

No-till -

as a component of European Agricultural Policy and capability to boost agricultural development in countries of the post-Soviet region

Contents

> Agricultural Policy and Conservation Agriculture (CA)

> CA globally and in Europe

> The case for CA in Eastern Countries

CAP Reform 2014 - 2020

MAKING SUSTAINABLE AGRICULTURE REAL IN CAP 2020

THE ROLE OF CONSERVATION AGRICULTURE

2011 1 2012

What is CAP looking for?

> Viable food production

Sustainable management of natural resources and climate action

> Balanced territorial development

... or in more detail:

> Viable food production

- > Reasonable farm income
- > Competitiveness of European agriculture
- Cost effectiveness of EU budget
- > Globalization of agricultural markets
- > Food security (and safe food)
- > High levels of production and productivity
- > High quality products at affordable prices

... or in more detail:

- Sustainable Management of natural resources and climate action
- Protection of soil, water, air, biodiversity, environmental services
- > Bio-energy crops
- > Climate Change (Mitigation, Resilience)
- > Resource efficiency

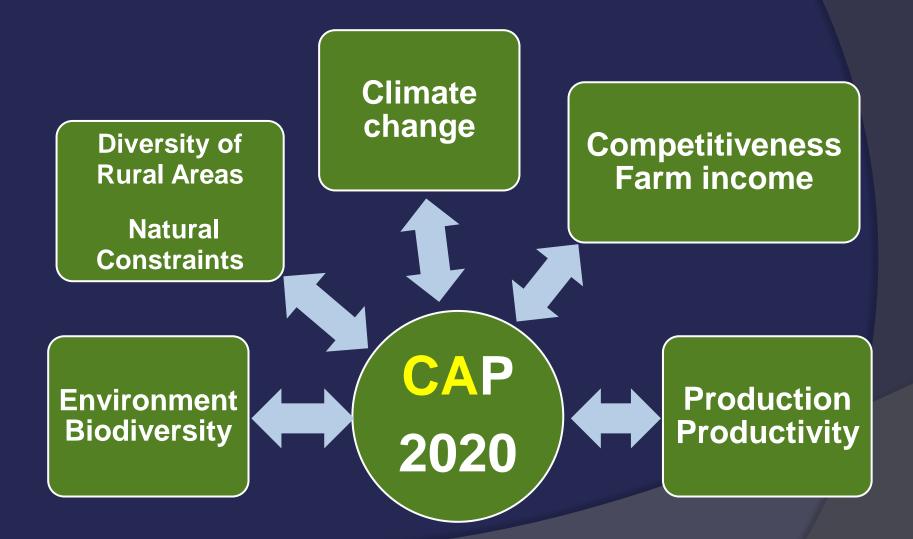
... or in more detail:

> Balanced territorial development

> Diversity and maintenance of habitats

> Landscape and ecosystem management

> Rural prosperity


Maybe something like this?

CAP reform aims to address:

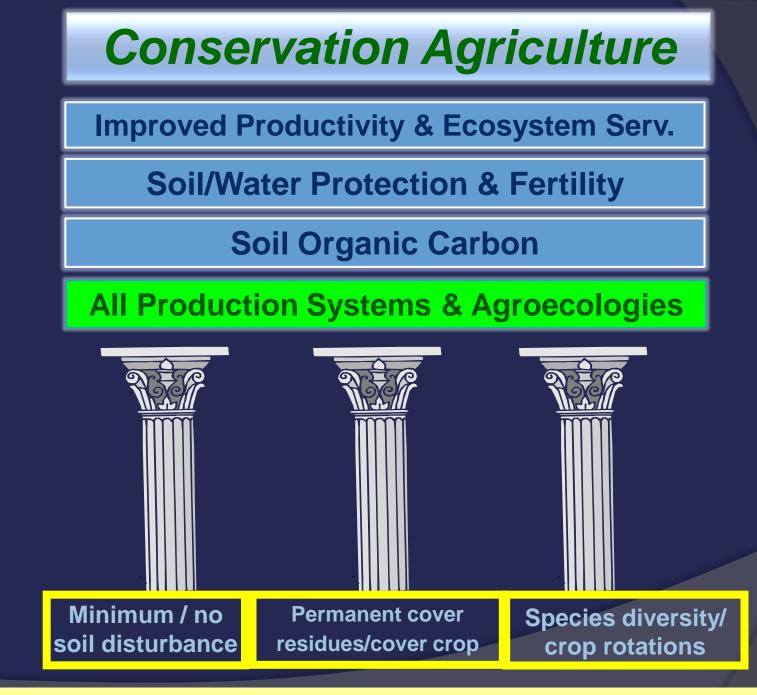
But how to achieve these multiple (sometimes conflicting) objectives?

Which approach?

We need to answer the question: How to produce more from less?

With less environmental impact !

With higher resource efficiency (land, water, nutrients, PPPs, labour, ...)! With lower production costs to improve competitiveness ! While adapting to and mitigating Climate Change ! With reduced energy inputs and carbon emissions ! With less subsidies (compensatory payments) ! With less bureaucracy !


Strategy for Sustainable Production Intensification

by

Integrating Agricultural Production with Ecosystem Services

How does CA look like in practice?

Minimum soil disturbance

Residues

Cover crops

Cover crops and residues

Minimum soil disturbance

Cover crops

Residues

How does tillage farming compare?

Good agricultural and environmental condition?

But underneath?

DIREKTSAAT semis direct zero tillage

PFLUG labour plow

The same field, the same slope, the same crop!

Traditional Tillage

No-till into residues

Therefore...

Crop Yields, Profitability & Competitiveness

Biodiversity & Beautiful landscape

Conservation Agriculture

Soil Fertility & Carbon sequestration

Less soil erosion & Soil Compaction

9th International No-till Conference in Dnipropetrovsk, UKRAINE, June 19-22, 2012

Less surface runoff & Floods

What we need now to make Sustainability real in CAP?

- Recognition of the need for farming to be resource efficient and deliver ecosystem services
- Accept the need for using available new knowledge and technology/practices to optimise production
- Recognition and acceptance of CA as the most sustainable food production system base
- Promote/incentivise/oblige the adoption of CA for sustainable production intensification

How to "oblige" (1st pillar) and

promote/incentivise (2nd pillar)?

Strengthen cross-compliance requirements (GAEC + SMRs) through clear but simple definitions of easily verifiable requirements that have a positive effect on ecosystem services:

ANNEX IV

Good agricultural and environmental condition referred to in Article 5

Issue	Standards
Soil crosion:	— Minimum soil cover
Protect soil through appropriate measures	 Minimum land management reflecting site-specific conditions
	— Retain terraces
Soil organic matter:	 Standards for crop rotations where applicable
Maintain soil organic matter levels through appropriate practices	 Arable stubble management
Soil structure:	 Appropriate machinery use
Maintain soil structure through appropriate measures	
Minimum level of maintenance:	 Minimum livestock stocking rates or/and appropriate regimes
Ensure a minimum level of maintenance and avoid the Pro	
	 Protection of permanent pasture
	 Retention of landscape features
	 Avoiding the encroachment of unwanted vegetation on agricultural land

- Strengthen cross-compliance requirements (GAEC + SMRs) through clear but simple definitions of easily verifiable requirements that have a positive effect on ecosystem services, e.g.:
 - Soil quality and functions
 - Water resources (quality/quantity)
 - Biodiversity
 - Climate change mitigation & resilience

> Additional practices could apply for the achievement of greening objectives (at least 3):

- Maintaining permanent pastures
- Ecological focus area
- Crop diversification (rotational)
- Low soil disturbance
- Permanent soil cover

Proposed by Commission

Proposed by ECAF

Accept production systems based on the principles and practices of <u>Conservation Agriculture</u> as "equivalent" to what is proposed for the "Greening" of the 1st pillar

- Minimum soil disturbance

- Permanent soil cover
- Crop rotation

>Minimum soil disturbance*

- At least 50% of a farm's area under annual crops must be established continuously using no-till;
 - In perennial crops the use of tillage implements for the management of the interrow space is allowed only in exceptional situations.

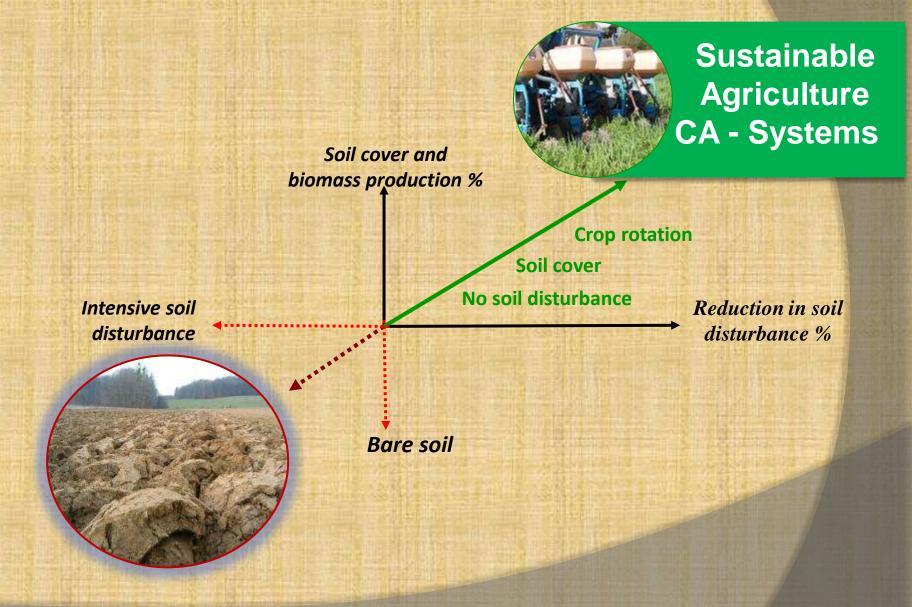
* Minimum soil disturbance refers to low disturbance no-tillage and direct seeding. The disturbed area must be less than 15 cm wide or less than 25% of the cropped area (whichever is lower). There should be no periodic tillage that disturbs a greater area than the aforementioned limits. Strip tillage is allowed if the disturbed area is less than the set limits.

> Permanent soil cover

- At least on 50% of a farm's area under annual crops, a minimum soil cover of 30% of the surface area must be guaranteed immediately after the direct seeding operation;
- In perennial crops a minimum of 50% of the soil surface must be covered by cover crops and/or residues in the interrow space.

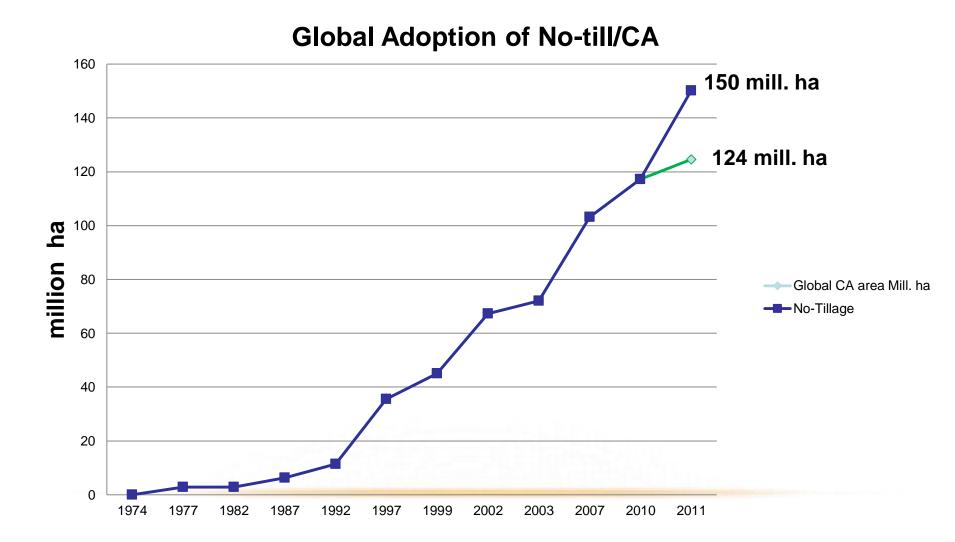
Crop rotation/diversification

- In annual cropping systems a minimum of 3 different crop species must be used in the rotation, and a maximum of two thirds of the farm surface can be cropped with gramineae species.
 - In perennial crops species diversity should be achieved through the establishment of a cover crop or the maintenance of the natural vegetation in the interrow space.


2nd Pillar options

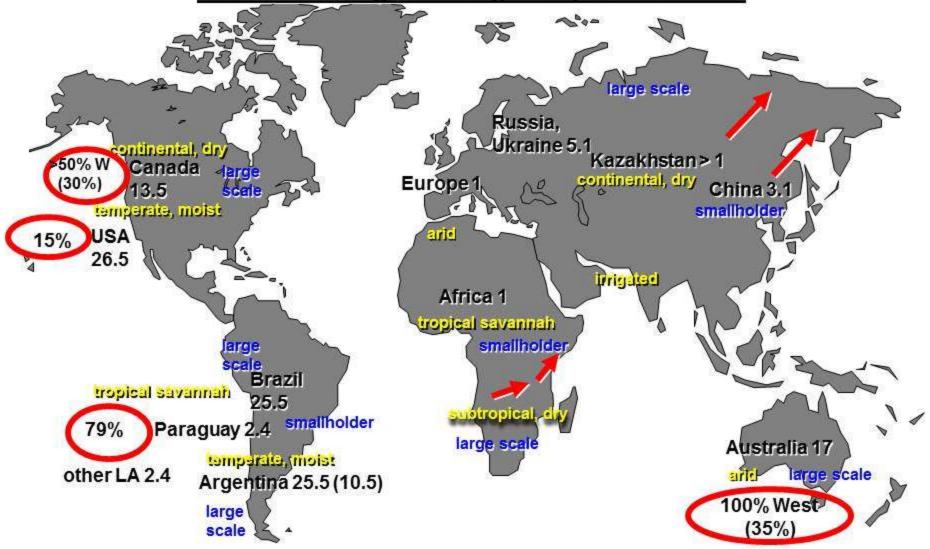
- Define criteria/indicators to monitor and reward farming practices/farmers according their delivery of ecosystem services
- Increasing 2nd pillar budget to implement measures that clearly promote sustainable production approaches (minimizing co-financing burden through member states)
- Temporary incentives for the adoption of CA based sustainable approaches to cover possible adaptation "risks" and to invest in specific new equipment

IMPROVEMENT AND PROGRESS AT THE FARM LEVEL



Conservation Agriculture does work successfully in all agro-ecologies

9th International No-till Conference in Dnipropetrovsk, UKRAINE, June 19-22, 2012


F)

FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS for a world without hunger

> Global Overview of the Spread of Conservation Agriculture

Agriculture and Consumer Protection Department

Conservation Agriculture globally 124 Million ha

5th World Congress on Conservation Agriculture, Brisbane, 26-29 September 2011

٩

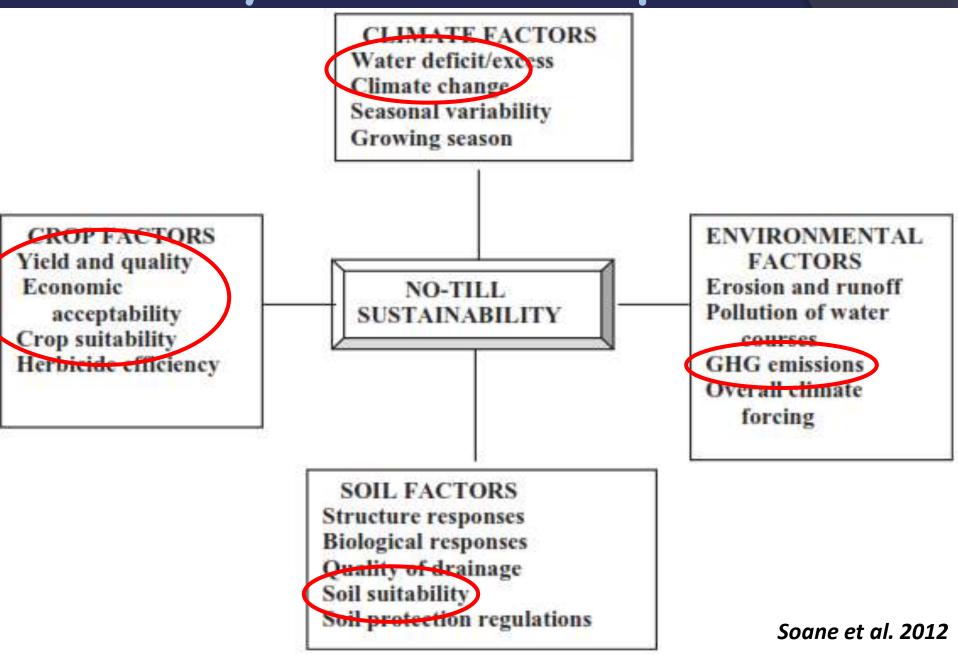
Commercial uptake of no-till in some Western European countries in 2007–2008, together with the proportion of the total arable area allocated to no-till. For sources see references cited in footnotes.

Country	Area of no-till ^a (kha)	Total arable land (2008) ^b	Area of no-till as %		
		(kha)	of total arable area		
Finland ^c	200	2256	8.86		
Germany ^c	5	11933	0.42		
France ^c	200	18260	1.09		
Switzerland ^c	12.5	408	3.06		
Spain ^c	650	12500	5.20		
Portugal ^d	80	1050	7.62		
Italy ^d	80	7132	1.12		
Slovak Rep. ^d	37	1382	2.68		

^a Excluding orchard and tree crops.

^b FAO Statistics Division 2010 (www.fao.com).

^c Derpsch and Friedrich (2009).


^d Basch et al. (2008).

The case for CA in Eastern countries

Suitability factors for uptake of CA

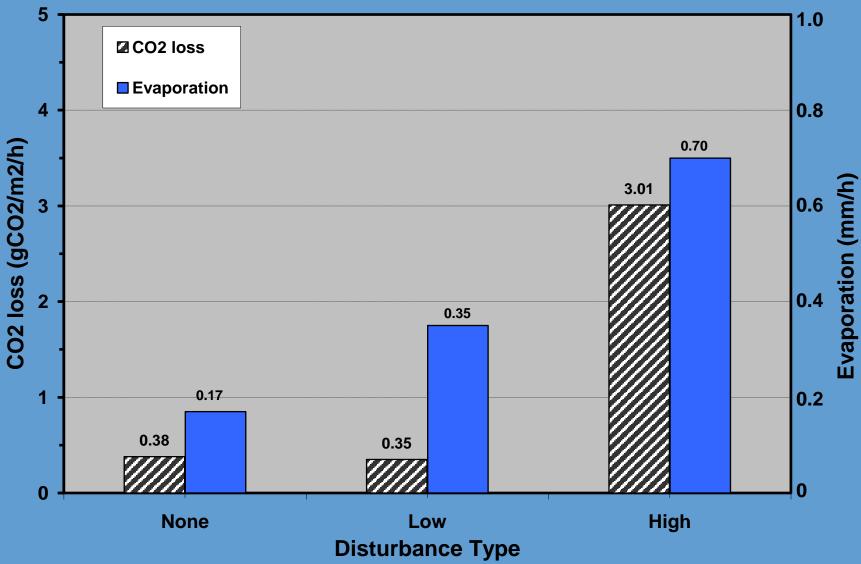
>Water deficit/Climate change

Total soil evaporation during 21 days

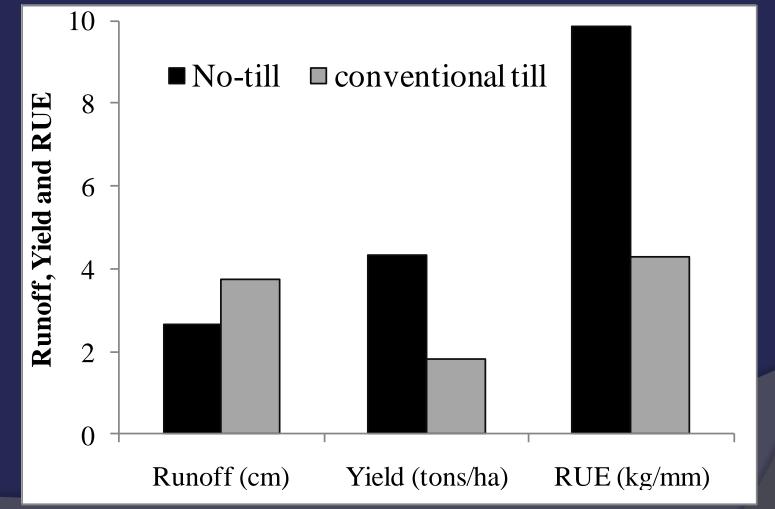
			Evaporative demand (mm d ⁻¹)						
	Residues (kg ha ⁻¹)		Corn			Wheat			
Soil type	Corn	Wheat	8	6	3	7	5.2	3	
Loamy sand	0	0	74.2	82.0	57.2	59.2	68.0	47.9	
Heavy clay	0	0	56.4	74.2	56.4	54.7	59.0	46.9	
Loamy sand	5000	3500	40.2	28.9	19.0	38.0	28.4	18.5	
Heavy clay	5000	3500	35.7	30.1	22.2	35.2	32.0	22.8	
Loamy sand	10000	7000	20.4	19.8	18.6	20.6	20.0	16.5	
Heavy clay	10000	7000	21.1	18.1	13.6	20.3	17.1	13.1	

Freitas et al. 2006

>Water deficit/Climate change


Soil porosity and available water

Tillage	Depth (cm)	> 50 µm (%)	50 -10 μm (%)	10-0. 2 µm (%)	< 2µm	Porosity Total (%)	Available water (%)
	10	3.2	2.22	2.7	38.37	46.52	4.92
NT	20	0.86	3.91	5.22	36.16	46.15	9.13
	30	1.86	2.63	11.48	29.44	45.4	14.11
	10	15.08	2.34	4.36	29.95	51.73	6.71
Plough	20	2.67	1.32	2.31	35.95	42.25	3.63
	30	1.47	1.56	3.29	35.62	41.94	4.85

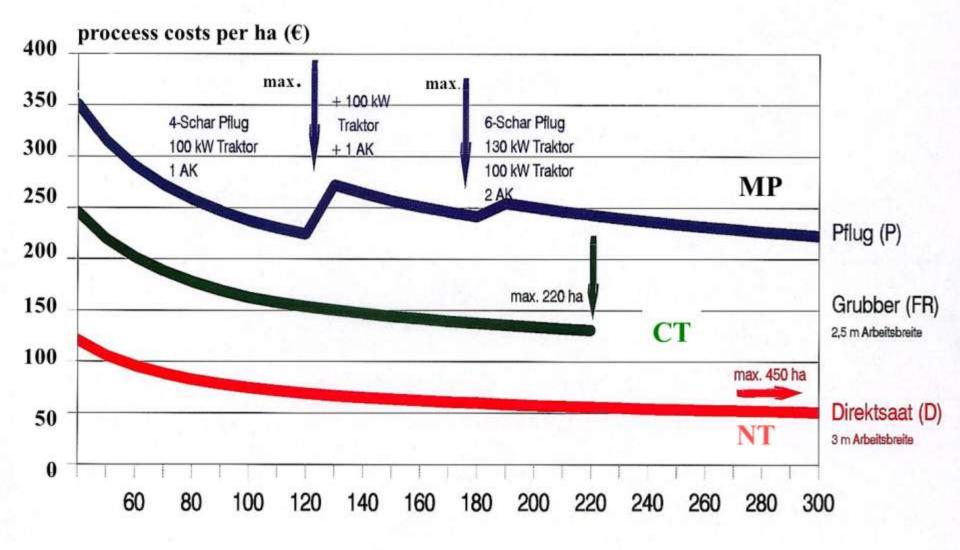


CO₂ & H₂O loss from Low vs High Disturbance Drills

>Water deficit/Climate change

Runoff, corn yields and Rain Use Efficiency in a semi-arid environment

Kosgei et al. 2007

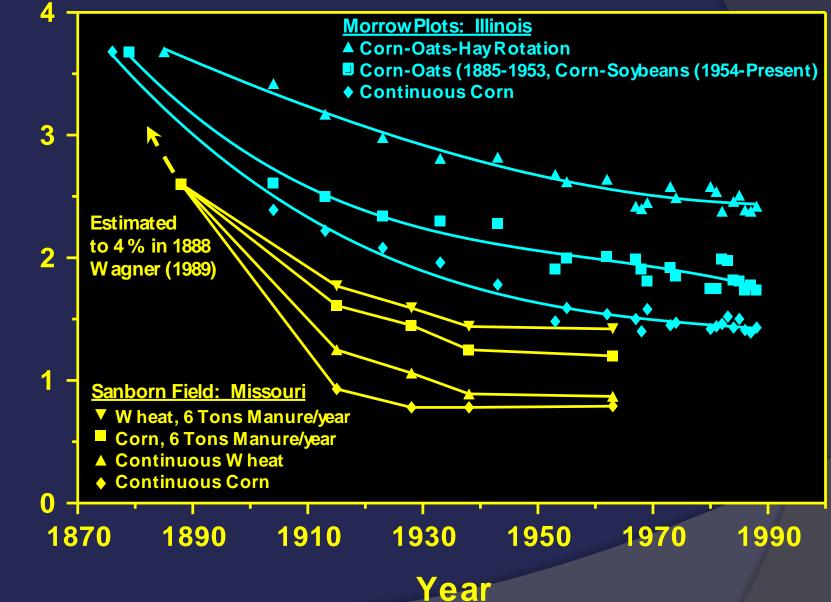

Soil/Crop suitability

>Large areas

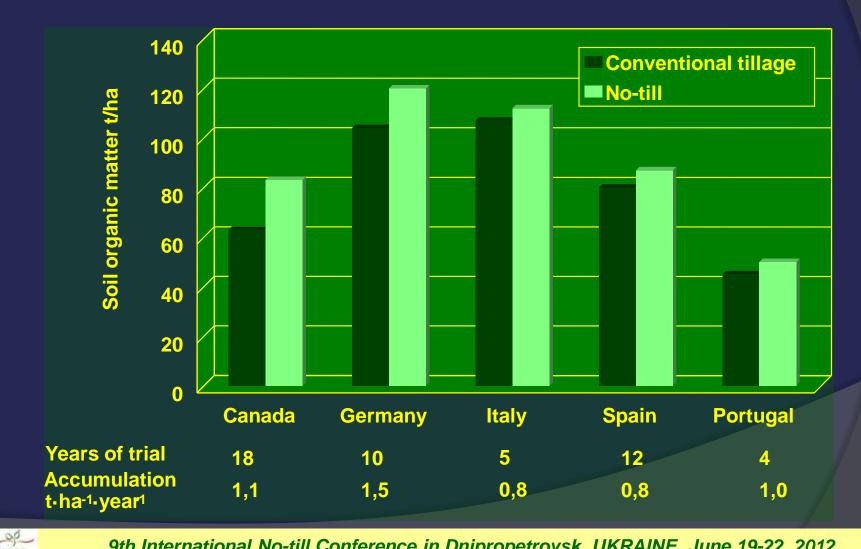
Process costs of different tillage systems - 20 workable days and 10 hours per day -

arable area ha

Soil/Crop suitability

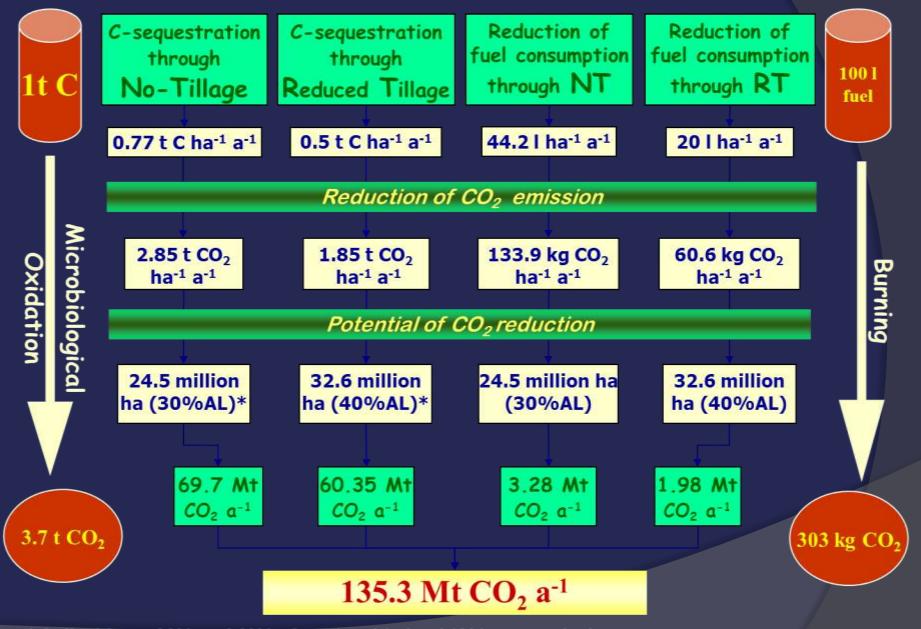

>Large areas

>Carbon farming


Long Term Effects of Crop Rotations

ECAF

Evolution of SOM as a result of different tillage systems



9th International No-till Conference in Dnipropetrovsk, UKRAINE, June 19-22, 2012

ECAF

Estimation of CO_2 reduction by conservation tillage in EU-15

* Aplicable on 30% and 40% of total arable land (AL), respectively

Soil/Crop suitability

>Large areas

>Carbon farming

Economics

Summary of variable annual expenses with tractors and drilling equipment (600 ha farm)

	CONVENTIONAL TILLAGE (Year 2000)	DIRECT DRILLING (Year 2003)	REDUCTION (%)
Maintenance and repair of tractors	10 450,47 €	1 507,15 €	85
Maintenance and repair of tillage/ drilling implements	8 158,41 €	1 840,40 €	77,5
Fuel	17 460 €	7 110 €	60
Labour	25 000 €	15 000 €	40
TOTAL ANUAL	<u>61 068,88 €</u>	<u>18 347,55 €</u>	<u>70</u>

ECAI

European Conservation Agriculture Federation (ECAF)

www.ecaf.org

