe | (o (she (u)re (e (she (upe| 18 @ | 19 9 8zIS
(9b=5) ud (8=5) ,ud o o1 |reuwon| ¢

$189 I, 9dA ] -uosaedd :9Z1S [edrarduyy
[PPOJAl SIUSWOTA] 18nbG-1Y ) :SUORIPUO)) JUIWOJA] SUIAJNUIP]-IIAQ) JO SISAL, :§ d[qe L



se|juenb |eonaiosy |

"(sull pepop-juanbaly) (J)1e ‘(aull paysep-omy) (s)e ‘(sull paysep-jop-salyy) (u)|e ‘(aull paysep) (1)1e ‘(sull paysep-jop) (s)e ‘(aull penop) (uhie :ssjoN

se|uenb |eonalosy |

., 09 Gy 0€ GL 00 S, 09 Sy 0Eg Gl 0
1 1 1 1 OO 1 1 1 1 Oo
) 6}
m o
2 e..\
7 loe 3 7! e
\.\\.Nw m \. .V\.\
i S 7/
i ! 5y § A ! Loy
i 2 S
A o / /
CEN 8 LTy
¥ 0'9 Yy . 09
A A
...m \ 4 V \\\\.\ ,..
AN g1 AV 52
000}=u 00G=u
sa|juenb |eonaiosy | sa|nuenb jeonalosy
., 09 Gy 0€ GL 00 ., 09 Sy 0Eg Gl 0
1 1 1 1 o0 1 1 1 1 Oo
) -
m
&
. L0'e m ) \\. Lo'e
9 @ 3
£ 2 45
. £ SlA .
4 v 8 ¢ ‘.w\\ gy
vy d \‘.
L J L0'9 i L0'9
\.n\_ ‘ 7!
x4 K4 \‘.. !
\.\ / S/ £l ¢ Gl
000}=u 00G=u

sa|uenb pajewnsy

sa|juenb pajewnsy

se|juenb |eonaiosy |

se|juenb |eonaiosy |

S, 09 G¥ 0¢ Gl 00 . 09 Gy 0¢ Sl 00
1 1 1 1 OO 1 1 1 1 Oo
G| 51
z T
e 3 /7 I
T S
a fi
4 1
sy § AN/ i L5y
= S \\ h
& / VR 1]
L0'9 \...\ . 09
\ .\ .
5 S -
00L=u
[opow sjuswow paJtenbs-iyn
sajuenb [eoneioay | sajuenb [eoneioay |
S, 09 G¥ 0¢ Gl 00 . 09 Gy 0¢ Sl 00
1 1 1 1 00 1 1 1 1 OO
5| 51
v’ m .\
y Z
f e 3 Loe
/i g
A &% 2
v s 8 L5y
Ry .... \.\ w
R,
/Ay L0'9 L0°9
Sl p
Py AR A
M 51 51
00¢=u 00L=u

se|juenb pajewiisy

(q

se|juenb pajewiisy

[opow Buiold-jessy (e

(suoneoidal 000 0L ‘8=S) SuoRIPUOD Juswow BulAjusplUBAO JO S1S8) Jled JO s1o|d-DD :| ainbi4



sa|iuenb |eolaloay |

sajuenb |eonaioay |

sa|juenb |eolaloay |

"(aul] paysep-jop) 91.=s ‘(dul| papop) g=s :SSJON

sa|juenb |eolaloay |

., 09 Gy 0€ GL 00 ., 09 S¥ 0€ GL 00 ., 09 Sy 0€ Gl 00 ., 09 Sy 0€ GL 00
1 1 1 1 OO 1 1 1 1 Oo 1 1 1 1 OO 1 1 1 1 Oo
¢ . . . £ .
7/ 3 V4 571 i ) 7 e
2 7 3
4 g & g £ Z . Z
& loe 3 i loe 3 R loe 3 Ry loe 3
i 5 ‘7 5 R 5 R 5
£ a Ly s oS s ) s
g 2 V 2 R 2 S 2
y sy S ] sy B o sy B o sy B
’ ] . e R 2 AR 2
o S S g/
; L0'9 ; L0'9 Y 09 s L0'9
“, , . 7 - !
7 / ' J ’ k4
: 5/ _ ] i 5/ 4 -]
000L=u 00G=u 00¢=u 00L=u
[epow syuswow pasenbs-1y9 (q
sa|juenb |eonaiosy | sa|nuenb jeonalosy sa|uenb |eonaiosy | sa|uenb |eonaiosy |
., 09 Gy 0€ GL 00 ., 09 S¥ 0€ GL 00 ., 09 Sy 0€ Gl 00 ., 09 Sy 0€ GL 00
1 1 1 1 OO 1 1 1 1 Oo 1 1 1 1 D.O 1 1 1 1 Oo
) - ) )
m m m m
& & & &
loe 3 loe 3 loe 3 loe 3
& z & &
2 2 2 2
5§ cha| 5§ P 5y 5
o = = = R =
* 2 2 A 3
!\ \-
o 09 09 : 09 = 09
d 4
\ 5/ ] G/ ]
000L=u 00G=u 00¢=u 00L=u

[opow Buiold-jessy (e

(suoneoidals 000 0L) SuoRIPUOD Juswow BulAjuaplBA0 JO S1s8) (1)18-}1ed Jo S10|d-DD :Z aInbi4



sa|iuenb |eolaloay |

sajuenb |eonaioay |

sa|juenb |eolaloay |

sa|juenb |eolaloay |

"(sull paysep-jop-aa1y)) (1)18-11ed ‘(8ull paysep) (1)1e-1led ‘(sull paysep-jop) (1)ISINT ‘(8ull panop) (118N :S8joN

. 09 S¥ 0¢ SL 00 L, 09 S¥ 0€ SL 00 S, 09 S¥ 0¢ SL 00 S, 09 Sy 0¢ SL 00
1 1 1 1 OO 1 1 1 1 Oo 1 1 1 1 OO 1 1 1 1 Oo
; =4 51 =4 sl
4 o \....
2 H 2 (Y § 2
e 3 \\ e 3 e 3 vy e 3
4 & i z 2 ey :
ss 2 I \ a 2 & /3 2
i ! Rl v o3 y S5 s \\ \ -
2 2 JA i 3 R 3 A ‘i 8
? . . 4 N
...\ .~ 10'9 , \.W. ._ 109 r \ 10'9 \.4 \\ ...~ 109
e { .\\\.. ¥ / \ / ..h
...\ ; - f4 9 \ \ \ -~
7 ! 7 \\ . ' \\ |
: ) S 2 5. v ) 2 . 5.
000L=u 00G=u 00c=u 00L=u
[9pow sjuswow patenbs-1yd (q
sa|nuenb |eonalosy | se|juenb |eonalosy | sa|nuenb |eonalosy | sa|nuenb |eonalosy |
L 09 S¥ 0¢ SL 00 L 09 S¥ 0€ SL 00 S, 09 S¥ 0¢ SL 00 S, 09 Sy 0¢ SL 00
1 1 1 1 OO 1 1 1 1 OO 1 1 1 1 00 1 1 1 1 OO
L5 51 A 51 # (s
m m 2 m # m
23 23 A @ / @
2 2 2 e 2
4 0t 3 e 3 0e 3 o ..\ ¢ 3
& 5 2 g o g
4 L. 2 L 2 7 4R . 2 PR ARy L 2
5§ v 5 P ! Y 5 |- \\ R 55
. ® . & - LN & - o/ o
£ @ T N e R e S ’
A r L0'9 R 4 L0'9 V2R 09 S L0'9
. ra ! 2. h
- 7 4 L~ N .
Zk 4 5. £ 5. ! : 5. ] 5.
000L=u 00G=u 00c=u 00L=u

[opow Buiold-jessy (e

(suoneoiydal 000 0L) suonRpuod JUBWOW BulAuaplIBA0 JO S1s8) (8=S) }led pue AT JO SwJio} }sngol Jo s1o|d-Dd ¢ ainbi4





