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Abstract: 
 
This paper proposes novel methods for the construction of tests for models specified by unconditional 
moment restrictions. It exploits the classical-like nature of generalized empirical likelihood (GEL) to define 
Pearson-type statistics for over-identifying moment conditions and parametric constraints based on 
constrasts of GEL implied probabilities which are natural by-products of GEL estimation. As is increasingly 
recognized, GEL can possess both theoretical and empirical advantages over the more standard 
generalized method of moments (GMM). Monte Carlo evidence comparing GMM, GEL and Pearsontype
statistics for over-identifying moment conditions indicates that the size properties of a particular Pearson-
type statistic is competitive in most and an improvement over other statistics in many circumstances. 
 
 
Palavras-chave/Keywords:  GMM, Generalized Empirical Likelihood, Overidentifying Moments, 

Parametric Restrictions, Pearson-Type Tests 
 

 
Classificação JEL/JEL Classification:  C13, C30 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



1 Introduction

This paper proposes novel methods for the construction of tests for models specified by

unconditional moment restrictions. The generalized method of moments (GMM), Hansen

(1982), is the conventional method of fit for such models. In view of increasing Monte

Carlo evidence indicating that GMM estimators may be badly biased in finite samples

and that the empirical and nominal size of associated tests may differ substantially, see,

for example, the Special Issue of the Journal of Business & Economic Statistics (July

1996), a number of alternative estimators which are asymptotically first-order equivalent

to efficient GMM have been suggested. These estimators include empirical likelihood

(EL) [Qin and Lawless (1994), Imbens (1997), Owen (2001)], exponential tilting (ET)

[Kitamura and Stutzer (1997) and Imbens, Spady and Johnson (1998)] and the continuous

updating estimator (CUE) [Hansen, Heaton and Yaron (1996)].

These estimators share a common structure, being members of a class of generalized

empirical likelihood (GEL) estimators [Newey and Smith (2004) and Smith (1997, 2001)].

GEL estimation seems to possess many attractive theoretical features relative to GMM.

Large sample analysis, Newey and Smith (2004), indicates that GEL estimators may

be less prone to bias than those based on GMM. GEL also appears to have diverse

advantages over GMM in finite samples. Imbens (1997) and Newey, Ramalho and Smith

(2002) report promising Monte Carlo results concerning the small sample bias of GEL

estimators, while Imbens, Spady and Johnson (1998) find that particular GEL tests

of overidentifying moment conditions, although also oversized in finite samples, possess

actual sizes closer to nominal size than Hansen’s (1982) test.

GEL bears certain similarities to likelihood-based methods, allowing the construc-

tion of classical-type tests of hypotheses in the moment condition framework. These

include overidentifying moment conditions, for which only Hansen’s (1982) test is typi-

cally available in the GMM setting. This paper exploits the classical-like feature of GEL

and proposes new specification tests for moment condition models similar in spirit to

the standard Pearson tests for goodness of fit. In particular, a set of implied or em-
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pirical probabilities which incorporate the moment condition information are associated

with each GEL estimator, which by reweighting the data impose exactly all moment

conditions on the sample, rather than particular linear combinations as in the GMM

case. See Newey and Smith (2004). Implied probabilities based on GMM may also be

be constructed in a likewise fashion by utilising the GEL criterion function evaluated

at an efficient GMM estimator as discussed in Brown and Newey (1992, 2003). The

resultant GEL distribution function estimator formed from the implied probabilities is

an efficient estimator of the distribution of the data, in particular, it dominates the em-

pirical distribution function (EDF) implicitly used by GMM. Contrasts between GEL

implied and EDF probabilities allow the construction of classical Pearson-type tests of

over-identifying moment conditions. A similar approach can be used to construct tests

for parametric restrictions based on contrasts of restricted and unrestricted GEL implied

probabilities.

In a set of Monte Carlo experiments based on those considered in Imbens, Spady and

Johnson (1998), we compare the finite sample size behaviour of Pearson-type statistics

for over-identifying moment conditions with other existing GMM and GEL tests, such

as Hansen’s (1982) test and those proposed in Smith (1997).

This paper is organized as follows. Section 2 briefly reviews GMM and GEL estima-

tion. Pearson-type tests for over-identifying moment conditions are presented in section

3 while parametric restrictions are considered in section 4. The Monte Carlo experiments

are discussed in section 5. Section 6 concludes. Proofs of the results contained in the

paper are provided in the Appendix.

2 The Model and Estimators

This section briefly reconsiders the model and estimators. The set-up considered and

notation used here is similar to that in Newey and Smith (2004), which is henceforth

abbreviated as NS.

Let zi, (i = 1, ..., n), denote independent and identically distributed observations on
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the k-vector z. Also, let g(z, β) be anm-vector of known functions of the data observation

z and the p-vector of parameters β, where m ≥ p. The model has a true parameter β0
satisfying the unconditional moment condition

E[g(z, β0)] = 0, (2.1)

where E[.] denotes expectation taken with respect to the distribution of z.

Various methods of estimation have been proposed for models specified by moment

conditions of the type (2.1). The standard method is two-step GMM estimation, see

Hansen (1982). Let gi(β) ≡ g(zi, β), ĝ(β) ≡
Pn

i=1 gi(β)/n and Ω̂(β) ≡
Pn

i=1 gi(β)gi(β)
0/n

or the centred estimator
Pn

i=1[gi(β)− ĝ(β)][gi(β)− ĝ(β)]0/n. Also, let β̃ be some prelim-
inary estimator given by β̃ = argminβ∈B ĝ(β)0Ŵ−1ĝ(β) where B denotes the parameter
space and Ŵ is a random matrix with properties to be specified below. The two-step

efficient GMM estimator is defined by

β̂GMM = argmin
β∈B

ĝ(β)0Ω̂(β̃)−1ĝ(β). (2.2)

Alternative estimation methods which share the first order asymptotic properties of two-

step GMM are those in the generalized empirical likelihood (GEL) class, as in NS and

Smith (1997, 2001). To describe them let ρ(v) be a function of a scalar v that is concave

on its domain, an open interval V containing zero with derivatives ρj(v) = ∂jρ(v)/∂vj

and ρj = ρj(0), (j = 0, 1, ...). Also let Λ̂n(β) = {λ : λ0gi(β) ∈ V, i = 1, ..., n}. The GEL
estimator is the solution to a saddle point problem

β̂GEL = argmin
β∈B

sup
λ∈Λ̂n(β)

P̂ (β,λ), (2.3)

where P̂ (β,λ) =
Pn

i=1 ρ(λ
0gi(β))/n. Each of the elements of the m-vector λ of auxiliary

parameters is associated with an element of the moment indicator vector gi(β) and may be

interpreted as Lagrange multipliers for the sample moment constraint
Pn

i=1 ρ1(λ
0gi(β))gi(β) =

0. We define the optimal auxiliary parameter estimator

λ̂ = arg max
λ∈Λ̂n(β̂)

P̂ (β̂,λ). (2.4)
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Let λ̂(β) = argmaxλ∈Λ̂n(β) P̂ (β,λ).

The GEL class includes as special cases the empirical likelihood (EL) estimator,

ρ(v) = log(1 − v) and V = (−∞, 1), (Qin and Lawless, 1994, Imbens, 1997, and Smith,
1997), and the exponential tilting (ET) estimator, ρ(v) = − exp(v), (Kitamura and
Stutzer, 1997, Imbens, Spady and Johnson, 1998, and Smith, 1997). The continuous up-

dating estimator (CUE) of Hansen, Heaton and Yaron (1996) β̂CUE = argminβεB ĝ(β)0Ω̂(β)−ĝ(β),

where A− denotes any generalized inverse of a matrix A satisfying AA−A = A, is also a

special case with ρ(v) quadratic as are members of the Cressie and Read (1984) power

divergence family of discrepancies, ρ(v) = −(1+γv)(γ+1)/γ/(γ+1), see NS, Theorem 2.2.
We impose the following innocuous normalization on ρ(v). We set ρ1 = ρ2 = −1.

If ρ1 6= 0 and ρ2 < 0, this normalization can always be imposed by replacing ρ(v) by

[−ρ2/ρ21]ρ([ρ1/ρ2]v). It does not affect the estimator of β and renders the estimator for λ
comparable for different choices of ρ(v). It is satisfied by the ρ(v) given above for CUE,

EL, ET and Cressie and Read (1984) discrepancies.

In the following because of their first order asymptotic equivalence, the notation β̂

is used to denote both efficient GMM and GEL estimators of β0. Consistency of β̂

is obtained under the following identification and regularity conditions; for GEL, see

Theorem 3.1 of NS. Let Ω(β) ≡ E[gi(β)gi(β)
0] or in the centred case E[gi(β)gi(β)0] −

E[gi(β)]E[gi(β)]
0 and Ω ≡ Ω(β0).

Assumption 2.1 There exists W such that Ŵ = W + op(1) and W is positive definite.

This assumption is only required by GMM which together with the next assumption

ensures the consistency of the preliminary estimator β̃.

Assumption 2.2 (a) β0 ∈ B is the unique solution to E[g(z, β)] = 0; (b) B is compact;
(c) g(z,β) is continuous at each β ∈ B with probability one; (d) E £supβ∈B kg(z, β)kα¤ <
∞ for some α > 2; (e) Ω is nonsingular; (f) ρ(v) is twice continuously differentiable in

a neighborhood of zero.

The restriction on the parameter α may be set to the weak inequality α ≥ 2 for GMM.
Assumption 2.2 also implies ĝ(β̂) = Op(n

−1/2), λ̂ (2.4) exists w.p.a.1 and λ̂ = Op(n−1/2).
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The following additional conditions are needed for asymptotic normality. Let G(β) =

E[∂gi(β)/∂β] and G = G(β0).

Assumption 2.3 (a) β0 ∈ int(B); (b) g(z, β) is continuously differentiable in a neigh-
borhood N of β0 and E[supβ∈N k∂gi(β)/∂β0k] <∞; (c) rank(G) = p.

Let Σ = (G0Ω−1G)−1, H = ΣG0Ω−1, and P = Ω−1 − Ω−1GΣG0Ω−1. If Assumptions
2.1-2.3 hold,

n1/2(β̂ − β0) d→ N(0,Σ),

n1/2λ̂
d→ N(0, P ),

and are asymptotically independent. Moreover, defining the normalised and centred

optimised GEL criterion as GELRn = 2n[P̂ (β̂, λ̂)− ρ0], we have

GELRn
d→ χ2(m− p).

See Theorem 3.2 of NS.

3 Goodness of Fit Tests for Over-Identifying Mo-

ment Conditions

In the GMM and GEL frameworks there are several ways of assessing the validity of

the over-identifying moment conditions (2.1). Classical-like GEL statistics, suggested

by Smith (1997, 2001), also see Imbens, Spady and Johnson (1998) and Kitamura and

Stutzer (1997), are the GEL criterion function statistic given above

GELRn = 2n[P̂ (β̂, λ̂)− ρ0], (3.1)

the Lagrange multiplier form

LMn = nλ̂
0Ω̂(β̂)λ̂, (3.2)

and the score statistic

Sn = nĝ(β̂)
0Ω̂(β̂)−1ĝ(β̂). (3.3)
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The last statistic is of course identical in form to Hansen’s (1982) GMM test statistic for

over-identifying moment restrictions. Given the asymptotic equivalence between GMM

and GEL estimators, these statistics may also be equivalently evaluated at an efficient

GMM estimator defining λ̂ as in (2.4) above. If Assumption 2.2 is satisfied the matrix

Ω̂(β) evaluated at a consistent estimator for β0 is a consistent estimator for Ω. Conse-

quently, GELRn, LMn and Sn are asymptotically equivalent and thus from above possess

a chi-square limiting distribution with m− p degrees of freedom.
This section considers alternative statistics for testing the moment conditions (2.1)

based on implied probabilities π̂i (3.4), (i = 1, ..., n), and an associated GEL distribution

function estimator µ̂n(·) (3.5) defined below.

3.1 Implied Probabilities

Implied or empirical probabilities for the observations which incorporate the moment

restrictions (2.1) may be associated with each GMM and GEL estimator. These prob-

abilities form the basis for the statistics developed below so we briefly describe them

here. For a given function ρ(v), an associated efficient GMM or GEL estimator β̂ and

ĝi ≡ gi(β̂), they are given by

π̂i = ρ1(λ̂
0ĝi)/

nX
j=1

ρ1(λ̂
0ĝj), (i = 1, ..., n), (3.4)

where λ̂ is defined in (2.4). The empirical probabilities π̂i, (i = 1, ..., n), sum to one

by construction and are positive when λ̂0ĝi is small uniformly in i as is the case with

probability approaching 1, see Lemma A1 of NS. Moreover, they impose the sample mo-

ment condition
Pn

i=1 πi(β,λ)gi(β) = 0, where πi(β,λ) = ρ1(λ
0gi(β))/

Pn
j=1 ρ1(λ

0gj(β)),

(i = 1, ..., n), when the first-order conditions for λ hold, mirroring the population mo-

ment condition (2.1). For EL the implied probabilities were given by Owen (1988), for

ET by Kitamura and Stutzer (1997), for quadratic ρ(v) by Back and Brown (1993), and

for the general case by Brown and Newey (1992). Also see Brown and Newey (2003), NS

and Smith (1997, 2001).
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For any function a(z, β) and efficient GMM or GEL estimator β̂ the implied prob-

abilities can be used to form an efficient estimator
Pn

i=1 π̂ia(zi, β̂) of the expectation

E[a(z, β0)] as in Brown and Newey (1998). Of particular interest here is the cumulative

distribution function µ(z) = P{zi ≤ z} of the observation vector z which may also be
written in expectation form as µ(z) = E[1(zi ≤ z)], where 1(.) denotes the indicator

function, 1(zi ≤ z) = 1 if zi ≤ z and 0 otherwise. The efficient estimator for the observa-
tion distribution function µ(·) obtained from the implied probabilities π̂i, (i = 1, ..., n),

defined in (3.4), is therefore given by

µ̂n(z) =
nX
i=1

π̂i1(zi ≤ z). (3.5)

In particular, µ̂n(z) is a more efficient estimator for µ(z) than the empirical distribution

function (EDF)

µn(z) =
nX
i=1

1(zi ≤ z)/n. (3.6)

It is well known that when z is univariate and continuous the empirical process

n1/2[µn(z)−µ(z)] weakly converges to a Brownian bridge, a Gaussian process with mean
zero and covariance function µ(z1)∧ µ(z2)− µ(z1)µ(z2), see, for example, Durbin (1973)
and Shorack and Wellner (1986). We need to develop a similar result for the normalised

contrast n1/2[µ̂n(z) − µn(z)] between the GEL distribution function estimator and the
EDF to obtain a particular form of Pearson-type test statistic for the over-identifying

moment restrictions (2.1). Let Z denote the sample space of z and also let

n1/2[µ̂n(z)− µn(z)] ≡ Λ̂n(z), z ∈ Z.

Lemma 3.1 If Assumptions 2.1-2.3 are satisfied then Λ̂n ⇒ Λ̂ where Λ̂ is a Gaussian

process on Z with zero mean and covariance function E[Λ̂(z1)Λ̂(z2)] = b(z1)
0Pb(z2) where

b(z) = E[1(zi ≤ z)gi(β0)].

3.2 Pearson-Type Tests

Suppose that the sample zi, (i = 1, ..., n), is drawn from a discrete distribution with

support (z1, ..., zs) and that the distinct value zj arises nj ≥ 1 times. In a parametric
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context, we may wish to test whether a given distribution function µ(zj) = P{z = zj},
(j = 1, ..., s), correctly characterizes the distribution of z. To this end, two versions of

the Pearson statistic are usually applied, viz.
Ps

j=1(nµ(z
j)−nj)2/nj and

Ps
j=1(nµ(z

j)−
nj)

2/nµ(zj), where nj and nµ(z
j) are, respectively, the actual and expected numbers of

observations of the distinct value zj, (j = 1, ..., s), under the assumed distribution µ(·).
For the latter statistic it is assumed that µ(zj) > 0 for all j = 1, ..., s. If the distribution

µ(·) is correctly specified, then differences between the observed and expected numbers of
outcomes arise solely because of random fluctuations. Both statistics are asymptotically

equivalent and have a limiting chi-square distribution with s− 1 degrees of freedom.
In the GEL framework, we can dispense with the assumption of a discrete distribution

and instead think in terms of probabilities associated with individual observations; see

inter alia Owen (2001). In other words, we proceed as if a single data point was observed

in each cell of a n-cell contingency table. That is, GEL versions of the above statistics

may be obtained directly by setting s = n, nj = 1, z
j = zj and µ(z

j) = π̂j , (j = 1, ..., n).

The consequent versions of the standard Pearson statistics to test the moment restrictions

(2.1) are based on the normalised contrasts nπ̂i − 1, (i = 1, ..., n), comparing predicted
probabilities from the GEL distribution function µ̂n(·) and those from the unrestricted

EDF µn(·); viz.

P an =
nX
i=1

(nπ̂i − 1)2 (3.7)

and

P bn =
nX
i=1

(nπ̂i − 1)2
nπ̂i

. (3.8)

Theorem 3.1 If Assumptions 2.1-2.3 are satisfied then P an and P
b
n are asymptotically

equivalent to GELRn, LMn and Sn. Therefore P
a
n , P

b
n

d→ χ2m−p.

Therefore, an α asymptotic level test of the over-identifying moment restrictions (2.1)

has critical region {Pn ≥ χ2m−p(α)} where Pn is P an or P bn and χ2m−p(α) denotes the 1−α
quantile from the chi-square distribution with m− p degrees of freedom.
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Alternative forms of Pearson-type tests for the over-identifying moment conditions

(2.1) may be based on a discretization of the distribution of z obtained by employing

a finite partition of the sample space Z. These statistics are similar in spirit to those

discussed by Andrews (1988a, 1988b) but are adapted for the moment condition setting

considered here. As shown in Lemma 3.1 above, the distribution function µ(·) of the data
observation vector z is consistently estimated under (2.1) by both the moment restricted

estimator µ̂n(·) of (3.5) and the EDF µn(·) of (3.6). Test statistics for the validity of
the over-identifying moment conditions (2.1) proposed below exploit this result and are

based on quadratic forms suitably defined in terms of the contrast µ̂n(·)− µn(·).
Let the sample space Z of z be partitioned into the subsets Zj, (j = 1, 2, ...). Consider

the (arbitrary) finite collection of subsets Zj, (j = 1, ..., s), whose union may not equal

Z, that is, ∪sj=1Zj ⊂ Z. We impose the order condition s ≥ m and require µ(Zj) > 0,

(j = 1, ..., s). Define

µ̂n(Zj) =
nX
i=1

π̂i1 (zi ∈ Zj) (3.9)

and

µn(Zj) =
nX
i=1

1 (zi ∈ Zj) /n. (3.10)

Because the choice of the collection {Zj}sj=1 is arbitrary, an advantage of this approach
is that these subsets Zj , (j = 1, ..., s), may be chosen judiciously by the researcher to

explore the validity of the moment restrictions (2.1). Andrews (1988a, 1988b) provides

an extensive discussion and references for such choices in a fully parametric setting.

However, unlike there, we restrict ourselves to consideration only of a non-stochastic

partition Zj, (j = 1, 2, ...), for ease of exposition. This assumption may be relaxed

though but at the expense of some additional complexity by adopting the approach

used in Andrews (1988b). This would permit a random partition which would weakly

converge to one with the properties ascribed below for Zj , (j = 1, 2, ...). See Andrews

(1988b, Assumption RC1, p.1425, and Section 3.1, pp.1427-1431).

Let µ̂sn = (µ̂n(Z1), ..., µ̂n(Zs))
0 and µsn = (µn(Z1), ..., µn(Zs))

0. Also letBs = (b(Z1), ..., b(Zs))
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where b(Zj) = E[1(z ∈ Zj)g(z,β0)], (j = 1, ..., s). The test statistics defined below are
based on the normalised contrast µ̂sn − µsn from (3.9) and (3.10). It follows immediately

from Lemma 3.1 that n1/2(µ̂sn − µsn) d→ N(0, B0sPBs). Now if Bs is full row rank m then

B0s(BsB
0
s)
−1Ω(BsB0s)

−1Bs is a g-inverse for B0sPBs. Therefore, we consider the statistic
1

P altn = n(µ̂sn − µsn)0B̂0s(B̂sB̂0s)−1Ω̂(B̂sB̂0s)−1B̂s(µ̂sn − µsn), (3.11)

where B̂s = (b̂(Z1), ..., b̂(Zs)), b̂(Zj) =
Pn

i=1 1(z ∈ Zj)ĝi/n or
Pn

i=1 π̂i1(z ∈ Zj)ĝi, (j =
1, ..., s), and Ω̂ =

Pn
i=1 ĝiĝ

0
i/n,

Pn
i=1[ĝi − ĝ][ĝi − ĝ]0/n, ĝ = ĝ(β̂), or

Pn
i=1 π̂iĝiĝ

0
i.

Theorem 3.2 If Assumptions 2.1-2.3 are satisfied and rk(Bs) = m then the statistic P
alt
n

is asymptotically equivalent to GELRn, LMn, Sn and P
a
n , P

b
n. Therefore P

alt
n

d→ χ2m−p.

An α asymptotic level test of the over-identifying moment restrictions (2.1) has critical

region {P altn ≥ χ2m−p(α)}. If in addition s = m then Bs is nonsingular so that B
−1
s ΩB

0−1
s

is a g-inverse for B0sPBs.

Corollary 3.1 If Assumptions 2.1-2.3 are satisfied, rk(Bs) = m and s = m then the

statistic P altn = n(µ̂sn − µsn)0B̂−1s Ω̂B̂0−1s (µ̂sn − µsn) is asymptotically equivalent to GELRn,
LMn, Sn and P

a
n , P

b
n. Therefore P

alt
n

d→ χ2m−p.

Limiting distributional and asymptotic equivalence results between P an , P
b
n and P

alt
n

similar to those described above may be shown under the local alternativesHn : En[g(zi,β0)] =

n−1/2η + o(n−1/2), (i = 1, ..., n), n = 1, 2, .... Then, n1/2ĝ(β0)
d→ N(η,Ω) under Hn

and consistency of the GEL and auxiliary parameter estimators β̂ and λ̂ for β0 and 0

still obtains. Moreover, the expansions n1/2(β̂ − β0) = −ΣG0Ω−1n1/2ĝ(β0) + op(1) and
n1/2λ̂ = −Pn1/2ĝ(β0)+op(1) remain valid under Hn. Therefore, the statistics P an , P bn and
P altn are asymptotically equivalent to GELRn, LMn, Sn and converge in distribution to a

1More generally the limiting distribution of the statistic n(µ̂sn− µsn)0Ξ̂−(µ̂sn− µsn), where Ξ̂− denotes
a consistent estimator for a g-inverse of B0sPBs, is that of a chi-square random variable with rk(B0sPBs)
degrees of freedom.
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non-central chi-square random variable with m−p degrees of freedom and non-centrality
parameter η0Pη.

We conclude this section by briefly considering the consistency of the tests P an , P
b
n

and P altn . As detailed in section 2, the GEL criterion is optimised with respect to λ

such that λ0g(zi, β) ∈ V , (i = 1, ..., n). Therefore, because V is bounded, ρ(β,λ) =

E[ρ(λ0g(z,β))|λ0g(z,β) ∈ V ] exists and so by a uniform weak law of large numbers

P̂ (β,λ)
p→ ρ(β,λ) uniformly β ∈ B and λ with ρ(β,λ) continuous in β ∈ B and λ.

Let λ(β) = argmaxλ ρ(β,λ), β ∈ B. For GMM ĝ(β)0Ω̂(β̃)−1ĝ(β)
p→ g(β)0Ω(β∗∗)−1g(β)

uniformly β ∈ B where β̃ p→ β∗∗.

Assumption 3.1 (a) no β ∈ B exists such that E[g(z, β)] = 0; (b) B is compact; (c)
g(z, β) is continuous at each β ∈ B with probability one; (d) E £supβ∈B kg(z, β)kα¤ <∞
for some α > 2; (e) Ω(β∗∗) is nonsingular; (f ) ρ(v) is twice continuously differentiable

on V; (g) λ(β) is the unique maximiser of ρ(β,λ) and is continuous in β ∈ B; (h) β∗ is
the unique minimiser in B of ρ(β,λ(β)) or g(β)0Ω(β∗∗)−1g(β).

Assumptions 3.1(g)(h) are convenient high level assumptions made to simplify the exposi-

tion. Uniqueness of λ(β) is required for the consistency of λ̂(β) = argmaxλ∈Λ̂n(β) P̂ (β,λ)

for λ(β). Continuity of λ(β) and uniqueness of β∗ guarantee consistency of the GEL esti-

mator β̂ for β∗. Now, E[ρ1(λ(β)0g(z, β))g(z, β)|λ(β)0g(z,β) ∈ V] = 0 from the first order
conditions determining λ̂(β). Therefore, λ(β) 6= 0 for all β ∈ B otherwise a contradiction
with Assumption 3.1(a) would result. In particular, λ∗ ≡ λ(β∗) is non-zero. We are now
able to establish the consistency of tests based on the statistics P an and P

b
n.

Theorem 3.3 If Assumptions 2.1 and 3.1 are satisfied then P an , P
b
n

p→∞.

For the consistency of P altn we require additional assumptions as in Andrews (1988b,

Section 4.2). Let b∗(Zj) = E[1(z ∈ Zj)g(z, β∗)|λ0∗g(z,β∗) ∈ V] or E[ρ1(λ0∗g(z, β∗))1(z ∈
Zj)g(z, β∗)|λ0∗g(z, β∗) ∈ V ]/ρ∗1, (j = 1, ..., s), and Bs∗ = (b∗(Z1), ..., b∗(Zs)), where ρ∗1 =

E[ρ1(λ
0
∗g(z, β∗))|λ0∗g(z, β∗) ∈ V ]. Also let Ω∗ = E[g(z, β∗)g(z, β∗)0|λ0∗g(z,β∗) ∈ V],

E[(g(z, β∗) − g∗)(g(z, β∗) − g∗)0|λ0∗g(z, β∗) ∈ V], g∗ = E[g(z,β∗)|λ0∗g(z, β∗) ∈ V ], or

[11]



E[ρ1(λ
0
∗g(z, β∗))g(z, β∗)g(z, β∗)

0|λ0∗g(z,β∗) ∈ V]/ρ∗1. Then B̂s
p→ Bs∗ and Ω̂

p→ Ω∗.

Define δ∗j = E[(ρ1(λ
0
∗g(z,β∗)) − ρ∗1)1 (z ∈ Zj) |λ0∗g(z, β∗) ∈ V]/ρ∗1, (j = 1, ..., s), and

δ∗ = (δ∗1, ..., δ∗s)0.

Theorem 3.4 If Assumptions 2.1 and 3.1 are satisfied, rk(Bs∗) = m and Ω∗(Bs∗B0s∗)
−1Bs∗δ∗ 6=

0, then P altn
p→∞.

The condition Ω∗(Bs∗B0s∗)
−1Bs∗δ∗ 6= 0 is critical for test consistency and requires that

δ∗ does not lie in the null space of Ω∗(Bs∗B0s∗)
−1Bs∗. If rk(Ω∗) = m, then this condi-

tion may be abbreviated to Bs∗δ∗ 6= 0. If s = m as in Corollary 3.1 and B̂−1s Ω̂B̂
0−1
s re-

places B̂0s(B̂sB̂
0
s)
−1Ω̂(B̂sB̂0s)

−1B̂s in the definition of P altn (3.11), the consistency condition

Ω∗B0−1s∗ δ∗ 6= 0 [or δ∗ 6= 0 if rk(Ω∗) = m] should be substituted for Ω∗(Bs∗B0s∗)−1Bs∗δ∗ 6= 0
of Theorem 3.4.

4 Goodness of Fit Tests for Parametric Restrictions

This section adapts the goodness of fit statistics of the previous section to test the

parametric restrictions defined by the null hypothesis

H0 : r (β0) = 0, (4.1)

where r(.) is a r-vector of functions.

The following assumptions modify Assumptions 2.2 and 2.3 appropriately for the

results of this section and are adapted from Smith (2001).

Assumption 4.1 (a) β0 ∈ B is the unique solution to E[g(z, β)] = 0 and r(β) = 0; (b)
B is compact; (c) g(z, β) and r(β) are continuous at each β ∈ B with probability one;
(d) E{supβ∈B kg(z,β)kα} < ∞ for some α > 2; (e) Ω is nonsingular; (f) ρ(v) is twice

continuously differentiable in a neighborhood of zero.

Let R(β) = ∂r(β)/∂β0 and R = R(β0).

Assumption 4.2 (a) β0 ∈ int(B); (b) g(z, β) is differentiable in a neighborhood N
of β0 and E[supβ∈N k∂g(z, β)/∂β 0k] < ∞; (c) r(β) is continuously differentiable in a
neighborhood N of β0 and supβ∈N kR(β)k <∞; (d) rank(G) = p and rank(R) = r.
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4.1 Restricted GEL Estimation

The GEL framework is easily adapted to deal with parametric constraints expressed in

contraint equation form. We redefine the GEL criterion function as

P̃ (β,λ, η) =
nX
i=1

ρ(λ0gi (β) + η0r (β))/n. (4.2)

The first order conditions corresponding to η are
Pn

i=1 ρ1(λ
0gi (β) + η0r (β))r (β) = 0

which imply that the constraints r(β) = 0 of (4.1) are imposed. Therefore, this formula-

tion (4.2) of the optimisation problem is equivalent to that based on the GEL criterion

P̂ (β,λ) subject to r(β) = 0. The corresponding GEL, auxiliary parameter and Lagrange

multiplier estimators are denoted by β̃, λ̃ and η̃ respectively.

Let Br = {β : r(β) = 0, β ∈ B}. Then, defining the solution λ̃(β) = argmaxλ∈Λ̂n(β) P̂ (β,λ),
β ∈ Br, we have λ̃(β) = λ̂(β) for β ∈ Br, where λ̂(β) is defined below (2.4). Therefore,
also let β̃ = argminβ∈Br P̂ (β, λ̂(β)) and λ̃ = argmaxλ∈Λ̂n(β̃) P̂ (β̃,λ).

2

For completeness, we detail the limiting properties of the GEL, auxiliary parameter

and Lagrange multiplier estimators in the following result.

Proposition 4.1 If Assumptions 4.1 and 4.2 are satisfied, then β̃
p→ β0, λ̃

p→ 0 and

η̃
p→ 0 and

n1/2(β̃ − β0) d→ N(0, K),

n1/2
µ
λ̃
η̃

¶
d→ N

µµ
0
0

¶
,

µ
Ω−1 − Ω−1GKG0Ω−1 −Ω−1GΣR0(RΣR0)−1
−(RΣR0)−1RΣG0Ω−1 (RΣR0)−1 − Ir

¶¶
,

where K ≡ Σ−ΣR0(RΣR0)−1RΣ. Moreover, the restricted GEL estimator β̃ and auxiliary
parameter and Lagrange multiplier estimators (λ̃, η̃) are asymptotically uncorrelated.

An efficient restricted GMM estimator for β0 and Lagrange multiplier estimator associ-

ated with the constraints r(β0) = 0 may also be defined straightforwardly from (2.2) and

2Let the Lagrange multiplier estimator η̃ = η̃(β̃, λ̃). Also let πi(β,λ) = ρ1(λ
0gi(β))/

Pn
j=1 ρ1(λ

0gj(β))
as in (3.4). Then, from the Proof of Proposition 4.1, (A.2), η̃(β,λ) satisfies η̃(β,λ) = −(Pn

i=1

πi(β,λ)(R(β)QR(β)
0)−1R(β)QGi(β)0)λ with probability approaching one where Q is an (arbitrary)

nonsingular matrix. Hence, the auxiliary parameter estimator λ̃(β) satisfies (
Pn
i=1 πi(β, λ̃(β))[Ip −

R(β)0(R(β)QR(β)0)−1R(β)Q]Gi(β)0)λ̃(β) = 0 with probability approaching one.
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(4.1). Under Assumptions 2.1, 4.1 and 4.2 they are asymptotically equivalent to the GEL

estimators β̃ and η̃ given above. An auxiliary parameter estimator based on an efficient

restricted GMM estimator which is asymptotically equivalent to the GEL estimator λ̃

may then be obtained in a similar fashion to λ̃. We therefore adopt the common notation

β̃ for both restricted efficient GMM and GEL estimators.

4.2 Implied Probabilities

Let g̃i ≡ gi(β̃), (i = 1, ..., n). As the restricted GMM or GEL estimator β̃ satisfies the

constraints (4.1), we define the constrained implied probabilities as

π̃i =
ρ1(λ̃

0g̃i)Pn
j=1 ρ1(λ̃

0g̃j)
, (i = 1, ..., n) . (4.3)

The efficient estimator of the observation distribution function µ(·) incorporating both
constraint (4.1) and moment restriction (2.1) information is given by

µ̃n(z) =
nX
i=1

π̃i1(zi ≤ z). (4.4)

Both the EDF µn(z) and the unconstrained GMM or GEL estimator µ̂n(z) remain

consistent estimators of the observation distribution µ(z), whether or not the null hypthe-

sis H0 : r(β0) = 0 is true. Therefore, similar to the previous section alternative statistics

appropriate for testing the restrictions (4.1) may be based on contrasts of the restricted

and unrestricted implied probabilities π̃i and π̂i, (i = 1, ..., n), (4.3) and (3.4), and the

GEL distribution function estimators µ̃n(·) and µ̂n(·), (3.5) and (4.4). Let

n1/2[µ̃n(z)− µn(z)] ≡ Λ̃n(z),

n1/2[µ̃n(z)− µ̂n(z)] ≡ ∆n(z), z ∈ Z.

Lemma 4.1 If Assumptions 2.1, 4.1 and 4.2 are satisfied then Λ̃n ⇒ Λ̃ and ∆n ⇒ ∆

where Λ̂ and ∆ are Gaussian processes on Z both with zero mean and respective covari-

ance functions E[Λ̃(z1)Λ̃(z2)] = b(z1)
0(Ω−1 − Ω−1GKG0Ω−1)b(z2) and E[∆(z1)∆(z2)] =

b(z1)
0Ω−1GΣR0(RΣR0)−1RΣGΩ−1b(z2) where b(z) = E[1(zi ≤ z)gi(β0)].
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4.3 Pearson-Type Tests

The statistics suggested below for testing the parametric restrictions (4.1) are based on

the contrasts nπ̃i − nπ̂i, (i = 1, ..., n), and adapt the statistics P an (3.7) and P bn (3.8) to
this context. Therefore, replacing the (implicit) unrestricted EDF divisor unity in P an by

nπ̂i and the restricted divisor nπ̂i in P
b
n by nπ̃i,

P a,rn =
nX
i=1

(nπ̃i − nπ̂i)2
nπ̂i

(4.5)

and

P b,rn =
nX
i=1

(nπ̃i − nπ̂i)2
nπ̃i

. (4.6)

Of course, the EDF divisor unity can also be employed; viz.

P c,rn =
nX
i=1

(nπ̃i − nπ̂i)2. (4.7)

In the Appendix we show that these three statistics are asymptotically equivalent to the

Wald statistic

Wn = nr(β̂)
0(R̂Σ̂R̂0)−1r(β̂) (4.8)

for testing the parametric restrictions H0 : r(β0) = 0 of (4.1), where R̂ = R(β̂), Σ̂ =

(Ĝ0Ω̂−1Ĝ)−1, Ĝ =
Pn

i=1Gi(β̂)/n or
Pn

i=1 π̂iGi(β̂) and Ω̂ is defined above Theorem 3.2.

Therefore:3

Theorem 4.1 If Assumptions 2.1, 4.1 and 4.2 are satisfied, the GEL Pearson-type

statistics P a,rn , P b,rn and P c,rn are asymptotically equivalent to Wn. Therefore P
a,r
n , P b,rn ,

P c,rn
d→ χ2r.

3Lemma 4.1 may be exploited to provide a test of the joint hypothesis given by the contraints (4.1)
and moment restrictions (2.1). Pearson-type statistics are defined similarly to Pan (3.7) and P

b
n (3.8)

as
Pn
i=1(nπ̃i − 1)2/nπ̃i and

Pn
i=1(nπ̃i − 1)2. Under Assumptions 2.1, 4.1 and 4.2, these statistics are

asymptotically equivalent to the corresponding GMM and GEL statistics and have a limiting chi-square
distribution with m− p+ r degrees of freedom.
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As in section 3.2 consider the partition Zj, (j = 1, 2, ...), of the sample space Z of

z and the (arbitrary) finite collection of subsets Zj , (j = 1, ..., s), whose union may

not equal Z, that is, ∪sj=1Zj ⊂ Z. We impose the order condition s ≥ m and require

µ(Zj) > 0, (j = 1, ..., s). Define the distribution function estimator

µ̃n(Zj) =
nX
i=1

π̃i1 (zi ∈ Zj) , j = 1, ..., s. (4.9)

Let µ̃sn = (µ̃n(Z1), ..., µ̃n(Zs))
0. Also let Bs = (b(Z1), ..., b(Zs)) where b(Zj) = E[1(z ∈

Zj)g(z, β0)], (j = 1, ..., s). The test statistics defined below are based on the normalised

contrast µ̃sn − µ̂sn from (4.9) and (3.9). It follows immediately from Lemma 4.1 that

n1/2(µ̃sn − µ̂sn) d→ N(0, B0sΩ
−1GΣR0(RΣR0)−1RΣG0Ω−1Bs). Now if Bs is full row rank m

then B0s(BsB
0
s)
−1GΣG0(BsB0s)

−1Bs is a g-inverse for B0sΩ
−1GΣR0(RΣR0)−1RΣG0Ω−1Bs.

A test for the restrictions (4.1) may be based on the alternative statistic

P a,alt,rn = n(µ̃sn − µ̂sn)0B̂0s(B̂sB̂0s)−1ĜΣ̂Ĝ0(B̂sB̂0s)−1B̂s(µ̃sn − µ̂sn), (4.10)

where B̂s, Ĝ and Σ̂ are defined above Theorems 3.2 and 4.1.4,5 The statistic P a,alt,rn of

(4.10) may be further simplified using Lemma 4.1 by noting thatG0(Ω−1−Ω−1GKG0Ω−1) =
R0(RΣR0)−1RΣG0Ω−1 yielding the statistic

P b,alt,rn = n(µ̃sn − µsn)0B̂0s(B̂sB̂0s)−1ĜΣ̂Ĝ0(B̂sB̂0s)−1B̂s(µ̃sn − µsn). (4.11)

Theorem 4.2 If Assumptions 2.1, 4.1 and 4.2 are satisfied and rk(Bs) = m then the

GEL Pearson-type test statistics P alt,rn and P b,alt,rn are asymptotically equivalent to P a,rn ,

P b,rn and P c,rn . Therefore, P
alt,r
n , P b,alt,rn

d→ χ2r.

4More generally the limiting distribution of the statistic n(µ̃sn− µ̂sn)0Ξ̂−(µ̃sn− µ̂sn), where Ξ̂− denotes a
consistent estimator for a g-inverse of B0sΩ−1GΣR0(RΣR0)−1RΣG0Ω−1Bs, is that of a chi-square random
variable with rk(B0sΩ−1GΣR0(RΣR0)−1RΣG0Ω−1Bs) degrees of freedom.

5By a proof similar to those of Lemmas 3.1 and 4.1 n1/2(µ̃sn − µsn)
d→ N(0, B0s(Ω−1 −

Ω−1GKG0Ω−1)Bs). If Bs is full row rank then B0s(BsB0s)−1Ω(BsB0s)−1Bs is a g-inverse for B0s(Ω−1 −
Ω−1GKG0Ω−1)Bs. Therefore a test for the joint hypothesis given by the contraints (4.1) and mo-
ment restrictions (2.1) is given by a Pearson-type statistic defined similarly to P altn (3.11), that is,
n(µ̃sn − µsn)0B̂0s(B̂sB̂0s)−1Ω̂(B̂sB̂0s)−1B̂s(µ̃sn − µsn). Under Assumptions 2.1, 4.1 and 4.2, this statistic is
asymptotically equivalent to the corresponding GMM and GEL statistics and Pearson-type statistics
defined in fn. 3 and has a limiting chi-square distribution with m− p+ r degrees of freedom.
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If in addition s = m then Bs is nonsingular so that B
−1
s GΣG

0B
0−1
s is a g-inverse for

B0sΩ
−1GΣR0(RΣR0)−1RΣG0Ω−1Bs.

Corollary 4.1 If Assumptions 2.1, 4.1 and 4.2 are satisfied, rk(Bs) = m and s = m

then the statistics P a,alt,rn = n(µ̃sn − µ̂sn)0B̂−1s ĜΣ̂Ĝ0B̂0−1s (µ̃sn − µ̂sn) and P b,alt,rn = n(µ̃sn −
µsn)

0B̂−1s ĜΣ̂Ĝ
0B̂0−1s (µ̃sn−µsn) are asymptotically equivalent to P a,rn , P b,rn and P c,rn . Therefore

P alt,rn , P b,alt,rn
d→ χ2r.

Consider the local alternatives to the constraints (4.1) Hn : r(β0) = n
−1/2ξ+o(n−1/2),

(i = 1, ..., n), n = 1, 2, .... As above, n1/2ĝ(β0)
d→ N(0,Ω) remains valid under Hn.

Consistency of the restricted GEL and auxiliary parameter estimators β̃, λ̃ and Lagrange

multiplier estimator η̃ for β0, 0 and 0 still obtains. The expansions n1/2(β̃ − β0) =
−ΣR0(RΣR0)−1ξ−KG0Ω−1n1/2ĝ(β0)+op(1) and n1/2λ̃ = −Ω−1GΣR0(RΣR0)−1ξ−(Ω−1−
Ω−1GKG0Ω−1)n1/2ĝ(β0)+op(1) and n1/2η̃ = (RΣR0)−1ξ+(RΣR0)−1RΣG0Ω−1n1/2ĝ(β0)+

op(1) become appropriate under Hn. Hence, the statistics P
a,r
n , P b,rn , P

c,r
n and P a,alt,rn ,

P b,alt,rn remain asymptotically equivalent to Wn and other GMM or GEL statistics for

testing the constraints r (β0) = 0 (4.1). Therefore, P a,rn , P b,rn , P
c,r
n and P a,alt,rn , P b,alt,rn

converge in distribution to a non-central chi-square random variable with r degrees of

freedom and non-centrality parameter ξ0(RΣR0)−1ξ under Hn.

When considering the consistency of the tests using the statistics P a,rn , P b,rn , P
c,r
n and

P alt,rn , P b,alt,rn , we firstly need to examine the limiting behaviour of the restricted GMM or

GEL estimator β̃ and associated auxiliary parameter and Lagrange multiplier estimators

λ̃ and η̃ when r(β0) 6= 0. Because the hypothesis r(β) = 0 is imposed, P̃ (β,λ, η) =

P̂ (β,λ), β ∈ Br. Therefore, P̃ (β,λ, η)
p→ ρ(β,λ) = E[ρ(λ0g(z, β))|λ0g(z, β) ∈ V]

uniformly β ∈ Br and λ with ρ(β,λ) continuous in β and λ. As in section 3 let

λ(β) = argmaxλ ρ(β,λ). For GMM, as β̃
p→ β0, ĝ(β)

0Ω̂(β̃)−1ĝ(β)
p→ g(β)0Ω(β0)−1g(β)

uniformly β ∈ Br.
We modify Assumption 3.1 appropriately.

Assumption 4.3 (a) r(β0) 6= 0; (b) r(β) is continuous at each β ∈ Br; (c) λ(β) is the
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unique maximiser of ρ(β,λ) and is continuous in β ∈ Br; (d) β∗ is the unique minimiser
in Br of ρ(β,λ(β)) or g(β)0Ω(β0)−1g(β).

The consistency of tests based on the statistics P a,rn , P b,rn and P c,rn now follows.

Theorem 4.3 If Assumptions 2.1-2.3 and 4.3 are satisfied then P a,rn , P b,rn , P
c,r
n

p→∞.

Under Assumptions 2.1, 2.2 and 2.3, Ĝ
p→ G, Ω̂

p→ Ω and B̂s
p→ Bs. Let λ∗ ≡ λ(β∗).

Recall that δ∗j = E[(ρ1(λ
0
∗g(z, β∗)) − ρ∗1)1 (z ∈ Zj) |λ0∗g(z,β∗) ∈ V ]/ρ∗1, (j = 1, ..., s),

where ρ∗1 = E[ρ1(λ
0
∗g(z, β∗))|λ0∗g(z, β∗) ∈ V], and δ∗ = (δ∗1, ..., δ∗s)0.

Theorem 4.4 If Assumptions 2.1-2.3 and 4.3 are satisfied, rk(Bs) = m and G
0(BsB0s)

−1Bsδ∗ 6=
0, then P a,alt,rn , P b,alt,rn

p→∞.

If s = m as in Corollary 4.1 and thus B̂−1s ĜΣ̂Ĝ
0B̂0−1s replaces B̂0s(B̂sB̂

0
s)
−1ĜΣ̂Ĝ0(B̂sB̂0s)

−1

in the definition of P a,alt,rn (4.10) and P b,alt,rn (4.11), the consistency condition of Theorem

4.4 becomes G0B0−1s δ∗ 6= 0.
Alternatively, Bs, G and Σ may be estimated consistently under H0 : r(β0) = 0

(4.1) using the restricted estimator β̃ and implied probabilities π̃i, (i = 1, ..., n), that

is, by B̃s = (b̃(Z1), ..., b̃(Zs)), b̃(Zj) =
Pn

i=1 1(z ∈ Zj)g̃i/n or
Pn

i=1 π̃i1(z ∈ Zj)g̃i,

(j = 1, ..., s), Σ̃ = (G̃0Ω̃−1G̃)−1, G̃ =
Pn

i=1Gi(β̃)/n or
Pn

i=1 π̃iGi(β̃), Ω̃ =
Pn

i=1 g̃ig̃
0
i/n,Pn

i=1[g̃i − g̃][g̃i − g̃]0/n, g̃ = ĝ(β̃), or
Pn

i=1 π̃ig̃ig̃
0
i. No alteration is necessary to either the

conclusions stated in Theorem 4.2 and Corollary 4.1 or the following discussion regard-

ing the limiting behaviour of the Pearson-type statistics P a,alt,rn and P b,alt,rn under local

alternatives. Some modification, however, is required for test consistency. Let b∗(Zj) =

E[1(z ∈ Zj)g(z,β∗)|λ0∗g(z,β∗) ∈ V] or E[ρ1(λ0∗g(z, β∗))1(z ∈ Zj)g(z,β∗)|λ0∗g(z,β∗) ∈
V]/ρ∗1, (j = 1, ..., s), Bs∗ = (b∗(Z1), ..., b∗(Zs)), G∗ = E[∂g(z, β∗)/∂β 0|λ0∗g(z, β∗) ∈ V] or
E[ρ1(λ

0
∗g(z, β∗))∂g(z, β∗)/∂β

0|λ0∗g(z, β∗) ∈ V]/ρ∗1 and Ω∗ = E[g(z, β∗)g(z, β∗)0|λ0∗g(z, β∗) ∈
V], E[(g(z, β∗) − g∗)(g(z,β∗) − g∗)0|λ0∗g(z, β∗) ∈ V], g∗ = E[g(z, β∗)|λ0∗g(z, β∗) ∈ V],
or E[ρ1(λ

0
∗g(z, β∗))g(z, β∗)g(z,β∗)

0|λ0∗g(z, β∗) ∈ V]/ρ∗1. Then G̃ p→ G∗, Ω̃
p→ Ω∗ and

B̃s
p→ Bs∗. The hypotheses of Theorem 3.4 require the additional conditions rk(Ω∗) = m,
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rk(G∗) = p, rk(Bs∗) = m and G0∗(Bs∗B
0
s∗)

−1Bs∗δ∗ 6= 0. Hence, P a,alt,rn , P b,alt,rn

p→ ∞. If
s = m as in Corollary 4.1 and B̃−1s G̃Σ̃G̃

0B̃0−1s replaces B̃0s(B̃sB̃
0
s)
−1G̃Σ̃G̃0(B̃sB̃0s)

−1 then

the test consistency condition is G0∗B
0−1
s∗ δ∗ 6= 0 substituting for G0∗(Bs∗B0s∗)−1Bs∗δ∗ 6= 0.

5 Simulation Evidence: Finite Sample Properties of

Tests of Over-Identifying Moment Conditions

This section investigates the finite sample properties of some of the Pearson-type tests

proposed in previous sections. In particular, we examine the size properties of the P an

(3.7), P bn (3.8) and P
alt
n (3.11) test statistics for overidentifying moment restrictions. We

assess their performance in comparison with tests based on the GEL criterion function:

GELRn (3.1), Lagrange multiplier LMn (3.2) and score Sn (3.3) statistics.

5.1 Experimental Designs

The simulation study in Imbens, Spady and Johnson (1998) forms the basis for our

comparison of the finite sample properties of the aforementioned tests. In particular,

we use their first two experimental designs for our investigation. The first design is a

simplified version of an asset-pricing model, characterized by the moment indicators

g(z, β) =

µ
exp [−0.72− β(z1 + z2) + 3z2]− 1
z2(exp[−0.72− β(z1 + z2) + 3z2]− 1)

¶
, (5.1)

after partitioning z = (z1, z2)
0, where z1 and z2 are generated independently from a

N (0, 0.16) distribution and the true value β0 = 3. The second experiment is based on

the moment indicator

g(z,β) =

µ
z − β

z2 − β2 − 2β
¶
, (5.2)

where z has a chi-square distribution with one degree of freedom and β0 = 1. We

considered samples of size n = 100, 200, 500 and 1000 observations, each experiment

being replicated 10000 times.

Tests evaluated at GEL estimators (GELRn, LMn, P
a
n , P

b
n and P

alt
n ) use either ET

or EL estimation. Consistent estimators for the matrices G and Ω required in the com-

putation of the LMn and P
alt
n statistics were obtained in three different ways:
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• gel(n): sample means, for example:

Ω̂ =
nX
i=1

gi(β̂)gi(β̂)
0/n; (5.3)

• gel(s): GEL implied probabilities π̂i, (i = 1, ..., n), for example:

Ω̂ =
nX
i=1

π̂igi(β̂)gi(β̂)
0; (5.4)

• gel(r): G as in gel (s) with Ω estimated robustly by:

Ω̂ =
nX
i=1

π̂igi(β̂)gi(β̂)
0
Ã
n

nX
i=1

π̂2i gi(β̂)gi(β̂)
0
!−1 nX

i=1

π̂igi(β̂)gi(β̂)
0. (5.5)

These estimators for the variance matrix Ω were also used in the computation of the

GEL score statistic Sn. Additionally, Sn was also evaluated at two-step (S
2s
n ), iterated

(Sin) and continuous updating (S
cue
n ) GMM estimators. In these cases, however, only the

consistent estimator for Ω based on sample means was used; see Hansen, Heaton and

Yaron (1996).

In their Monte Carlo simulation study, Imbens, Spady and Johnson (1998) analyzed

the finite sample behaviour of a test based on the following statistics: S2sn , S
i
n, S

cue
n ,

S
et(s)
n , LM

et(s)
n , LM

et(r)
n , GELRetn and GELR

el
n . We replicate their results for the two

experimental designs described above and examine whether their conclusions remain valid

when other estimators are employed to evaluate the LMn and Sn statistics. In particular,

we study the effects of using EL instead of ET estimation [S
el(s)
n , LM

el(s)
n and LM

el(r)
n ].

We confirm their conjecture that robust estimation of Ω results in a deterioration in the

performance of the score statistic Sn [S
et(r)
n and S

el(r)
n ] for reasons explained below. We

also investigate the consequences of using the sample mean estimator for Ω when GEL

estimation is utilized [S
et(n)
n , S

el(n)
n , LM

et(n)
n and LM

el(n)
n ].

The implementation of P altn examined here used the complete partition of the sample

space Z, that is, the partition of Z consists of s subsets. To examine the sensitivity of

P altn to s, we considered two values for s, s = 8 and 16. The definition of each subset

constituting the partition of Z was such that in each Monte Carlo sample each subset

contained approximately (100/s)% of the observations.
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5.2 Results

Tables 1 and 2, for the asset-pricing model, and 3 and 4, for the chi-square moments

case, report the estimated size of each test at seven different levels of significance 0.200,

0.100, 0.050, 0.025, 0.010, 0.005 and 0.001. For each significance level, sample size and

model considered, the actual size closest to the nominal size is underlined.

Tables 1, 2, 3 and 4 about here

The results displayed in Tables 1 and 3 conform with those presented by Imbens, Spady

and Johnson (1998) for the tests analyzed in their paper.6 They show that all these

tests are significantly oversized in almost all cases, even when n = 1000, particularly

for the chi-square moments model. The statistic LM
et(r)
n registers the best behaviour in

most experiments, the only exceptions being for the largest nominal sizes, where Scuen ,

in the first model, and LM
el(r)
n , in both models, achieve superior performances. The

size behaviour of the Sn statistic evaluated at the two-step GMM estimator, which is

most commonly used to assess overidentifying moment condition models, is generally

disastrous in these experiments. In particular, it is the worst of all versions [S2sn , S
i
n,

Scuen , S
et(n)
n and S

el(n)
n ] using the sample mean estimator for Ω in the asset-pricing model.

The GELRn tests also produced very modest results, with the EL version performing

substantially better than that using ET, particularly for the chi-square moments model

and for the smallest nominal sizes.

As noted by Imbens, Spady and Johnson (1998), estimation of the variance matrix Ω

exerts a decisive influence on the performance of the tests. However, the extraordinary

benefits from the use of robust estimation reported there for the Lagrange multiplier

statistic LM
et(r)
n do not extend to all tests, not even to LM

el(r)
n for the smallest nominal

sizes considered. The size behaviour of the score statistic Sn also deteriorates consider-

ably. Although a theoretical analysis of the effects of using robust estimation is beyond

6The following correspondence holds between the notation used here and that utilized by Imbens,

Spady and Johnson (1998): S2sn = TAMg1 , Sin = TAMg2 , Scuen = TAMg3 , S
et(s)
n = TAMet , LM

et(s)
n = TLMet(s),

LM
et(r)
n = TLMet(r), GELR

et
n = T

CF
klic(et) and GELR

el
n = T

CF
lr(el).
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the scope of this paper, it is clear that LMn and Sn are affected in an opposite manner

because an estimator for Ω appears as an inverse in the latter statistic.

Estimated sizes for the Pearson-type statistics are reported in Tables 2 and 4. The

P an and P
b
n statistics perform very modestly, being substantially oversized in all cases.

Their size behaviour does not differ much from that described above for the other tests.7

In contradistinction, however, P altn is more promising. Whichever number of classes

s is chosen, the general effects of evaluation at different estimators are similar in all

cases. Analogously to LMn, the least number of rejections of the null hypothesis occurs

when robust estimation of Ω is employed. This is unsurprising since Ω appears in the

expressions for both tests in a similar manner. Overall, robust et(r) and el(r) versions

of P altn record most of the best size properties.

Figure 1 about here

Figure 1 displays QQ-plots comparing the six versions of P altn for s = 8. Vertical

coordinates are Monte Carlo estimates of quantiles of the finite sample distribution of

those statistics and horizontal coordinates are quantiles of a chi-square variable with

one degree of freedom. The vertical solid line marks the asymptotic critical value for

a nominal size of 0.05. Clearly, the best performances are obtained by P
alt,et(r)
n and

P
alt,el(r)
n . Note that for n ≥ 500 (first model) or n = 1000 (second model) the estimated
and asymptotic quantiles of these statistics are very close while other versions of P altn

are still significantly oversized. It is also worthy of notice how, for small sample sizes,

all three EL versions of P altn tend to reject significantly less than the corresponding ET

variants.

Figure 2 about here

The size performance of P altn did not appear to be affected significantly by s for

different sample sizes. This was particularly evident for the asset-pricing model case.

7The estimated sizes for the EL version of P bn test are numerically equal to those calculated for S
el(s)
n

and LM
el(s)
n . This is due to the particular form assumed by the EL implied probabilities (3.4): π̂i =

n−1(1 + λ̂0gi(β̂))−1, (i = 1, ..., n). For example, as λ̂0gi(β̂) = nπ̂i − 1 and Ω̂ =
Pn
i=1 π̂igi(β̂)gi(β̂)

0,
LM

el(s)
n = nλ̂0Ω̂λ̂ =

Pn
i=1(λ̂

0gi(β̂))2/(1+ λ̂0gi(β̂)) = P bn.
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For the chi-squared moment model the differences between s = 8 and s = 16 cases were

more important but were attenuated by increasing sample size. Figure 2 illustrates this

situation for P
alt,et(r)
n displaying QQ-plots for both values of s.

Figure 3 about here

Figure 3 compares the robust forms of LMn and P
alt
n for s = 8 evaluated at ET and

EL estimators. Of the statistics considered by Imbens, Spady and Johnson (1998) and

here LM
et(r)
n registered the best behaviour. The statistic P altn clearly performs better

for both models with estimated and asymptotic quantiles being closer in most cases.

Furthermore, while P altn is relatively indifferent to the use of ET or EL estimation, at

least for the larger sample sizes, EL estimation does not work well for LMn, even for

n = 1000.

6 Conclusions

This paper develops new Pearson-type statistics appropriate for testing over-identifying

moment conditions and parametric restrictions. The Pearson-type statistic contructed

using a partition of the sample space performed very well in Monte Carlo simulation

experiments comparing tests for over-identifying moment conditions. The size behaviour

for this statistic based on robust estimation of the moment indicator variance matrix

appears to be superior to that of alternative competitor tests. Moreover, this statistic

seems to be insensitive to the number of classes comprising the partition of the sample

space.

Appendix: Proofs

Throughout the Appendix, with probability approaching one will be abbreviated as

w.p.a.1, UWL will denote a uniform weak law of large numbers such as Lemma 2.4 of

Newey and McFadden (1994), CS Cauchy-Schwartz and CLT will refer to the Lindeberg-

Lévy central limit theorem.

[23]



Lemma A.1 If Assumptions 2.1, 2.2 and 2.3 are satisfied, then nπ̂i = 1 + op(1) and

n1/2
µ
π̂i − 1

n

¶
=
1

n
ĝ0in

1/2λ̂(1 + op(1)) +Op(n
−3/2),

uniformly (i = 1, ..., n).

Proof: Let bi = supβ∈B kgi(β)k. From the Proof of Lemma A1 and Theorem 3.1 in

NS, as max1≤i≤n bi = Op(n
1
α ) and λ̂ = Op(n

−1/2), supβ∈B,1≤i≤n
¯̄̄
λ̂0gi(β)

¯̄̄
= Op(n

−( 12− 1
α)).

A first order order Taylor expansion for ρ1(λ̂
0ĝi) yields

ρ1(λ̂
0ĝi) = −1 + ρ2(λ̇0ĝi)λ̂0ĝi,

where λ̇ is on the line joining λ̂ and 0. Now, max1≤i≤n
¯̄̄
ρ2(λ̇

0ĝi) + 1
¯̄̄
p→ 0 as supβ∈B,1≤i≤n

¯̄̄
λ̇0gi(β)

¯̄̄
p→

0 and so ρ2(λ̇
0ĝi)λ̂0ĝi = −λ̂0ĝi(1 + op(1)) uniformly (i = 1, ..., n). Therefore,

ρ1(λ̂
0ĝi) = −1− λ̂0ĝi(1 + op(1)), (A.1)

uniformly (i = 1, ..., n). Similarly,

1Pn
j=1 ρ1(λ̂

0ĝj)
= −1

n
− 1

n

Ã
nX
j=1

ρ2(λ̇
0ĝj)ĝ0j/n

!
λ̂

= −1
n
(1 +Op(n

−1)),

as
Pn

j=1 ĝj/n = Op(n
−1/2) by Theorem 3.1 of NS. Combining eqs. (A.1) and (A.2)

π̂i =
1

n
(1 + λ̂0ĝi(1 + op(1)))(1 +Op(n−1))

and, therefore, from Lemma A1 of NS,

nπ̂i − 1 = λ̂0ĝi(1 + op(1)) +Op(n−1)

= op(1)

uniformly (i = 1, ..., n). Similarly

n1/2
µ
π̂i − 1

n

¶
=
1

n
ĝ0in

1/2λ̂(1 + op(1)) +Op(n
−3/2),
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uniformly (i = 1, ..., n).

Proof of Lemma 3.1: By Lemma A.1 and noting from Theorem 3.2 of NS that

n1/2λ̂ = −Pn1/2ĝ(β0) + op(1),

n1/2[µ̂n(z)− µn(z)] = n1/2
nX
i=1

µ
π̂i − 1

n

¶
1(zi ≤ z)

=
nX
i=1

[n−1ĝ0in
1/2λ̂(1 + op(1)) +Op(n

−3/2)]1(zi ≤ z)

=

Ã
nX
i=1

1(zi ≤ z)ĝ0i/n
!
n1/2λ̂(1 + op(1)) +Op(n

−1/2)

= [b(z) +Op(n
−1/2)]0n1/2λ̂+ op(1)

⇒ Λ̂(z)

where Λ̂ is Gaussian stochastic process on Rk with mean zero and covariance function

E[Λ̂(z1)Λ̂(z2)] = b(z1)
0Pb(z2).

Proof of Theorem 3.1: Our method of proof is to demonstrate that the statistics

P an (3.7) and P
b
n (3.8) are asymptotically equivalent to the Lagrange multiplier test LMn

(3.2) for the over-identifying moment conditions (2.1). Using Lemma A.1

(nπ̂i − 1)2 = (λ̂0ĝi(1 + op(1)) +Op(n−1))2,

uniformly (i = 1, ..., n). Summing over i = 1, ..., n,

nX
i=1

(nπ̂i − 1)2 = nλ̂0(
nX
i=1

ĝiĝ
0
i/n)λ̂(1 + op(1)) + n

1/2λ̂0(
nX
i=1

ĝi/n
1/2)(1 + op(1))Op(n

−1)

+Op(n
−1)

= nλ̂0(
nX
i=1

ĝiĝ
0
i/n)λ̂+ op(1)

= LMn + op(1).

From Lemma A.1,
nX
i=1

(nπ̂i − 1)2 =
nX
i=1

(nπ̂i − 1)2
nπ̂i

+ op(1).
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Proof of Theorem 3.2: From a UWL, the matrix estimators B̂s, Ĝ and Ω̂ are

consistent estimators for their population counterparts Bs, G and Ω. From the Proof of

Lemma 3.1, n1/2(µ̂sn − µsn) = B0sn1/2λ̂+ op(1) = −B0sPn1/2ĝ(β0) + op(1) and thus

n1/2(µ̂sn − µsn) d→ N(0, B0sPBs).

If rk(Bs) = m then B0s(BsB
0
s)
−1Ω(BsB0s)

−1Bs is a g-inverse for B0sPBs as PΩP = P .

Therefore,

P altn = n(µ̂sn − µsn)0B0s(BsB0s)−1Ω(BsB0s)−1Bs(µ̂sn − µsn) + op(1)
= nĝ(β0)

0PΩP ĝ(β0) + op(1)

= LMn + op(1),

as PΩP = P .

Proof of Theorem 3.3: From Assumption 3.1, it follows by standard consistency

results for concave objective functions (e.g. Newey and McFadden, 1994, Theorem

2.7) that λ̂(β) = argmaxλ∈Λ̂n(β) P̂ (β,λ) exists w.p.a.1 and λ̂(β)
p→ λ(β). By a UWL

supβ∈B
°°°P̂ (β, λ̂(β))− ρ(β,λ(β))°°° p→ 0. Therefore, the GEL estimator β̂

p→ β∗ using e.g.

Theorem 2.1 of Newey and McFadden (1994). As V is bounded, Pn
i=1 ρ1(λ

0gi(β))/n
p→

E[ρ1(λ
0g(z, β))|λ0g(z, β) ∈ V] and Pn

i=1 ρ1(λ
0gi(β))2/n

p→ E[ρ1(λ
0g(z, β))2|λ0g(z, β) ∈ V]

uniformly β and λ. Therefore, by a UWL,
Pn

i=1 ρ(λ̂
0ĝi)/n

p→ E[ρ1(λ
0
∗g(z, β∗))|λ0∗g(z, β∗) ∈

V] and Pn
i=1 ρ(λ̂

0ĝi)2/n
p→ E[ρ1(λ

0
∗g(z, β∗))

2|λ0∗g(z, β∗) ∈ V]. Consider the statistic P an .

n−1P an =
nX
i=1

(nπ̂i − 1)2 /n

=

Pn
i=1 ρ1(λ̂

0ĝi)2/n

(
Pn

j=1 ρ1(λ̂
0ĝj)/n)2

− 1

p→ var[ρ1(λ
0
∗g(z, β∗))|λ0∗g(z, β∗) ∈ V]

E[ρ1(λ0∗g(z, β∗))|λ0∗g(z, β∗) ∈ V]2
> 0.

Therefore, the conclusion follows as P an
p→∞. Similarly, for P bn,

n−1P bn = n−1
nX
i=1

(nπ̂i − 1)2
nπ̂i

=
nX
i=1

ρ1(λ̂
0ĝi)/n

nX
i=1

1

nρ1(λ̂0ĝj)
− 1

p→ E[ρ1(λ
0
∗g(z,β∗))

2|λ0∗g(z, β∗) ∈ V]E[ρ1(λ0∗g(z,β∗))−1|λ0∗g(z, β∗) ∈ V]− 1 > 0
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by CS so P bn
p→∞.

Proof of Theorem 3.4: Follows immediately as µ̂sn − µsn p→ δ∗.

Proof of Proposition 4.1: The first order conditions determining the GEL and

auxiliary parameter estimators β̃ and λ̃ and Lagrange multiplier estimator η̃ are

nX
i=1

ρ1(λ̃
0g̃i + η̃0r(β̃))

 gi(β̃)

Gi(β̃)
0λ̃+R(β̃)0η̃

r(β̃)

 =

 0
0
0

 . (A.2)

It is immediate from eq. (A.2) that the constrained GEL estimator β̃ satisfies the para-

metric constraints; viz. r(β̃) = 0. Hence, a similar proof to that for Theorem 3.1 of

NS establishes that, if Assumption 4.1 holds, β̃
p→ β0 and λ̃

p→ 0. Therefore, from

(A.2), as max1≤i≤n
¯̄̄
ρ1(λ̃

0gi(β̃)) + 1
¯̄̄
p→ 0 as in Lemma A1 of NS, using a UWL η̃

p→ 0 by

Assumption 4.2 (c)(d). Arguments like those in the proof of Theorem 3.2 of NS give

n1/2ĝ(β0) + Ωn
1/2λ̃+Gn1/2(β̃ − β0) = op(1),

G0n1/2λ̃+R0n1/2η̃ = op(1), (A.3)

Rn1/2(β̃ − β0) = op(1). (A.4)

From eq. (A.3),

n1/2η̃ = −(RΣR0)−1RΣG0n1/2λ̃+ op(1) (A.5)

and, thus, substituting back,

KG0n1/2λ̃ = op(1). (A.6)

Therefore, premultiplying eq. (A.3) by KG0Ω−1 and using (A.6),

KG0Ω−1n1/2ĝ(β0) +KΣ−1n1/2(β̃ − β0) = op(1).

Hence, from eq. (A.4),

n1/2(β̃ − β0) = −KG0Ω−1n1/2ĝ(β0) + op(1). (A.7)

Substituting (A.7) back into eq. (A.3),

n1/2λ̃ = −(Ω−1 − Ω−1GKG0Ω−1)n1/2ĝ(β0) + op(1), (A.8)
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and, thus, from eq. (A.5),

n1/2η̃ = (RΣR0)−1RΣG0Ω−1n1/2ĝ(β0) + op(1), (A.9)

as RK = 0. The result follows immediately from eqs. (A.7)-(A.9) as n1/2ĝ(β0)
d→ N(0,Ω)

by a CLT.

Lemma A.2 If Assumptions 4.1 and 4.2 are satisfied, then nπ̃i = 1 + op(1),

n1/2
µ
π̃i − 1

n

¶
=
1

n
g̃0in

1/2λ̃(1 + op(1)) +Op(n
−3/2),

and

n1/2 (π̃i − π̂i) = 1

n
ĝ0in

1/2(λ̂− λ̃)(1 + op(1)) +Op(n−3/2),

uniformly (i = 1, ..., n).

Proof: The first and second conclusions follow by a similar argument to that of

Lemma A.1. Therefore,

n1/2(π̃i − π̂i) = (
1

n
g̃0in

1/2λ̃− 1

n
ĝ0in

1/2λ̂)(1 + op(1)) +Op(n
−3/2)

=
1

n
ĝ0in

1/2(λ̂− λ̃)(1 + op(1)) +Op(n−3/2)

uniformly (i = 1, ..., n) as Gi(β) = Op(1), β̃ − β̂ = Op(n−1/2) and λ̃ = Op(n−1/2).
Proof of Lemma 4.1: From Lemma A.2 and similarly to the Proof of Lemma 3.1,

n1/2[µ̃n(z)− µn(z)] = n1/2
nX
i=1

µ
π̃i − 1

n

¶
1(zi ≤ z)

=
nX
i=1

[n−1g̃0in
1/2λ̃(1 + op(1)) +Op(n

−3/2)]1(zi ≤ z)

=

Ã
nX
i=1

1(zi ≤ z)g̃0i/n
!
n1/2λ̃(1 + op(1)) +Op(n

−1/2)

= [b(z) +Op(n
−1/2)]0n1/2λ̃+ op(1)

⇒ Λ̃(z)
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where Λ̃ is Gaussian stochastic process on Rk with mean zero and covariance function

E[Λ̃(z1)Λ̃(z2)] = b(z1)
0(Ω−1 − Ω−1GKG0Ω−1)b(z2) using eq. (A.8). From eq. (A.10) and

Lemma A.2

n1/2[µ̃n(z)− µ̂n(z)] = n1/2
nX
i=1

(π̃i − π̂i) 1(zi ≤ z)

=
nX
i=1

[(
1

n
g̃0in

1/2λ̃− 1

n
ĝ0in

1/2λ̂)(1 + op(1)) +Op(n
−3/2)]1(zi ≤ z)

=

Ã
nX
i=1

1(zi ≤ z)ĝ0i/n+Op(n−1/2)
!
n1/2(λ̃− λ̂)(1 + op(1)) +Op(n−1/2)

= [b(z) +Op(n
−1/2)]0n1/2(λ̃− λ̂) + op(1)

⇒ ∆(z)

where ∆ is Gaussian stochastic process on Rk with mean zero and covariance function

E[∆(z1)∆(z2)] = b(z1)
0Ω−1GΣR0(RΣR0)−1RΣGΩ−1b(z2) as

n1/2(λ̃− λ̂) = −Ω−1GΣR0(RΣR0)−1RΣGΩ−1n1/2ĝ(β0) + op(1)

using eq. (A.8) and n1/2λ̂ = −Pn1/2ĝ(β0) + op(1) from the Proof of Theorem 3.2 in NS.

Proof of Theorem 4.1: From Lemma A.2, it follows immediately that

(nπ̃i − nπ̂i)2 = ((λ̂− λ̃)0ĝi(1 + op(1)) +Op(n−1))2,

uniformly (i = 1, ..., n). Summing over i = 1, ..., n,

nX
i=1

(nπ̂i − nπ̂i)2 = n(λ̂− λ̃)0(
nX
i=1

ĝiĝ
0
i/n)(λ̂− λ̃)(1 + op(1))

+n1/2(λ̂− λ̃)0(
nX
i=1

ĝi/n
1/2)(1 + op(1))Op(n

−1) +Op(n−1)

= n(λ̂− λ̃)0(
nX
i=1

ĝiĝ
0
i/n)(λ̂− λ̃) + op(1)

= n(λ̂− λ̃)0Ω(λ̂− λ̃) + op(1)
= nĝ(β0)

0Ω−1GΣR(RΣR0)−1RΣGΩ−1ĝ(β0) + op(1)

= nr(β̂)0(R̂Σ̂R̂0)−1r(β̂) + op(1),
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the first term of which is the Wald test statistic for r(β0) = 0 which has a limiting chi-

square distribution with r degrees of freedom. See Newey and West (1987) and Smith

(2001, section 5). From Lemmas A.1 and A.2

nX
i=1

(nπ̂i − nπ̂i)2 =
nX
i=1

(nπ̂i − nπ̂i)2
nπ̂i

+ op(1)

=

nX
i=1

(nπ̂i − nπ̂i)2
nπ̃i

+ op(1).

Proof of Theorem 4.2: From Lemma 4.1, as n1/2(µ̃sn−µ̂sn) = −B0sn1/2(λ̃−λ̂)+op(1),

P a,alt,rn = n(λ̃− λ̂)0GΣG0(λ̃− λ̂) + op(1)
= nĝ(β0)

0Ω−1GΣR(RΣR0)−1RΣGΩ−1ĝ(β0) + op(1)

= nr(β̂)0(R̂Σ̂R̂0)−1r(β̂) + op(1),

which from the Proof of Theorem 4.1 is asymptotically equivalent to P a,rn , P b,rn and

P c,rn . Similarly, from Lemma 4.1, n1/2(µ̃sn − µ̂sn) = B0sn
1/2λ̂ + op(1). Therefore, from

the Proof of Proposition 4.1, as n1/2λ̃ = −(Ω−1 − Ω−1GKG0Ω−1)n1/2ĝ(β0) + op(1) and
G0(Ω−1 − Ω−1GKG0Ω−1) = R0(RΣR0)−1RΣG0Ω−1,

P b,alt,rn = nλ̂0GΣG0λ̂+ op(1)

= nĝ(β0)
0Ω−1GΣR(RΣR0)−1RΣGΩ−1ĝ(β0) + op(1).

Proof of Theorem 4.3: The proof is very similar in outline to that of The-

orem 3.3. Firstly, λ̃(β) = argmaxλ∈Λ̃n(β) P̂ (β,λ), β ∈ Br, exists w.p.a.1 and thus
λ̃(β)

p→ λ(β), β ∈ Br. Secondly, the restricted GEL estimator β̃
p→ β∗, β∗ ∈ Br.

As in the Proof of Theorem 3.3,
Pn

i=1 ρ1(λ
0gi(β))/n

p→ E[ρ1(λ
0g(z,β))|λ0g(z,β) ∈ V] andPn

i=1 ρ1(λ
0gi(β))2/n

p→ E[ρ1(λ
0g(z, β))2|λ0g(z, β) ∈ V] uniformly β ∈ Br and λ. There-

fore, by a UWL,
Pn

i=1 ρ(λ̃
0gi(β̃))/n

p→ E[ρ1(λ
0
∗g(z, β∗))|λ0∗g(z, β∗) ∈ V] and

Pn
i=1 ρ(λ̃

0gi(β̃))2/n
p→

E[ρ1(λ
0
∗g(z, β∗))

2|λ0∗g(z,β∗) ∈ V].

[30]



Consider the statistic P c,rn .

n−1P c,rn =
nX
i=1

(nπ̃i − nπ̂i)2 /n

=

Pn
i=1 ρ1(λ̃

0gi(β̃))2/n

(
Pn

j=1 ρ1(λ̃
0gj(β̃))/n)2

− 2
Pn

i=1 ρ1(λ̃
0gi(β̃))ρ1(λ̂0gi(β̂))/n

(
Pn

j=1 ρ1(λ̃
0gj(β̃))/n)(

Pn
j=1 ρ1(λ̂

0gj(β̂))/n)

+

Pn
i=1 ρ1(λ̂

0gi(β̂))2/n

(
Pn

j=1 ρ1(λ̂
0gj(β̂))/n)2

=

Ã Pn
i=1 ρ1(λ̃

0gi(β̃))2/n

(
Pn

j=1 ρ1(λ̃
0gj(β̃))/n)2

− 1
!
+ op(1)

p→ var[ρ1(λ
0
∗g(z, β∗))|λ0∗g(z, β∗) ∈ V ]

E[ρ1(λ0∗g(z, β∗))|λ0∗g(z, β∗) ∈ V ]2
> 0.

The third equality follows as ρ1(λ̂
0g(zi, β̂)) = −1 + op(1), uniformly (i = 1, ..., n), from

Lemma A1 in NS,
Pn

j=1 ρ1(λ̂
0g(zj , β̂))2/n

p→ 1 and
Pn

j=1 ρ1(λ̂
0g(zj , β̂))/n

p→ −1. The
conclusion P c,rn

p→∞ is then immediate. Similarly, for P a,rn ,

n−1P a,rn =
nX
i=1

(nπ̃i − nπ̂i)2
π̂i

=
(
Pn

i=1 ρ1(λ̃
0g̃i)2/nρ1(λ̂0ĝi))(

Pn
j=1 ρ1(λ̂

0ĝj)/n)

(
Pn

j=1 ρ1(λ̃
0g̃j)/n)2

− 1

=

Ã
(
Pn

i=1 ρ1(λ̃
0g̃i)2/n)

(
Pn

j=1 ρ1(λ̃
0g̃j)/n)2

− 1
!
+ op(1)

= n−1P c,rn + op(1).

For P b,rn ,

n−1P b,rn =
nX
i=1

(nπ̃i − nπ̂i)2
π̃i

=
(
Pn

i=1 ρ1(λ̂
0ĝi)2/nρ1(λ̃0g̃i))(

Pn
j=1 ρ1(λ̃

0g̃j)/n)

(
Pn

j=1 ρ1(λ̂
0ĝj)/n)2

− 1

p→ E[ρ1(λ
0
∗g(z,β∗))|λ0∗g(z,β∗) ∈ V ]

×E[ρ1(λ0∗g(z, β∗))−1|λ0∗g(z,β∗) ∈ V ]− 1 > 0

by CS so P b,rn
p→∞.

[31]



Proof of Theorem 4.4: Follows immediately as µ̃sn− µ̂sn p→ δ∗ and µ̃sn− µsn p→ δ∗.
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