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Resumo/ Abstract:
 
Dynamic panel data (DPD) models are usually estimated by the generalized method of moments. However, 
it is well documented in the DPD literature that this estimator suffers from considerable finite sample bias, 
especially when the time series is highly persistent. Application of the asymptotically equivalent continuous 
updating method eliminates this problem but the resultant estimator exhibits too much variability in small 
samples. Thus, other estimation methods are considered in this paper. Focussing in the AR(1) case with no 
exogenous regressors, we analyze several alternative ways of correcting the bias of the traditional 
estimators utilized in non-dynamic settings, showing how to construct feasible bias-adjusted ordinary least 
squares, within-groups, and first-differences estimators. We obtain very promising results for some of these 
estimators in a Monte Carlo simulation study involving data with the qualities normally encountered by both 
microeconomists and macroeconomists. 
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1 Introduction

In the last twenty years or so, the utilization of panel data in the empirical analysis of both mi-

croeconomic and macroeconomic problems has become increasingly popular. Error components

models are generally employed, which, typically, assume that the stochastic error term has two

components: a time-invariant individual-specific effect, which captures the unobservable individual

heterogeneity, and the usual random noise term. In linear regression models, as some explana-

tory variables are likely to be correlated with the individual effects, ordinary least squares (OLS)

estimation cannot be applied in general. Thus, the traditional solution is to first remove the in-

dividual effects, applying some transformation to the regression equation, and then estimate the

parameters of interest by OLS. Examples of such methodology are the popular within-groups (WG)

and first-differences (FD) estimators, both of which are unbiased and consistent provided that the

transformed error term is not correlated with the transformed regressors. Unfortunately, regression

models containing lagged dependent variables and a fixed time dimension do not meet this assump-

tion. Hence, a specific methodology for linear dynamic panel data (DPD) models is required. In

this paper we deal with the particular case of first-order autoregressive [AR(1)] panel data models

with no exogenous regressors, an important baseline case in the DPD literature.

Traditionally, DPD models are estimated by the asymptotically efficient two-step generalized

method of moments (GMM). Under a given set of assumptions, a set of orthogonality conditions is

generated for the FD model, which is then used to retrieve consistent estimators for the autoregres-

sive coefficient of the levels equation. However, these GMM estimators suffer from three important

drawbacks. First, many applied researchers do not use them due to their complexity. Although

sooner or later it will be possible to compute automatically these estimators using the most popular

econometric packages, the large variety of GMM estimators available, each one implying different

assumptions and small sample performances, will remain a barrier for their efficient application by

practitioners. Second, simulation evidence indicates that, in this framework, many GMM estima-

tors possess some bias in finite samples, particularly when the value of the autoregressive parameter

is near the unity, in which case the moment conditions conventionally employed provide only weak

identification of the parameters to be estimated; see inter alia Blundell and Bond (1998, 2000),

Blundell, Bond and Windmeijer (2000), Bond and Windmeijer (2002) and Bond (2002). Third, the

performance of GMM estimators is very sensitive to the ratio of variance of the individual-specific

effects and the variance of the general disturbance term; see Kitazawa (2001).
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As we show in the Monte Carlo study undertaken in section 5, those small sample issues can

be eliminated if, instead of GMM, we use the asymptotically equivalent continuous-updating (CU)

method proposed by Hansen, Heaton and Yaron (1996). However, the results obtained in section 5

also reveal that, in this context, the CU estimator displays much more dispersion than the GMM

estimator. This was somewhat expected since previous simulation studies based on different settings

had concluded that, in general, the CU estimator is effectively approximately median unbiased but

has a finite sample distribution with very fat tails, exhibiting sometimes extreme outlier behaviour

[e.g. Hansen, Heaton and Yaron (1996) and Stock and Wright (2000)].

Given the difficulty of obtaining GMM or CU estimators with good small sample properties in

all DPD settings, in this paper we follow another route to achieve this objective. We abandon the

moment condition formulation and consider the possibility of applying some analytical bias correc-

tion to the OLS, WG and FD estimators which allows the removal of their bias while preserving, as

much as possible, their small variability. Thus, the first aim of this paper is the development and

comparison of some feasible bias-corrected (FBC) OLS, WG, and FD estimators for the autoregres-

sive parameter of AR(1) panel data models. These FBC estimators are obtained by subtracting

from the standard estimator a consistent estimate of the respective asymptotic bias. While asymp-

totic expressions for the biases of all three estimators have already been derived under a variety of

assumptions [see inter alia Nickell (1981), Sevestre and Trognon (1985), Hsiao (1986), Beggs and

Nerlove (1998), Kiviet (1995, 1999), Blundell, Bond and Windmeijer (2000), Bun and Kiviet (2001)

and Hahn and Kuersteiner (2002)], their utilization in the construction of FBC estimators has not

been fully exploited yet. The problem is that, as the asymptotic bias depends, in all cases, on the

unknown autoregressive parameter, an initial consistent estimate of this parameter is required, in

general, to evaluate the bias of each estimator.

The first author to propose a FBC estimator was Kiviet (1995). He suggested a FBCWG

estimator which uses a two-step GMM estimator to evaluate the bias correction. Possibly due to

the poor performance of the GMM estimator in finite samples, his estimator did not perform very

well in the Monte Carlo study he undertook. Recently, Hahn and Kuersteiner (2002) suggested

another FBCWG estimator, which circumvents the need for a preliminary consistent estimator

of the parameter of interest. However, simulation results reported by them indicate that their

estimator, derived assuming a large time dimension (T ), is not unbiased in panels of moderately

large sizes (e.g. T = 20), especially when the time series is highly persistent. With regard to the

OLS and FD cases, no FBC estimator has been developed.
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In this paper, we suggest and compare several alternative ways of constructing and implement-

ing FBC OLS, WG, and FD estimators. One of the FBCFD estimators that we propose does not

require, similarly to Hahn and Kuersteiner’s (2002) FBCWG estimator, an initial consistent esti-

mate of the autoregressive parameter to evaluate the bias correction. Moreover, all FBC estimators

suggested are simpler and quicker of computing than GMM estimators and some of them are inde-

pendent on the relative strength of each error component. The main advantage of considering also

FBCOLS estimators is that, in this case, it is possible to identify the parameters associated to any

time-invariant explanatory variable.1

Usually, microeconomic datasets have a time dimension far smaller and a cross-sectional dimen-

sion far greater than typical macroeconomic panels. Therefore, the best estimation methodology

in one case may not be the best in the other. Furthermore, when the time dimension gets large,

the number of moment conditions and, hence, computational requirements, increases rapidly and

GMM estimation using all available instruments may be infeasible or impractical to implement.

However, existing panel estimation techniques are in general applied indistinctly to both types of

datasets but tested only with the typical dimensions of microeconomic panels in mind.2 Thus, the

second main aim of this paper is to provide directions for choosing the most appropriate techniques

for estimating AR(1) panel data models of various time and cross-sectional dimensions. Hence,

in the Monte Carlo investigation of the small sample properties of the several FBC estimators

proposed, we generate data with the qualities normally encountered by both macroeconomists and

microeconomists.

The layout of this paper is as follows. In section 2 we establish the framework of the paper,

both in terms of the theoretical model considered and the experimental design that will be used

in the other sections to examine the finite sample properties of several estimators. In section 3

we briefly review and illustrate through a Monte Carlo study the main characteristics of standard

OLS, WG, and FD estimators and the corresponding unfeasible bias-corrected versions. In section

4 we propose a simple FBCFD estimator and analyze some other possible ways of constructing FBC

estimators. In section 5 we investigate the small sample performance of various FBC estimators and

1However, we do not explore this issue in this paper since our focus is univariate AR(1) panel data models.
2For example, Arellano and Bover (1995) performed Monte Carlo simulation studies considering only 3 time

periods, Arellano and Bond (1991) 7, Kiviet (1995) 4 and 7, Blundell and Bond (1998) 4 and 11, Alonso-Borrego

and Arellano (1999) 4 and 7, Blundell, Bond and Windmeijer (2000) 4 and 8 and Bond and Windmeijer (2002) 6.

The only exception seems to be Judson and Owen (1999), who considered panels with 5, 10, 20 and 30 time periods.

However, they compared only a limited set of estimators.
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contrast it with those of GMM and CU estimators based on two distinct sets of moment conditions.

In section 6 we provide concluding remarks and discuss possible extensions of the proposed FBC

estimators.

2 Framework

2.1 The theoretical model

In this paper we consider estimation of the autoregressive parameter α in the AR(1) panel data

model

yit = αyi,t−1 + uit, (1)

uit = ηi + υit, (2)

for i = 1, ...,N and t = 2, ..., T , where yit denotes an observation on some series for individual i in

period t and the error term uit has the usual error components decomposition: ηi is an unobserved

time-invariant individual-specific effect and υit is a random disturbance that varies both in the time

and cross-sectional dimension.

All the estimators considered throughout this paper are based on subsets of the following as-

sumptions concerning the error components structure and the initial conditions process. Regarding

the former, we assume that

E (ηi) = E (υit) = 0, (3)

E (ηiυit) = 0, (4)

E (υitυis) = 0, for t 6= s, (5)

E
¡
υ2it
¢
= σ2υ (6)

and

E
¡
η2i
¢
= σ2η, (7)

where i = 1, ...,N , t = 2, ..., T . With respect to the initial conditions, we assume that

E (yi1υit) = 0, for t = 2, ..., T , (8)

and

E

·µ
yi1 − ηi

1− α

¶
ηi

¸
= 0, (9)
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where i = 1, ...,N . We assume also that all observations are independent across individuals and

that the model in (1) is dynamically stable, i.e. |α| < 1.
The set of assumptions (3)-(5) and (8) is the most commonly adopted in the DPD literature;

see Ahn and Schmidt (1995). The additional stationary mean assumption (9) on the initial con-

ditions implies a set of instruments which allows a substantial reduction in the finite sample bias

of GMM estimators; see Blundell and Bond (1998), Blundell, Bond and Windmeijer (2000), Bond

and Windmeijer (2002), and section 5 of this paper for some Monte Carlo evidence. The FBC

estimators that we consider in section 4 require assumptions (3)-(6) and, only for the FBCOLS

estimator, (7). Note that assumption E (ηi) = 0 is not essential in any case since nonzero mean of

ηi can be handled with an intercept.

2.2 The experimental design

All the experiments reported in sections 3 and 5 used the AR(1) panel data model described by

equations (1) and (2) as data generating process, with ηi ∼ N
¡
0, σ2η

¢
independent across i = 1, ...,N

and υit ∼ N
¡
0, σ2υ

¢
independent across i = 1, ..., N and t = 1, ..., T . We generate ηi and υit such

that they are independent of each other. The initial observations for the dependent variable are

obtained from

yi1 =
ηi

1− α
+

υi1√
1− α2

, i = 1, ..., N . (10)

We consider {N,T} = {100, 4}, {100, 8} and {500, 8} for the microeconomic analysis and {N,T} =
{25, 13}, {50, 13} and {50, 26} for the macroeconomic case. In both cases, we choose α ∈ {0.05, 0.5, 0.95}
and run 1000 replications, with new values for all variables drawn in each replication. In order to

control the relative strength of each error component on the variance of yit, we choose σ2η according

to

σ2η = µ2
1− α

1 + α
σ2υ, (11)

where µ2 ≡
σ2η

(1−α)2
σ2υ
1−α2

is the ratio between the two variance components of yit.3 We set σ2υ = 1 and

µ2 = 1, 5 or 10.

Results concerning the median bias, the standard deviation across replications and the root

mean squared error (RMSE) are presented for each estimator examined.4

3Note that V ar (yit) =
σ2η

(1−α)2 +
σ2υ

1−α2 .
4We decided to report for all estimators the median bias instead of the mean bias due to the following two reasons.

First, in the setting considered in this paper, the CU estimator can be interpreted as a limited information maximum
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3 Inconsistency of standard OLS, WG, and FD estimators

Even in non-dynamic contexts, error components models are, in general, inconsistently estimated by

OLS, as some explanatory variables are likely to be correlated with the individual effects ηi in most

cases. In dynamic models, this correlation is guaranteed since both yit and yi,t−1, the dependent

variable and the right-hand regressor in (1), respectively, are function of ηi, as this error term is

time-invariant. The traditional approach in a non-dynamic framework is to first eliminate this

source of inconsistency by transforming the original equation to remove ηi and then estimate the

parameters of interest by least squares. To this end, two popular methods are commonly employed:

WG and FD. Using the DPD formulation given in (1)-(2) as example, in the former method the

original observations are expressed as deviations from the individual means,

yit − ȳi = α (yi,t−1 − ȳi,−1) + (υit − ῡi) , (12)

where ȳi = 1
T−1

PT
t=2 yit, ȳi,−1 =

1
T−1

PT
t=2 yi,t−1 and ῡi =

1
T−1

PT
t=2 υit, while in the latter the

original model is written in first-differences,

∆yit = α∆yi,t−1 +∆υit, for t = 3, ..., T , (13)

where ∆yit = yit − yi,t−1, ∆yi,t−1 = yi,t−1 − yi,t−2 and ∆υit = υit − υi,t−1.

Although the individual effects ηi were eliminated from both (12) and (13), in the dynamic

setting considered in this paper we cannot obtain consistent estimators for α estimating those

equations by least squares. Indeed, both the transformations induced a non-negligible correlation

between the transformed lagged dependent variable and the transformed error term. In the WG

case, there are several sources of correlation between those transformed variables, namely those

produced by the correlation between − yit
T−1 and υit (for t = 2, ..., T − 1) and between −vi,t−1

T−1 and

yi,t−1 (t = 3, ..., T ), which dominate others such as that between−vi,t−1
T−1 and−yi,t−1

T−1 (t = 2, ..., T−1).
On the other hand, in the FD case there is only one source of inconsistency, the correlation between

yi,t−1 and υi,t−1, since first-differencing does not introduce all realizations of the disturbances vit

into the error term of the transformed equation for period t. In both cases, the cited correlations

do not vanish as the number of individuals in the sample increases but, as the time dimension of

the panel gets large, the bias of the WG estimator becomes less important, approaching zero as T

approaches infinity.

likelihood estimator, which is known to have no finite moments; see inter alia Mariano (1982). Second, all the other

estimators displayed very similar median and mean biases in the Monte Carlo experiments of section 5.
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Analytical expressions for the bias of standard OLS, WG and FD estimators in AR(1) panel

data models with no exogenous regressors have been deduced by several authors. A special atten-

tion has been devoted to the WG estimator, asymptotic bias expressions being derived by Nickell

(1981), Sevestre and Trognon (1985), Beggs and Nerlove (1988), Kiviet (1995, 1999) and Hahn

and Kuersteiner (2002) for a variety of situations. Sevestre and Trognon (1985) and Hsiao (1986)

considered the OLS case, while Blundell, Bond and Windmeijer (2000) dealt, very briefly, with the

FD estimator. The asymptotic (N →∞, T fixed) biases of these estimators for α are given by

bOLS (α) = (1− α)

σ2η
σ2υ

σ2η
σ2υ
+ 1−α

1+α

, (14)

bWG (α) = −
1+α
T−2

³
1− 1

T−1
1−αT−1
1−α

´
1− 2α

(1−α)(T−2)
³
1− 1

T−1
1−αT−1
1−α

´ (15)

and

bFD (α) = −1 + α

2
. (16)

Notice that, for α > 0, while the OLS estimator is biased upwards, with α < p lim (α̂OLS) < 1, the

WG and FD estimators are biased downwards, with p lim (α̂WG) < α and p lim (α̂FD) =
α−1
2 < 0.

Note also that the only bias that depends on T is that of the WG estimator, as could be anticipated

from the exposition above, and that the bias of WG and FD estimators do not depend on the ratio

of the variance of the individual specific effects and the variance of the general error term.

The next section discusses alternative procedures for evaluating these expressions in order to

obtain FBC OLS, WG, and FD estimators. Before proceeding, to illustrate the accuracy of the

bias approximations given, we report in Table 1 some results obtained using the experimental

design described in section 2.2 for N = 100. We denote by UBCOLS, UBCWG, and UBCFD the

unfeasible BC estimators obtained according to expressions (14), (15) and (16), respectively, which

were evaluated at the unknown true values of α, σ2η and σ2υ.

Table 1 about here

As expected, the standard OLS, WG, and FD estimators are clearly biased, the first upwards

and increasing with µ2, the others downwards. While the biases of the OLS and FD estimators are

independent of the time dimension of the panel, the bias of the WG estimator decreases significantly

as T gets large. However, even for T = 26 its bias is still between 10.9% (α = 0.95) and 84% (α =

0.05), which indicates that only for macroeconometric panels with an uncommon time dimension
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would this estimator be unbiased. On the other hand, all the unfeasible estimators are clearly

unbiased in all cases simulated, which shows that the asymptotic bias expressions given above,

even for samples with only 100 cross-sectional units, are pretty accurate.

4 Feasible bias-corrected estimators

The excellent performance of the unfeasible BC estimators in the Monte Carlo experiments re-

ported in the previous section clearly evidences that the construction of FBC estimators based on

expressions (14)-(16) should be an important research topic in the econometric literature of DPD

models. However, to the best of our knowledge, only Kiviet (1995) and Hahn and Kuersteiner

(2002) dedicated some attention to this issue, both of them suggesting FBCWG estimators. While

Kiviet’s (1995) estimator requires an initial consistent estimate of the autoregressive parameter,

Hahn and Kuersteiner’s (2002) proposal circumvents that problem in a very simple manner. In

sub-section 4.1 we review Hahn and Kuersteiner’s (2002) estimator and suggest a FBCFD estimator

with similar characteristics. In sub-section 4.2 we discuss alternative FBC estimators which require

preliminary consistent estimates of the unknown autoregressive parameter.

4.1 Estimators not requiring the use of preliminary consistent estimates

The analytical expression given in the previous section for the bias of the WG estimator, bWG (α)

of (15), was obtained assuming T fixed. As Hahn and Kuersteiner’s (2002) demonstrated, (15) may

be approximated by the much simpler expression

bWG (α) ' −1 + α

T
(17)

under large T , large N asymptotics. Using this result, they proposed the FBCWG estimator

α̃WG =
T

T − 1 α̂WG +
1

T − 1 . (18)

It is straightforward to see that p limN→∞ (α̃WG) = α for large T , since, from (17), p limN→∞

(α̂WG) =
T−1
T α − 1

T . This estimator is very simple and has the important feature of not de-

pending on unknown parameters. However, as it was derived assuming large T , it may present

some small sample bias in short panels. Therefore, this estimator is expected to be useful only for

macroeconomic panels with a considerable time dimension.

As we said before, no other papers were devoted to the study of FBC estimators. At least

in which concerns the FD estimator, this situation is very surprising. Indeed, as the sources of
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inconsistency are much more complicated and numerous in the WG case assuming fixed T , compare

expressions (15) and (16), it would seem more attractive to focus on the FD estimator when looking

for FBC estimators for microeconomic panels.5 As we show next, it is in fact very simple to

construct a FBCFD estimator which, like Hahn and Kuersteiner’s (2002) FBCWG estimator, does

not require initial consistent estimates of α. From (16), we know that p limN→∞ (α̂FD) = α−1
2 .

Consider

α̃FD = 2α̂FD + 1. (19)

Clearly, p limN→∞ (α̃FD) = α. This FBCFD estimator is as simple as α̃WG of (18) but has the

important advantage of being valid for any value of T , including, therefore, those common in micro

panels. On the other hand, its standard deviation is twice that of α̂FD, which may imply some

significative variability for this estimator. Note that the standard deviation of α̃WG for large T is

approximately equal to that of α̂WG (which our simulation results in section 3 show to be similar

to that of α̂FD, which is half of that displayed by the unbiased α̃FD).

4.2 Other alternatives

The FBC estimators defined in (18) and (19) do not require the availability of a preliminary

consistent estimator of the parameter of interest. If we consider this possibility, then other FBC

estimators may be easily implemented. Denote by α̃ a preliminary consistent estimate of α. FBC

estimators can be obtained by subtracting any of the bias expressions given in (14)-(16), evaluated

at α̃, from the inconsistent estimators. For example,

α̇WG = α̂WG − bWG (α̃) , (20)

where α̇WG denotes a FBCWG estimator. In this framework, there are two relevant questions

to be addressed: a) which α̃ to use?; b) is it worth to calculate a FBC estimator according to

an expression like (20) or it is better to make inferences using directly α̃? The first question is

discussed in the remaining of this section. The second question is answered in the next section,

through a Monte Carlo simulation study.

We consider three alternative ways of obtaining a preliminary consistent estimator for α. The

first consists in using any of the GMM estimators, α̃GMM , proposed in the econometric literature;

see inter alia Anderson and Hsiao (1981, 1982), who developed instrumental variable estimators,

5 In fact, this is the main reason why all GMM estimators proposed in the panel data literature are based on

orthogonality conditions generated for the FD model.
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and Arellano and Bond (1991), Arellano and Bover (1995), Ahn and Schmidt (1995) and Blundell

and Bond (1998), who elaborated further and took them into the GMM framework.6 All those

estimators are consistent, although their finite sample performance is not uniform. Moreover, none

seems to be unbiased in small samples when the value of the autoregressive parameter is near the

unity or µ2 is large. The other alternatives are the two FBC estimators discussed in the previous

sub-section. Indeed, both α̃WG and α̃FD may be used to evaluate any of the bias expressions

(14)-(16) and, hence, give rise to other FBC estimators. As we will see in the next section, this

procedure offers some advantages in many cases.

In the Monte Carlo analysis undertaken in the next section we consider nine alternative FBC

estimators for macro panels: FBCOLS1, FBCWG1 and FBCFD1, which are calculated according to

an expression similar to (20) with the bias evaluated at a GMM estimator in all cases; FBCOLS2,

FBCWG2 and FBCFD2, which use α̃FD to evaluate the bias; and FBCOLS3, FBCWG3 and

FBCFD3, which are based on α̃WG. For micro panels, for the reasons indicated before, only the

two first sets of FBC estimators are examined. Note that α̇FBCFD2 = α̃FD, the FBC estimator

proposed in (19), and α̇FBCWG3 = α̃WG, the estimator suggested by Hahn and Kuersteiner (2002)

and given in (18).

In the case of the FBCOLS estimators, we need also consistent estimates of σ2η and σ2υ to

evaluate the bias expression (14). These may be obtained calculating

σ̃2υ =
1

N(T − 1)−N − 1
NX
i=1

TX
t=2

[(yit − ȳi)− α̃ (yi,t−1 − ȳi,−1)]2 (21)

and

σ̃2η = σ̃2u − σ̃2υ, (22)

where

σ̃2u =
1

N(T − 1)− 1
NX
i=1

TX
t=2

(yit − α̃yi,t−1)2 . (23)

Note that (21) and (23) are based on consistent estimators of the residual sum of squares of equations

(12) and (1), respectively.

6Basically, this is the procedure followed by Kiviet (1995). Note, however, that his bias correction is different

from ours since he considers N finite in its derivation.
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5 Monte Carlo results

In this section we assess the finite-sample behaviour of the FBC estimators proposed in the previous

section and compare them with the most popular two-step GMM estimators of the DPD literature

(and their CU counterparts). Namely, we consider Arellano and Bond’s (1991) GMM-DIF and

Arellano and Bover’s (1995) GMM-SYS estimators. The former estimator is based on the validity

of the (T − 1) (T − 2) /2 linear moment conditions

E [yi,t−s (∆yit − α∆yi,t−1)] = 0, for t = 3, ..., T and s = 2, ..., t− 1, (24)

which requires assumptions (3)-(5) and (8), while the latter, by making also assumption (9), uses

(T − 2) additional linear moment conditions,

E [∆yi,t−1 (yit − αyi,t−1)] = 0, for t = 3, ..., T . (25)

Moment conditions (24) are for the model in first-differences (13), utilizing appropriately lagged

levels information as instruments, whereas conditions (25) are for the model in levels (1), employing

lagged differences as instruments.7

Both the GMM and the CU estimators are based on minimization of the criterion

JN =

Ã
1

N

NX
i=1

q0iZi

!
WN

Ã
1

N

NX
i=1

Z0iqi

!
, (26)

where

Zi = Zdi =



yi1 0 0 0 0 0 · · · 0 · · · 0

0 yi1 yi2 0 0 0 · · · 0 · · · 0

0 0 0 yi1 yi2 yi3 · · · 0 · · · 0
...

...
...

...
...

... · · · ... · · · ...

0 0 0 0 0 0 · · · yi1 · · · yi,T−2


(27)

and qi = qdi =
h
∆vi3 ∆vi4 ∆vi5 · · · ∆viT

i0
, in the GMM-DIF / CU-DIF case, or

Zi =



Zdi 0 0 0 0

0 ∆yi2 0 0 0

0 0 ∆yi3 0 0
...

...
...

...
...

0 0 0 0 ∆yi,T−1


(28)

7The DIF acronym refers to the use of instruments for the first dif ferenced equations given in (13), while the

SYS acronym refers to the use of the system of moment conditions formed by (24) and (25).
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and qi =
h
qdi ui3 ui4 · · · uiT

i
, for the GMM-SYS / CU-SYS case, and

WN =

"
1

N

NX
i=1

¡
Z 0iqiq

0
iZi

¢#−1
, (29)

which depends on the autoregressive parameter of interest α. While in the CU case α and the

weight matrix WN are estimated simultaneously, in the two-step case WN is evaluated in a first

step at a preliminary consistent estimator of α and then kept fixed during the minimization of (26).

In the DPD setting, that initial consistent estimator is usually obtained by minimizing (26) using

as weight matrix

W1N =

"
1

N

NX
i=1

¡
Z 0iHZi

¢#
, (30)

where, in the GMM-DIF case, H = Hd is a (T − 2) square matrix with 2’s on the main diagonal,
−1’s on the first off-diagonals and zeros elsewhere, and, in the GMM-SYS case,

H =

 Hd 0

0 IT−2

 . (31)

Notice that W1N does not depend on any estimated parameters.8

The results reported below for the FBCOLS1, FBCWG1 and FBCFD1 estimators are based on

the GMM-SYS estimator.

5.1 Micro datasets

Tables 2a and 2b report the results of the Monte Carlo experiments involving typical micro panels.

They confirm recent findings by Blundell and Bond (1998), Blundell, Bond and Windmeijer (2000)

and Bond and Windmeijer (2002) about the clearly superior performance of the GMM-SYS esti-

mator relatively to the, still popular, GMM-DIF estimator. Indeed, the latter estimator exhibits

a significant bias in all experiments, in particular for α = 0.95 and µ2 = 10 (more than 20% even

for T = 8 and N = 500), and its dispersion is always much larger than that of the GMM-SYS

estimator. Note, however, that for N = 100 the performance of the GMM-SYS estimator is not

the ideal: while for µ2 = 1 this estimator is approximately unbiased, higher values for µ2 cause

a deterioration on its performance, giving rise to some important biases (e.g. 86% for N = 100,

T = 4, µ2 = 10 and α = 0.05).

8For more details concerning the computation and a more thorough discussion of each one of the two-step GMM

estimators considered in this paper see Blundell, Bond and Windmeijer (2000).
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Tables 2a and 2b about here

Similar conclusions can be achieved for the CU estimator: it is clearly advantageous to es-

timate the SYS version whenever assumption (9) can be made. Moreover, both CU estimators

are significantly better, in terms of bias, than their GMM counterparts: the CU-SYS estimator is

approximately median unbiased in all cases, while the CU-DIF estimator displays some bias only

for N = 100 and α = 0.95. However, both CU estimators have an important drawback: their

RMSE’s are in many cases larger than those of the corresponding GMM estimators due to the

higher variability exhibited by them. This issue is particularly serious when α = 0.95 and only

the DIF moment conditions are used, in which case, due to the weak identification of the model

estimated, it was relatively common the production of extreme values for the CU estimators; see

Ramalho (2002) for similar results obtained in poorly identified instrumental variable models.

The results found for the FBC estimators are very promising, especially those obtained for

the FBC WG and FD estimators. On the one hand, their FBC1 version presents a small bias

only for N = 100, being better than the GMM-SYS estimator that is used in their bias correction

according to all criteria. On the other hand, their FBC2 version is approximately unbiased in all

cases. Moreover, both versions display, in general, less dispersion than GMM and CU estimators,

and do not change significantly (FBC1) or at all (FBC2) as µ2 increases. Comparing the two FBC

estimators, we see that the RMSE performance of the FBCWG estimators is clearly superior to that

of their FD counterparts due to the lower dispersion displayed by them in all cases simulated.9 With

regard to the FBCOLS estimators, they did not perform so well as the other FBC estimators: the

FBCOLS1 estimator exhibits very similar biases to the GMM-SYS estimator used in its evaluation

and both versions are characterized by higher variability than the other FBC estimators, probably

due to the necessity of estimating σ2η and σ2υ. Finally, notice that, despite the large increment in

their dispersion, which is a common feature of most FBC estimators, see inter alia MacKinnon

and Smith (1998), most of the FBC estimators exhibit much less RMSE than the corresponding

uncorrected estimators (the exceptions are the FBCOLS estimators for α = 0.95; compare the two

first parts of Tables 1 and 2b).

9As pointed out by a referee, the WG estimator is equal to generalized least squares on the FD model (13) (taking

into account the moving average structure of the transformed disturbance term). As the FD estimator results from

applying OLS on the FD model, it should have larger dispersion than the WG estimator. According to the results

reported in Tables 1 and 2, in the dynamic setting analysed in this paper that conclusion holds only after correcting

for the bias of each estimator.
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The main recommendations from our Monte Carlo analysis for micro panels are summarized

below.

Summary of recommendations for micro panels

Criteria Estimator

Bias CU-SYS, FBCWG1, FBCFD1 or any FBC2

RMSE any FBCWG

5.2 Macro datasets

With macro panels of substantial time dimension, GMM estimation based on all available instru-

ments raises some computational issues, since the number of moment conditions grows rapidly as T

increases. Actually, in panels with the time dimension simulated in this section there are available

66 or 77 (T = 13) and 300 or 324 (T = 26) instruments for GMM-DIF and GMM-SYS, respectively,

which means that GMM estimation based on the full set of instruments is not practical to imple-

ment. Hence, in the simulation study that follows, we restricted the number of moment conditions

utilized in the GMM estimation, as most empirical researchers would do. Namely, instead of (24),

we used only the following (T − 2) moment conditions:

E [yi,t−2 (∆yit − α∆yi,t−1)] = 0, for t = 3, ..., T . (32)

Thus, the GMM-DIF estimator that we consider in this sub-section uses 11 (T = 13) or 24 (T = 26)

instruments, while the GMM-SYS estimator based on the system of 2× (T − 2) equations formed
by (25) and (32) employs 22 (T = 13) or 48 (T = 26) moment conditions.

Tables 3a, 3b and 3c report the results obtained for macro panels. Now, the GMM-SYS esti-

mator exhibits a more significant bias in all cases, particularly for high µ2 and low α. Therefore,

the necessity of having better alternatives available is even more important in this context.10 The

10Note that the micro and macro experiments are not directly comparable as the total number of observations

is different, so it is not possible to say that the increased bias displayed by the GMM-SYS estimator is a direct

consequence of the necessary reduction of the number of instruments used in estimation. In order to assess the

sensitivity of this estimator to the number of instruments employed in its estimation, we performed further experiments

involving larger subsets of the FD moment conditions given in (24). Namely, we considered two additional GMM-SYS

estimators which exploit all available instruments with a lag length less than or equal to q for each FD equation (24),

with q = 3 or q = 4. The inclusion of the additional instruments produced a steadily reduction in the dispersion of

the GMM-SYS estimator in all cases but, in terms of bias, the results were very similar. These results are available

from the author upon request.
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CU-SYS estimator and the FBC estimators based on α̃FD of (19) display again the best bias per-

formance, being clearly unbiased in all cases. Among them, the FBCWG2 exhibits again the least

RMSE. Despite the poor performance of the GMM-SYS estimator, which is the reason for the

deceiving results obtained for the FBCOLS1 and FBCFD1 estimators, the bias of the FBCWG1

is relatively small. Moreover, its RMSE is similar (for α ∈ {0.05, 0.50}) or clearly inferior (for
α = 0.95) to that of FBCWG2. Notice also that the FBC estimators based on α̃WG of (18) present

the least dispersion of the three versions analyzed for each case, as was expected from the discus-

sion below (19). However, only for very large panels can they be seen as serious competitors of

the other FBC estimators, since they present important biases for α = 0.95. Thus, clearly, even in

macro panels, some of the new FBC estimators suggested in this paper possess better finite sample

properties than Hahn and Kuersteiner’s (2002) FBCWG3 estimator. The dispersion of the CU-SYS

estimator is still incomparably larger than that of any other estimator.

Tables 3a, 3b and 3c about here

The main conclusions achieved by this Monte Carlo analysis for macro panels are thus very

similar to those for micro panels (the only relevant difference is that is now less secure to use the

GMM-SYS estimator in bias evaluation) and can be summarized as follows.

Summary of recommendations for macro panels

Criteria Estimator

Bias CU-SYS, FBCWG1 or any FBC2

RMSE FBCWG1

6 Concluding remarks and extensions

In this paper we suggested alternative procedures for constructing FBC methods for estimating

the autoregressive parameter of AR(1) panel data models with no exogenous regressors. These

estimators are simpler and quicker of calculating than the GMM estimators usually employed in this

setting. Moreover, as our Monte Carlo simulation study illustrates, their finite sample properties

are clearly superior, since most of the FBC estimators suggested are unbiased, even when the time

series is highly persistent, present less RMSE, and are not affected by the relative magnitude of the

variances for the individual effect and the idiosyncratic error. They seem to be also better than

the CU-SYS estimator due to the large dispersion displayed by this estimator. Overall, the best
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FBC estimators, both in micro and macro panels, seem to be FBCWG estimators, namely those

based on the GMM-SYS estimator (in terms of RMSE) and on the α̃FD suggested in this paper

(in terms of bias). Both are superior to Hahn and Kuersteiner’s (2002) FBCWG3 estimator, which

suffers from some small sample bias, and to direct consideration of α̃FD, which exhibits too much

variability.

The first important avenue for future research is the adaptation of these FBC estimators to

the more interesting and general case of DPD models with exogenous regressors. This will require

the derivation of analytical expressions for the asymptotic bias of the OLS and FD estimators for

such circumstances since, as far as we know, only for the WG estimator has this expression already

been derived; see, for example, Nickell (1981, p. 1424). As those derivations are straitghforward

in both cases, it is very simple to construct FBC1-type estimators for the OLS, WG and FD cases

also in models with exogenous regressors. However, it seems less trivial to obtain FBC estimators

without resorting to outside initial consistent estimates since the asymptotic bias expressions are

much more complex in this case.

The FBC estimators developed in this paper were derived under the assumption of homoscedas-

ticity of the general disturbances υit. In order to check their robustness to the violation of that

assumption, we performed further Monte Carlo experiments allowing for heteroscedasticity. The

simulation results reported in the Appendix reveal that the FBC estimators behave reasonably well

under that new scenario: on the one hand, cross-sectional heteroscedasticity do not seem to affect

significantly the unbiasedness of most FBC estimators; on the other hand, under the presence of

heteroscedasticity over time, FBCWG estimators, although no longer unbiased in small samples,

still display less RMSE than GMM-SYS estimators. Nevertheless, a second important extension of

our paper is the development of FBC estimators robust to general heteroscedasticity patterns.

Finally, in this paper we do not provide any analytical expressions for the asymptotic variances

of the FBC estimators since those derivations for finite T are not trivial at all. However, although

those expressions might be useful in order to make inference in empirical work, they are not the only

alternative. Actually, we recommend the utilization of bootstrap procedures as those suggested by

Bun and Kiviet (2001, pp. 15-16) to estimate the variance of our FBC estimators. To the best of our

knowledge, Bun and Kiviet (2001) are the only authors who derived an analytical expression for the

asymptotic variance of a particular FBC estimator for finite T . However, they found expressions

too complex to be widely used by practitioners and their Monte Carlo simulation showed that

bootstrap variance estimators are relatively accurate for a wider range of cases than the analytical
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ones.

Appendix

In this section we present further Monte Carlo results, which consider designs with heteroscedastic

disturbances. Relative to the previous experiments, we focus on the case with µ2 = 1 and {N,T} =
{100, 8} (micro analysis) or {N,T} = {50, 26} (macro panel) and change the data generation
process of the general disturbance υit. We investigate two distinct heteroscedasticity patterns. In

order to allow for cross-sectional heteroscedasticity, we generate υit ∼ N
³
0, σ2υ,i

´
, with σ2υ,i ∼ χ21.

Heteroscedastic errors over time are generated according to υit ∼ N ¡0, σ2υ,t¢, with σ2υ,t = a +

0.15 (t− 1) and a = 0.475 for T = 8 or a = 0.1 for T = 13. Note that in both cases υit has

variance one across the whole sample, as in the homoscedastic case. Tables 4 and 5 report the

results obtained for each case.

Tables 4 and 5 about here

As expected, cross-sectional heteroscedasticity considerably increase the variance of all esti-

mators. However, this form of heteroscedasticity seems to have a small impact on the bias of

each estimator. This is a somewhat surprising result since FBC estimators were derived under

assumption (6). In opposition, in the case of heteroscedastic errors over time the increment in the

variability of the estimators is less significant but the FBC estimators are no longer unbiased. In

terms of bias, GMM or CU estimators based on the moment conditions "SYS" are now clearly the

best, since they are robust to any form of heteroscedasticity. However, as in most cases the bias of

the FBC estimators is not substantial (apart from the FBCFD2 estimator), they are still the best

in terms of RMSE, namely the FBCWG estimators.
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Table 1: Monte Carlo simulation results for inconsistent and unfeasible bias-corrected estimators 
 

T α   OLS  WG FD  UBCOLS  UBCWG UBCFD 
  2µ  1 5 10 1/5/10 1/5/10 1 5 10 1/5/10 1/5/10 

4 0.05  0.472 
(0.055) 
[0.473] 

0.790 
(0.029) 
[0.789] 

0.863 
(0.019) 
[0.862] 

-0.354 
(0.056) 
[0.357] 

-0.525 
(0.055) 
[0.526] 

-0.003 
(0.055) 
[0.056] 

-0.001 
(0.029) 
[0.029] 

-0.001 
(0.019) 
[0.019] 

-0.001 
(0.056) 
[0.056] 

0.000 
(0.055) 
[0.055] 

 0.50  0.248 
(0.038) 
[0.250] 

0.416 
(0.021) 
[0.416] 

0.454 
(0.015) 
[0.454] 

-0.536 
(0.066) 
[0.541] 

-0.750 
(0.061) 
[0.751] 

-0.002 
(0.038) 
[0.039] 

-0.001 
(0.021) 
[0.021] 

-0.001 
(0.015) 
[0.015] 

-0.000 
(0.066) 
[0.066] 

-0.000 
(0.061) 
[0.061] 

 0.95  0.025 
(0.013) 
[0.028] 

0.042 
(0.007) 
[0.042] 

0.045 
(0.005) 
[0.046] 

-0.731 
(0.073) 
[0.734] 

-0.974 
(0.070) 
[0.978] 

-0.000 
(0.013) 
[0.013] 

-0.000 
(0.007) 
[0.007] 

-0.000 
(0.005) 
[0.005] 

-0.002 
(0.073) 
[0.073] 

0.001 
(0.070) 
[0.070] 

8 0.05  0.472 
(0.044) 
[0.473] 

0.790 
(0.022) 
[0.789] 

0.863 
(0.013) 
[0.862] 

-0.152 
(0.037) 
[0.156] 

-0.526 
(0.030) 
[0.526] 

-0.003 
(0.044) 
[0.044] 

-0.002 
(0.022) 
[0.022] 

-0.001 
(0.013) 
[0.014] 

-0.001 
(0.037) 
[0.037] 

-0.001 
(0.030) 
[0.030] 

 0.50  0.249 
(0.028) 
[0.249] 

0.416 
(0.013) 
[0.416] 

0.454 
(0.009) 
[0.454] 

-0.237 
(0.039) 
[0.240] 

-0.750 
(0.035) 
[0.752] 

-0.001 
(0.028) 
[0.028] 

-0.001 
(0.013) 
[0.014] 

-0.000 
(0.009) 
[0.009] 

-0.002 
(0.039) 
[0.039] 

-0.000 
(0.035) 
[0.035] 

 0.95  0.025 
(0.008) 
[0.026] 

0.042 
(0.005) 
[0.042] 

0.045 
(0.003) 
[0.046] 

-0.360 
(0.039) 
[0.363] 

-0.977 
(0.040) 
[0.977] 

-0.000 
(0.008) 
[0.008] 

-0.000 
(0.005) 
[0.005] 

-0.000 
(0.003) 
[0.003] 

-0.002 
(0.039) 
[0.039] 

-0.002 
(0.040) 
[0.040] 

13 0.05  0.472 
(0.040) 
[0.474] 

0.791 
(0.021) 
[0.789] 

0.863 
(0.013) 
[0.862] 

-0.087 
(0.029) 
[0.093] 

-0.524 
(0.022) 
[0.525] 

-0.003 
(0.040) 
[0.040] 

-0.001 
(0.021) 
[0.021] 

-0.001 
(0.013) 
[0.013] 

0.001 
(0.029) 
[0.029] 

0.001 
(0.022) 
[0.022] 

 0.50  0.249 
(0.024) 
[0.249] 

0.416 
(0.012) 
[0.415] 

0.454 
(0.007) 
[0.454] 

-0.134 
(0.029) 
[0.138] 

-0.749 
(0.026) 
[0.750] 

-0.001 
(0.024) 
[0.024] 

-0.001 
(0.012) 
[0.012] 

-0.000 
(0.007) 
[0.007] 

-0.000 
(0.029) 
[0.029] 

0.001 
(0.026) 
[0.026] 

 0.95  0.025 
(0.006) 
[0.025] 

0.042 
(0.003) 
[0.042] 

0.045 
(0.002) 
[0.045] 

-0.217 
(0.024) 
[0.218] 

-0.974 
(0.030) 
[0.975] 

-0.000 
(0.006) 
[0.006] 

-0.000 
(0.003) 
[0.003] 

-0.000 
(0.002) 
[0.002] 

-0.001 
(0.024) 
[0.024] 

0.001 
(0.030) 
[0.030] 

26 0.05  0.475 
(0.037) 
[0.475] 

0.792 
(0.020) 
[0.790] 

0.864 
(0.012) 
[0.863] 

-0.042 
(0.019) 
[0.046] 

-0.525 
(0.015) 
[0.525] 

0.000 
(0.037) 
[0.037] 

0.000 
(0.020) 
[0.020] 

0.000 
(0.012) 
[0.012] 

-0.000 
(0.019) 
[0.019] 

-0.000 
(0.015) 
[0.015] 

 0.50  0.250 
(0.021) 
[0.250] 

0.417 
(0.011) 
[0.416] 

0.455 
(0.006) 
[0.454] 

-0.062 
(0.018) 
[0.065] 

-0.751 
(0.017) 
[0.750] 

0.000 
(0.021) 
[0.021] 

0.000 
(0.011) 
[0.011] 

0.000 
(0.006) 
[0.006] 

-0.000 
(0.018) 
[0.018] 

-0.001 
(0.017) 
[0.017] 

 0.95  0.025 
(0.004) 
[0.025] 

0.042 
(0.002) 
[0.042] 

0.045 
(0.002) 
[0.045] 

-0.104 
(0.013) 
[0.105] 

-0.975 
(0.020) 
[0.975] 

-0.000 
(0.004) 
[0.004] 

-0.000 
(0.002) 
[0.002] 

0.000 
(0.002) 
[0.002] 

-0.001 
(0.013) 
[0.013] 

-0.000 
(0.020) 
[0.020] 

Notes: (i) Results are based on 2000 draws, N = 100 and 12 =υσ . (ii) The first value for each estimator is its Monte Carlo median bias. (iii) The value in parenthesis is the Monte Carlo 
standard deviation of each estimate. (iv) The value in each bracket below the parenthesis is the RMSE of each estimator. 



Table 2a: Monte Carlo simulation results for microeconomic panels: GMM and CU estimators 
 

N T α  GMM-DIF  CU-DIF  GMM-SYS  CU-SYS 
   2µ  1 5 10  1 5 10  1 5 10  1 5 10 

100 4 0.05  -0.013 
(0.129) 
[0.129] 

-0.030 
(0.174) 
[0.175] 

-0.032 
(0.192) 
[0.192] 

 0.000 
(0.136) 
[0.136] 

-0.006 
(0.192) 
[0.192] 

-0.004 
(0.217) 
[0.218] 

 0.004 
(0.101) 
[0.101] 

0.024 
(0.126) 
[0.130] 

0.043 
(0.154) 
[0.166] 

 0.000 
(0.106) 
[0.107] 

-0.002 
(0.117) 
[0.117] 

-0.002 
(0.120) 
[0.120] 

  0.50  -0.028 
(0.198) 
[0.199] 

-0.080 
(0.305) 
[0.310] 

-0.110 
(0.360) 
[0.368] 

 0.005 
(0.222) 
[0.223] 

0.001 
(0.508) 
[0.513] 

-0.010 
(1.551) 
[1.554] 

 -0.000 
(0.121) 
[0.121] 

0.029 
(0.142) 
[0.144] 

0.064 
(0.159) 
[0.169] 

 0.004 
(0.132) 
[0.132] 

0.002 
(0.151) 
[0.151] 

0.003 
(0.158) 
[0.159] 

  0.95  -0.355 
(0.736) 
[0.836] 

-0.630 
(0.898) 
[1.122] 

-0.725 
(0.909) 
[1.185] 

 -0.119 
(17.582) 
[17.582] 

-0.309 
(8.557) 
[8.561] 

-0.406 
(22.501) 
[22.508] 

 -0.011 
(0.157) 
[0.160] 

0.012 
(0.162) 
[0.162] 

0.026 
(0.152) 
[0.152] 

 0.012 
(0.166) 
[0.166] 

0.010 
(0.177) 
[0.177] 

0.003 
(0.172) 
[0.173] 

 8 0.05  -0.016 
(0.063) 
[0.065] 

-0.018 
(0.068) 
[0.071] 

-0.019 
(0.070) 
[0.073] 

 -0.001 
(0.074) 
[0.074] 

-0.002 
(0.081) 
[0.081] 

-0.003 
(0.083) 
[0.083] 

 0.000 
(0.053) 
[0.053] 

0.018 
(0.058) 
[0.062] 

0.042 
(0.071) 
[0.086] 

 0.000 
(0.062) 
[0.062] 

0.001 
(0.062) 
[0.062] 

0.001 
(0.062) 
[0.062] 

  0.50  -0.032 
(0.080) 
[0.087] 

-0.047 
(0.095) 
[0.107] 

-0.052 
(0.100) 
[0.114] 

 0.003 
(0.096) 
[0.096] 

-0.001 
(0.122) 
[0.122] 

-0.001 
(0.131) 
[0.131] 

 -0.003 
(0.059) 
[0.059] 

0.019 
(0.067) 
[0.070] 

0.047 
(0.076) 
[0.092] 

 -0.001 
(0.072) 
[0.072] 

0.002 
(0.076) 
[0.076] 

0.003 
(0.077) 
[0.077] 

  0.95  -0.223 
(0.222) 
[0.341] 

-0.392 
(0.289) 
[0.521] 

-0.458 
(0.302) 
[0.581] 

 -0.006 
(5.452) 
[5.456] 

-0.046 
(5.400) 
[5.401] 

-0.070 
(5.114) 
[5.117] 

 -0.016 
(0.063) 
[0.067] 

0.006 
(0.055) 
[0.055] 

0.021 
(0.048) 
[0.050] 

 0.007 
(0.079) 
[0.079] 

0.006 
(0.083) 
[0.083] 

0.005 
(0.084) 
[0.085] 

500 8 0.05  -0.004 
(0.026) 
[0.026] 

-0.005 
(0.029) 
[0.029] 

-0.006 
(0.029) 
[0.029] 

 -0.000 
(0.027) 
[0.027] 

-0.001 
(0.029) 
[0.029] 

-0.001 
(0.030) 
[0.030] 

 -0.001 
(0.021) 
[0.021] 

-0.000 
(0.021) 
[0.021] 

0.002 
(0.022) 
[0.022] 

 -0.001 
(0.021) 
[0.021] 

-0.000 
(0.021) 
[0.021] 

-0.000 
(0.021) 
[0.021] 

  0.50  -0.007 
(0.033) 
[0.034] 

-0.010 
(0.040) 
[0.042] 

-0.012 
(0.042) 
[0.044] 

 0.000 
(0.034) 
[0.034] 

-0.000 
(0.041) 
[0.041] 

-0.000 
(0.044) 
[0.044] 

 0.000 
(0.024) 
[0.024] 

0.002 
(0.026) 
[0.026] 

0.004 
(0.027) 
[0.027] 

 0.001 
(0.024) 
[0.024] 

0.001 
(0.025) 
[0.025] 

0.001 
(0.026) 
[0.026] 

  0.95  -0.052 
(0.082) 
[0.099] 

-0.131 
(0.150) 
[0.212] 

-0.191 
(0.196) 
[0.297] 

 0.006 
(0.092) 
[0.092] 

0.002 
(0.355) 
[0.356] 

-0.000 
(3.619) 
[3.619] 

 -0.002 
(0.026) 
[0.027] 

0.000 
(0.031) 
[0.031] 

0.006 
(0.031) 
[0.031] 

 0.002 
(0.026) 
[0.026] 

0.002 
(0.033) 
[0.033] 

0.002 
(0.036) 
[0.036] 

Notes: (i) Results are based on 2000 draws and 12 =υσ . (ii) The first value for each estimator is its Monte Carlo median bias. (iii) The value in parenthesis is the Monte Carlo standard deviation of each estimate. (iv) The 
value in each bracket below the parenthesis is the RMSE of each estimator. 



Table 2b: Monte Carlo simulation results for microeconomic panels: feasible bias-corrected estimators 
 

N T α  FBCOLS1  FBCWG1  FBCFD1  FBCOLS2 FBCWG2 FBCFD2 
   2µ  1 5 10  1 5 10  1 5 10  1 5 10 1/5/10 1/5/10 

100 4 0.05  0.004 
(0.104) 
[0.105] 

0.023 
(0.129) 
[0.133] 

0.043 
(0.157) 
[0.169] 

 0.002 
(0.090) 
[0.090] 

0.011 
(0.097) 
[0.098] 

0.020 
(0.103) 
[0.107] 

 0.003 
(0.096) 
[0.097] 

0.012 
(0.106) 
[0.108] 

0.026 
(0.116) 
[0.121] 

 0.005 
(0.102) 
[0.102] 

0.003 
(0.106) 
[0.106] 

0.002 
(0.108) 
[0.108] 

-0.002 
(0.094) 
[0.094] 

0.001 
(0.110) 
[0.110] 

  0.50  0.005 
(0.133) 
[0.133] 

0.032 
(0.150) 
[0.153] 

0.065 
(0.168) 
[0.178] 

 -0.001 
(0.107) 
[0.107] 

0.010 
(0.112) 
[0.113] 

0.024 
(0.116) 
[0.118] 

 0.000 
(0.111) 
[0.111] 

0.016 
(0.119) 
[0.120] 

0.033 
(0.125) 
[0.128] 

 0.000 
(0.162) 
[0.162] 

0.000 
(0.138) 
[0.138] 

-0.001 
(0.124) 
[0.124] 

-0.002 
(0.111) 
[0.111] 

-0.001 
(0.122) 
[0.122] 

  0.95  -0.019 
(0.354) 
[0.356] 

0.011 
(0.174) 
[0.175] 

0.025 
(0.153) 
[0.153] 

 -0.014 
(0.123) 
[0.124] 

-0.004 
(0.115) 
[0.115] 

0.006 
(0.108) 
[0.108] 

 -0.009 
(0.129) 
[0.130] 

0.001 
(0.122) 
[0.122] 

0.012 
(0.114) 
[0.114] 

 -0.011 
(0.853) 
[0.854] 

-0.001 
(0.145) 
[0.145] 

0.002 
(0.141) 
[0.141] 

0.001 
(0.129) 
[0.129] 

0.003 
(0.140) 
[0.140] 

100 8 0.05  -0.000 
(0.049) 
[0.049] 

0.017 
(0.057) 
[0.060] 

0.039 
(0.070) 
[0.084] 

 -0.001 
(0.045) 
[0.045] 

0.002 
(0.045) 
[0.045] 

0.007 
(0.045) 
[0.046] 

 -0.000 
(0.053) 
[0.053] 

0.008 
(0.055) 
[0.056] 

0.022 
(0.059) 
[0.063] 

 -0.002 
(0.052) 
[0.052] 

-0.003 
(0.058) 
[0.058] 

-0.002 
(0.059) 
[0.059] 

-0.001 
(0.045) 
[0.045] 

-0.002 
(0.061) 
[0.061] 

  0.50  -0.001 
(0.059) 
[0.059] 

0.019 
(0.068) 
[0.071] 

0.048 
(0.077) 
[0.092] 

 -0.002 
(0.050) 
[0.050] 

0.003 
(0.050) 
[0.051] 

0.010 
(0.051) 
[0.052] 

 -0.002 
(0.059) 
[0.059] 

0.009 
(0.063) 
[0.063] 

0.024 
(0.065) 
[0.070] 

 0.000 
(0.067) 
[0.067] 

-0.002 
(0.069) 
[0.069] 

-0.002 
(0.070) 
[0.070] 

-0.002 
(0.050) 
[0.050] 

-0.001 
(0.070) 
[0.070] 

  0.95  -0.022 
(3.309) 
[3.310] 

0.006 
(0.100) 
[0.100] 

0.019 
(0.060) 
[0.061] 

 -0.009 
(0.052) 
[0.053] 

-0.001 
(0.048) 
[0.048] 

0.004 
(0.045) 
[0.045] 

 -0.011 
(0.064) 
[0.065] 

0.001 
(0.058) 
[0.058] 

0.008 
(0.053) 
[0.053] 

 -0.013 
(0.888) 
[0.889] 

-0.006 
(0.105) 
[0.105] 

-0.004 
(0.093) 
[0.093] 

-0.003 
(0.059) 
[0.059] 

-0.003 
(0.080) 
[0.080] 

500 8 0.05  -0.001 
(0.021) 
[0.021] 

-0.000 
(0.021) 
[0.021] 

0.001 
(0.022) 
[0.022] 

 -0.001 
(0.020) 
[0.020] 

-0.000 
(0.020) 
[0.020] 

0.000 
(0.020) 
[0.020] 

 -0.002 
(0.022) 
[0.022] 

0.001 
(0.022) 
[0.022] 

0.000 
(0.023) 
[0.023] 

 -0.001 
(0.023) 
[0.023] 

-0.001 
(0.025) 
[0.025] 

-0.001 
(0.026) 
[0.026] 

-0.001 
(0.020) 
[0.020] 

-0.001 
(0.027) 
[0.027] 

  0.50  0.001 
(0.025) 
[0.025] 

0.002 
(0.026) 
[0.026] 

0.004 
(0.027) 
[0.028] 

 -0.000 
(0.022) 
[0.022] 

0.000 
(0.023) 
[0.023] 

0.001 
(0.023) 
[0.023] 

 -0.001 
(0.025) 
[0.025] 

-0.000 
(0.026) 
[0.026] 

0.001 
(0.026) 
[0.026] 

 -0.001 
(0.029) 
[0.029] 

-0.002 
(0.031) 
[0.031] 

-0.002 
(0.031) 
[0.031] 

-0.000 
(0.022) 
[0.022] 

-0.002 
(0.031) 
[0.031] 

  0.95  -0.003 
(0.163) 
[0.163] 

-0.000 
(2.395) 
[2.395] 

0.007 
(0.042) 
[0.042] 

 -0.001 
(0.024) 
[0.024] 

-0.001 
(0.024) 
[0.024] 

0.001 
(0.024) 
[0.024] 

 -0.002 
(0.028) 
[0.028] 

-0.001 
(0.030) 
[0.030] 

0.002 
(0.029) 
[0.029] 

 -0.008 
(0.159) 
[0.159] 

-0.003 
(0.050) 
[0.050] 

-0.002 
(0.106) 
[0.106] 

-0.000 
(0.026) 
[0.026] 

-0.002 
(0.035) 
[0.035] 

Notes: (i) Results are based on 2000 draws and 12 =υσ . (ii) The first value for each estimator is its Monte Carlo median bias. (iii) The value in parenthesis is the Monte Carlo standard deviation of each estimate. (iv) The value in 
each bracket below the parenthesis is the RMSE of each estimator. 



Table 3a: Monte Carlo simulation results for macroeconomic panels: GMM and CU estimators 
 

N T α  GMM-DIF  CU-DIF  GMM-SYS  CU-SYS 
   2µ  1 5 10  1 5 10  1 5 10  1 5 10 

25 13 0.05  -0.016 
(0.097) 
[0.098] 

-0.019 
(0.106) 
[0.107] 

-0.024 
(0.113) 
[0.114] 

 0.019 
(0.147) 
[0.150] 

0.013 
(0.151) 
[0.152] 

0.009 
(0.158) 
[0.158] 

 0.028 
(0.088) 
[0.092] 

0.150 
(0.110) 
[0.189] 

0.275 
(0.133) 
[0.304] 

 -0.001 
(0.235) 
[0.235] 

0.002 
(0.329) 
[0.329] 

0.005 
(0.256) 
[0.257] 

  0.50  -0.036 
(0.119) 
[0.125] 

-0.045 
(0.135) 
[0.144] 

-0.057 
(0.153) 
[0.165] 

 0.007 
(0.170) 
[0.171] 

-0.000 
(0.188) 
[0.188] 

-0.009 
(0.213) 
[0.213] 

 0.019 
(0.097) 
[0.099] 

0.125 
(0.099) 
[0.157] 

0.213 
(0.097) 
[0.229] 

 -0.017 
(0.233) 
[0.233] 

-0.004 
(0.232) 
[0.232] 

-0.005 
(0.240) 
[0.240] 

  0.95  -0.154 
(0.242) 
[0.307] 

-0.227 
(0.314) 
[0.431] 

-0.270 
(0.322) 
[0.462] 

 -0.062 
(1.372) 
[1.372] 

-0.063 
(10.398) 
[10.399] 

-0.072 
(8.804) 
[8.807] 

 -0.006 
(0.064) 
[0.064] 

0.024 
(0.044) 
[0.050] 

0.035 
(0.035) 
[0.049] 

 0.003 
(0.210) 
[0.210] 

-0.001 
(0.202) 
[0.202] 

0.001 
(0.214) 
[0.214] 

50 13 0.05  -0.006 
(0.068) 
[0.068] 

-0.010 
(0.073) 
[0.073] 

-0.013 
(0.077) 
[0.078] 

 0.015 
(0.076) 
[0.077] 

0.006 
(0.080) 
[0.081] 

0.003 
(0.085) 
[0.085] 

 0.016 
(0.067) 
[0.069] 

0.070 
(0.078) 
[0.106] 

0.140 
(0.099) 
[0.175] 

 0.005 
(0.098) 
[0.098] 

0.003 
(0.096) 
[0.096] 

0.002 
(0.096) 
[0.096] 

  0.50  -0.020 
(0.085) 
[0.087] 

-0.028 
(0.094) 
[0.098] 

-0.032 
(0.105) 
[0.111] 

 0.005 
(0.093) 
[0.093] 

-0.004 
(0.103) 
[0.103] 

-0.006 
(0.113) 
[0.114] 

 0.008 
(0.078) 
[0.078] 

0.064 
(0.081) 
[0.102] 

0.125 
(0.086) 
[0.149] 

 -0.005 
(0.123) 
[0.123] 

-0.011 
(0.125) 
[0.125] 

-0.016 
(0.125) 
[0.125] 

  0.95  -0.099 
(0.186) 
[0.223] 

-0.176 
(0.300) 
[0.388] 

-0.226 
(0.338) 
[0.461] 

 -0.037 
(3.962) 
[3.962] 

-0.054 
(5.535) 
[5.539] 

-0.056 
(5.294) 
[5.297] 

 -0.008 
(0.068) 
[0.069] 

0.022 
(0.052) 
[0.055] 

0.032 
(0.042) 
[0.053] 

 -0.005 
(0.138) 
[0.139] 

-0.002 
(0.132) 
[0.132] 

-0.004 
(0.131) 
[0.131] 

50 26 0.05  -0.006 
(0.047) 
[0.047] 

-0.006 
(0.048) 
[0.049] 

-0.007 
(0.049) 
[0.050] 

 0.015 
(0.067) 
[0.069] 

0.012 
(0.067) 
[0.069] 

0.008 
(0.068) 
[0.069] 

 0.015 
(0.043) 
[0.046] 

0.085 
(0.052) 
[0.101] 

0.162 
(0.066) 
[0.177] 

 -0.001 
(0.156) 
[0.156] 

-0.001 
(0.161) 
[0.161] 

0.003 
(0.157) 
[0.158] 

  0.50  -0.014 
(0.057) 
[0.059] 

-0.015 
(0.059) 
[0.062] 

-0.017 
(0.062) 
[0.064] 

 0.006 
(0.077) 
[0.078] 

0.004 
(0.080) 
[0.080] 

0.001 
(0.082) 
[0.082] 

 0.012 
(0.049) 
[0.050] 

0.077 
(0.050) 
[0.092] 

0.140 
(0.053) 
[0.149] 

 0.001 
(0.154) 
[0.154] 

-0.004 
(0.163) 
[0.163] 

-0.007 
(0.159) 
[0.159] 

  0.95  -0.052 
(0.076) 
[0.095] 

-0.066 
(0.111) 
[0.140] 

-0.083 
(0.144) 
[0.183] 

 -0.026 
(0.112) 
[0.117] 

-0.026 
(0.324) 
[0.326] 

-0.026 
(0.760) 
[0.761] 

 0.002 
(0.037) 
[0.037] 

0.026 
(0.025) 
[0.035] 

0.035 
(0.019) 
[0.039] 

 0.001 
(0.140) 
[0.140] 

0.002 
(0.126) 
[0.126] 

0.001 
(0.127) 
[0.127] 

Notes: (i) Results are based on 2000 draws and 12 =υσ . (ii) The first value for each estimator is its Monte Carlo median bias. (iii) The value in parenthesis is the Monte Carlo standard deviation of each estimate. (iv) The 
value in each bracket below the parenthesis is the RMSE of each estimator. 



Table 3b: Monte Carlo simulation results for macroeconomic panels: feasible bias-corrected type 1 estimators 
 

N T α  FBCOLS1  FBCWG1  FBCFD1 
   2µ  1 5 10  1 5 10  1 5 10 

25 13 0.05  0.019 
(0.075) 
[0.077] 

0.135 
(0.107) 
[0.176] 

0.264 
(0.133) 
[0.295] 

 0.003 
(0.063) 
[0.063] 

0.015 
(0.064) 
[0.065] 

0.028 
(0.064) 
[0.069] 

 0.015 
(0.085) 
[0.086] 

0.076 
(0.090) 
[0.119] 

0.138 
(0.095) 
[0.168] 

  0.50  0.014 
(0.090) 
[0.091] 

0.121 
(0.101) 
[0.156] 

0.211 
(0.102) 
[0.230] 

 0.001 
(0.064) 
[0.064] 

0.016 
(0.063) 
[0.065] 

0.029 
(0.063) 
[0.069] 

 0.010 
(0.097) 
[0.098] 

0.064 
(0.093) 
[0.112] 

0.107 
(0.088) 
[0.137] 

  0.95  -0.014 
(0.423) 
[0.423] 

0.020 
(0.698) 
[0.698] 

0.033 
(0.675) 
[0.676] 

 -0.003 
(0.056) 
[0.056] 

0.005 
(0.052) 
[0.052] 

0.007 
(0.050) 
[0.051] 

 -0.003 
(0.082) 
[0.082] 

0.013 
(0.069) 
[0.070] 

0.019 
(0.065) 
[0.067] 

50 13 0.05  0.012 
(0.055) 
[0.057] 

0.064 
(0.074) 
[0.098] 

0.133 
(0.098) 
[0.168] 

 0.002 
(0.046) 
[0.046] 

0.006 
(0.046) 
[0.047] 

0.014 
(0.047) 
[0.049] 

 0.009 
(0.062) 
[0.063] 

0.035 
(0.065) 
[0.075] 

0.071 
(0.071) 
[0.102] 

  0.50  0.008 
(0.070) 
[0.070] 

0.062 
(0.080) 
[0.100] 

0.123 
(0.086) 
[0.148] 

 0.000 
(0.047) 
[0.047] 

0.008 
(0.047) 
[0.047] 

0.016 
(0.047) 
[0.050] 

 0.005 
(0.073) 
[0.073] 

0.032 
(0.072) 
[0.078] 

0.061 
(0.071) 
[0.094] 

  0.95  -0.016 
(0.885) 
[0.885] 

0.018 
(0.335) 
[0.335] 

0.031 
(0.318) 
[0.318] 

 -0.003 
(0.043) 
[0.043] 

0.004 
(0.039) 
[0.040] 

0.007 
(0.037) 
[0.038] 

 -0.004 
(0.069) 
[0.069] 

0.010 
(0.058) 
[0.059] 

0.017 
(0.052) 
[0.055] 

50 26 0.05  0.009 
(0.035) 
[0.036] 

0.074 
(0.049) 
[0.091] 

0.152 
(0.065) 
[0.168] 

 0.002 
(0.029) 
[0.029] 

0.005 
(0.029) 
[0.029] 

0.008 
(0.029) 
[0.030] 

 0.008 
(0.042) 
[0.043] 

0.042 
(0.044) 
[0.062] 

0.080 
(0.048) 
[0.095] 

  0.50  0.009 
(0.041) 
[0.042] 

0.073 
(0.049) 
[0.088] 

0.137 
(0.053) 
[0.146] 

 0.000 
(0.027) 
[0.027] 

0.004 
(0.027) 
[0.027] 

0.008 
(0.027) 
[0.028] 

 0.005 
(0.049) 
[0.049] 

0.038 
(0.048) 
[0.061] 

0.069 
(0.047) 
[0.084] 

  0.95  -0.003 
(0.114) 
[0.114] 

0.024 
(0.100) 
[0.103] 

0.034 
(0.079) 
[0.087] 

 -0.001 
(0.022) 
[0.022] 

0.004 
(0.020) 
[0.021] 

0.006 
(0.019) 
[0.020] 

 0.001 
(0.044) 
[0.044] 

0.013 
(0.036) 
[0.038] 

0.018 
(0.033) 
[0.037] 

Notes: (i) Results are based on 2000 draws and 12 =υσ . (ii) The first value for each estimator is its Monte Carlo median bias. (iii) The value in parenthesis is the Monte Carlo standard 
deviation of each estimate. (iv) The value in each bracket below the parenthesis is the RMSE of each estimator. 



 
Table 3c: Monte Carlo simulation results for macroeconomic panels: feasible bias-corrected type 2 estimators 

 
N T α  FBCOLS2 FBCWG2 FBCFD2 FBCOLS3 FBCWG3 FBCFD3 
   2µ  1 5 10 1/5/10 1/5/10 1 5 10 1/5/10 1/5/10 

25 13 0.05  0.002 
(0.073) 
[0.073] 

0.001 
(0.082) 
[0.082] 

0.002 
(0.084) 
[0.084] 

-0.000 
(0.064) 
[0.064] 

0.001 
(0.087) 
[0.087] 

-0.005 
(0.063) 
[0.063] 

-0.006 
(0.062) 
[0.063] 

-0.007 
(0.062) 
[0.063] 

-0.008 
(0.062) 
[0.063] 

-0.002 
(0.070) 
[0.070] 

  0.50  0.003 
(0.093) 
[0.093] 

0.002 
(0.101) 
[0.101] 

0.003 
(0.102) 
[0.102] 

-0.001 
(0.064) 
[0.064] 

0.004 
(0.104) 
[0.104] 

-0.018 
(0.062) 
[0.065] 

-0.021 
(0.061) 
[0.065] 

-0.021 
(0.061) 
[0.065] 

-0.021 
(0.060) 
[0.064] 

-0.010 
(0.074) 
[0.075] 

  0.95  -0.015 
(0.372) 
[0.372] 

-0.003 
(1.014) 
[1.014] 

-0.002 
(0.122) 
[0.122] 

-0.003 
(0.070) 
[0.070] 

0.001 
(0.118) 
[0.118] 

-0.075 
(0.065) 
[0.101] 

-0.075 
(0.052) 
[0.093] 

-0.074 
(0.052) 
[0.093] 

-0.073 
(0.052) 
[0.093] 

-0.037 
(0.075) 
[0.084] 

50 13 0.05  0.001 
(0.053) 
[0.053] 

0.001 
(0.059) 
[0.059] 

0.001 
(0.061) 
[0.061] 

0.000 
(0.046) 
[0.046] 

0.001 
(0.063) 
[0.063] 

-0.004 
(0.046) 
[0.046] 

-0.007 
(0.046) 
[0.046] 

-0.007 
(0.045) 
[0.046] 

-0.008 
(0.045) 
[0.046] 

-0.004 
(0.050) 
[0.050] 

  0.50  -0.001 
(0.067) 
[0.067] 

0.001 
(0.072) 
[0.072] 

0.000 
(0.073) 
[0.073] 

-0.001 
(0.047) 
[0.047] 

-0.000 
(0.074) 
[0.074] 

-0.017 
(0.046) 
[0.049] 

-0.020 
(0.045) 
[0.049] 

-0.020 
(0.044) 
[0.049] 

-0.021 
(0.044) 
[0.049] 

-0.010 
(0.053) 
[0.054] 

  0.95  -0.008 
(0.745) 
[0.745] 

0.000 
(0.136) 
[0.136] 

0.002 
(0.090) 
[0.090] 

-0.001 
(0.049) 
[0.049] 

0.003 
(0.084) 
[0.084] 

-0.074 
(0.036) 
[0.084] 

-0.074 
(0.036) 
[0.083] 

-0.074 
(0.036) 
[0.083] 

-0.074 
(0.036) 
[0.083] 

-0.036 
(0.053) 
[0.065] 

50 26 0.05  0.001 
(0.034) 
[0.034] 

0.001 
(0.039) 
[0.039] 

0.001 
(0.041) 
[0.041] 

0.001 
(0.029) 
[0.029] 

0.000 
(0.042) 
[0.043] 

0.000 
(0.029) 
[0.029] 

-0.001 
(0.029) 
[0.029] 

-0.001 
(0.029) 
[0.029] 

-0.001 
(0.029) 
[0.029] 

0.000 
(0.033) 
[0.033] 

  0.50  0.000 
(0.041) 
[0.041] 

-0.000 
(0.048) 
[0.048] 

-0.000 
(0.049) 
[0.049] 

-0.000 
(0.027) 
[0.027] 

-0.000 
(0.050) 
[0.050] 

-0.004 
(0.027) 
[0.027] 

-0.005 
(0.027) 
[0.027] 

-0.005 
(0.027) 
[0.027] 

-0.005 
(0.027) 
[0.027] 

-0.002 
(0.034) 
[0.034] 

  0.95  -0.008 
(0.531) 
[0.532] 

-0.002 
(1.440) 
[1.440] 

-0.001 
(0.061) 
[0.061] 

-0.001 
(0.025) 
[0.025] 

0.000 
(0.056) 
[0.056] 

-0.031 
(0.019) 
[0.037] 

-0.031 
(0.019) 
[0.037] 

-0.031 
(0.019) 
[0.037] 

-0.031 
(0.019) 
[0.037] 

-0.016 
(0.032) 
[0.036] 

Notes: (i) Results are based on 2000 draws and 12 =υσ . (ii) The first value for each estimator is its Monte Carlo median bias. (iii) The value in parenthesis is the Monte Carlo 
standard deviation of each estimate. (iv) The value in each bracket below the parenthesis is the RMSE of each estimator. 



Table 4: Monte Carlo simulation results for cross-sectional heteroscedastic panels 
 

N T α GMM-DIF CU-DIF GMM-SYS CU-SYS FBCOLS1 FBCWG1 FBCFD1 FBCOLS2 FBCWG2 FBCFD2 FBCOLS3 FBCWG3 FBCFD3 
100 8 0.05 -0.028 

(0.085) 
[0.089] 

-0.001 
(0.129) 
[0.129] 

-0.005 
(0.079) 
[0.079] 

-0.001 
(0.114) 
[0.114] 

-0.003 
(0.077) 
[0.077] 

0.001 
(0.074) 
[0.074] 

-0.001 
(0.087) 
[0.087] 

0.004 
(0.089) 
[0.089] 

0.002 
(0.077) 
[0.077] 

0.004 
(0.103) 
[0.103] 

 
--- 

 
--- 

 
--- 

  0.50 -0.060 
(0.102) 
[0.120] 

0.005 
(0.172) 
[0.172] 

-0.014 
(0.088) 
[0.090] 

0.005 
(0.128) 
[0.128] 

-0.012 
(0.090) 
[0.091] 

-0.005 
(0.080) 
[0.080] 

-0.006 
(0.098) 
[0.099] 

0.004 
(0.154) 
[0.155] 

-0.002 
(0.085) 
[0.085] 

0.004 
(0.119) 
[0.119] 

 
--- 

 
--- 

 
--- 

  0.95 -0.325 
(0.237) 
[0.423] 

-0.026 
(14.800) 
[14.800] 

-0.041 
(0.086) 
[0.101] 

0.015 
(0.123) 
[0.123] 

-0.047 
(1.152) 
[1.163] 

-0.022 
(0.080) 
[0.083] 

-0.021 
(0.098) 
[0.101] 

-0.012 
(1.316) 
[1.317] 

-0.002 
(0.098) 
[0.098] 

0.002 
(0.135) 
[0.135] 

 
--- 

 
--- 

 
--- 

50 13 0.05 -0.012 
(0.099) 
[0.099] 

0.021 
(0.215) 
[0.216] 

0.019 
(0.096) 
[0.098] 

0.003 
(0.195) 
[0.196] 

0.014 
(0.084) 
[0.085] 

0.002 
(0.075) 
[0.075] 

0.012 
(0.100) 
[0.101] 

0.006 
(0.089) 
[0.089] 

0.002 
(0.076) 
[0.076] 

0.008 
(0.108) 
[0.108] 

-0.005 
(0.075) 
[0.075] 

-0.008 
(0.074) 
[0.075] 

0.001 
(0.085) 
[0.085] 

  0.50 -0.032 
(0.120) 
[0.123] 

0.005 
(0.174) 
[0.174] 

0.011 
(0.108) 
[0.108] 

-0.010 
(0.206) 
[0.206] 

0.008 
(0.100) 
[0.100] 

-0.002 
(0.075) 
[0.076] 

0.009 
(0.114) 
[0.114] 

0.006 
(0.121) 
[0.121] 

-0.002 
(0.077) 
[0.077] 

0.006 
(0.126) 
[0.126] 

-0.018 
(0.075) 
[0.077] 

-0.023 
(0.072) 
[0.076] 

-0.007 
(0.089) 
[0.090] 

  0.95 -0.139 
(0.247) 
[0.304] 

-0.052 
(2.777) 
[2.777] 

-0.008 
(0.076) 
[0.077] 

-0.004 
(0.203) 
[0.203] 

-0.017 
(0.436) 
[0.437] 

-0.009 
(0.066) 
[0.067] 

-0.003 
(0.099) 
[0.100] 

-0.011 
(0.439) 
[0.439] 

-0.006 
(0.084) 
[0.084] 

0.001 
(0.142) 
[0.142] 

-0.081 
(0.105) 
[0.134] 

-0.080 
(0.061) 
[0.100] 

-0.039 
(0.090) 
[0.098] 

Notes: (i) Results are based on 2000 draws, 12 =υσ  and 12 =µ . (ii) The first value for each estimator is its Monte Carlo median bias. (iii) The value in parenthesis is the Monte Carlo standard deviation of each estimate. (iv) The value 
in each bracket below the parenthesis is the RMSE of each estimator. 



Table 5: Monte Carlo simulation results for panels with heteroscedastic errors over time 
 

N T α GMM-DIF CU-DIF GMM-SYS CU-SYS FBCOLS1 FBCWG1 FBCFD1 FBCOLS2 FBCWG2 FBCFD2 FBCOLS3 FBCWG3 FBCFD3 
100 8 0.05 -0.019 

(0.071) 
[0.074] 

-0.000 
(0.084) 
[0.084] 

-0.001 
(0.057) 
[0.057] 

0.001 
(0.066) 
[0.066] 

0.035 
(0.051) 
[0.063] 

-0.013 
(0.050) 
[0.051] 

-0.041 
(0.058) 
[0.071] 

-0.014 
(0.054) 
[0.055] 

-0.025 
(0.050) 
[0.056] 

-0.082 
(0.067) 
[0.105] 

 
--- 

 
--- 

 
--- 

  0.50 -0.044 
(0.096) 
[0.107] 

0.003 
(0.118) 
[0.118] 

-0.003 
(0.061) 
[0.061] 

0.002 
(0.073) 
[0.073] 

0.022 
(0.060) 
[0.063] 

-0.010 
(0.054) 
[0.055] 

-0.039 
(0.064) 
[0.076] 

-0.038 
(0.070) 
[0.080] 

-0.026 
(0.055) 
[0.061] 

-0.074 
(0.077) 
[0.108] 

 
--- 

 
--- 

 
--- 

  0.95 -0.388 
(0.305) 
[0.526] 

-0.041 
(7.301) 
[7.302] 

-0.009 
(0.055) 
[0.057] 

0.008 
(0.068) 
[0.068] 

-0.005 
(0.639) 
[0.639] 

0.027 
(0.055) 
[0.061] 

-0.018 
(0.067) 
[0.069] 

-0.025 
(1.934) 
[1.934] 

0.024 
(0.065) 
[0.069] 

-0.026 
(0.088) 
[0.091] 

 
--- 

 
--- 

 
--- 

50 13 0.05 -0.008 
(0.080) 
[0.081] 

0.018 
(0.090) 
[0.091] 

0.014 
(0.072) 
[0.073] 

-0.004 
(0.096) 
[0.096] 

0.045 
(0.060) 
[0.075] 

-0.006 
(0.054) 
[0.055] 

-0.032 
(0.070) 
[0.077] 

-0.008 
(0.058) 
[0.058] 

-0.014 
(0.055) 
[0.057] 

-0.079 
(0.075) 
[0.108] 

0.026 
(0.053) 
[0.059] 

-0.015 
(0.054) 
[0.056] 

-0.047 
(0.060) 
[0.076] 

  0.50 -0.026 
(0.107) 
[0.110] 

0.009 
(0.118) 
[0.118] 

0.004 
(0.076) 
[0.076] 

-0.014 
(0.107) 
[0.108] 

0.027 
(0.068) 
[0.073] 

-0.006 
(0.054) 
[0.054] 

-0.035 
(0.078) 
[0.087] 

-0.035 
(0.075) 
[0.082] 

-0.015 
(0.055) 
[0.057] 

-0.076 
(0.087) 
[0.115] 

0.004 
(0.052) 
[0.052] 

-0.027 
(0.051) 
[0.058] 

-0.052 
(0.064) 
[0.082] 

  0.95 -0.317 
(0.406) 
[0.567] 

-0.044 
(2.838) 
[2.846] 

-0.001 
(0.057) 
[0.057] 

0.001 
(0.104) 
[0.105] 

0.005 
(0.259) 
[0.259] 

0.036 
(0.047) 
[0.057] 

-0.018 
(0.073) 
[0.076] 

-0.027 
(0.697) 
[0.698] 

0.029 
(0.056) 
[0.062] 

-0.034 
(0.097) 
[0.103] 

-0.019 
(0.055) 
[0.060] 

-0.032 
(0.040) 
[0.053] 

-0.033 
(0.062) 
[0.070] 

Notes: (i) Results are based on 2000 draws, 12 =υσ  and 12 =µ . (ii) The first value for each estimator is its Monte Carlo median bias. (iii) The value in parenthesis is the Monte Carlo standard deviation of each estimate. (iv) The value 
in each bracket below the parenthesis is the RMSE of each estimator. 


