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Abstract— This paper deals with the decentralized closed
loop control in a pure probabilistic framework. In this frame-
work, a system is a controlled Markov chain whose transition
probabilities depend on the actions of the agents. The agents
are also described in a probabilistic way. The objective is to
drive the system so that the joint state and agents actions are
close to a set of given target probability distributions. The
Kullback-Leibler divergence is used as a performance measure.
The resulting algorithm uses dynamic programming interleaved
with an iterative process that computes the behavior of each
agent.

I. INTRODUCTION

Distributed and cooperative control has been the focus
of intense research in recent years, many centralized prob-
lems being recast into this realm. While many problems
are deterministic in what concerns the control action, and
deriving their uncertainty from the system or from imperfect
communication channels, other problems exist where the
control action is itself stochastic by nature. These kinds of
randomized problems are tackled with in the most general
way by describing the intervening models by probability
distributions. The probabilistic control framework arises
therefore as a natural way to deal with them and methods
are required to design these controllers.

Past work on probabilistic control has been done in [5], [6]
leading to explicit formulas that can be applied in controlled
Markov chains. These works relate with Markov Decision
Processes [8], with the difference that the Kullback-Leibler
divergence is used as the cost function instead of arbitrary
rewards on the states and actions, as is usually done with
MDPs. The result is a probabilistic controller c(ut|xt) that
generates a randomized actuation variable ut conditional on
the system state xt.

The main contribution of the paper is the extension to the
case where more than one controller acts simultaneously on
the same system. The main differences to earlier probabilistic
control situations are that the controllers can be different
from each other, and can act differently on the system.
These controllers may or may not communicate with each
other. If they do not communicate, which is the situation
considered in this paper, only each others’ behaviors are
known. This knowledge is the result of the design process
and is represented in the form of conditional probability
distributions. If they can communicate, then their actual
combined actuation can be thought of as if a joint distribution
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is in place. The multi agent formulation can be looked at
from a game theoretic point of view [4], [11], where multiple
players cooperate to a common objective.

This framework relates with Markov Games. These deal
with the situation where decisions are taken by multiple
agents acting on a common system. A particular case is
known as Multiagent Markov Decision Processes (MMDPs)
where the rewards/costs are shared among the agents [9],
[7], [10]. This condition is sometimes referred as the agents
being cooperative (see cited papers) although the game
played is called noncooperative since they take decisions
independently. A similar situation is considered here.

The paper is organized as follows: section II formulates
the standard probabilistic control problem and the situation
where two independent controllers act simultaneously on the
same system; section III proposes a solution based on a two-
player iterated policy game, where each controller (player,
agent) perceives an equivalent system encompassing the true
system and the other controller; section IV illustrates with a
toy example, the stochastic JK flip-flop; section V illustrates
a different example requiring coordination; and section VI
draws conclusions.

II. PROBLEM FORMULATION

In the probabilistic framework all of the knowledge con-
cerning variables and behaviors is represented by probability
distributions. For example, a system having two inputs u1

and u2 updates its own state xt according to the conditional
distribution

s(xt+1|xt, u1t , u2t ). (1)

We assume that the inputs u1 and u2 are generated by two
controllers (other common terminology is to call them agents
or players) having complete access to a common shared state
xt. The decisions taken by the controllers are also assumed
to depend only on the shared state, and so their models are
the conditional probability distributions

c1(u1t |xt), c2(u2t |xt). (2)

The closed loop connecting the system (1) and controllers
(2) is depicted in the diagram 1.

Under the assumption of independence between the ac-
tions u1t and u2t at time t, the joint distribution of the state
and actions over a time period T is obtained by the product
rule of probabilities

p(x1:T , u
1
0:T−1, u

2
0:T−1|x0) =

=

T−1∏
t=0

s(xt+1|xt, u1t , u2t )c1(u1t |xt)c2(u2t |xt), (3)



s(xt+1|xt, u1t , u2t )

c1(u1t |xt)

c2(u2t |xt)

Fig. 1. Agents in closed loop with system s.

where the index notation x1:T ,(x1, . . . , xT ) is used.
Our aim is to find the distributions c1(u1t |xt) and c2(u2t |xt)

that minimize the Kullback-Leibler divergence to some pre-
viously specified target distributions

S(xt+1), C(uit). (4)

The Kullback-Leibler divergence is defined generically by

D(p‖q),
∑
x

p(x) log
p(x)

q(x)
, (5)

and is a measure similar to a distance in what D(p‖q) =
0 when p(x) = q(x), and positive otherwise, but is not
symmetric and does not satisfy the triangular inequality, two
required properties for a metric distance.

To optimize the closed behavior, the Kullback-Leibler
divergence between the joint distribution (3) and the target
distribution

q(x1:T , u
1
0:T−1, u

2
0:T−1|x0) =

=

T−1∏
t=0

S(xt+1)C1(u1t )C2(u2t ) (6)

is minimized, where S(xt+1) and C1(u1t ), C2(u2t ) specify the
target distributions for x and (u1, u2) in an analogous way
to the specification of a cost function in optimal control.

The probabilistic control problem has been solved in [6]
using an explicit approach, and in [1], [2], [3] using an
iterative information geometrical method, for the situation
where a single controller c(ut|xt) is sought. The solutions
found there are based essentially in the factorization of the
joint distributions p and q, and then using properties of the
Kullback-Leibler divergence to write a Bellman equation,
which is then solved by dynamic programming.

The explicit solution found in [6] can be rewritten as
follows:

c(ut|xt) = exp
(

logC(ut)−D(st+1‖St+1)

− Est+1
[− log γt+1(xt+1)]− log γt(xt)

)
(7)

where

γt(xt),
∑
ut

exp
(

logC(ut)−D(st+1‖St+1)

− Est+1
[− log γt+1(xt+1)]

)
(8)

is a normalization constant.

This formulation could be extended to allow two input sig-
nals by doing ut ,(u1t , u

2
t ). This means that (u1t , u

2
t ) would

be jointly specified, and therefore u1t and u2t depend on
each other, a condition that requires perfect communication
between them.

In the formulation considered in this paper, the single
controller c(u1t , u

2
t |x) is replaced by two separate controllers

that may or may not exchange information between them.
The situation where they do not directly communicate cor-
responds to the independence assumption

c(u1t , u
2
t |xt) = c1(u1t |xt)c2(u2t |xt). (9)

Under this constraint, a design process is required to specify
each individual controller.

One possibility is to compute the joint optimal controller
c(u1t , u

2
t |xt), and then marginalize to obtain controllers

c1(u1t |xt) and c2(u2t |xt). This is an adhoc procedure, how-
ever, and does not guarantee by itself to yield an optimal
pair of controllers under the independence assumption. A
different method is proposed next.

III. PROPOSED SOLUTION

The proposed solution is based on a game theoretic
approach where two players, the controllers, try to minimize
the overall cost function. An iterative process is employed
to achieve a Nash equilibrium solution.

At each time step t of the backward induction (7) and (8),
one controller perceives an equivalent system corresponding
to the closed loop of the system with the other controller (see
figure 2). A similar situation occurs for the second controller
albeit the equivalent system is generally different.

s(xt+1|xt, u1t , u2t )

c1(u1t |xt)

c2(u2t |xt)

u2t

Fig. 2. Equivalent closed loop system as perceived by controller 2, and
assuming the controller 1 is known.

The joint optimization of the controllers at time t is
performed by iterating the control design process for each
controller separately. At each iteration step, a new equivalent
system is computed assuming the controller obtained at the
previous iteration. The following algorithm illustrates the
process:

• Set controller 1 to some initial candidate controller;
• Using controller 1, compute the equivalent system

s2(xt+1|xt, u2t ) =
∑
u1
t

s(xt+1|xt, u1t , u2t )c1(u1t |xt)

(10)
as perceived by controller 2.



• Optimize controller c2(u2t |xt) with respect to the equiv-
alent system s2(xt+1|xt, u2t ) using equations (7) and
(8).

• Using controller 2, compute the equivalent system

s1(xt+1|xt, u1t ) =
∑
u2
t

s(xt+1|xt, u1t , u2t )c2(u2t |xt)

(11)
as perceived by controller 1.

• Optimize controller c1(u1t |xt) using equations (7) and
(8).

• Repeat until convergence is achieved.
This procedure leads to a Nash equilibria where neither

controller (a controller is a player in this two player game)
can obtain a better performance by changing its behavior
unilaterally.

If no further information is available to the controllers,
their (probabilistic) actions follow the equilibrium controllers
behavior.

IV. EXAMPLE I

For illustrative purposes, the solution proposed in the
previous section is applied to a very simple toy problem:
a stochastic flip-flop.

A JK flip-flop is an electronic device that can be in one of
the two states {0, 1}. Its state Qt can change as a function
of the values present at the J and K inputs. Its truth table
is the following:

J K Qt+1 description
0 0 Qt hold current state
0 1 0 reset
1 0 1 set
1 1 Q̄t toggle current state

We now consider a stochastic JK flip-flop where the truth
table is not strictly followed, but instead the truth table rules
above are applied with probability α. This flip-flop can be
represented as a two-state controlled Markov chain, where
the state is xt ,Qt, and the transition probabilities depend
on the input values (u1, u2),(J,K). The following graph
depicts the Markov chain and the conditions that make the
indicated transition probabilities equal to α (arrows do not
represent transition probabilities).

0 1

J = 1

K = 1

K = 0J = 0

The value of α is a property of the system. In our simulations
we use a probability value of α = 0.9.

Suppose that controllers 1 and 2 act on inputs J and
K, respectively. If the target state 0 is to be achieved with
probability 0.999 and there is no preference or penalization
on the inputs (u1, u2), i.e.

c1(u1t |xt) = c2(u2t |xt) = 0.5, (12)

TABLE I
EQUILIBRIUM CONTROLLER 1 FOR THE STOCHASTIC JK FLIP-FLOP.

c1(u1
t |xt) xt = 0 xt = 1

u1
t = J = 0 0.9977 0.4979

u1
t = J = 1 0.0023 0.5021

TABLE II
EQUILIBRIUM CONTROLLER 2 FOR THE STOCHASTIC JK FLIP-FLOP.

c2(u2
t |xt) xt = 0 xt = 1

u2
t = K = 0 0.9952 0.0013

u2
t = K = 1 0.0048 0.9987

then the design algorithm leads to the controllers shown in
tables I and II, after repeating 20 iterations at each one of
the 10 time steps optimization.

These results can be interpreted intuitively as follows:
• If the state is xt = 0, then the controllers should use
J = K = 0. The inherent Markov chain transition
probabilities (α, 1−α) = (0.9, 0.1) achieve the desired
goal of staying at xt = 0 with probability 0.9, the best
possible in these circunstances.

• If the state is xt = 1, then the input K should definitely
be u2t = 1, while J can have any value: both a reset or a
toggle leads to the desired state xt = 0 with probability
0.9.

If the target probabilities for u1 and u2 are modified to give
preference to one action over the other, then the solution
is mostly the same except for c1(u1t |xt = 1), the second
column of table I, where the action will reflect the desired
probabilities, since the flip-flop state outcome is independent
of the u1 value.

V. EXAMPLE II

In this example two controllers can act on the same system
using binary inputs, and in the exact same way, i.e. the
problem is symmetric in what concerns the controllers,
as opposed to the previous problem where both acted on
different inputs.

Again a binary state is considered. The state toggles with
probability 0.9 when the actions of the controllers are differ-
ent, and holds the state when they are equal. This system can
be described by the following two-state controlled Markov
chain

0 1

u1 6= u2

u1 6= u2
u1 = u2u1 = u2

where the indicated transitions occur with probability 0.9.
The same design algorithm is tested here, where a high

probability is assigned to the desired state xt = 1.
If there are no predefined preferences for the control

action, then C(u1t ) = C(u1t ) = 0.5 is selected. If the design



TABLE III
EQUILIBRIUM CONTROLLER 1 FOR EXAMPLE II.

c1(u1
t |xt) xt = 0 xt = 1

u1
t = 0 0.0012 0.9988

u1
t = 1 0.9988 0.0012

TABLE IV
EQUILIBRIUM CONTROLLER 2 FOR EXAMPLE II.

c2(u2
t |xt) xt = 0 xt = 1

u2
t = 0 0.9988 0.0012

u2
t = 1 0.0012 0.9988

algorithm is initialized using a uniform distribution for the
first tentative controller c(u|xt) = 0.5, then the solution is to
decide any action with probability 0.5, a situation that could
be described as a stall: there is absolutely no information
that promotes one action over its opposite. However, a small
change in one of the probabilities C(uit), or to the initial
tentative controller, leads to the completely distinct probabil-
ities shown in tables III and IV. In this case, controllers take
opposite actions in order to achieve the desired goal. There is
therefore a discontinuity in the controller probabilities seen
as a function of either the problem specification or the initial
conditions for the iterative game played.

VI. CONCLUSIONS

This paper dealt with a probabilistic control situation
where two controllers act simultaneously on the same sys-
tem. A solution is proposed that includes a game theoretic ap-
proach to get to an equilibrium at each time step of the design
phase. The iteration then achieves a Nash equilibrium where
neither controller can do better unilaterally, an assumption
that is appropriate when no communication between the
controllers is possible. The problem can be further extended
to a higher number of controllers by assuming equivalent
systems from each controllers perspective, although that is
not pursued here. To illustrate the procedure, two very simple
problems were setup: in the first, a stochastic JK flip-flop
was introduced and the obtained controllers were analyzed;
the second problem, formulated as a symmetric problem that
required cooperation, led to a discontinuous design function,
a somewhat surprising result.
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