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Abstract : 
 
 
Empirical likelihood (EL) is appropriate to estimate moment condition models when a random sample from 
the target population is available. However, many economic surveys are subject to some form of 
stratification, in which case direct application of EL will produce inconsistent estimators. In this paper we 
propose a two-step EL (TSEL) estimator to deal with stratified samples in models defined by unconditional 
moment restrictions in presence of some aggregate information, which may consist, for example, of the 
mean and the variance of the variable of interest and/or the explanatory variables. 
A Monte Carlo simulation study reveals promising results for many versions of the TSEL estimator. 
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1 Introduction

In many research settings, economists often have to work with data which were

not randomly drawn from the population they plan to study. Indeed, many eco-

nomic datasets are the result of complex survey designs involving some form of

stratification, rare alternatives being usually oversampled in order to reduce sur-

vey costs and improve the accuracy of econometric analysis; see inter alia Artis,

Ayuso and Guillen (1999), Early (1999), Donkers, Franses and Verhoef (2003), and

Kitamura, Yamamoto and Sakai (2003) for some interesting empirical cases where

stratified data were collected. In this context, the available data provides a related

but distorted picture of the features of the target population since the sampling

distribution differs from the underlying distribution for which inference is to be

drawn. Therefore, if the data are analyzed without regard to the sample design, se-

riously misleading inference results are, in general, obtained. Hence, unconventional

estimation procedures are required to handle correctly data arising from stratified

sampling.

For parametric and regression models, several estimation methods adequate to

deal with stratified data have been proposed. The most well known estimators are

likelihood-based, requiring the specification of the distribution of the variable of

interest conditional on the covariates; see, for example, Manski and Lerman (1977),

Manski and McFadden (1981), Cosslett (1981a,b), Imbens (1992), and Imbens and

Lancaster (1996). For regression models, Holt, Smith and Winter (1980), Nathan

and Holt (1980), and Hausman and Wise (1981) suggested weighted least squares

approaches. Recently, Wooldridge (1999, 2001) proposed the use of weighted M-

estimation, which is applicable to both classes of models, including some of the cited

estimators as special cases. Naturally, the consequences of ignoring the sampling

scheme extend to any other kind of econometric model. In this paper we focus on

cases where the model to be estimated is defined by a set of unconditional moment

restrictions, a setting only considered so far, to the best of our knowledge, by Tripathi

(2004).

Tripathi (2004) considered empirical likelihood (EL) estimation of moment con-
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dition models, suggesting some adaptations to the standard EL methodology in

order to take into account the sampling design. Those modifications ensure that

the resultant EL estimators are consistent and efficient but require either the avail-

ability of an auxiliary dataset or knowledge on the marginal strata probabilities

(the fraction of the population lying in each stratum). In this paper we assume

that the former may be impossible or too expensive to produce and the latter are

unknown, and propose EL estimators which merely require the availability of some

other aggregate information on the target population. This auxiliary information

may consist, for example, of the mean and the variance of the variable of interest

and/or some covariates. We assume that this information is exact, since often it

may be estimated very precisely from large survey data such as a census.

Building on Hellerstein and Imbens’ (1999), we propose a two-step EL (TSEL)

estimator. In the first step, we write the aggregate information available as moment

restrictions and, using conventional EL estimation, calculate the set of weights that

impose them in the sample. In the second step, we perform weighted EL estimation

based on the weights estimated in the first step. In general, those weights do not

allow the recovering of the target distribution, so the TSEL estimator is not consis-

tent in most cases.1 However, as the weighted stratified data used in the second step

may be interpreted as a random sample drawn from an artificial population which

shares the imposed moment restrictions with the target population, our estimator

will tend to be less biased than conventional EL estimators. Obviously, the closer

the target and the artificial populations are, the less the bias of the TSEL estimator

is. Therefore, we investigate through a Monte Carlo simulation study which sets

of commonly available aggregate information, if any, give rise to TSEL estimators

displaying insignificant biases.

This paper is organized as follows. Section 2 briefly reviews the EL method

and discusses why it fails to produce consistent estimators with stratified samples.

Section 3 describes the TSEL estimator. Section 4 is dedicated to the Monte Carlo

investigation. Section 5 concludes.

1An obvious exception occurs when the auxiliary information consists of the marginal strata
probabilities.
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2 Background

In this section we first describe the main characteristics of EL estimation of moment

condition models when the sampling is random and then analyze some of the con-

sequences of working with samples collected by either multinomial sampling (MS)

or standard stratified sampling (SSS) in the moment condition framework.2

2.1 Empirical likelihood estimation of moment condition

models

Consider a sample of i = 1, ..., N individuals and let y be the variable of interest,

continuous or discrete, and x a vector of k exogenous variables. Both y and x are

random variables defined on Y × X . Let z ≡ (y, x), Z ≡ Y × X , and f (z; θ) ≡
dF (z; θ) be the joint density of y and x, where θ is the k-vector of parameters of

interest. In this paper we focus on models defined by a set of unconditional moment

restrictions, i.e. models where all the information available about the population of

interest can be summarized as

Ef [g (z, θ0)] = 0, (1)

where g (·) is an m-dimensioned vector of unconditional moment indicators known

up to θ, m ≥ k, θ0 is the unique solution of (1), and Ef [·] denotes expectation taken
with respect to f (z; θ). A leading example in this area is instrumental variable

estimation; see section 4 for a Monte Carlo simulation study involving these models.

Throughout this paper we assume that the appropriateness of (1) is not in question.

With random sampling, despite f (z; θ) being unknown, there are several alter-

native methods that produce consistent estimators for θ0, such as EL, where each

observation is reweighted in such a way that all moment conditions are satisfied

numerically in the sample. The EL estimator of θ0 is obtained from maximization

2MS and SSS are two of the most well known stratified sampling schemes. There is another
very popular sampling scheme, the so-called variable probability sampling. We do not consider it
in this paper because we focus only on cases where the marginal strata probabilities are required
for identification of the parameters of interest.
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of the so-called log-EL function,

logL (pi) =
NX
i=1

log pi, (2)

subject to the set of restrictions

pi ≥ 0,
NX
i=1

pi = 1 and
NX
i=1

pig (zi, θ) = 0, (3)

where pi ≡ Prf (zi = z) is the probability mass assigned to each observed data point

(zi) by a discrete distribution with support on {z1, ..., zN}, and the last restriction
is an empirical measure counterpart to the moment conditions (1). Under standard

regularity conditions, optimization of (2) subject to (3) produces consistent esti-

mators θ̂ and F̂p (z) =
PN

i=1 p̂i1 (zi ≤ z) for the vector of parameters of interest θ0

and the distribution F (z) = Prf (zi ≤ z), respectively, where 1 (·) is the indicator
function for the event zi ≤ z and

p̂i =
1

N
h
1 + λ̂

0
g
³
zi, θ̂

´i , (4)

where λ is the m-vector of Lagrange multipliers associated to the last restriction of

(3). See Qin and Lawless (1994) and Imbens (1997) for more details, and Imbens

(2002) for alternative computational procedures reliable for solving the optimization

problem described by (2)-(3). In the Monte Carlo experiments undertaken in this

paper we follow his penalty approach.

2.2 Stratification

From now on, assume that the population of interest is divided into J non-empty

and possibly overlapping strata. Each stratum is designated as Cs = Ys ×Xs, with

s ∈ S, S = {1, ..., J}, and Ys and Xs defined as the subsets of, respectively, Y and
X for which the observation (y, x) lies in Cs. The proportion of the stratum s in the

population is given by Qs =
R
Xs
R
Ys f (z; θ) dydx.

In this paper we provide an unified approach for both MS and SSS by writing
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the density induced by the two sampling mechanisms as

f ∗ (z, s; θ) =
1

ω
f (z; θ) , (5)

where, although we do not make it notationally explicit, f ∗ (z, s; θ) may be con-

ditional on some variables and ω ≡ ω (z, s) > 0 is the weight that, multiplied by

the sampled distribution, allows the recovering of the target distribution. In the MS

scheme, considered inter alia by Manski and Lerman (1977), Manski and McFadden

(1981), and Imbens (1992), it is assumed that the stratum indicators s are indepen-

dently drawn from a multinomial distribution. The sampling agent randomly selects

a stratum Cs with a pre-defined probability Hs, 0 < Hs < 1, and, then, randomly

samples from that stratum. Thus, for each sampling unit, the variable of inter-

est, the covariates, and the stratum indicator are observed according to (5) with

ω = Qs/Hs. With regard to the SSS scheme, the sampling agent fixes the number

of observations Ns, Ns > 0, to be randomly collected from each stratum Cs; see, for
example, Cosslett (1981a,b), Hsieh, Manski and McFadden (1985), and Wooldridge

(2001). In this sampling mechanism, as Ns is fixed by design, the sampling propor-

tion of each strata, Ns/N , is also fixed. As Imbens and Lancaster (1996) showed, in

this case inference may be based on the likelihood f ∗ (z, s|Ns; θ) which is given by

(5) with ω = NQs/Ns.

When the available dataset was collected according to MS or SSS, the population

moment conditions (1) do not hold in the sample, even asymptotically, since

Ef∗ [g (z, θ0)] =

Z
Z
g (z, θ0) f

∗ (z, s; θ0) dz

=

Z
Z
g (z, θ0)

1

ω
f (z; θ0) dz

= Ef

·
1

ω
g (z, θ0)

¸
, (6)

which is, in general, different from zero. Hence, imposing (1) in the sample would

lead to inconsistent estimates of the parameters of interest, so direct application

of EL is not possible with stratification. Note that this conclusion is valid both in

presence of endogenous (sampling scheme where the dependent variable is among the
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design variables) and exogenous stratification (where the strata are designed only in

terms of one or more covariates). Hence, in models defined by a set of unconditional

moment restrictions, both types of stratification must be taken into account, unlike

what happens in conditional structural models, the focus of most of the literature

on stratified samples, where exogenous stratification is innocuous.

Most of the literature on stratified samples assumes that the weights ω are known,

which implies that the marginal strata probabilities Qs must also be known. In

such case, it is straightforward to reconstruct the structure of the target popula-

tion and, therefore, the use of weighted estimators arises as a natural approach to

deal with stratified samples; see, for example, the pioneering work by Manski and

Lerman (1977), where estimation is based on weighted scores, the weighted least

squares approach by Nathan and Holt (1980) and others, and the recent proposal

by Wooldridge (1999, 2001) on weighted M-estimation. Similarly, for moment con-

dition models, Tripathi (2004) suggested a weighted EL (WEL) estimator, which is

obtained by solving a program similar to that described by (2) and (3) but based

on the reweighted moment indicators g∗ (z, θ) = ωg (z, θ), since Ef∗ [g
∗ (z, θ0)] =

Ef [g (z, θ0)] = 0, see (1) and (6).

In caseQs is not known, in parametric models it is possible to estimate it simulta-

neously with the parameters of interest and, thus, still perform weighted estimation;

see inter alia Cosslett (1981a,b), Imbens (1992), and Imbens and Lancaster (1996).

However, such approach is not possible in semi-parametric models like those ana-

lyzed in this paper, unless an auxiliary data set is available. Below we suggest a

TSEL estimator which merely requires the availability of some aggregate information

on the population of interest (other than Qs).

3 Two-step empirical likelihood estimation

There are a few papers on the utilization of auxiliary information in econometrics

but most of them focus only on efficiency issues. To the best of our knowledge, only

Hellerstein and Imbens (1999) dealt with cases where the target and the sampled

distributions differ. In contrast to our work, they considered only just-identified
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models estimated by least squares. Here, we extend their two-step procedure to

the overidentified moment condition framework. In the first step, similarly to their

approach, a set of weights that impose the aggregate information in the sample is

calculated using standard EL estimation. In the second step, weighted EL estimation

based on the weights estimated in the first step is performed.

3.1 First step: using the auxiliary information to estimate

the weights

Consider an mh-vector h̄ (z) and assume that the analyst has exact knowledge of

its expectation h∗ = Ef

£
h̄ (z)

¤
. Using this aggregate information, he or she may

construct the set of moment indicators

h (z) = h̄ (z)− h∗ (7)

whose expectation taken under the target population is known to be zero,

Ef [h (z)] = 0. (8)

For example, if the analyst has information about the mean of y, the noncentered

covariance between y and x1, where x1 is a given covariate, and the probability of

z being in a given subset C of the sample space, h (z) = [y − E(y), yx1 − E(yx1),

1 (z ∈ C)− P (z ∈ C)]0.
In our framework, due to stratification, h (z) does not have, in general, expec-

tation zero in the sampled population, Ef∗ [h (z)] 6= 0. However, using conventional
EL estimation, we may estimate a weighting scheme that imposes (8) in the sample.

Thus, the first stage of our TSEL method corresponds to the optimization of the

Lagrangian function

L (υi, τ , φ) =
NX
i=1

log υi − τ

Ã
NX
i=1

υi −N

!
− φ0

NX
i=1

υih (zi) , (9)

where τ and the mh-vector φ are Lagrange multipliers and υi denotes the weights
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assigned to each observation. It is straightforward to show that this constrained

optimization is equivalent to maximization of the unconstrained objective function

R (φ) =
NX
i=1

log [1 + φ0h (zi)] (10)

and that the estimated weights are given by

υ̃i =
1

1 + φ̃
0
h (zi)

, (11)

where φ̃ minimizes (10), solving

NX
i=1

h (zi)

1 + φ̃
0
h (zi)

= 0. (12)

3.2 Second step: weighted EL estimation

The second stage of our TSEL method corresponds to weighted EL estimation. Due

to stratification, the log-EL criterion function (2) must be redefined as

logL (p∗i ) =
NX
i=1

log p∗i , (13)

where p∗i ≡ Prf∗ (zi = z). Corresponding to the set of restrictions (3), we now

impose p∗i ≥ 0 and
PN

i=1 p
∗
i = 1 but cannot impose

PN
i=1 p

∗
i g (zi, θ) = 0, since

the moment conditions (1) do not hold in the observed data, only in the target

population. However, when the estimated weights υ̃ are sufficiently close the true

weights ω, Ef∗
h
g∗
³
z, θ0, φ̃

´i
' Ef∗ [g

∗ (z, θ0)] = 0, where g∗
³
z, θ, φ̃

´
≡ υ̃g (z, θ).

Hence we may express the optimization problem (2)-(3) in terms of the available

data by replacing (2) by (13) and the last restriction of (3) by
PN

i=1 pig
∗
³
zi, θ, φ̃

´
.

The new Lagrangian function is thus

L (p∗i , γ, λ, θ) =
NX
i=1

log p∗i − γ

Ã
NX
i=1

p∗i − 1
!
−Nλ0

NX
i=1

p∗i g
∗
³
zi, θ, φ̃

´
. (14)
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The only practical difference between this and the Lagrangian function correspond-

ing to the optimization problem (2)-(3) is that now the analysis is based on the

weighted moment indicators g∗
³
z, θ, φ̃

´
, instead of g (z, θ).

Similarly to the random sampling case, see (4), solving the system of first-order

conditions resultant from optimization of (14) we find

p̂∗i =
1

N
h
1 + λ̂

0
g∗
³
zi, θ, φ̃

´i . (15)

Concentrating out p∗i from
PN

i=1 log p
∗
i and dropping irrelevant terms, we obtain the

unconstrained EL criterion function

R (θ, λ) =
NX
i=1

log
h
1 + λ0g∗

³
zi, θ, φ̃

´i
, (16)

optimization of which produces the EL estimators θ̂ and λ̂ which satisfy the first-

order conditions

NX
i=1

1

1 + λ̂
0
ĝ∗
³
zi, θ̂

´
 g∗

³
zi, θ̂, φ̃

´
G∗
³
zi, θ̂, φ̃

´0
λ̂

 =
 0

0

 , (17)

where G∗
³
zi, θ̂, φ̃

´
≡ ∂g∗(zi,θ̂,φ̃)

∂θ0 , i = 1, ..., N .

3.3 Asymptotics

In general, υ̃i 6= ωi, even asymptotically, since the information provided by (8) is

not enough to recover the structure of the target distribution. Therefore, in most

cases, the TSEL estimator will not converge asymptotically to θ0. Instead, it will

be consistent for θa, the probability limit of the unweighted EL estimator of θ0

in (1) based on a random sample from an artificial population with probability

density function fa (z, s) = f∗(z,s;θ)
1+φ0ah(z)

, where φa ≡ argminφEf∗ [R (φ)]. This artificial

distribution may be seen as the distribution closest to the sampling distribution,

using the EL metric, which satisfies the population moment conditions (8), that is

Efa [h (z)] = Ef [h (z)] = 0. On the other hand, as the weights υ shift the sampling
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distribution towards the target distribution, the TSEL estimator will display, in

general, less bias than conventional EL estimators.

Naturally, the ability of the TSEL estimator to reduce the bias of the EL estima-

tor depends on the quantity and quality of the information contained in h (z). The

worst scenario occurs when the information supplied by h (z) is irrelevant, which

happens when Ef∗ [h (z)] = 0, that is the sampling scheme was such that h (z) has

expectation zero both in the sample and in the target population. Indeed, in this

case φa = 0 and fa (z, s) = f∗ (z, s; θ), so two-step and conventional EL estimators

will display the same bias. Conversely, the inconsistency of the TSEL estimator

is completely eliminated when the auxiliary information consists of the marginal

strata probabilities Qs, that is h (z) = 1 (z ∈ Cs) − Qs, s = 1, ..., J − 1, which im-
plies υ̃i = ωi, i = 1, ..., n, and, hence, fa (z, s) = f (z, s; θ). In such case, TSEL is

equivalent to Tripathi’s (2004) WEL estimation, producing identical results.

As shown in the appendix, for overidentified problems we have

√
N
³
θ̂ − θa

´
d→ N

h
0,
¡
G∗0V ∗−1gg G∗

¢−1 h
I −G∗0V ∗−1gg V ∗ghV

∗−1
hh V ∗hgV

∗−1
gg G∗

¡
G∗0V ∗−1gg G∗

¢−1ii
,

(18)

where V ∗gg V ∗gh

V ∗hg V ∗hh

 = Ef∗

 g∗ (zi, θa, φa) g
∗ (zi, θa, φa)

0 g∗ (zi, θa, φa) h
∗ (zi, φa)

h∗ (zi, φa) g
∗ (zi, θa, φa) h∗ (zi, φa)

 ,
G∗ = Ef∗

·
g∗ (zi, θa, φa)

∂θ0

¸
, and h∗ (zi, φa) = υh (zi) .

In case s = k, it is straightforward to show that the above result may be simplified

to
√
N
³
θ̂ − θ0

´
d→ N £

0, G∗−1
¡
V ∗gg − V ∗ghV

∗−1
hh V ∗hg

¢
G∗−1

¤
,

which, specialized to least squares, corresponds to the asymptotic distribution de-

rived by Hellerstein and Imbens (1999).
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4 Monte Carlo Simulation Study

4.1 Experimental Design

In this section we conduct a Monte Carlo simulation study in order to examine the

finite sample properties of several versions of the TSEL estimator. We considered a

linear instrumental variable model described by the moment conditions

Ef [W
0 (y −Xθ0)] = 0, (19)

where W is an (N × 4) matrix of instruments and y and X are N -vectors of ob-

servations on a dependent and an explanatory variable, respectively. We generate

these variables from

Wj = γj�+ vj, j = 1, ..., 4, (20)

X = λu+ � (21)

and

y = Xθ0 + u, (22)

where �, vj and u are random disturbances independently generated from a N (0, 1)

distribution, θ0 = 1, and λ and γj are fixed parameters whose values were chosen in

such a way that the correlations ρxu between X and u and ρxwj between X and Wj

are both equal to 0.5.3

Using this setting, we generated randomly a “super-population” of size 15N ,

which can be interpreted as the target population. Then, various sampling designs

were used to select stratified samples of size N = 300. All of them were based upon a

partition of the population into four strata, considering alternately as design variable

y or X. In the former case the strata were defined as C1 = (−∞,−3.072)×X , C2 =
(−3.072, 0) × X , C3 = (0, 3.072) × X and C4 = (3.072,∞) × X . In the other, we
considered C1 = Y × (−∞,−1.899), C2 = Y × (−1.899, 0), C3 = Y × (0, 1.899),
C4 = Y × (1.899,∞). In both cases the limits of each strata were chosen in order to

3Note that λ = ρxu√
1−ρ2xu

and γj = ρxwj

r
1+λ2

1−(1+λ2)ρ2xwj
.
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produce Q = (0.05, 0.45, 0.45, 0.05). For both classes of stratification we examined

the effects of two alternative allocations of the total sample over the four strata:

equal shares allocation, H = (0.25, 0.25, 0.25, 0.25), and U-shaped allocation, H =

(0.4, 0.1, 0.1, 0.4). For each experiment we generated 1000 independent Monte Carlo

samples.

For each experimental design, we computed four different TSEL estimators, la-

belled TSELa, TSELb, TSELc, and TSELd, which assume knowledge on, respec-

tively, 1, 2, 3, or 4 moments of y (in case of endogenous stratification) or X (exoge-

nous stratification). For example, the TSELd estimator is based on

h (y) =


y

y2 − 3.488
y3

y4 − 36.499

 or h (X) =


X

X2 − 1.333
X3

X4 − 5.333

 . (23)

In each case we computed also the EL and WEL estimators, which will act as

benchmarks for our estimators. Note that the latter estimator may also be obtained

as a TSEL estimator based on

h (y) =


1 (y ∈ C1)− 0.05
1 (y ∈ C2)− 0.45
1 (y ∈ C3)− 0.45

 or h (X) =


1 (X ∈ C1)− 0.05
1 (X ∈ C2)− 0.45
1 (X ∈ C3)− 0.45

 . (24)

4.2 Results

Table 1 reports for each estimator the mean and median bias, standard error (SE),

root mean squared error (RMSE), median absolute error (MAE) and the 0.05 and

0.95 quantiles of its Monte Carlo distribution. Clearly, in all cases, if the sampling

design is not taken in account, the resultant estimators are substantially biased. As

can be seen and we stressed before, in the setting considered in this paper, unlike

what happens in conditional models, stratification on X, if not accounted for, gives

rise to seriously misleading results.

Table 1 about here
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As expected, the WEL estimator is approximately unbiased in all cases. With

regard to the TSEL estimators, when only the first moment is known, there is no

improvement over conventional EL estimation. This is not surprising since Ef∗ (y) =

Ef (y) (or Ef∗ (X) = Ef (X)) and, hence, the results obtained are virtually identical

to standard EL estimation. In contrast, the other three TSEL estimators performed

in a very promising way, displaying less SE, RMSE, and MAE than the WEL es-

timator in almost all cases. In terms of bias, only the TSELd estimator appears

to be also approximately unbiased in all experiments, although knowledge of only

the first two moments allows a very substantial reduction on the bias of the EL

estimator. In fact, the availability of information on the fourth moment is crucial to

obtain unbiased estimators only in the U-shaped allocation sampling design. With

an equal shares allocation, information on the first two moments seems to be suffi-

cient to capture the main characteristics of the population structure and, thus, to

obtain unbiased estimators.

5 Conclusion

In this paper we proposed TSEL estimators to deal with stratified samples in the EL

framework when the marginal strata probabilities are unknown but other aggregate

information on some features of the population of interest is available. The ability of

these estimators to reduce the bias of the standard EL estimator depends crucially

on the relevance of the auxiliary information available, as illustrated by the Monte

Carlo study. Most versions of the TSEL estimator produced very satisfactory bias

results and performed better in terms of SE, RMSE, andMAE than Tripathi’s (2004)

WEL estimator, which requires knowledge on the marginal strata probabilities.

Some extensions to this paper are straightforward. First, the assumption that

the auxiliary population information is exactly known can be dropped with minor

adaptations. Indeed, if that information was estimated from an auxiliary random

sample not very large, the sampling error incurred in their estimation could be

accounted for using similar procedures to those proposed by Imbens and Lancaster

(1994), and Hellerstein and Imbens (1999). Second, in this paper we have focussed
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on EL estimation. However, any other of Newey and Smith’s (2004) generalized EL

estimators could be adapted in a similar way.
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6 Appendix: asymptotic distribution of the TSEL

estimator

Define h∗i (φ) =
h(zi)

1+φ0h(zi)
, g∗i (θ, φ) =

g(zi,θ)
1+φ0h(zi)

, G∗i (θ, φ) =
∂g∗i (θ,φ)

∂θ
, ḡi (λ, θ, φ) =

g∗i (θ,φ)
1+λ0g∗i (θ,φ)

, and Ḡi (λ, θ, φ) =
G∗i (θ,φ)

1+λ0g∗i (θ,φ)
. The TSEL estimator can be characterized

as the solution to the system of equations

ψ
³
λ̂, θ̂, φ̂

´
=

NX
i=1


ḡi
³
λ̂, θ̂, φ̂

´
Ḡi

³
λ̂, θ̂, φ̂

´0
λ̂

h∗i
³
φ̂
´

 = 0,

where the two first equations define the estimators
³
λ̂, θ̂
´
obtained in the second

step, see (17), and the last equation defines the Lagrange multiplier φ̂ calculated in

the first step, see (12).
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Expanding the set of moment indicators around the probability limits of
³
λ̂, θ̂, φ̂

´
,

(0, θa, φa), yields

0 =
1

N


P

g∗i (θa, φa)

0P
h∗i (φa)

+

1

N


−P g∗i (θa, φa) g

∗
i (θa, φa)

0 PG∗i (θa, φa) −
P

g∗i (θa, φa)h
∗
i (φa)

0P
G∗i (θa, φa)

0 0 0

0 0 −Ph∗i (φa)h
∗
i (φa)

0




λ̂

θ̂ − θa

φ̂− φa

 .

Thus:

√
N


λ̂

θ̂ − θa

φ̂− φa

 = −


−V ∗gg G∗ −V ∗gh
G∗0 0 0

0 0 −V ∗hh


−1

√
N


g∗N (θa, φa)

0

h∗N (φa)



= −


−V ∗−1gg + V ∗−1gg G∗

¡
G∗0V ∗−1gg G∗

¢−1
G∗0V ∗−1gg V ∗−1gg G∗

¡
G∗0V ∗−1gg G∗

¢−1¡
G∗0V ∗−1gg G∗

¢−1
G∗0V ∗−1gg

¡
G∗0V ∗−1gg G∗

¢−1
0 0

V ∗−1gg V ∗ghV
∗−1
hh − V ∗−1gg G∗

¡
G∗0V ∗−1gg G∗

¢−1
G∗0V ∗−1gg V ∗ghV

∗−1
hh

− ¡G∗0V ∗−1gg G∗
¢−1

G∗0V ∗−1gg V ∗ghV
∗−1
hh

−V ∗−1hh


√
N


g∗N (θa, φa)

0

h∗N (φa)

 .

Result (18) follows straightforwardly.
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Table 1: Monte Carlo results 
 

Design Bias  Quantiles 
variable 

Estimator 
Mean Median  0.05 0.95 

SE RMSE MAE 

H = {0.25, 0.25, 0.25, 0.25} 
EL .375 .374  1.312 1.436 .038 .377 .374 
TSELa .375 .375  1.312 1.436 .038 .376 .375 
TSELb .004 .005  0.901 1.106 .065 .065 .044 
TSELc .004 .005  0.901 1.106 .065 .065 .044 
TSELd .003 .004  0.896 1.103 .065 .065 .045 
WEL .000 .002  0.868 1.119 .077 .077 .053 

H = {0.4, 0.1, 0.4, 0.1} 
EL .488 .488  1.439 1.536 .030 .489 .488 
TSELa .488 .488  1.439 1.536 .029 .489 .488 
TSELb .032 .034  0.841 1.220 .113 .118 .078 
TSELc .032 .034  0.842 1.219 .114 .118 .079 
TSELd .011 .011  0.840 1.176 .104 .104 .071 

y 

WEL .004 .012  0.791 1.194 .123 .124 .082 
H = {0.25, 0.25, 0.25, 0.25} 

EL .262 .264  1.207 1.314 .032 .264 .264 
TSELa .262 .264  1.207 1.314 .032 .264 .264 
TSELb .003 .004  0.880 1.123 .072 .072 .045 
TSELc .003 .005  0.881 1.121 .072 .072 .045 
TSELd .002 .003  0.881 1.120 .071 .071 .045 
WEL .000 .005  0.866 1.129 .079 .079 .050 

H = {0.4, 0.1, 0.4, 0.1} 
EL .314 .313  1.274 1.355 .026 .315 .313 
TSELa .314 .313  1.273 1.355 .026 .315 .313 
TSELb .024 .035  0.793 1.207 .129 .131 .091 
TSELc .024 .035  0.794 1.207 .128 .131 .090 
TSELd .008 .011  0.813 1.182 .112 .112 .077 

X 

WEL -.003 .001  0.788 1.199 .127 .127 .084 
Notes: results based on 1000 Monte Carlo replications, N = 300, and θ0 = 1. 

 




