
Recursive Bayesian Identification of Nonlinear Autonomous Systems

Tiago Simão, Miguel Barão, Jorge S. Marques

Abstract— This paper concerns the recursive identification of
nonlinear discrete-time systems for which the original equations
of motion are not known. Since the true model structure is not
available, we replace it with a generic nonlinear model. This
generic model discretizes the state space into a finite grid and
associates a set of velocity vectors to the nodes of the grid. The
velocity vectors are then interpolated to define a vector field
on the complete state space. The proposed method follows a
Bayesian framework where the identified velocity vectors are
selected by the maximum a posteriori (MAP) criterion. The
resulting algorithms allow a recursive update of the velocity
vectors as new data is obtained. Simulation examples using the
recursive algorithm are presented.

I. INTRODUCTION

The motion of objects has received a special attention
in several research areas. In the center of that research is
human motion analysis in the surveillance area [1], [2], [3].
With the purpose of identifying and studying actions of living
beings or objects with motion, a trajectory can be obtained by
resorting to image processing techniques [2], [4], [5], [6]. In
this paper, we assume that video sequences are acquired and
processed to generate sample of trajectories. This trajectories
are then used to identify a vector field in the image space
that best describes it [5], [6], [7].

We assume that the original system generating the ob-
served trajectory is unknown. Therefore, the vector field is
obtained through the interpolation of a set of nodes in a
uniform grid, where both norm and direction are needed
to reproduce the trajectory. We can assume the vector field
models as a nonlinear system, where we only have access to
the output measurements defined as the trajectory positions.
Previous works related with the identification of nonlinear
systems already encompass a variety of approaches [8], [9],
[10], [11], [12], [13]. The algorithms used to estimate pa-
rameters include expectation-maximization [14] and particle
filters [15], [16].

Trajectory analysis based on vector fields has already been
performed by [5], [6], which is similar to the Gaussian
process approaches [17] . However, parameter estimation
is done off-line and the update of a new step requires the
computation of the complete trajectory over again. Here, we

The work reported in this paper was made in the framework of project
ARGUS - Activity recognition and object tracking based on multiple models,
financed by FCT Portugal under contract PTDC/EEA-CRO/098550/2008
and by INESC-ID multiannual funding through the PIDDAC Program
Funds.

T. Simão, M. Barão are with INESC-ID, Av. Rovisco Pais,
1, 1049-001, Lisboa, Portugal, tiago.simao@ist.utl.pt,
mjsb@ramses.inesc-id.pt

J. S. Marques is with the Instituto de Sistemas e Robótica, Insti-
tuto Superior Técnico, Av. Rovisco Pais, 1, 1049-001, Lisboa, Portugal,
jsm@isr.ist.utl.pt

first present the off-line approach as the standard solution and
then describe the recursive parameter estimation solution,
which can be obtained from the former. A problem arises
when a new position is added to the trajectory. The previous
trajectory information must be stored to repeat the estimation
of the vector field including the new position, but without
computing all the trajectory positions already processed.

The main contribution of this work is the recursive version
of the Bayesian algorithm developed in [5]. Our algorithm
achieves the same results by updating a sufficient statistic
of the past data. This update is done in constant time and
memory complexity and avoids some matrix inversions that
appear in the original problem.

In section II we present an approach method to the object
motion problem including the space discretization. Section
III introduces the vector field prior we used for the MAP
solution and sections IV and V describe the off-line and on-
line vector field estimation. Section VI shows some synthetic
examples using the recursive vector field estimation and in
section VII we present the conclusions and future work.

II. PROBLEM FORMULATION

Our objective is to estimate a vector field that best
describes an observed trajectory. We consider that each
trajectory position is given by

xt+1 = xt + T (xt) + wt, (1)

where xt ∈ RD×1 is the space position with dimension D at
instant t and T (xt) ∈ RD×1 is the velocity vector (or step)
at position xt. We assume that w(t) ∼ ND(0,Σt) is a zero-
mean multivariable Gaussian error with covariance matrix
Σt.

We can represent the next position in the trajectory, given
the current position, as the conditional probability

p(xt+1|xt) = ND(xt+1|xt + T (xt),Σt)

= 1√
(2π)D|Σt|

e
− 1

2‖xt+1−xt−T (xt)‖2
Σ
−1
t ,

(2)

where |Σt| is the determinant of the matrix Σt and where
we define ‖X‖2A , Tr

(
XTAX

)
with X ∈ Rm×n and

A ∈ Rm×m for any positive integer m,n. The Tr (B) form
represents the trace of the square matrix B. Equation (2) can
also be referred to as the step probability distribution.

Consider that XL = [x1, x2, . . . , xL+1] ∈ RD×(L+1)

contains all the L + 1 positions of a single trajectory. The

joint probability of the complete trajectory is

p(XL) = p(x1, . . . , xL+1)
= p(x1) p(x2|x1) . . . p(xL+1|xL)

= p(x1)

L∏
t=1

p(xt+1|xt),
(3)

where p(x1) is the probability distribution of the initial
position.

As we cannot compute the velocity vector T (xt) for an
infinite number of positions in the D-dimensional space, we
need to perform a space discretization. Therefore, the space
is discretized into a finite grid and a set of velocity vectors
tn are associated to the nodes of the grid. We then assume
that the velocity vector T (x) is obtained by interpolation

T (xt) ,
N∑
n=1

tnφn(xt), (4)

where N is the total number of nodes, tn ∈ RD×1 is the
velocity vector at node n and φn(xt) ∈ R is a normalized
weight function [18]

φn(xt) ,
wn(xt)∑N
j=1 wj(xt)

, (5)

where the weights

wn(xt) ,
(
d(xt, gn) + d0

)−p
, (6)

represent the inverse of the distance d(xt, gn) from position
xt to node gn. The parameter p > 0 adjusts the smoothness
and d0 > 0 is a small additive constant to avoid an infinite
weight wn when xt = gn.

Equation (4) can be rewritten as

T (xt) = T Φxt , (7)

where matrices T ∈ RD×N and Φxt ∈ RN×1 are defined by

T , [t1, t2, . . . , tN] , Φxt ,


φ1(xt)
φ2(xt)

...
φN (xt)

 . (8)

We define the velocity at position xt as vxt , xt+1 − xt
and use equation (7) to represent the multivariable Gaussian
distribution of equation (2) as

p(xt+1|xt, T) =
1√

(2π)D |Σt|
e
− 1

2‖vxt−T Φxt‖
2

Σ
−1
t , (9)

where T parameterizes the vector field we want to estimate.
The estimation of matrix T is done within a Bayesian

framework. In this framework an observation model and a
prior distribution are required to produce a posterior distribu-
tion of T given the observed trajectory. We use equation (9)
as the observation model, and then define a prior distribution
p(T) for the vector field.

III. VECTOR FIELD PRIOR

Since there is no prior information on particular directions
of the vector field, the prior distribution does not convey that
type of information. However, we can state that the vector
field has some degree of smoothness so that neighboring
nodes follow similar directions.

We represent the vector field prior by p(T). Let I denote
the set of pairs of indices (i, j) containing neighboring nodes,
i.e.,

I = {(i, j)| i and j are neighbors, and i 6= j}.

In a 2-dimensional space, we choose the neighbors of
a node as the closest ones in all vertical, horizontal and
diagonal directions. Therefore, a node in the middle of a
2-dimensional grid has 8 neighboring nodes, in the border it
has 5 neighboring nodes and in a corner it has 3 neighboring
nodes.

Assuming that neighboring nodes have similar directions,
the prior is defined as a multivariable Gaussian

p(T) ∝ e−
1

2σ

∑
(i,j)∈I ‖ti−tj‖

2

. (10)

Letting ∆ ∈ {−1, 0, 1}N×(#I) denote the matrix that
operates the differences between neighbors, we obtain

T ∆ = [t1, t2, . . . , tN]



1 · · · 0 · · · 0
−1 · · · 1 · · · 0
0 · · · 0 · · · 0
0 · · · −1 · · · 0
...

...
. . .

...
0 · · · 0 · · · 1
0 · · · 0 · · · −1


= [t1 − t2, . . . , t2 − t4, . . . , tN−1 − tN] ,

(11)
where each element ti − tj measures the change of velocity
between two neighboring nodes (i, j) ∈ I.

The exponent in equation (10) can be written as a Frobe-
nius norm on T as1∑

(i,j)∈I

‖ti − tj‖2 = Tr
(

(T ∆)
T
(T ∆)

)
= Tr

(
(T ∆)(T ∆)

T
)

= Tr
(
T ∆∆T︸︷︷︸

Λ

TT
)

= ‖TT‖2Λ.

(12)
Therefore, the prior multivariable Gaussian can be repre-

sented by

p(T) ∝ e− 1
2σ ‖T

T‖2Λ . (13)

The parameter σ is adjusted manually, according to the
complexity of a trajectory, and it tunes the dependency of
neighboring nodes, thereby controlling the smoothness of the
vector field.

1Equation (12) is achieved based on trace properties and the definition
of ‖X‖2A in section II.

IV. MAXIMUM A POSTERIORI SOLUTION / MAP

Our objective is to estimate the vector field parameterized
by matrix T , given a set of positions of a trajectory X .
Applying the Bayes’ law, we get to the posterior distribution

p(T |X) = C p(X| T)p(T), (14)

where C = 1
p(X) is a normalization factor, p(X| T) is the

trajectory joint probability model obtained in (3) and p(T)
is the prior defined in (13).

For estimation purposes, we use the maximum a posteriori
(MAP) criterion, i.e., we must find the parameters T that
maximize p(T |X)

T̂ = arg max
T

p(T |X) = arg max
T

log p(T |X)

= arg max
T

(
logC + log p(X| T) + log p(T)

)
.

(15)

To solve equation (15) we find the stationarity points with

∂ log p(T |X)

∂T

∣∣∣∣
T=T̂

= 0. (16)

Since log p(T |X) is concave, the unique stationarity point
found is the global maximum.

Separately considering each term in (15), we can discard
the first, logC, since it does not depend on T .

The second term can be obtained with the logarithm of
equation (3) and using equation (9), resulting in

log p(X| T) = log p(x1) +

L∑
t=1

log p(xt+1|xt)

= log p(x1)− 1

2

L∑
t=1

log(2π)D |Σ|

−1

2

L∑
t=1

‖vxt − T Φxt‖
2
Σ−1 .

(17)

We assume a constant disturbance covariance matrix Σ =
Σt and define ΦX ∈ RN×L and vX ∈ RD×L by

ΦX , [Φx1
, Φx2

, · · · , ΦxL]

vX , [vx1
, vx2

, · · · , vxL] .
(18)

Performing some calculations based on matrix trace prop-
erties, we get to

log p(X| T) = log p(x1)− L

2
log(2π)D |Σ|

−1

2
‖vX − T ΦX‖2Σ−1 ,

(19)

which resembles the least squares form. The prior term from
equation (15) can be obtained with the logarithm of equation
(13)

log p(T) = ξ − 1
2σ‖T

T‖2Λ

= ξ − 1
2σTr

(
T ΛTT

)
,

(20)

where ξ is a constant independent from T .

Computing the derivatives separately yields

∂

∂T
log p(X| T) =

∂

∂T

(
−1

2
‖vX − T ΦX‖2Σ−1

)
= ΦX

(
vX − T ΦX

)T
Σ−1

= ΦXv
T
XΣ−1 − ΦXΦT

XTTΣ−1,

(21)

and
∂

∂T
log p(T) = − 1

σΛ TT. (22)

Therefore, the result is

∂

∂T
log p(T |X) =

∂

∂T
log p(X| T) +

∂

∂T
log p(T)

= ΦXv
T
XΣ−1 − ΦXΦT

XTTΣ−1 − 1
σΛTT.

(23)
Replacing it into equation (16) and transposing yields

−Σ−TT ΦXΦT
X − 1

σT Λ + Σ−TvXΦT
X = 0, (24)

which is a linear equation in T of the Sylvester type.
If we further assume that Σ = κID where ID ∈ RD×D is

the identity matrix, we achieve

− 1
κT ΦXΦT

X − 1
σT Λ + 1

κvXΦT
X = 0

⇔ −T
(

1
κΦXΦT

X + 1
σΛ
)

+ 1
κvXΦT

X = 0

⇔ T = vXΦT
X

(
ΦXΦT

X + κ
σΛ
)−1

.

(25)

Equation (25) defines the standard batch vector field
estimate for a trajectory of length L. As the trajectory length
increases, so do the dimensions of matrices vX and ΦX
increase, along with the time complexity to estimate T .
Therefore, this solution can only be used in constrained
problems.

V. RECURSIVE IMPLEMENTATION

In this section, we propose a recursive version of the
algorithm that does not suffer from the time and memory
complexity of the batch mode version. Specifically, we seek
an algorithm that has constant memory and computational
complexity. These objectives can be achieved by using a
sufficient statistic of the data that is updated at each step
as new data is acquired.

We start by rewriting equation (3) as

p(Xt) = p(x1)

t−1∏
i=1

p(xi+1|xi)︸ ︷︷ ︸
p(Xt−1)

p(xt+1|xt),
(26)

where p(Xt−1) is a known joint probability of the complete
trajectory on the previous time instant t− 1. The probability
for the new step p(xt+1|xt, Tt) follows equation (9). There-
fore, the Bayes’ law can be represented as

p(Tt|Xt) = Ct p(Xt| Tt)p(Tt)

= Ct p(xt+1|xt, Tt)
Prior︷ ︸︸ ︷

p(Xt−1| Tt)p(Tt),
(27)

where now the prior includes all the previous information.

The stationary condition (16) can now be rewritten as

∂

∂Tt
log p(Tt|Xt) =

∂

∂Tt
log p(xt+1|xt, Tt)

+
∂

∂Tt
log
(
p(Xt−1| Tt)p(Tt)

)
= Φxtv

T
xtΣ
−1
t − ΦxtΦ

T
xtT

T
t Σ−1

t

+ΦXv
T
XΣ−1 − ΦXΦT

XTTt Σ−1 − 1
σΛTTt ,

(28)
where now ΦX and vX correspond to data obtained before
time t.

Again, assuming Σt = Σ = κID we get
1
κvxtΦ

T
xt + 1

κvXΦT
X = Tt

(
1
κΦxtΦ

T
xt + 1

κΦXΦT
X + 1

σΛ
)
,

(29)
leading to the solution

Tt =
(
vxtΦ

T
xt + vXΦT

X

) (
ΦxtΦ

T
xt + ΦXΦT

X + κ
σΛ
)−1

.
(30)

Equation (30) can be recursively computed by using

α(t) = vxtΦ
T
xt + α(t− 1),

β(t) = ΦxtΦ
T
xt + β(t− 1),

α(t− 1) = vXΦT
X ,

β(t− 1) = ΦXΦT
X ,

(31)

where α, β ∈ RN×N are two matrices that store past
information needed in the next iteration. The estimated vector
field at instant t is given by

T (t) = α(t)
(
β(t) + κ

σΛ
)−1

, (32)

with α(0) = 0 and β(0) = 0. Moreover, since the denomi-
nator β(t) + κ

σΛ appears in every iteration, we can simplify
the algorithm to

T (t) = α(t)β(t)
−1
, (33)

using the initialization β(0) = κ
σΛ.

The algorithm can be further improved by avoiding the
explicit inversion of β(t). For this, we rewrite equation (33)
as a recursive least squares algorithm

KT (t) =
ΦT
xtP (t− 1)

1 + ΦT
xtP (t− 1)Φxt

T (t) = T (t− 1) +
[
vxt − T (t− 1)Φxt

]
KT (t)

P (t) =
[
P (t− 1)− P (t− 1)ΦxtKT (t)

]
,

(34)

where KT is known as the Kalman gain and P is the
covariance matrix of the estimation error [19], [20]. From
matrix P , we can obtain the estimated variance of each
node with diag(P) = [σ2

1 , . . . , σ
2
N]. In the algorithm (34),

the information needed in the next iteration is stored in
T (t − 1) and P (t − 1), meeting the sufficient statistics
condition. However, note that the first iteration must be
computed with equation (32), since it is not possible to
calculate P (0) = β(0)−1 ∝ Λ−1 because Λ is singular.
Therefore, for the second iteration we compute T (2) with
equation (34) and with P (1) = β(1)−1. It is possible to
verify that the resulting estimated vector field from equation
(34) is the same as the one obtained in equation (25).

VI. SIMULATION RESULTS

To illustrate the proposed algorithm, three simulations
were performed. In the first one, A, we estimate the vector
field for different instants of a trajectory. In the second, B,
we compare the estimated vector field using a single or two
consecutive distinct trajectories. At last, in the third one,
C, we compare the performance of using a single or both
trajectories to predict the future trajectory steps. The standard
parameters we choose for all examples are p = 4, κ = 1,
N = 15× 15 and σ = 100.

We generate synthetic trajectories using the Van der Pol
oscillator

x1(t+ 1) = x2(t)dt+ x1(t)

x2(t+ 1) =
(
µ
(
1− x1(t)2

)
x2(t)− x1(t)

)
dt+ x2(t),

(35)
where we assume vxt = [x1(t+1)−x1(t), x2(t+1)−x2(t)]T,
µ = 0.01 and dt = 0.1. The system chosen has a limit cycle
to which every trajectory converges. A trajectory outside
that limit cycle has the behavior of a stable system, and
a trajectory inside that limit cycle has the behavior of an
unstable system. Every figure presented has a black-white
squared background that represents the variance of each
node, obtained with matrix P (t) from equation (34). The
less variant nodes are white, and the more variant ones are
black.

A. Recursive vector field estimation

Experiment A consists in the estimation of a vector field
from the same trajectory at different time instants. In figure
1, we present the evolution of the vector field obtained from
a trajectory outside the limit cycle for the instants t1 = 25,
t2 = 40, t3 = 100 and t4 = 1001, which are shown in plots
1a, 1b, 1c and 1d, respectively.

Each plot shows the trajectory generated up to the spec-
ified time (blue). It also shows the estimated vector field
(green) and a simulated trajectory (red) computed with the
estimated vector field and the first position of the generated
trajectory. Every plot in figure 1 can also be obtained in a
batch mode using equation (25).

B. Consecutive vector field estimation

Experiment B compares the vector field estimation using a
single trajectory with a pair of consecutive trajectories, each
of them in different sides of the limit cycle. For that purpose,
we estimate a vector field from the first trajectory and then
use it as prior for the estimation of an improved vector field.
We show in figure 2 the estimated vector field and the inside
simulated trajectory for four possible cases, which are shown
in plots 2a, 2b, 2c and 2d. The plots 2a and 2b present
the vector field estimation using the trajectories inside and
outside the limit cycle, respectively. Plot 2c presents the
vector field estimation using the inside trajectory followed
by the outside one, and 2d presents the same as 2c with the
trajectories order switched.

We can verify that the simulated trajectories in 2a, 2c and
2d fit acceptably the generated trajectories. Unlike the other

x

y
Van der Pol t = 25

2 4 6 8 10 12 14

2

4

6

8

10

12

14

Trajectory

Vector field

Simulated trajectory

(a)

x

y

Van der Pol t = 40

2 4 6 8 10 12 14

2

4

6

8

10

12

14

Trajectory

Vector field

Simulated trajectory

(b)

x

y

Van der Pol t = 100

2 4 6 8 10 12 14

2

4

6

8

10

12

14

Trajectory

Vector field

Simulated trajectory

(c)

x

y

Van der Pol t = 1001

2 4 6 8 10 12 14

2

4

6

8

10

12

14

Trajectory

Vector field

Simulated trajectory

(d)

Fig. 1: Recursive vector field estimation for different time instants t1 = 25, t2 = 40, t3 = 100 and t4 = 1001 of Van der
Pol outside trajectory. Each plot has a black-white squared background that represents the variance of each node.

x

y

Van der Pol

2 4 6 8 10 12 14

2

4

6

8

10

12

14

Trajectories

Vector field

Simulated trajectory

(a)

x

y

Van der Pol

2 4 6 8 10 12 14

2

4

6

8

10

12

14

Trajectories

Vector field

Simulated trajectory

(b)

x

y

Van der Pol

2 4 6 8 10 12 14

2

4

6

8

10

12

14

Trajectories

Vector field

Simulated trajectory

(c)

x

y

Van der Pol

2 4 6 8 10 12 14

2

4

6

8

10

12

14

Trajectories

Vector field

Simulated trajectory

(d)

Fig. 2: Vector field estimation using trajectories with length of 1001 steps. Plots 2a and 2b use an inside and outside trajectory
respectively. Plot 2c presents the vector field estimation using the inside trajectory followed by the outside one, and in 2d
presents the same as 2c with the trajectories order switched.

plots, the simulated trajectory of plot 2b (estimation using the
outside trajectory) does not fit the generated trajectory. The
results mentioned can be explained by the lack of information
of the inside of the limit cycle in 2b.

C. Trajectory prediction using vector field estimation

In experiment C, we concern the performance of the esti-
mated vector field to predict the future steps of a trajectory,
for two estimation examples. The vector field estimation
follows the same idea as in section VI-B, but here we only
use the first 200 steps of a trajectory. Then, we present in
figure 3 the generated and simulated trajectories, both with
1001 steps. Four possible cases are shown in plots 3a, 3b,
3c and 3d.

The vector field estimation using both inside and outside
trajectories achieves better results than using just a single
sided trajectory. These results meet the conclusions in VI-B,
where the use of two distinct trajectories yields acceptable
model identification.

To compare the vector field model in each figure, we
present in table I the squared mean error (MSE) of wt in
equation (1). The first line of table I corresponds to the
experiment of section VI-A and each column to each plot
(a) to (d) of figure 1. The second line of table I corresponds
to the experiment of section VI-C and each column to each
plot (a) to (d) of figure 3. The MSE values are obtained from

the difference between the steps of the generated trajectory
vxt and the estimated velocity vectors T (xt), computed with
equation (7). Note that in table I, we only compare the
steps, i.e. the vectors between the generated trajectory and
the vectors simulated using the vector field. We do not use
the simulated model (in red in the figures) for the MSE
computation.

TABLE I: Mean squared error (MSE) for experiences A and
C corresponding to sections VI-A and VI-C. Each table line
corresponds to the figures 1 and 3, or experiments A and
C, where each column corresponds to each figure plot (a) to
(d).

MSE (a) (b) (c) (d)

Exp. A 6.33E –7 7.38E –7 6.29E –7 7.74E –7
Exp. C 4.86E –5 1.94E –6 1.73E –6 1.73E –6

The results for experiment A show that the MSE does not
increase with the trajectory length as expected. Instead, there
is a tradeoff between the length and the space distribution of
a trajectory, in order to obtain better model accuracy.

Moreover, the trajectory prediction (experiment C) using
two trajectories of each side of the limit cycle presents a
lower MSE than using two trajectories of the same side. In
addition, we find that the results of (c) and (d) of experiment
C are the same. From this, we can conclude that the order
in which each trajectory is computed is not relevant. On the
other hand, we can verify that the model identification, for

x

y

Van der Pol

2 4 6 8 10 12 14

2

4

6

8

10

12

14

Trajectories

Vector field

Simulated trajectory

(a)

x

y

Van der Pol

2 4 6 8 10 12 14

2

4

6

8

10

12

14

Trajectories

Vector field

Simulated trajectory

(b)

x

y

Van der Pol

2 4 6 8 10 12 14

2

4

6

8

10

12

14

Trajectories

Vector field

Simulated trajectory

(c)

x

y

Van der Pol

2 4 6 8 10 12 14

2

4

6

8

10

12

14

Trajectories

Vector field

Simulated trajectory

(d)

Fig. 3: Vector field estimation using trajectories with length of 200 steps and simulation of a trajectory with length of1001
steps. Plots 3a and 3b use an inside and outside trajectory respectively. Plot 3c presents the vector field estimation using the
inside trajectory followed by the outside one, and in 3d presents the same as 3c with the trajectories order switched.

the present system, shows promising results for the prediction
of future trajectory steps.

VII. CONCLUSIONS

This paper presents the identification of an object motion,
consisting in a trajectory constructed with interpolation of
a vector field. The vector field has nodes distributed in
a uniform grid that can smoothly depend on neighboring
nodes. We present two estimation algorithms — a batch
algorithm and a recursive one — to estimate the vector
field. We take advantage of the recursive algorithm properties
to perform some experiments computing consecutive trajec-
tories. The proposed algorithm improves the computation
of vector fields by lowering time and memory complexity,
removing the trajectory length dependency and enabling the
use of previous information as prior.

The results presented show a reasonable identification of
a nonlinear system, which suggests that we could use the
algorithm for system modeling.

For future work, we intend to approach the same problem
for multiple trajectories and multiple vector fields using a
recursive algorithm. In addition, the estimation of some pa-
rameters of the algorithm can also improve its adaptation to
different situations and increase its independence of human
intervention.

REFERENCES

[1] O. Masoud and N. Papanikolopoulos, “A method for human action
recognition,” Image and Vision Computing, vol. 21, no. 8, pp. 729 –
743, 2003.

[2] M. P. A. Mecocci, “A completely autonomous system that learns
anomalous movements in advanced videosurveillance applications,”
IEEE International Conference on Image Processing, vol. 2, pp. II–
586–9, 2005.

[3] C. R. Wren, A. Azarbayejani, T. Darrell, and A. P. Pentland, “Pfinder:
Real-time tracking of the human body,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 19, no. 7, pp. 780–785, 1997.

[4] Z. Fu, W. Hu, and T. Tan, “Similarity based vehicle trajectory
clustering and anomaly detection,” IEEE International Conference on
Image Processing, vol. 2, pp. II–602–5, 2005.

[5] J. C. Nascimento, M. A. T. Figueiredo, and J. S. Marques, “Trajectory
analysis in natural images using mixtures of vector fields,” Proc. 16th
IEEE International Conference on Image Processing, pp. 4353–4356,
2009.

[6] J. C. Nascimento, M. A. T. Figueiredo, and J. S. Marques, “Recog-
nition of human activities using space dependent switched dynamical
models,” IEEE International Conference on Image Processing, vol. 3,
pp. III–852–5, 2005.

[7] J. C. Nascimento, M. A. T. Figueiredo, and J. S. Marques, “Trajectory
classification using switched dynamical hidden Markov models,” IEEE
Transactions on Image Processing, vol. 19, no. 5, pp. 1338–1348,
2010.

[8] J. Mendel, “Multistate least-squares parameter estimators,” IEEE
Transactions on Automatic Control, vol. 20, no. 6, pp. 775–782, 1975.

[9] M. Tornio and T. Raiko, “Variational Bayesian approach for nonlinear
identification and control,” In Proc. of the IFAC Workshop on Nonlin-
ear Model Predictive Control for Fast Systems, pp. 41–46, 2006.

[10] R. van der Merwe and E. Wan, “Gaussian mixture sigma-point particle
filters for sequential probabilistic inference in dynamic state-space
models,” IEEE International Conference on Acoustics, Speech, and
Signal Processing, vol. 6, pp. VI–701–4 vol.6, 2003.

[11] Z. Xionghu, S. Shubiao, and P. Chengming, “Time-varying parameters
estimation based on Kalman particle filter with forgetting factors,” The
International Conference on Computer as a Tool, EUROCON, vol. 2,
pp. 1558–1561, 2005.

[12] B. L. Pence, H. K. Fathy, and J. L. Stein, “A maximum likelihood ap-
proach to recursive polynomial chaos parameter estimation,” American
Control Conference, pp. 2144–2151, 2010.

[13] L. Ljung, System Identification: Theory for the User. Prentice Hall,
2 ed., Jan. 1999.

[14] A. Wills, T. B. Schön, and B. Ninness, “Parameter estimation for
discrete-time nonlinear systems using EM,” Proc. 17th IFAC World
Congress, pp. 4012–4017, 2008.

[15] V. Kadirkamanathan, M. H. Jaward, S. G. Fabri, and M. Kadirka-
manathan, “Particle filters for recursive model selection in linear
and nonlinear system identification,” Proc. 39th IEEE Conference on
Decision and Control, vol. 3, pp. 2391–2396, 2000.

[16] X. Q. Wei, X. J. Zhang, H. Yu, and S. M. Song, “The ensemble
unscented particle filter,” 2nd International Conference on Intelligent
Control and Information Processing, vol. 2, pp. 844–848, 2011.

[17] C. E. Rasmussen and C. Williams, Gaussian Processes for Machine
Learning. MIT Press, 2006.

[18] D. Shepard, “A two-dimensional interpolation function for irregularly-
spaced data,” Proc. 23rd ACM national conference, pp. 517–524, 1968.

[19] D. Simon, “Kalman filtering with state constraints: A survey of linear
and nonlinear algorithms,” IET Control Theory & Applications, vol. 4,
no. 8, pp. 1303–1318, 2010.

[20] B. M. Bell and F. W. Cathey, “The iterated Kalman filter update as
a Gauss-Newton method,” IEEE Transactions on Automatic Control,
vol. 38, no. 2, pp. 294–297, 1993.

	Introduction
	Problem formulation
	Vector field prior
	Maximum a Posteriori Solution / MAP
	Recursive implementation
	Simulation results
	Recursive vector field estimation
	Consecutive vector field estimation
	Trajectory prediction using vector field estimation

	Conclusions
	References

