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Abstract : 
 
The ability of six alternative bootstrap methods to reduce the bias of GMM parameter estimates is 
examined in an instrumental variable framework using Monte Carlo analysis. 
Promising results were found for the two bootstrap estimators suggested in the paper. 
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1 Introduction

It is now widely recognized that the efficient two-step generalized method of moments (GMM) es-

timator may have large biases for the sample sizes typically encountered in economic applications;

see, for example, the several Monte Carlo studies that appeared in the July 1996 special issue of

the Journal of Business & Economic Statistics. In this paper we analyze the ability of six alter-

native bootstrap procedures to reduce the finite sample bias of GMM parameter estimates. Three

of those alternatives were already proposed by other authors: the standard, nonparametric (NP)

bootstrap; Hall and Horowitz’s (1996) recentered nonparametric (RNP) bootstrap; and Brown

and Newey’s (2002) constrained empirical likelihood (CEL) bootstrap. Monte Carlo evidence by

Horowitz (1998) and Ramalho (2005) shows that application of these bootstrap methods reduces

the bias of the GMM estimator but does not completely eliminate it. Therefore, in this paper

we suggest two alternative bootstrap techniques, both of which use the empirical likelihood (EL)

distribution function (see Qin and Lawless, 1994) to generate the bootstrap samples. The finite

sample bias of all the corresponding bootstrap bias-corrected GMM estimators are examined in

an instrumental variable framework through a Monte Carlo analysis.

2 GMM estimation

Let yi, i = 1, ..., n, be independent and identically distributed observations on a data vector y, θ

a k-dimensional vector of parameters of interest, and g (y, θ) an s-dimensional vector of functions

of the observed variables and parameters of interest. Throughout, we assume that s > k and that

the true parameter vector θ0 uniquely satisfies the moment conditions

EF [g (y, θ0)] = 0, (1)

where EF [·] denotes expectation taken with respect to the unknown distribution function F (y).

Define gi (θ) ≡ g (yi, θ), i = 1, ..., n, and gn (θ) ≡ n−1
Pn

i=1 gi (θ). Regularity conditions are

assumed such that gn (θ)
p→ EF [g (y, θ)] and

√
ngn (θ0)

d→ N (0, V ), where the asymptotic variance

matrix V ≡ EF

£
gi (θ0) gi (θ0)

0¤ is positive definite and p→ and d→ denote convergence in probability

and convergence in distribution, respectively.

The efficient GMM estimator θ̂GMM is obtained from minimization of the optimal quadratic

form of the sample moment indicators

Qn = gn (θ)
0
h
Vn
³
θ̃
´i−1

gn (θ) , (2)
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where θ̃ is a preliminary consistent estimator for θ0 and Ṽn ≡ Vn

³
θ̃
´
is a consistent estimator

for V . Let G ≡ EF

h
∂gi(θ0)
∂θ0

i
. Under suitable regularity conditions, see Newey and McFad-

den (1994), θ̂GMM is a consistent, asymptotically normal estimator of θ0,
√
n
³
θ̂GMM − θ0

´
d→

N
h
0, (G0V −1G)−1

i
, and is asymptotically efficient among all estimators based only on (1).

3 The empirical likelihood distribution function

Consider again the moment conditions (1). Implicitly, by giving the same weight (n−1) to each

observation, GMM uses the empirical distribution function Fn (y) ≡ n−1
Pn

i=1 1 (yi ≤ y) as esti-

mate for F (y), where the indicator function 1 (yi ≤ y) is equal to 1 if yi ≤ y and 0 otherwise.

However, since the moment conditions (1) are assumed to be satisfied in the population, this

information can be exploited in order to obtain a more efficient estimator of F (y). Actually, we

may obtain an alternative estimator for θ in (1) by choosing the estimator θ̂ that minimizes the

distance, relatively to some metric, between Fn (y) and a distribution function Fp (y) satisfying

the moment conditions (1). The distribution Fp (y) is, hence, the member of the class F (θ) of all
distribution functions that satisfy (1), F (θ) ≡ ©Fp : EFp [g (y, θ0)] = 0

ª
, that is closest to Fn.

In the selection of a particular probability measure in F (θ), different metrics for the closeness
between Fp (y) and Fn (y) may be used. The most common choices for the metricM (Fn, Fp) are

particular cases of the Cressie-Read (1984) power-divergence statistic, namelyM (·) =P dFn (y)

ln [dFn (y) /dFp (y)] which produces the so-called EL estimator. Thus, the EL estimator θ̂EL can

be described as the solution to the program

max
θ

nX
i=1

ln pELi subject to pELi ≥ 0,
nX
i=1

pELi = 1 and
nX
i=1

pELi g (yi, θ) = 0, (3)

where pELi ≡ dFp (yi), i = 1, ..., n, and the last restriction is an empirical measure counterpart to

the moment conditions (1), imposing them numerically in the sample; for an alternative motiva-

tion of EL estimators, see Newey and Smith (2004).

From optimization of (3), it is straightforward to show that

p̂ELi ≡ pELi

³
θ̂EL, λ̂EL

´
=

1

n
h
1 + λ̂

0
ELg

³
yi, θ̂EL

´i , i = 1, ..., n, (4)

where θ̂EL and λ̂EL, the s-vector of Lagrange multipliers associated to the last restriction of (3),

result from unconstrained optimization of the saddle function n−1
Pn

i=1 ln [1 + λ0gi (θ)] . Thus,
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the EL distribution function Fp (y) is given by

Fp (y) =
nX
i=1

p̂ELi 1 (yi ≤ y) . (5)

See Qin and Lawless (1994) for details.

4 Alternative bootstrapping for the GMM estimator

Assume that a random sample S of size n is collected from a population whose (unknown)

distribution function is F (y). Bootstrap samples are generated by randomly sampling S with

replacement. This resampling is based on a certain distribution function, F ∗ (y), which assigns

each observation a given probability of being sampled. In general, using the bootstrap, the bias

of the GMM estimator θ̂GMM can be estimated as follows: 1) compute θ̂GMM by minimizing

(2) based on S; 2) generate B bootstrap samples S∗j , j = 1, ..., B, of size n accordingly with

the chosen F ∗ (y): S∗j =
©
y∗j1, ..., y

∗
jn

ª
, where y∗ji, i = 1, ..., n, denotes the observations included

in the bootstrap sample S∗j ; 3) for each bootstrap sample calculate the GMM estimator θ̂
∗
j ≡

argmin
θ
g∗jn (θ) V̂

∗−1
jn g∗jn (θ), j = 1, ..., B, where g

∗
jn (θ) = n−1

Pn
i=1 g

¡
y∗ji, θ

¢
and V̂ ∗−1jn uses a pre-

liminary consistent estimator for θ0 based on the bootstrap sample S∗j ; 4) average the B GMM

estimators calculated in the preceding step: θ̄∗ = 1
B

PB
j=1 θ̂

∗
j ; 5) estimate the bias of the GMM

estimator θ̂ by calculating:

b̂ = θ̄
∗ − θ̂GMM . (6)

Subtracting the bias (6) from the GMM estimator θ̂GMM , it is then possible to obtain the bias-

corrected GMM estimator

θ̂BCGMM = 2θ̂GMM − θ̄
∗. (7)

As discussed next, these general procedures may be used to reduce the finite sample bias of

GMM parameter estimates in several distinct forms.

4.1 Nonparametric bootstrap

The NP bootstrap is probably the most commonly applied bootstrap technique in econometrics.

In this case, the bootstrap samples are generated using the empirical distribution function Fn (y),

so each observation has equal probability n−1 of being drawn. However, direct application of

the NP bootstrap in the GMM framework seems to be unsatisfactory in many cases. Indeed,

when the model is overidentified, while the population moment conditions EF [g (y, θ)] = 0 are
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satisfied at θ = θ0, the estimated sample moments are typically non-zero, that is, there is no θ

such that EFn [g (y, θ)] = 0 is met, except in very special cases. Therefore, Fn (y) may be a poor

approximation to the true underlying distribution of the data and, hence, the NP bootstrap may

not yield a substantial improvement over first-order asymptotic theory in standard applications

of GMM.

4.2 Recentered nonparametric bootstrap

In order to guarantee that the moment conditions exploited by GMM estimators hold exactly

in each replication of the bootstrap, Hall and Horowitz (1996) suggested using the recentered

moment indicators

gc
¡
y∗j , θ

¢
= g

¡
y∗j , θ

¢− 1
n

nX
i=1

g
³
yi, θ̂GMM

´
, (8)

since EFn

£
gc
¡
y∗j , θ

¢¤
= 0. To implement this RNP bootstrap method some adaptations must be

made to the general procedures described earlier. Namely, in step 1 we have to calculate also

gn
³
θ̂GMM

´
and in step 3 GMM estimation is now based on the recentered moment indicators

(8), with the weight matrix specified accordingly.

4.3 Constrained empirical likelihood bootstrap

Instead of recentering the moment conditions and keeping Fn (y) as resampling distribution,

Brown and Newey (2002) suggested generating the bootstrap samples using a different distribu-

tion, say F1 (y), such that EF1

h
g
³
y, θ̂GMM

´i
= 0. Namely, they proposed the employment of a

constrained version of the EL distribution function (5), which is given by

F c
p (y) =

nX
i=1

p̂CELi 1 (yi ≤ y) , (9)

where

p̂CELi =
1

n
h
1 + λ̂

0
CELg

³
yi, θ̂GMM

´i , i = 1, ..., n, (10)

and λ̂CEL results from maximization of n−1
Pn

i=1 ln
h
1 + λ0gi

³
θ̂GMM

´i
; in other words, F c

p (y)

results from solving the program (3) conditional on θ = θ̂GMM . Since
Pn

i=1 p̂
CEL
i gi

³
θ̂GMM

´
=

0 is the first-order condition characterizing λ̂CEL, this CEL bootstrap imposes, in effect, the

moment conditions, evaluated at θ̂GMM , on the sample: EFCEL

h
g
³
y, θ̂GMM

´i
= 0.

Brown and Newey (2002) proved that the CEL bootstrap is asymptotically efficient relative

to the NP and RNP methods, since F c
p (y) is a more efficient estimator of F (y) than Fn (y).
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4.4 Recentered empirical likelihood bootstrap

The two bootstrap methods that we propose in this paper are based on the EL distribution

Fp (y) given in (5). Although they are not expected to be more efficient than the CEL bootstrap,

the fact that Fp (y) is used instead of F c
p (y) may lead to better results in finite samples for two

reasons: first, the former distribution do not result from an optimization conditional on θ =

θ̂GMM as the latter; second, there are some Monte Carlo evidence suggesting that θ̂EL displays

less bias than θ̂GMM in small samples; see inter alia Ramalho (2005).

As before, some correction seems to be necessary to apply this EL bootstrap to the GMM

estimator, since
Pn

i=1 p̂
EL
i g

³
yi, θ̂GMM

´
6= 0 in general. Analogously to Hall and Horowitz (1996),

we suggest using the recentered moment indicators

gc
¡
y∗j , θ

¢
= g

¡
y∗j , θ

¢− nX
i=1

p̂ELi g
³
yi, θ̂GMM

´
, (11)

since EFEL

£
gc
¡
y∗j , θ

¢¤
= 0. This recentered EL (REL) bootstrap can be implemented applying

similar procedures to those described for the RNP method, with only two (obvious) alterations:

Fp (y) is used instead of Fn (y) and (11) instead of (8).

4.5 Post-hoc empirical likelihood bootstrap

The expected failure of the EL bootstrap in providing significantly less biased GMM estimators

can be also explained as follows. Let pEL =
¡
p̂EL1 , ..., p̂ELn

¢
be the n-dimensional resampling vector

that assigns each observation a given probability of being sampled in the EL bootstrap. By using

this resampling vector and estimating the bias utilizing the formula given in (6), we are not

adequately estimating the bias of the GMM estimator that we intended to correct. Actually, in

the calculation of (6), we are comparing GMM estimators that can be based on quite distinct

samples: while θ̂GMM results from the minimization of the quadratic form (2), θ̄∗ is the average

of the standard GMM estimators θ̂j, j = 1, ..., B, each of which, due to the way the bootstrap

samples are constructed, can be interpreted as minimizing also (2) but with gn (θ) replaced by

gp (θ) ≡
Pn

i=1 p̂
EL
i g (yi, θ), which, in small samples, can be rather different. Based on these

arguments, we suggest below the post-hoc EL (PHEL) bootstrap, which uses a post-sampling

adjustment to the EL bootstrap GMM estimator.1

Define paj ≡
¡
paj1, ..., p

a
jn

¢
as the actual or post-resampling vector calculated from the bootstrap

sample S∗j , that is p
a
ji = #

©
y∗ji = yi

ª±
n is the proportion of times that the i-th original data

1For other applications of post-sampling adjustments, see Efron (1990).
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point appeared in the bootstrap sample S∗j . Define also the average post-resampling vector p̄
a ≡

(p̄a1, ..., p̄
a
n) = B−1

PB
j=1 p

a
j . In this framework, the j-th bootstrap estimator θ̄

∗
j can be expressed

as a function of the j-th post-resampling vector: θ̄∗j = θ
¡
paj
¢
. Similarly, we have for the original

GMM estimator θ̂GMM = θ (p0), where p0 = (n−1, ..., n−1). Define also θ̂
a
= θ (p̄a) as the GMM

estimator resultant from the application of the average post-sampling probabilities p̄a, i.e. based

on ḡa (θ) =
Pn

i=1 p̄
a
i g (yi, θ).

Instead of using b̂ = θ̄
∗− θ (p0), we propose the calculation of the bias of the GMM estimator

as:

b̄ = θ̄
∗ − θ (p̄a) . (12)

The intuition behind this is the following. Although the theoretical expectation of the resampling

vector pEL is p0, its actual average is p̄a. Thus, using θ (p̄a) instead of θ (p0) in the estimation

of the bias, we might be able to correct for this discrepancy. In fact, in (12), we are effectively

comparing GMM estimators based on similar samples, in opposition to what was happening

before. The bias-corrected GMM estimator is then found by calculating:

θ̂BCGMM = θ̂GMM − θ̄
∗
+ θ̂

a
. (13)

When both n and B go to infinity, θ̂
a
will converge to θ̂GMM , so asymptotically this method will

produce the same results as the other bootstrap techniques discussed in the previous sections.

Note that we could have also opted for estimating the bias by b̄ = θ̄
∗ − θ

¡
p̂EL

¢
, since p̄a ' p̂EL.

However, the utilization of the post-resampling probabilities are expected to provide a slight

further improvement.

In terms of procedures, the algorithm presented earlier must be modified as follows. In step

3, for each bootstrap sample, in addition to the GMM estimator θ̄∗j , we calculate also p
a
j . In step

4, the average post-resampling vector p̄a needs also to be calculated. In the final step, we need

to obtain θ̂
a
and, instead of (6), the bias is calculated according to (12).

5 Monte Carlo simulation

Consider the linear instrumental variable model described by equations

Yi = θ0 ·Xi + �i,

Xi =
sX

j=1

π · Zij + ui,
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where Yi and Xi denote the dependent variable and an exogenous regressor, respectively. All

the instruments Zij are i.i.d. N (0, Is) variables, while (�i, ui)
0 is N (0,Ω), where Ω is a (2× 2)-

matrix with diagonal and off diagonal elements 1 and ρ, respectively. We considered three different

degrees of non-orthogonality betweenXi and �i, ρ = (0.25, 0.50, 0.75). Let R2f = sπ2/ (sπ2 + 1) be

the theoretical R2 of the first stage regression, which measures the overall fit of the instruments

to the endogenous regressor Xi. We fix s = 10 and set the value of π in such a way that

R2f = (0.15, 0.30) in all the experiments. The value of θ0 was fixed in order to keep constant the

overall fit of Yi to Xi in the structural equation (R2 = 0.5). For each one of the 6 parameter

combinations of s, R2f , and ρ we generated 5000 Monte Carlo samples of size n = 200.

In Table 1 we report for each estimator the mean and median bias, the median absolute error

(MAE), and the standard error (SE) across replications. As expected, the bias of the GMM

estimator increases with the endogeneity of the model and decreases with the strength of the

instruments. The same pattern can be observed for all the bootstrap GMM estimators. The

utilization of any one of the bootstrap methods allows the bias of the GMM estimator to be

substantially reduced, although at the expense of an increment in its dispersion. Clearly, the two

estimators suggested in this paper display the best performances in terms of mean and median

bias, particularly the PHEL bootstrap, which produces the only estimator which is approximately

mean unbiased in all cases. Conversely, the Monte Carlo distribution of this estimator is slightly

more disperse. Overall, these results suggest that the estimators developed in this paper will be

useful, at least, in settings similar to those replicated in this Monte Carlo study.
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Table 1: Monte Carlo results (5000 replications; n = 200; s = 10)

Estimator Bias MAE SE
mean median

ρ = 0.25, R2f = 0.15
GMM .050 .054 .112 .158
NP .019 .027 .123 .189
RNP .019 .027 .121 .187
CEL .019 .026 .122 .186
REL .016 .023 .122 .191
PHEL .004 .017 .127 .214

ρ = 0.25, R2f = 0.3
GMM .023 .026 .074 .108
NP .006 .009 .078 .119
RNP .006 .009 .077 .117
CEL .006 .009 .077 .117
REL .005 .008 .078 .118
PHEL .004 .007 .078 .119

ρ = 0.5, R2f = 0.15
GMM .099 .106 .131 .153
NP .036 .049 .127 .187
RNP .036 .050 .125 .185
CEL .037 .049 .124 .183
REL .026 .041 .126 .191
PHEL .004 .027 .129 .214

ρ = 0.5, R2f = 0.3
GMM .045 .049 .080 .106
NP .011 .018 .078 .119
RNP .011 .017 .078 .118
CEL .010 .016 .077 .117
REL .008 .014 .078 .119
PHEL .005 .012 .078 .120

ρ = 0.75, R2f = 0.15
GMM .147 .157 .165 .142
NP .052 .070 .132 .184
RNP .053 .072 .131 .181
CEL .057 .076 .131 .177
REL .033 .054 .129 .190
PHEL .001 .031 .132 .214

ρ = 0.75, R2f = 0.3
GMM .067 .073 .090 .102
NP .016 .025 .081 .119
RNP .016 .026 .079 .118
CEL .016 .024 .079 .117
REL .009 .018 .079 .120
PHEL .005 .015 .080 .122
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