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a b s t r a c t

This work describes an algorithm and corresponding software for incorporating general nonlinear

multiple-point equality constraints in a implicit sparse direct solver. It is shown that direct addressing

of sparse matrices is possible in general circumstances, circumventing the traditional linear or binary

search for introducing (generalized) constituents to a sparse matrix. Nested and arbitrarily inter-

connected multiple-point constraints are introduced by processing of multiplicative constituents with a

built-in topological ordering of the resulting directed graph. A classification of discretization methods is

performed and some re-classified problems are described and solved under this proposed perspective.

The dependence relations between solution methods, algorithms and constituents becomes apparent.

Fracture algorithms can be naturally casted in this framework. Solutions based on control equations are

also directly incorporated as equality constraints. We show that arbitrary constituents can be used as

long as the resulting directed graph is acyclic. It is also shown that graph partitions and orderings

should be performed in the innermost part of the algorithm, a fact with some peculiar consequences.

The core of our implicit code is described, specifically new algorithms for direct access of sparse

matrices (by means of the clique structure) and general constituent processing. It is demonstrated that

the graph structure of the second derivatives of the equality constraints are cliques (or pseudo-

elements) and are naturally included as such. A complete algorithm is presented which allows a

complete automation of equality constraints, avoiding the need of pre-sorting. Verification applications

in four distinct areas are shown: single and multiple rigid body dynamics, solution control and

computational fracture.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

Most, if not all, discretizations of continuum engineering
problems generate constituents belonging to two classes: additive
constituents (finite and meshless elements including loading,
contact elements and other smooth and non-smooth force ele-
ments) and multiplicative constituents (certain equality con-
straints, master–slave relations, rigid parts and arc-length
constraints). This classification tolerates some overlapping, and
a definite choice is usually made by considerations of efficiency.
Specific formulations of many of such constituents are provided
in the book by Belytschko et al. [14] and related Journals. Details
concerning the systematic creation and combination of new
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constituents, independently of the specific problem treated, have
not been shown with details in the literature before. A system-
atization of the technical implementation of models of mechanics,
in the sense of Klarbring [26],1 after discretization, is the aim of
this work. This perspective is shared both by the governing
equations, constraints and solution methods.

Concerning multiplicative components, although all equality
constraints can be imposed with Lagrange multipliers, often this
is uneconomical or inconvenient if a direct sparse solver is
adopted (see, e.g. [24]). Essential boundary conditions are a good
example of the effectiveness of multiplicative components used in
many commercial and academic codes.2 The same applies to rod
and shell parameterization: director inextensibility is imposed
1 Chapter 12 shows several continuum applications of constraints, some as

‘‘constitutive assumptions’’.
2 Usually, the affected coefficients are implicitly multiplied by zero, which is

equivalent to the removal of the equations as will become apparent.
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Fig. 1. Classification of common discretization components as either additive (elements) or multiplicative (MPC).

3 Such as the augmented-Lagrangian or perturbed-Lagrangian.
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with multiplicative constituents (at the continuum level by
coordinate transformation, see e.g. Antman [6,5]).

We here are concerned in imposing nodal trajectories, rigid
body constraints and more complex interactions such as frictional
contact. Generality is limited by the resulting DOF graph, as we
shall see, but also the well-posedness of the resulting discrete
system (dependent on the values of the coefficients). To incorpo-
rate all constituents prior to the solution (currently carried out by
sparse methods of linear algebra), we apply transformations to a
clique list of additive constituents incorporating specific cost-
saving properties.

Contact and friction constituents, which introduce (nonlinear)
complementarity conditions, are adequately treated with additive
elements since they are often part of an active-set algorithm
which deactivates constraints that cannot be active in a given
step. Other behavior, such as rigid motion, kinematic links,
periodicity boundary conditions (see, e.g. [10] for such an appli-
cation), are best treated with multiple-point constraints (MPC) or,
as a synonym, matrix transformation methods (MTM). In the
context of multibody dynamics, these methods are also known as
coordinate reduction methods [4]. These techniques have been
increasingly relevant in recent years for unit cell analysis in
multiscale methodologies. Multiple purpose shell and solid ana-
lysis and computational fracture [19,32] and PUFEM [30] meth-
odologies exert a burden on software architecture. Necessary
flexibility in modeling techniques motivates the present treat-
ment of this problem.

Belytschko et al. [14] have shown that solid-based shell
elements can be obtained by transformation of degrees-of-free-
dom of a standard 3D element. In addition, computational fracture
techniques often make use of specific motions of the mesh; a shear
band only allows tangential relative motion, a mode I crack only
allows opening, etc. Another obvious application is static conden-
sation, very convenient for mixed and hybrid FE element technol-
ogy and also nodeless degrees-of-freedom. The presence of
‘‘condensable’’ degrees-of-freedom should be detected by the
solver prior to decomposition and the subsequent post-processing
of slave degrees-of-freedom should be effected without user
intervention. Static condensation of the nodeless degrees-of-free-
dom is simple to code and can provide substantial savings [20].
Besides these classical problems, which are now well solved (with
strong restrictions in their generality) by commercial software
packages, MTM can be successfully used in solution control.
Localized arc-length, COD-control and related techniques, which
were, until now, introduced as a ‘‘added feature’’ prone to coding
errors and maintenance requirements are reclassified as equality
constraints and therefore MPC. As generalizations of boundary
conditions for partial differential equations, essential boundary
conditions are also classified as multiplicative constituents and
natural boundary conditions as additive constituents; this classi-
fication is illustrated in detail in Fig. 1. The literature concerned
with this subject is often restricted to direct sparse multiplication
[2] (unrealistic for large-scale problems since it creates temporary
objects of potentially enormous size and not easily parallelized) or
unnested constraints [1,38]. Efficient methods are available for
iterative sparse linear solvers [22] since the transformation matrix
(T% in our notation) can pre-multiply the iterative solution,
allowing considerable savings. Our approach works independently
of the linear solver used, although we use a direct sparse solver.
2. Multiple-point constraints

2.1. The need for degree-of-freedom elimination

For certain equality constraints, such as those arising from
prescribed degrees-of-freedom and rigid body motions, matrix
transformation methods can be more efficient than the Lagrange
multiplier or related methods.3 This is particularly acute when
many degrees-of-freedom appear in the constraints with a regular
pattern (e.g., in rigid body constraints). The adjacency lists of a
CSR (compact sparse row) or CSC (compact sparse column) repre-
sentation of a sparse matrix graph (see [20] for this nomenclature)
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are useful by themselves (in the absence of the coefficients) for
describing many-to-many relations. For example, connectivity lists
(lists of nodes for each element—say NOEL) are based on the
symbolic part of the CSR representation and use of the transposition
generates the converse relation: elements for each node, say ELNO.
Multiplication of the first by the second results in a graph relating
each node to its neighbor, where the neighborhood relation is
established by the elements. For computational fracture applica-
tions, it is often required to know which elements share a given
edge, or which faces share a given node. The full adjacency lists are
highly useful in this case.

When using clique structures for finite elements, it becomes
apparent that classical list-based or simply CSR representations
(cf. [20]) are inefficient for applications where numerous multi-
plications are performed. Besides nested constraints and arbitrary
combinations, other related aspect is the insertion and access to
the global stiffness matrix. Linear search is still widely employed
in many codes. Balanced binary trees (specifically AVL due to the
high number of insertions [27]) can, in theory, be a more efficient
option and have been used for years by the first Author. However,
direct access (i.e. Jð1Þ) is preferable. We here show a direct
access algorithm combined with MTM in full generality. Self-
balanced trees are only used in nodal grouping of degrees-of-
freedom. A clique-based implementation, despite some well-
known redundant operation costs, is easier to parallelize than a
traditional row (or column) based solver and has better locality
properties. The necessary operations occur on rectangular sparse
matrices using either the CSR or clique format.
2.2. Independent constraints

The equality-constrained problem is described as follows.
Starting with n degrees-of-freedom and corresponding nonlinear
equations, a set of m nonlinear constraints is appended. Two
residual vectors (containing n and m components, respectively)
are introduced, corresponding to these two sets of equations: f
and g whose components are of the class Cq, qZ1. The degrees-
of-freedom are grouped in a n-dimensional array a and we can
express the system as4

f ðaÞ ¼ 0 ð1Þ

gðaÞ ¼ 0 ð2Þ

where the gradient of g with respect to a given subset (s) of m

degrees-of-freedom is full rank (this is called the submersion

assumption [37, p. 84])

RANKðg0sÞ ¼m

for aARn. This condition ensures that (2) is a Cq submanifold of
Rn. Since, for m40, more equations than unknown degrees-of-
freedom are introduced, a subset n�m of f , identified as f r , has to
be retained. Along with this subset, the corresponding subset of a,
ar is also selected. Succinctly, if ar , rAI r where 9I r9¼ n�m is the
index set of retained (or eliminated) degrees-of-freedom and
as,sAI s where 9I s9¼m is the set of slave, or dependent,
degrees-of-freedom. We can split the degrees-of-freedom a as
an ordered pair fas,arg

T . Components of this list are ai with iAI .
The choice of I s is usually a matter of efficiency. It is noticeable
that Eq. (1) can also be written as da � f ¼ 0 where da is the virtual
degree-of-freedom array (cf. [14]). When using this virtual
degree-of-freedom array, we can apply the Newton method to
4 Note that this system can be written to comply with the constrained

optimization notation (cf. [35]) as min½12 f ðaÞT f ðaÞ�, s.t. gðaÞ ¼ 0.
the system (1) and obtain

daT
r f 0rr darþdaT

s f 0sr darþdaT
r f 0rs dasþdaT

s f 0ss dasþddaT
s f þddaT

r f ¼�f

ð3Þ

where f rs is the derivative of the r-part of the equation vector f
with respect to as, etc. The partition f ¼ ff s,f rg

T is assumed. Note
that, in (3), the two last terms in the left-hand side only exist if
the final degrees-of-freedom are related to as and ar in a non-
linear form. In particular, this occurs with rotations. Since the
retained degrees-of-freedom are also considered final, the term
ddar is null. We can group the terms f 0rr , f 0rs, f 0sr and f 0ss in one
matrix K split according to the previous partition

K ¼
f 0ss f 0sr

f 0rs f 0rr

" #
ð4Þ

Under the previous condition for g0s, the application of Newton
method to (2) results in5

das ¼�g0�1
s g0rdar�g0�1

s g ð5Þ

or, if T ¼�g0�1
s g0r and bs ¼�g0�1

s g, we can write

das ¼ Tdarþbs ð6Þ

In the optimization literature the elimination of as results in
the so-called reduced Hessian method (cf. [33], p. 487). We use a
specific null-space matrix using the gradient, which is also called
variable reduction method. The null-space property can be
observed by rewriting

das

dar

( )
¼

T

Iðn�mÞ�ðn�mÞ

" #zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

T%

dar

null�sspace term

þ
bs

0

� �zfflfflffl}|fflfflffl{
|fflfflffl{zfflfflffl}

b%

corrective term

ð7Þ

In a more concise notation, (7) reads

da¼ T%darþb% ð8Þ

The derivative of T% with respect to a is given by

T 0
%
¼�cg00T% ð9Þ

where the matrix c is given by

c¼
g0�1

s

0ðn�mÞ�m

" #
ð10Þ

The second variation of a present in (3) is determined by the
previous quantities (9) and (10). Using index notation, it results

ddai ¼�darj
Tqjcipg00pqkTkl darl

ð11Þ

with i,k,qAI , pAI s and j,lAI r . Summation is implied in repeated
indices. To the authors’ knowledge, despite its straightforward
appearance, this term was not considered before in the literature.
Newton’s iteration can be summarized as

TT
%
½K�f T cg00�T%|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

K%

dar ¼�TT
%

f þKb%ð Þ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
f

%

ð12Þ

where K% is the reduced stiffness matrix and f
%

is the reduced
force vector. Iterations generated by (12) are tangent to the
constraints’ level surfaces. Compared with classical optimization
works such as Byrd and Schnabel [16], there is no explicit
Lagrange multiplier term in K%. These can be calculated as
follows: values for the reactions conjugate to g are grouped in
an array of m Lagrange multipliers, kn, which is obtained from g0
5 There is the requirement of partitioning the list of degrees-of-freedom using

the two index sets I s and I r by means of a permutation, see [35] concerning the

definition of the required permutation matrices.



Fig. 2. Condition numbers for the two director parameterizations as a function of y1 and y2.
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and f as6

kn
¼�cf s ð13Þ

Considering the graph structure, K and f T cg00 both result from
sparse sums of clique graphs. The number of cliques for the
formation of K is the same as the number of elements ne. If sparse
sum (e.g. [18]) is considered we can simply write

K ¼
Xne

i ¼ 1

Ke
i ð14Þ

f T cg00 ¼
Xm

j ¼ 1

Xne

k ¼ 1

f e
k

 !T

ðcjg
00
j Þ

2
4

3
5 ð15Þ

where Ke
i is the ith element stiffness matrix, f e

k is the kth element
force and cjgj

00 is obtained from the jth constraint gradient and
Hessian. The superscript e indicates a element quantity. The
matrices T% and the vector b% must be fully formed (this will be
detailed in the next section) before the multiplications by T% in
(12) are performed. The actual implementation of (12) separates
terms (14) and (15) since the degrees-of-freedom destinations of
g00 does not coincide with those of K . From the graph structure
perspective, �f T cg00 are also cliques, since the result connects
retained degrees-of-freedom which are mutually visible. Recalling
that our matrices are sparse, Eq. (12) can be written as

TT
%

Xne

i ¼ 1

Ke
i

 !
T%þTT

%
�
Xm

j ¼ 1

Xne

k ¼ 1

f e
k

 !T

ðcjg
00
j Þ

2
4

3
5

8<
:

9=
;T% dar ð16Þ

¼�TT
%

Xne

j ¼ 1

f e
j

0
@

1
A�TT

%

Xne

l ¼ 1

Ke
j

 !
b% ð17Þ

The format of Eq. (16) discloses a useful property: edges of the
graph structure of K% are completely defined by each Ke

i and the
transformation matrix T%. The term containing the constraints’
Hessian g00 will produce edges of the same graph, since it is also
pre-and-post multiplied by T%. The two cliques (Ke

i and �f T cig
00
i )

participate additively in the formation of the global stiffness
matrix K%. In terms of condition number of the reduced stiffness
6 After a trivial manipulation of the expression in [33, p. 495].
matrix, it can be shown that

condðK%ÞrcondðK�f T cg00ÞcondðTT TþIÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
kT

ð18Þ

An application of (18) relies on the selection of degrees-of-
freedom to eliminate (i.e. the selection of set I s) for gðaÞ ¼ 0. This
could be, in theory, performed automatically. However, in most
engineering applications this is preferably left to the analyst since
there are other factors to include. For example, let us consider the
classical 3-parameter director representation with two distinct
parameterizations:
�
 Exponential form with the axis-angle, h.

�
 The parameterization with Rodrigues parameters, x (using the

Cayley formula).

Let d represents a director in the deformed configuration and d0

the corresponding director in the undeformed configuration.
Using either of the parameterizations, it is straightforward to
show that dy ¼ RyðhÞd0 and dx ¼ RxðxÞd0 are, respectively7

dy ¼ d0þ
sinJhJ

JhJ
h� d0þ2

sin2 JhJ
2

JhJ2
h� ðh� d0Þ ð19Þ

dx ¼

�1þ
2ð1þx2

1
Þ

1þ x2
1
þx2

2
þ x2

3

2ðx1x2�x3Þ

1þ x2
1
þx2

2
þ x2

3

2ðx1x3þ x2Þ

1þ x2
1
þx2

2
þ x2

3

2ðx1x2þx3Þ

1þx2
1
þ x2

2
þx2

3

�1þ
2ð1þx2

2
Þ

1þx2
1
þ x2

2
þx2

3

2ðx2x3�x1Þ

1þ x2
1
þx2

2
þ x2

3

2ðx1x3�x2Þ

1þx2
1
þ x2

2
þx2

3

2ðx2x3þ x1Þ

1þ x2
1
þx2

2
þ x2

3

�1þ
2ð1þ x2

3
Þ

1þx2
1
þ x2

2
þx2

3

2
666664

3
777775d0

ð20Þ

Using ar as h and as as d0 for the exponential form, we can
represent kT graphically to assess the two parameterizations, as
Fig. 2 illustrates. The reason we mention the need for analyst
input is that, although the exponential form appears favorable
from the inspection of kT , formula (19) it has a 0

0 indetermination
at the origin, which is of cumbersome computational treatment.
In addition, the calculation of the first and second derivatives for
the Cayley formula is straightforward.

At this point, the reader can observe that a set of independent
constraints established as g ¼ 0 with the variable reduction method
can be replaced by m equations applied regardless of the depen-
dence. The interconnected case is therefore also the general case.
7 x¼ tanðJhJ=2Þh=JhJ.



Fig. 3. Large amplitude pendulum (rigid-body constraint) integrated with two time-steps (1% and 5% of the linear period).
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2.3. Inertial forces

Many studies in multibody dynamics are focused in constraint
imposition and time integration (see, e.g. [34]). The proposed
algorithm can be directly used for multibody dynamics without
specific requirements. Considering time-step algorithms and
using the subscript n for a given time step and nþ1 for the
subsequent time step, we can write the second time derivative of
a as a function of an, anþ1, _an and €an

€anþ1 ¼ €aðan,anþ1, _an, €anÞ ð21Þ

The total force vector including inertial forces is given by

f dyn ¼ f þM €anþ1 ð22Þ

where M is an appropriate mass matrix (cf. [14]). We can there-
fore write the unconstrained solution scheme as

daT KþM
@ €a

@anþ1

� �
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

Kdyn

da¼�daT f þM €anþ1

� �|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
f dyn

ð23Þ

Damping is indirectly included as viscous constitutive beha-
vior and hence it is not explicitly present in (23). It is very clear
that there is no need to calculate the inertia matrix since it is
accounted by the transformation technique. Beam dynamics
which result in intricate inertia forces are also taken care by our
approach if director constraints are imposed by MPC. The incor-
poration of inertial forces in the analysis with constraints is
performed in a straightforward manner:
�
 The function €a is specified for a given time-integration
method, as well as the derivative with respect to anþ1 (and
the half-step anþ1=2Þ.

�
 f dyn replaces f in (12).

�

8 In the sense of the original unconstrained system.
Kdyn replaces K in (12).

The half-step mean-acceleration/three-point backward Euler
time-integration algorithm is used as a prototype model (it is
described in [13]). In that case we specify €a as

€a ¼

16ðanþ1=2�anÞ

Dt2
�

8 _an

Dt
� €an, hs ¼ 1 ð €a � €anþ1=2Þ

1

Dt
_an�

4

Dt
_anþ1=2þ

3

Dt
_anþ1, hs ¼ 2 ð €a � €anþ1Þ

8>><
>>: ð24Þ

where hs is the homotopy step counter (two homotopy steps are
used). It is also worth noting that the rigid-body constraint results
in the application of (24) to all degrees-of-freedom, regardless of
being slaves or not. Rotational inertia is indirectly considered by
the application of the rigid-body constraint but all classical terms
(cf. [12]) are included. An simple application is the pendulum
which we can of course integrated in closed form. Fig. 3 shows an
application with two fixed time step increments (Dt¼ 1% and
Dt¼ 5% of the linear period Tl) for E¼1 (with the rigid body
multiple-point constraint). Exceptional robustness and accuracy
are verified.

Prescribed degrees-of-freedom are applied as multiple-point-
constraints and therefore naturally included in the proposed
framework. However, initial conditions are not topologically
sorted and must be preliminarily sorted to be applied to force-
transmitting constituents.

2.4. Interconnected constraints

Assuming that an order of constraint application is pre-
established (this order will be determined by a topological
ordering), then each constraint beyond the first one will be
applied to an already constrained system. It is obvious that if a
certain constraint only affects degrees-of-freedom of the uncon-
strained system, it should be among the first to be applied. If we
assume all constraints to be interconnected, then an ordered
sequence must follow according to the closeness to the original
degrees-of-freedom. Each constraint will contribute with a matrix
T

%l, a vector b
%l a matrix cl and the tensor g00l . To facilitate the

interpretation, matrices T%, after ordering, relate degrees-of-free-
dom at position l with the ones at several positions which are
farther away from the original degrees-of-freedom.8 The general-
ization of the slave update formula for m interconnected equality
constraints is presented, after the preliminary step of topological
ordering, as

Tm
%
¼
Y1

l ¼ m

T
%l ð25Þ

bm
%
¼
X1

l ¼ m

Yl

p ¼ m

T%p

 !
b

%l

" #
ð26Þ

Note that, since not all degrees-of-freedom participate in the
constraints, the transformation matrices T

%l contain the



Fig. 4. Example of a local graph update from the introduction of a rigid link. The

slave node (here 4) is removed from the graph.
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appropriate unit diagonals corresponding to these. Both T
%l and b

%l

are sparse, but with different properties: in the sparse T%-matrices
there are 1’s for degrees-of-freedom that remain active and in the
sparse b%-vectors these will be 0. This perspective of intercon-
nected9 constraints is motivated by classical static analysis. Fill-in
(or profile) concerns during Gauss decomposition are described in
earlier works [1,38,17] but can now be attenuated10 with the
Approximate Minimum Degree (AMD) [3] and, in a lesser extent,
with profile compressors (such as the one of Kumfert and Pothen
[28]). Many MPC applications only moderately increase the fill-in
in decomposition if an efficient post-ordering is performed, as the
rigid link of Fig. 4 suggests: DOF renumbering must be performed
after the graph updating. The user must specify T% and b% either
obtained explicitly from the knowledge of the problem, or pre-
process the constraint in the form gðaÞ ¼ 0. A pseudo-code
preprocessor is shown as Algorithm 1. The use of a sparse linear
solver is important at this preliminary stage since gs is frequently
very sparse (often close to the identity matrix) and 9I s9 can be
large. Many calculations make use of cliques, since it is well
known that clique processing allows for computational savings as
it circumvents the need for a dynamic structure (see, e.g. [17]).

Algorithm 1. Pre-processing of a single constraint gðaÞ ¼ 0.

!nnn pre-processing of a single constraint

mpctreat(gr,gs,eq,b,t)

! allocates b and t in the heap

! solve for b and t with multiple right-hand-sides

(with sparse solver):

gs.[b9t]¼-[eq9gr]

3. One-to-many and many-to-many adjacency lists

The adjacency lists of a CSR representation of a sparse matrix
define many-to-many relations (the seminal work of Gustavson
9 This nomenclature is also adopted in textbook statics, e.g. [31].
10 The reader can note that Lagrange multiplier methods may also increase

the fill-in due to pivoting.
[23] explores this aspect by means of the transposition algo-
rithm). The complete CSR representation can identify a graph or a
digraph. This latest representation is of concern here. Each row
index (or a map of it) may represent an entity of a given type and
each column another entity of the same or other type. Of course,
the natural row order may be inappropriate and a mapping can be
used for the rows.11 Furthermore, the natural order of the column
indices provides more than the strictly required for a digraph (see,
on this subject, [21]), with some interpretation, a relation with
the Kuper and Vardi ‘‘logical data model’’ [29]. Two interpreta-
tions occur
�

wh

tree
The pair (mp(i),d(p(i)-1þj)) where i is the natural position of
the row, mp(i) the image under some map and j is the local
column index represents an edge of a digraph.

�
 The row d(p(i)):d(p(i¼1)-1) represents a generalized

edge of a hypergraph.

The definition of a one-to-many relation is used in the construc-
tion of connectivities and related structures for constituents
(typically, element input is performed with each element defined
as a set of nodes). When one constituent is tied to a set of
constituents, its local numbers must be mapped to the numbers
of the set. This is a simple mapping described in Algorithm 2. The
one-to-many relation is represented by a list, where the natural
ordering provides the ‘‘many’’ part of the relation and the ‘‘one’’ is
the number stored at every position. For example, a list of
degrees-of-freedom (DOF) related with a hypothetical constituent
can be represented by a list: dof¼{3,2,2,4,1,2}. The one-to-many
relation is interpreted as: DOF1 is related to local number 5, DOF2
is related to local numbers 2, 3 and 6, etc. Both the corresponding
many-to-many complete representation and its transpose can be
obtained as shown in Algorithm 2 (routine enlarge). For clarity,
the beginning is represented by the letter p (pointer) and the lists
are stored in a list d (destination). No search (linear or binary12)
operations are required.

Algorithm 2. Transposition of a many-to-many representation and
conversion of a one-to-many to a many-to-many representation.

!nnn transposition of a many-to-many adjacency list

transp(n1,p1,d1,n2,p2,d2,ij)

n2¼max(d1)

do i¼1,n1

do j¼p1(i),p1(iþ1)-1

k¼d1(j)

p2(k)¼p2(k)þ1

end do

end do

lol¼p2(1)

p2(1)¼1

do i¼1,n

new¼p2(i)þlol

i1¼iþ1

lol¼p2(i1)

p2(i1)¼new

end do

l¼0

do i¼1,n1

do j¼p1(i),p1(iþ1)-1
11 Three integer arrays are used for each CSR representation (p, d and mp)

ich store the initial position of each row, the column number and the row map.
12 Note that appropriate data structures for binary search (AVL or Red-Black

s, Splays, hash tables, etc.) do not provide direct access.
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l¼lþ1

k¼d(j)

next¼p2(k)

ij(next)¼l

p2(k)¼nextþ1

d2(next)¼i

end do

end do

do i¼n2,1,-1

p2(iþ1)¼p2(i)

enddo

p2(1)¼1

end

!nnn conversion from a one-to-many to

!nnn a many-to-many representation

enlarge(nl,list,nt,pt,dt,n,p,d,ij)

pt(1)¼1

do i¼2,nlþ1

pt(i)¼pt(i-1)þ1

end do

nt¼nl

dt¼list

transp(nt,pt,dt,n,p,d,ij)

end

4. Assembling

4.1. Symbolic and numeric assembling

For assembling, Gustavson [23] explicitly used a transpose and
a temporary array with the column positions in the original clique
matrices. These two operations can be avoided by creating a
dedicated eT

g eg sparse multiplication where eg is the element
degrees-of-freedom connectivity list. This step lacking in Gustav-
son’s method is detailed here, as well as the procedure for direct
addressing, not shown in that paper. The algorithm is shown in
listing 3; note that large storage can be avoided by invoking a
routine to form a specific element matrix. With MPC, modified
element connectivity tables are necessary to obtain a new order-
ing that reduces the fill-in. As an additional benefit, memory
fragmentation is minimized. There are repetitions in MPC multi-
plications, since DOF are usually shared by more than one node,
but memory movements are reduced. Having the structure
defined, assembling of a single element is performed as in listing
4. Only the essential operations are shown, as further details can
be consulted in [7].

Algorithm 3. Symbolic assembling.
!nnn symbolic assembling

symassemb(nel,lep,led,clqp,clqd,neq,mp,md)

transp(nel,lep,letp,neq,led,letd,ijle)

clqaddress(nel,lep,lep,clqp) ! obtains clique

addresses

atimesb1(neq,letp,letd,nel,lep,led,igash,mp)

l¼0

do ira¼1,neq

do iza¼letp(ira),letp(iraþ1)-1

iel¼letd(iza)

igl¼ijle(iza)

jgl¼0

do izb¼lep(iel),lep(ielþ1)-1

jgl¼jglþ1

mpb¼led(izb)

ip¼iw(mpb)
if(ip.eq.0)then

l¼lþ1

md(l)¼mpb

iw(mpb)¼l

llp¼indstiff(clqp,lep,iel,igl,jgl)

call insert(clqd,llp,l)

else

llp¼indstiff(clqp,lep,iel,igl,jgl)

call insert(clqd,llp,ip)

end if

end do

end do

do izc¼mp(ira),l

iw(md(izc))¼0

end do

end do

end

!nnn half sparse multiplication

atimesb1(na,ia,ja,nb,ib,jb,nc,ic)

ncb¼numinj(nb,ib,jb)

nc¼na

do i¼1,na

ldg¼0

llast¼-1

do j¼ia(i),ia(iþ1)-1

jr¼ja(j)

do k¼ib(jr),ib(jrþ1)-1

jc¼jb(k)

if(iw(jc).eq.0)then

ldg¼ldgþ1

iw(jc)¼llast

llast¼jc

end if

end do

end do

ic(i)¼ldg

do k¼1,ldg

j¼iw(llast)

iw(llast)¼0

llast¼j

end do

end do

mudlis(nc,ic) ! creates pointers from number of

elements

end
Algorithm 4. Numerical assembling.
!nnn numerical assembling

nmassb(iel,ind,clqp,clqd,estif,matrix)

nedof¼ind(ielþ1)-ind(iel)

do jedof¼1,nedof

do iedof¼1,nedof

iz¼clqd(indstiff(clqp,ind,iel,iedof,

jedof))

matrix(iz)¼matrix(iz)þestif(id2d(nedof,

iedof,jedof))

end do

end do

end

!nnn index in a clique list

indstiff(p,ind,iel,iedof,jedof)

indstiff¼p(iel)-

1þid2d(mmaddress(ind,iel,0),

iedof,jedof)

end



Fig. 5. Assembling times as a function of number of stiffness matrix coefficients. Machine: Apple MacBook Pro 2.66 GHz Intel Core i7, 8 GB RAM. Compiler:

gfortran (GCC 4.5.0) with -O3 option.
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Remarks:
�
 To minimize non-productive operations, conditionals are
absent from the numerical assembling stage.

�
 In terms of operation count, it is equivalent to add terms before

assembling or by the assembling process. This means that in the
element DOF lists, repetitions do not have extra costs. List
repetitions allow significant simplifications in the MPC algorithm.

4.2. Recovery of slave degrees-of-freedom

After the linear solution is carried out for the master degrees-
of-freedom, slave values must recovered and reactions calculated
(part of these are calculated in the assembling loop). The pseudo-
code to perform this task is shown in Algorithm 5. See also [7] for
further details.

Algorithm 5. Recovery of slave degrees-of-freedom.
...
soluc¼0.0

do i¼1,n

ityp¼typdf(i) ! type of dof

soluc(ityp)¼newdestvec(i) ! part of the

solution

do j¼p(i),p(iþ1)-1

if(d(j).ne.0)then

itemp¼nwdof(d(j)) ! dof number

if(itemp.ne.0)then

soluc(ityp)¼soluc(ityp)þmat(j)n

vec(itemp) ! update of solution

end if

end if

end do

end do

...
4.3. Performance comparison

To assess the performance of both the numerical and symbolic
parts of the assembling algorithm we compare its performance
with two other implementations of different data structures. Note
that flexibility is delegated for the column number lists, since the
total number of degrees-of-freedom is known prior to filling the
global stiffness matrix from a simple calculation.
�
 Array of self-resizing arrays, allowing linear search but requir-
ing resizing operations (we double the required size every
time a resize is needed). An analogous approach with a linked-
list is discussed by Duff et al. [20].

�
 Array of AVL trees [27], allowing binary search but requiring

branch balancing.

�
 Our clique/adjacency structure, allowing direct access with

symbolic pre-processing required.

Fig. 5 shows the results. Some conclusions are:
�
 The linear search using an array of dynamic arrays is clearly
slower than the other two options.

�
 The array of AVL trees results slightly faster than the symbolic

part of the assembling technique proposed here. After the
symbolic part is performed, the numerical assembling is much
faster than the array of AVL trees.

�
 The direct access provided by the preliminary symbolic

assembling is clearly faster than the two alternatives.

Further improvements of the numerical assembling performance
can be achieved by ordering the element loop according to the
destinations in the global stiffness matrix.

4.4. Recursive processing of MPC by clique format operations

We introduce the notion of extension number, eni, of a degree-
of-freedom. This is the cardinality of the set of masters tied to that
degrees-of-freedom. Degrees-of-freedom which do not partici-
pate as slaves in a MPC have unitary extension numbers (and are
considered their own masters). Slave degrees-of-freedom can
have any non-negative eni (for example Dirichlet conditions result
in a zero eni). Consider the DOF arrangement of Fig. 6 where the
directed graph and the Hasse diagram for this arrangement are
shown. Traversing from the top the Hasse diagram we obtain the



Fig. 6. Specific DOF distribution: directed graph and Hasse diagram. Collapse of DOF destinations.
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correct sequence for DOF processing. Note that if the graph is
cyclic, the problem is ill-posed since a DOF cannot be simulta-
neously slave and not slave. The one in the picture is acyclic [25].
Due to the self-loop in DOF 1, it is positioned at the same level of
DOF 3. Self-loops are only possible in non-slave DOF (i.e. a slave
DOF cannot master itself).

In the sequence of operations in Fig. 6, it can also be observed
that DOFs are sorted by their inter-dependence. In this case, after
collapse, only two DOFs survive: 1 and 8. Surviving DOF are
characterized by having no proper outer edges. Two properties
from graph theory [25] are relevant for our application (proofs are
given in that reference):
�
 A partially order set corresponds to an acyclic directed graph.

�
 Every directed graph admits a topological ordering.

�
 The resulting DOF depth is at most 2, and can be made exactly

either 2 or 0.

Algorithm 6. Verify if a given digraph given by pold and dold is
acyclic and perform a topological ordering.
doftop(na,p,d,acyclic,top)

m¼1

do i¼1,na

if(d(p(i)).ne.i)then

do j¼p(i),p(iþ1)-1
if(d(j).gt.0)ind(d(j))¼ind(d(j))þ1

end do

end if

end do

ik¼0

do i¼1,na

if(ind(i).eq.0)then

ik¼ikþ1

l(naþ1-ik)¼i

end if

end do

mk¼na

do while(ik.ne.0)

i¼l(mk)

mk¼mk-1

ik¼ik-1

top(m)¼i

m¼mþ1

if(d(p(i)).ne.i)then

do j¼p(i),p(iþ1)-1

ig¼d(j)

if(ig.gt.0)then

ind(ig)¼ind(ig)-1

if(ind(ig).eq.0)then

ik¼ikþ1

l(mkþ1-ik)¼ig



P. Areias et al. / Finite Elements in Analysis and Design 57 (2012) 15–3124
end if

end if

end do

end if
Fig. 8. Apex 1 trajectory fo

Fig. 9. Apexes 1 and 2 displacement

Fig. 7. Lagrange and toy tops: relevant geometrical data and mass properties.
end do

if(m.eq.naþ1)then

acyclic¼.true.

else

acyclic¼.false.

end if

do i¼1,na/2

i1¼top(naþ1-i)

top(naþ1-i)¼top(i)

top(i)¼i1

end do

end
We convert the pair pold, dold by the pair p, d performing
the operations in Algorithm 7. User input must guarantee that the
digraph is acyclic (a test is performed at the sorting stage) and,
after that, a partial ordering must be established from the DOF
edges. This extension is usually called topological order [25].
Algorithm 6 shows this operation. A solvable problem results in a
Direct Acyclic Graph (DAG). The scheduling of DOF processing is
r the Lagrange top.

components for the toy top.



Fig. 10. Universal joint: geometry and relevant problem data. The von-Mises equivalent stress at the cross-shaft (the only deformable part) is shown.

Fig. 11. Universal joint: response to constant angular velocity at the input shaft. Fig. 12. Universal joint: ratio between angular velocities, comparison with exact solution.



Fig. 13. Cylindrical inclusion torsion test: geometry, boundary conditions and material properties. Part I contains 46 989 elements, part II contains 30 537 elements and

part III contains 2000 combined element/MPC components.
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required to avoid repetitions. As can be observed in Fig. 6, there
are no repetitions13 in the processing of the sequences of DOFs.
Multiplication of transformation matrices will benefit from this
procedure. Non-slave nodes have unit T%-coefficients whereas
slave nodes’ T%-coefficients depend on the constraint imposed.

Algorithm 7. Conversion from pold, dold to p, d (collapse).
y

do i¼1,n

ieq¼top(i)

k¼0

do j¼pold(ieq),pold(ieqþ1)-1

k¼kþp(dold(j))
13 To simplify the routines, we retain the multiplications by 1 for self-masters.
enddo

p(ieq)¼k

enddo

mudlis(n,p) ! creates pointers

do i¼1,n

if(pold(iþ1).eq.pold(i)þ1)then

if(dold(destp(i)).eq.i)d(p(i))¼dold

(pold(i))

end if

enddo

do i¼1,n

ieq¼top(i)

l¼0

do j¼pold(ieq),pold(ieqþ1)-1

jeq¼dold(j)

do k¼p(jeq),p(jeqþ1)-1
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l¼lþ1

d(p(ieq)-1þl)¼d(k)

enddo

enddo

enddo

...
4.5. Further details concerning the algorithm

The previous algorithms, in addition to a sparse solver that
performs the required operations (linear solution only at this
stage), do not ensure an efficient ordering of degrees-of-freedom.
MPC transform the original elements and graph, and therefore the
use of external node ordering codes is compromised. The same
occurs with partitioning for parallel solution. An ordering subse-
quent to the calculation of the symbolic assembling is required.
Either Approximate Minimum Degree (AMD) [3] variants or the
modifications by Kumfert and Pothen of Sloan’s algorithm [28] are
well-known fill-in and profile minimizers, respectively. Although
connectivities are introduced by DOF adjacency lists, and not nodes,
since nodes would be useless in the presence of variable DOF types,
MPC and the desired generality, we still group degrees-of-freedom
which share the same adjacency list (besides each other). This
grouping allows savings in the DOF ordering algorithm. Since
degrees-of-freedom are distributed by clique, contraction of the list
must be performed to remove non-surviving DOF. After this is
performed, sorting of DOF is effected and the final sparse matrix is
formed. This circumvents the permutation operation on the sym-
bolic sparse matrix. After this stage is completed, the linear solution
and recovery of slave DOF are performed.
ig. 14. Cube with rigid inclusion: sequence of deformed meshes and contact

rce in stage II. The left column shows the case where deactivation of node tie

PC is performed and a complementarity element is adopted. In the right column,

ing MPC are retained.
The specific problem data, both element and MPC information,
are communicated to a driver routine by use of two subroutines.
A clique (a given generalized element) is inserted by invoking the
overloaded routine store:
�
 store(iel,ndofiel,lnods,ltyps,efor,emat) where:
J iel is the global element number.
J ndofiel is the number of degrees-of-freedom of

element iel.
J lnods (size ndofiel) is the list of global nodes correspond-

ing to each degree-of-freedom.
J ltyps (size ndofiel) is the list of global types correspond-

ing to each degree-of-freedom.
J efor (size ndofiel) is the element ‘‘force’’ vector f .
J emat (size ndofiel�ndofiel) is the element ‘‘stiffness’’

matrix K .
For example, a 3D MINI element (cf. [12]) which has four outer nodes
and one inner node, we identify the degrees-of-freedom as: three
displacement degrees-of-freedom (types 1, 2, and 3) and 1 pressure
(here identified as type 7) degree-of-freedom per outer node and one
internal node with three displacement degrees-of-freedom, we can
set ltyps as: {1,2,3,7,1,2,3,7,1,2,3,7,1,2,3,7,1,2,3}. Multiple-point
constraints are inserted by a similarly-named routine:
�
 store(mnods,mtyps,nmast,nnodm,ntypm,rhs,trm,trm2)
where:
J mnods is the global node of a slave degree-of-freedom.
Fig. 15. Partitioning by METIS: effect of the MPC.
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J mtyps is the global type of a slave degree-of-freedom.
J nmast is the number of master DOFs corresponding to

mnods.
J nnodm (size nmast) is the list of global nodes correspond-

ing to each degree-of-freedom.
J ntypm (size nmast) is the list of global types corresponding

to each degree-of-freedom.
J rhs is the value b%.
J trm is the matrix T%.
J trm2 is the derivative T 0

%
.

. 16.
orm
Contrary to the cliques, multiple-point constraints are subse-
quently sorted and therefore their numbers are not required.
Fig. 17. Four-point bending of a concrete beam: crack paths compared with the

envelope of experimental results by Bocca et al. [15].
5. Numerical tests

Several examples are herein computed in order to fully
illustrate our approach in the following areas: (i) single rigid
body dynamics, (ii) multi-body dynamics combining rigid and
deformable parts, (iii) element implementation and (iv) computa-
tional fracture in 2D and shells with control equations.

5.1. Single rigid body dynamics: Lagrange and toy tops

Basic applications of our algorithm to rigid body dynamics (a
verification example was shown in Section 2.3) are presented.
Two tops (Lagrange and toy top) are tested and, for the Lagrange
Four-point bending of a concrete beam: geometry, boundary conditions, multi

ed mesh 10�magnified.
top, results are compared with the numerical solution of the exact
problem statement. The Lagrange top has three degrees-of-free-
dom (three Euler angles) and the toy top has five degrees-of-
freedom (three Euler angles and two displacement components at
the contact tip). Rodrigues parameters are obtained from Euler
angles. The same geometry for the top is adopted in both cases:
two shallow cones joined at the bases. Initial angular velocity is
imposed and a single rigid-body constraint is adopted. Fig. 7
summarizes the relevant data for this problem. For the Lagrange
top, results are shown in Fig. 8 for the apex 1 trajectory and
compared with the solution of the exact problem. Excellent
results can be observed. Two time steps are used for the toy top
(cf. Fig. 9) with good agreement between the results of the two
time steps for both apices 1 and 2.
ple-point constraints ðDuB ¼DuAÞ and material properties. Also shown is the final
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5.2. Multi-body dynamics: universal joint

The universal joint is analyzed with a combination of rigid
body and deformable parts. With the proposed algorithm, each
component can be either considered rigid or deformable accord-
ing to the focus and interest of analysis. As Fig. 10 illustrates, we
consider the central cross-shaft as either rigid or deformable and
the remaining components as rigid. Imposed constant angular
velocity at one of the shafts produces a transient torque response
followed by a periodic torque response corresponding to the
variable output angular velocity. This transient response was
found to be significantly different between case I and case II.
Fig. 11 shows this difference. Excellent agreement between the
theoretical output angular velocity and the measured one can be
seen in Fig. 12.

5.3. Torsion of a cube with a 3D rigid inclusion

A 3D cube with a rigid cylindrical inclusion is considered (see
Fig. 13). The algorithm involves non-smooth elements which
deactivate node-tying MPC during execution. Rigid body torsion
is applied to the upper surface and the cube is clamped in its
lower surface, see Fig. 13. Parts 1 and 2 shown in that figure are
tied by a combination of elements and MPC represented as part
3 in the same figure. Two cases are tested. In the first case, parts
1 and 2 are exactly tied and remain that way. In the second case,
decohesion occurs when the surface traction exceeds a stress
threshold ðsmaxÞ. In this situation, two stages occur: in stage I the
Fig. 19. Quasi-brittle fracture of a cylindrica

Fig. 18. Four-point bending of a concrete beam: load-displacement results,

compared with the results of Bocca et al. [15] and the cracking particle method

of Rabczuk and Belytschko [36] with their 68,000 particle analysis.
gap remains constant and there is a limiting force of smax � area
shown in the figure. After the first violation of the limiting force,
the problem becomes a frictionless contact one. A sequence
showing the contact force in stage II is represented in Fig. 14.

An interesting aspect of this 3D problem is that it requires both
topological sorting and slave node permutations to work prop-
erly. The partitioning in five regions by the software METIS shows
(see Fig. 15) that the rigid cylinder is directly tied to one of the
outer regions if MPC are included.

5.4. Quasi-static crack propagation control and geometrical

elements

Quasi-static fracture processes are simulated using either
displacement (or rotation) control or crack-opening-displacement
control (cf. [8] where the ALE procedure is described). This is ideal
for the use of MPC. Two problems are solved. The first problem is
the one proposed by Bocca et al. [15], with relevant data shown in
Fig. 16. Multiple-point constraints are used to force anti-symme-
try conditions: the same mouth opening at the edge of notches A
and B: DuB ¼DuA. Good agreement with the experimental crack
paths is shown in Fig. 17. A comparison with the measurements
of Bocca et al. [15] is shown in Fig. 18 along with the results by
the cracking particle method of Rabczuk and Belytschko [36].
Note that geometrical elements are used to retain mesh quality
after element splitting Fig. 19 shows the relevant data.

In the following fracture example, we test the control algo-
rithm with the quasi-brittle shell fracture algorithm recently
presented in CFRAC 2011 [11]. Relevant data for this problem
are shown in Fig. 21. A Rankine-based criterion is adopted
(coupled with isotropic damage—here represented by the void
fraction variable f) as recently discussed in [9]. Note that con-
strained geometrical elements are used to retain mesh quality
after element splitting (see [8,11] for further details). Two initial
meshes are employed: one containing 5440 and another with
10 270 triangular elements. A sequence of deformed meshes of
the shell is shown in Fig. 20 as well as the void fraction (f) contour
plot. Very large displacements and rotations are observed with
exceptional robustness. To confirm mesh-insensitivity, we show
the control displacement/pressure results in Fig. 21 for both
meshes.
6. Concluding remarks

In this work a new algorithm and corresponding code to
process both additive and multiplicative components in an
l shell: relevant data and discretization.



Fig. 20. Quasi-brittle fracture of a cylindrical shell: sequence of deformed meshes.

Fig. 21. Quasi-brittle fracture of a cylindrical shell: control displacement/pressure

results.
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implicit framework. Conditions for solvability were introduced
and the two main problems (MPC sequential processing and
reaction calculations) were identified as a path traversal in a
directed acyclic graph. Processing by use of clique format was
described in detail and advantages of this method were also
discussed. The most important advantage is the direct access of
sparse matrix components by means of clique addressing. Besides
classical applications such as rigid (and multibody) dynamics,
node links and continuation methods were also incorporated.
Many other techniques and ad hoc features, previously consid-
ered unrelated to MPC, are now be included as multiplicative
components. The main problems with MPC processing were
solved, including the previously required ordering, which is no
longer needed. A set of numerical examples showing a wide
variety of applications was presented, making use of our publicly
available software. Results made use of previously algorithms but
these are now integrated in the framework.
7. Software availability

The basic clique and MPC framework is available on Google
Code [7] under the LGPL license. It requires a Fortran 2003
compatible compiler.
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