Home > All Publications > All Books > Microbes In Applied Research > 10.1142/9789814405041_0027

696pp Aug 2012

ISBN: 978-981-4405-03-4 (hardcover)

GBP131.00

Buy Now

ISBN: 978-981-4405-04-1 (ebook)

GBP170.00

Add book to favorites

Related Publications

Search for other articles

By keyword

- S. cerevisiae
- titanium dioxide nanoparticles
- oxidative stress
- Microorganisms
- Applied Microbiology
- Environmental Microbiology
- ☐ Industrial Microbiology
- Microbial Biotechnology
- ☐ BioMicroWorld2011 Conference Proceedings
- Book
- Mendez-Vilas

By author

- R. Ferreira
- ☐ I. Alves-Pereira
- ☐ J. Capela-Pires

Search in

- World Scientific
- CrossRef

Microbes In Applied Research

Current Advances and Challenges

Malaga, Spain, 14 - 16 September 2011

Growth temperature determines titanium dioxide nanoparticles response by Saccharomyces cerevisiae UE-ME3

Add to Favorites | Download to Citation Manager | Citation Alert

PDF (232 KB)

J. Capela-Pires, I. Alves-Pereira, and R. Ferreira (2012) Growth temperature determines titanium dioxide nanoparticles response by $Saccharomyces\ cerevisiae\ UE-ME_3$. Microbes In Applied Research: pp. 135-139.

doi: 10.1142/9789814405041_0027

Agriculture, Soil, Environmental and Marine—Aquatic Microbiology

Growth temperature determines titanium dioxide nanoparticles response by Saccharomyces cerevisiae UE-ME,

J. Capela-Pires

Departament of Chemistry, School of Sciences and Technology, University of Évora, Rua Romão Ramalho, 59, 7001-554 Évora, Portugal

I. Alves-Pereira

Departament of Chemistry, School of Sciences and Technology, University of Évora, Rua Romão Ramalho, 59, 7001-554 Évora,

Institute of Mediterranean Agrarian Environmental Sciences (ICAAM), University of Évora, 7002-774 Évora, Portugal

R. Ferreira

Corresponding author, Phone: +34 924258615

Departament of Chemistry, School of Sciences and Technology, University of Évora, Rua Romão Ramalho, 59, 7001-554 Évora, Portuga|

Institute of Mediterranean Agrarian Environmental Sciences (ICAAM), University of Évora, 7002-774 Évora, Portugal

The environmental levels of titanium dioxide nanoparticles (TiO₂-NP), a new material described as ROS generator, has increased in several regions of the earth due its massive industrial use. Thus, the main purpose of this work was to determine the influence of temperature on response to TiO2-NP by S. cerevisiae UE-ME3. The results show that cells grown at 28 °C show dry weight, protein and glutathione contents higher than cells grown at 40 °C. In addition GSH content increased in cells exposed to nanoparticles at 28 °C. The GSH/GSSG ratio is greater in cells grown at 40°C, probably due a sharp decrease of GSSG and GPx activity, more evident in TiO_2 -NP exposed cells. Furthermore, an increase of MDA level detected in *S. cerevisiae* growing in presence of 1μ g/mL TiO2-NP at 28 °C, related with an increase of LOX and GPx activities as well as ROS contents, points TiO2-NP as inducer of oxidative stress and cell death.

Keywords: S. cerevisiae; titanium dioxide nanoparticles; oxidative stress

Imperial College Press | Global Publishing | Asia-Pacific Biotech News | Innovation Magazine Labcreations Co | World Century | WS education | Meeting Matters | National Academies Press

Copyright® 2013 World Scientific Publishing Co. All rights reserved.

Powered by Atypon® Literatum