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Abstract A coupled elastic and electro-magnetic analysis is
proposed including finite displacements and damage-based
fracture. Piezo-electric terms are considered and resulting
partial differential equations include a non-classical wave
equation due to the specific constitutive law. The result-
ing wave equation is constrained and, in contrast with
the traditional solutions of the decoupled classical electro-
magnetic wave equations, the constraint is directly included
in the analysis. The absence of free current density allows
the expression of the magnetic field rate as a function
of the electric field and therefore, under specific circum-
stances, removal of the corresponding magnetic degrees-of-
freedom. A Lagrange multiplier field is introduced to exactly
enforce the divergence constraint, forming a three-field vari-
ational formulation (required to include the wave constraint).
No vector-potential is required or mentioned, eliminating
the need for gauges. The classical boundary conditions of
electromagnetism are specialized and a boundary condition
involving the electric field is obtained. The spatial discretiza-
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tion makes use of mixed bubble-based (of the MINI type)
finite elements with displacement, electric field and Lagrange
multiplier degrees-of-freedom. Three verification examples
are presented with very good qualitative conclusions and
mesh-independence.
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1 Introduction

Fundamental theoretical contributions for the analysis of
continuum elastic dielectrics were made by Lax and Nelson
[1] and Maugin [2]. The latter text contains contributions
with a detail beyond what is intended with this work. The
purpose of it is to inaugurate a specific approach to electro-
magnetic and elasticity coupling implemented with mixed
finite elements to deal with fracture (with finite strains).
Piezo-electricity is also included, but mainly as a constitutive
ingredient. Recent discussions on this topic, also with a con-
tinuum approach, are the works of Ericksen (cf. [3,4]) and
Dorfmann and Ogden [5] albeit limited to strict dielectrics
(without the magnetic field). Numerical calculations are
sparse and mainly limited to magnetostatics (see, for example
[6]) and piezo-electricity. Kuna [7] performed a theoretical
and experimental review of piezo-electricity with classical
fracture mechanics. In [8], the same author used a electro-
mechanical contour integral to calculate energy release rates.

We perform finite displacements and rotations but small
strains (in the sense of Bathe [9] p. 595 paragraph 6.6.3) in
order to account for the (possibly large) rotation of the crack
faces. The extension to finite strains demands an in-depth
study of the piezo-electric term in the total stress, beyond
of the scope of this paper. Simulations of electro-magnetic
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fields including piezo-electricity are performed. The total
stress contains the Cauchy stress, the Maxwell stress, the
piezo-electric stress and the polarization stress. The piezo-
electric effect is characterized as a coupling between the elec-
tric polarization of a given material and the (mechanical)
stress field. It is crucial in sensors, actuators, smart materials
among others. There is a significant variety of piezo-electric
materials: crystals, e.g. quartz; ceramics, e.g. lead zirconate
titanate (PZT); polymers, e.g. polyvinylidene fluoride.

Taking into account that these materials are subjected to
frequent mechanical actions, it is of fundamental importance
the study of fracture, in order to estimate their reliability to
device applications. For that reason, many works have been
focused on this topic, for a recent review the reader is referred
to [7]. Interestingly, the majority of them only consider the
electrostatic limit where the coupling of the electric and mag-
netic fields (present in Maxwell’s equations) can be neglected
and the analysis can be restricted to the electric field. Obvi-
ously, this constitutes an overall simplification to the problem
since in this case the electric field (vector), e, can be calcu-
lated from the electric potential, φ, reducing a n-dimensional
problem (2 or 3, typically) to a one-dimensional problem.

The basic equations considered in this paper are classical
(Maxwell, piezoelectric polarization, etc) but their coupling
with fracture propagation has not been studied much so far.
So, the contributions of this paper are the following:

• Numerical simulation of fracture incorporating mag-
netic and electric fields taking into account piezoelectric
effects.

• A stable mixed formulation with Lagrange multipliers
for imposing the null divergence of the electric displace-
ment.

• Non-standard formulation resulting in a uncoupled wave
equation.

The remaining of this paper is composed of six sec-
tions. Section 2 contains the basic premises of our work, as
well as original derivations for the weak form and boundary
conditions. Section 5 briefly summarizes the discretization
proposal and the mixed finite element. Section 3 presents the
relevant constitutive law with a piezo-electric term and the
proof of its frame-invariance. Section 2 describes the mixed
finite element technique and presents the final discretized
equations. Three numerical applications are described in
Sect. 6 where the new technique is successfully tested and,
finally, in Sect. 7 some conclusions are drawn.

2 Maxwell and equilibrium equations

We consider a linear elastic material with a damage evolu-
tion law, equilibrium with moderate strains and finite dis-

placements (ensuring the validity of Hooke’s law) and the
classical electrodynamics of continua (cf. [1,2]).

The considered governing equations consist of:

• Cauchy equations of motion using the electromagnetic
force as the only volume force.

• Mass conservation.
• Maxwell’s equations in S.I. units for dielectrics, in the

absence of free charges and currents.
• Linear constitutive equations of electromagnetism, stress–

strain relations and piezo-electricity.

Figure 1 shows the idealization of the typical problem to be
solved and the three types of boundary conditions (essential
for the displacement unknown and electric field and natural
boundary conditions).

The mass conservation principle for an impermeable con-
tinuum (open set �) is concisely given by:

∂(Jρ)

∂t
= 0 in � (1)

where ρ is the spatial mass density and J = det F where F

is the deformation gradient (cf. [10]).
The Cauchy equation of motion and Cauchy Lemma read:

∇ · σ T + f = ρü in � (2)

σn = t in �t (3)

where σ is the Cauchy stress tensor, u is the displacement
vector and t ∈ [0, T ] is the time variable (not to be mistaken
with t , the prescribed stress vector) and the term f is the
body force field. Note that, according to our notation, σi j is
the Cauchy stress component at facet j with the direction
i . This is of course standard (e.g. [10,11]) and shown here
for completeness. A useful notion in elastic dielectricity is
the one of total stress, here denoted as σ � which allows the
rewriting of (2) as:

∇ · σ �T = ρü (4)

We consider ρü = 0 in remaining of this work. Maxwell’s
equations in classical form1 in a domain � (cf. [4,12–14])
are concisely written as:

∇ × e + ḃ = 0 in � (5)

∇ · b = 0 in � (6)

∇ × h − ḋ = J f in � (7)

∇ · d = q f in � (8)

where e is the electric field, b is the vector of magnetic induc-
tion, h is the magnetic field and d is the electric displacement
current (see, e.g. [2,12]). The terms in the right-hand sides
of (7) and (8) are the free external current (q f ) and charge

1 S.I. units are adopted and lower-case is used for spatial quantities.
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Fig. 1 Relevant ingredients
for the coupled
equilibrium/electromagnetic
problem (current configuration).
The electric field equation holds
in the interior and in the exterior
of � with matching of the
external and internal values on
every portion of the boundary
where qs = 0

(J f ), respectively, and are related by the continuity equation:
q̇ f +∇ ·J f = 0. It is noticeable that the validity of (5–8) for a
continuum described in the spatial configuration is shown by
Lax and Nelson [1]. Here, the following notation is adopted
(see also [1]):

•̇ = ∂•
∂t

(9)

The inclusion of piezo-electricity in the system (5–8) can
made by means of the polarization vector or directly by intro-
duction in a constitutive law for d. The latter is used here.
As a matter of fact, for piezo-electric materials under con-
sideration, we introduce a linear relation between the electric
displacement, the electric field and the Almansi strain ε:

d = εe + A : ε (10)

where ε is the electric permitivity2 and A is a general third-
order tensor. The Almansi strain is defined in terms of the
deformation gradient F by:

ε = 1

2

(
I − F−T F−1

)
(11)

The choice of this strain is justified by the fact that, in con-
trast with the small strain measure (the symmetric gradient
of the displacement), allows large rotations of the crack faces
without spurious stress.

We specialize the general relation (10) by introducing the
third-order piezo-electric tensor J :

A = −εI (12)

The tensor I is minor-symmetric in the two last indices,
i.e. [I ]i jk = [I ]ik j . Relating the continuum and vacuum
permitivity ε = (1 + χ)ε0 with χ being the electric suscep-
tibility we obtain the polarization as a constitutive relation:

2 For our prototype model we assume a scalar permitivity.

p = ε0χe − ε I : ε︸ ︷︷ ︸
q

(13)

where ε0χe is the average electric dipole moment density and
εI : ε is the piezo-electric polarization term. For notation
simplicity, the electric displacement (10) is rewritten as:

d = ε (e − q) (14)

Note that q is unrelated to the electric charge. Our formu-
lation is a particular case of Kuna [8] where we restrict to
one dielectric constant. In homogeneous linear isotropic con-
tinua, for which Lorentz relations hold, we can write (7) and
(8) as:

∇ × b = μJ f + με (ė − I : ε̇) in � (15)

ε∇ · (e − I : ε) = q f in � (16)

where μ is the magnetic permeability. Both ε and μ can
be related to the corresponding vacuum constants. A direct
manipulation results in the following second-order system:

∇ × (∇ × e) + μJ̇ f + με (ë − q̈) = 0 (17)

∇ · (e − q) = q f

ε
(18)

It is clear that ∇ ·b = 0 is trivially satisfied in [0, T ] provided
(∇ · b) (0) = 0 is satisfied. Moreover, the reader can verify
that, contrary to traditional derivations in electromagnetic
wave propagation, no Laplacian of e emerges in (17) since
the classical condition ∇ · e = 0 does not hold, due to the
piezo-electric term in (18). An additional note is required: in
the notation of Bustamante and Ogden [15], the polarization
is determined differently. After direct specialization of the
general boundary conditions (cf. [1]), a final set of boundary
conditions for piezo-electricity and electromagnetic coupling
is obtained (see also [15,16] for a comprehensive descrip-
tion):
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[[
1

μ
b

]]
× n = Js in � (19)

[[e]] × n = 0 in � (20)

[[ε (e − q)]] · n = qs in � (21)

[[b]] · n = 0 in � (22)

We use the notation [[•]] for the “jump” of •: the difference
between the external and internal values of • (see Fig. 1). It
can be proven that the condition [[b]] · n = 0 is trivially sat-
isfied. Contrary to the charge surface density, qs , the surface
current density Js is not directly imposed in this framework
(see also the recent paper by Linder et al. [17]). Since the
magnetization vector is here considered null, we can use the
conclusions in reference [18] to write the enforced boundary
conditions:

[[b]] = 0 in � (23)

e = −qs

ε
n in � (24)

For two-dimensional problems (23–24) results from (19–22)
in the absence of surface current density. Note that the com-
plete e is specified at �, in contrast with what occurs in
piezo-electric reports. Typically (see [17]) the unknown field
is d and not e since the magnetic field is seldom included
in numerical simulations. For dielectrics (considered in this
work) it follows that J f = 0 and q f = 0 (see, for example,
the book of Maugin [2] p. 157).

3 Coupled constitutive law

3.1 Total stress

We make use of the compressible Neo-Hookean hyperelastic
model (cf. Eq. (6.29) of [19]) as a function of the deformation
gradient F . The constitutive law for the total stress is given
as3:

σ � = (1 − f )

[
G

J

(
FF T − I

)
+ λ

J
ln JI

]

︸ ︷︷ ︸
σe

+ 1

μ
b ⊗ b + εe ⊗ e − 1

2

(
ε‖e‖2 + 1

μ
‖b‖2

)
I

︸ ︷︷ ︸
σM

+ εe · I︸ ︷︷ ︸
σP E

(25)

where σe is the elastic stress, σM is the Maxwell stress and
σP E is the piezo-electric stress. Note that the electric field

3 In contrast with Chapter 4 of [2], we do not include electro-magnetic
terms in the body forces.

already accounts for the piezo-electric effect in the global
PDE in (17) and hence the reciprocal piezo-electric law is
enforced at the global level. It is noticeable that the polar-
ization stress (see [2]) is not present in (25) for thermody-
namically consistent Cauchy stresses (see [20] for this term
and also [15] for a similar expression). Note that the transfer
of body forces to the total stress has been an implicit prac-
tice in the literature (cf. Vu, Steinmann and Possart [20] Eqs.
(12) and (13)). It is considered as standard (cf. [21], Chap.
7) that in (25), the elastic stress shows a term with the factor
(1 − f ) where the void fraction f is a constitutive variable
accounting for material softening.4 We use a phenomenolog-
ical model (see also [22]) which is sufficient for this work’s
purpose—the so-called damage variable in Lemaitre’s work
is here denoted void fraction. Also included in (25) is the
third order piezo-electric tensor I . We must remark that this
damage model is unsuited for elastomer damage representa-
tion in the sense of Mullins [23]. In contrast with the works
of Bustamante and Ogden in electroelasticity (see [15]) and
magnetoelasticity (see [16]), two differences are worth men-
tioning:

• The aforementioned authors consider incompressible
materials.

• We limit the analysis to finite displacements and small
strains (in the sense of Bathe [9] p. 595 paragraph 6.6.3).

3.2 Damage representation

Damage modeling includes a loading function and the
loading/unloading conditions. The corresponding void frac-
tion loading function is:

ϕ(ε) =
[
εmax

ε1

(
1 + α

ε1

εmax
− α

)]

× exp

[
α

(
1 − ε1

εmax

)
− 1

]
− (1 − f ), (26)

where ε1 is the maximum principal strain and εmax is the max-
imum principal strain attainable during the loading history
at a given point before softening. Definition (26) precludes
f of attaining 1 for finite ε1 since ϕ(ε) ≤ 0. The parameter
α in (26) is given as:

α =
{

1 ε1 ≤ εmax
l
lc

ε1 > εmax
, (27)

where the parameter l is the mesh size length and the lc is a
characteristic length scale (cf. Oliver [24]). Figure 2 shows a
representation of this prototype model. It is simple to prove
that the softening energy is of course dependent on the length
scale using α as calculated in (27).

4 In the sense of Lemaitre [22], valid for small strains.
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Fig. 2 One-dimensional representation of the damaged stress/strain
relation

For a related Rankine linear damage law see Lemaitre
and Chaboche [21], p. 363. The following loading/unloading
conditions are used for our Rankine-type model:

ϕ(ε) ≤ 0 (28)

ḟ ϕ(ε) = 0 (29)

ḟ ≥ 0 (30)

and correspond to the standard approach to damage.

3.3 Piezo-electric matrix and orientation of axes

The coupling between mechanical and electric fields depends
on the orientation of a piezo-electric crystal. The invariance
of the scalar d ·(I : ε) (the reader can verify that this expres-
sion has units of energy) allows the writing of the following
transformation of the piezo-electric matrix as a third-order
tensor:

[I ]lmn = [
Q

]
li

[
Q

]
mj

[
Q

]
nk

[
Ĩ

]
i jk (31)

where the elements of Q are obtained from two orthonormal
basis e j and ẽi :
[
Q

]
i j = ẽi · ek Rk j = cos αik Rk j (32)

where αi j are the internal angles between the basis vectors
and R is the rotation matrix, obtained from the polar decom-
position. It is obvious that minor-symmetry in the last two
indices of [I ] allows some computational savings in (31).
It is here assumed that the tabulated piezo-electric proper-
ties correspond to the tensor components

[
Ĩ

]
and αi j are

problem-dependent.

3.4 Frame invariance

Equation (25) is frame-invariant in the sense that [25, pp.
41–43]:

x
′ = c(t) + Q(t)x ⇒ σ �′ = Q(t)σ �Q(t)T (33)

Fig. 3 Use of MINI element ([29]) for the mixed u − e − λ problem

where c(t) is a point and Q(t) is a unimodular orthogonal ten-
sor. In Eq. (25), the first term (σe) is trivially frame-invariant
since J

′ = J, f ′ = f, I = QQT and F ′F ′T = QFFT QT

(with t omitted). The tensor products b ⊗ b = bbT and
e ⊗ e = eeT are also frame-invariant.5 The norms of e and
b are frame-invariant from orthogonality of Q. Finally, the
only term that may raise doubt is σP E which, from the defi-
nitions (32) and (31) can be proved to be frame-invariant.

4 Governing equations in reduced wave form

After the introduction of the previous derivations and con-
sidering a two-dimensional problem, the final equations to
integrate are therefore dependent on σ � and independent of
b:

c2 [∇ × (∇ × e)] + (ë − q̈) = 0 in � (34)

∇ · σ �T = 0 in � (35)

∇ · (e − q) = 0 in � (36)

[[∇ × e]] = 0 in � (37)

e = −qs

ε
n in � (38)

σn = t in �t (39)

u = u in �u (40)

5 In the sense that material fields are obtained as E = F T e and B =
F T b.
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with c2 = 1/(με) being the square of the light veloc-
ity in the continuum. Note that no explicit body forces
appear since the electro-magnetic field effect on the forces
is completely included in σ � [in Eq. (25)] and the Cauchy
lemma retains its original form [in Eq. 39]. The weak form
of the above equations is obtained by using a Lagrange
multiplier field, λ ≡ λ(x) and performing the customary
projections and use of Green’s theorem. We introduce the
spaces for the test functions Vu = {δui ∈ H1(�)|δu =
0 in �u},Vd = {δdi ∈ H1(�)|δd = 0 in �} and
P = {δλ ∈ L2(�)|δλ = 0 in �} and the sets for the
trial functions Du = {ui ∈ H1(�)|ui = ui in �u},Dd =
{ei ∈ H1(�)|e = ei in �} and P (the Lagrange mul-
tiplier space for test functions and set for trial functions
coincide). The problem statement in weak form reads: find
u ∈ Du, e ∈ De, and λ ∈ P such that the following holds
(see [26] for this nomenclature and symbols):

∫

�

c2(∇ × e) · (∇ × δd)d�+
∫

�

c2 [(∇ × e) × δd] · n︸ ︷︷ ︸
−[(∇×e)×n]·δd = 0

d�

+
∫

�

(ë − q̈) · δdd� +
∫

�

σ : ∇sδu d� −
∫

�t

t · δud�t

+
∫

�

λδ
[∇ · (e − q)

]
d� +

∫

�

δλ
[∇ · (e − q)

]
d� = 0

(41)

∀δd ∈ Vd ,∀δu ∈ Vu,∀δλ ∈ P . The test functions δd, δu

and δλ in (41) can be seen as variations of d,u and λ,
respectively. We make use of the Acegen add-on [27] to the
Mathematica software [28] to accomplish the derivation of
the discretized equilibrium equations and corresponding lin-
earization. The explicit expressions are omitted in this report.
It is also noticeable that, in (41), the symmetric spatial gra-
dient of δu is adopted: ∇sδu = [∇δu + (∇δu)T ]

/2. Ini-
tial conditions for (41) are given for both u and e (taken
as homogeneous in this work). A remark concerning the
conditioning of (41) is in order: for a PZT material, with
μ = 1.256 × 10−6 Cm−2, ε = 6 × 10−9 Fm−1, E =
69.59 × 109 Nm−2, ν = 0.357 and ρ = 7500 Kg m−3, the

Fig. 4 PZT specimen with
relevant properties and
dimensions. The (artificially
coarse) mesh is shown for
illustrative purposes only

Fig. 5 Displacement/time
results for point A for two mesh
densities
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(a) (b)

(d)(c)

Fig. 6 Electric (e), magnetic (h) and Lagrange multiplier (λ) fields for t = 3.0 × 10−8 s (not magnified)

ratio between the electromagnetic wave speed and the bulk
wave speed

√
κ/ρ , which corresponds to the ratio between

electrical and mechanical quantities in (41) is approximately
3500. Therefore, the problem is well conditioned.

5 Discretization and time integration

We use a variant of the MINI element by Arnold (cf. [29])
which was previously used for the Stokes equations to deal

Fig. 7 Corner crack: relevant
data
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Fig. 8 Displacement/reaction
results for the corner crack
problem, comparing the three
meshes. 1 m depth is considered

Fig. 9 Crack path comparison between the three meshes

with the mixed problem (unknowns u − e − λ). We also
used it before for finite strain plasticity. Figure 3 shows the
element degrees-of-freedom and the corresponding shape
functions.

Time integration follows the backward-Euler method
for first-order time integration applied both to degrees-of-
freedom and their time-derivatives. If two consecutive time-
steps are considered (n and n + 1), the following expression
results for än+1:

än + 1 = an + 1 − an

�t2 − ȧn

�t
(42)

where a contains degrees-of-freedom of all types (u, e and
λ). The velocity is approximated as ȧn+1 = (an+1 −an)/�t .
With the aforementioned assumptions, the magnetic field at
step n + 1 can therefore be obtained as:

bn + 1 = bn − �t∇ × en + 1 (43)

The magnetic field (43) is of course necessary for the
boundary conditions and constitutive law and must be stored
as an history variable. The relevant interpolated fields (with
h as the mesh characteristic length) in each element are
obtained simply as:

uh =
3∑

K = 1

NK (ξ)uK (44)

eh =
4∑

K = 1

NK (ξ)eK (45)

λh =
3∑

K = 1

NK (ξ)λK (46)

where NK (ξ) are the shape functions represented in Fig. 3.
After time integration, these are the only degrees-of-freedom
required to solve the coupled problem since b is written as
a function of e. We keep track of the previous step (an and
ȧn) which is sufficient to calculate än at the element level.
The actual finite element implementation is too complex to
be correctly and efficiently hand-coded and we resort to the
Acegen software by Korelc ([27]) to accomplish this under-
taking. The tip remeshing algorithm [30] is used, with the
electric field boundary conditions at the crack faces repro-
ducing the remaining boundary.
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(a) (b)

(d)(c)

(e)

Fig. 10 Electric (e), magnetic (h), Lagrange multiplier (λ) and void fraction ( f ) fields for t = 4.175 × 10−8 s. The mesh containing initially
11,824 elements is adopted. No displacement magnification is employed

6 Numerical examples

6.1 Electric field test

Surface electric charges (qs in the above equations) cause
electro-magnetic waves and, of course, stress waves (this is
due to both the Maxwell stress term and the piezo-electric
effect). Note that stress waves caused by the piezo-electric
effect occur despite the absence of inertia (ρü = 0). With
the purpose of obtaining a wave, we apply a time-constant

electric charge at the surface of a straight bar and analyze the
produced effect. Figure 4 shows the relevant quantities for
this problem. A PZT material is considered, with properties
shown in the same figure. Artificially large displacements are
considered, with the goal of testing the robustness of imple-
mentation. Two meshes are tested: one containing 14,298
elements and 7,325 nodes and another with 25,374 elements
and 12,922 nodes. The displacement at point (A) is shown in
Fig. 5 for the two meshes. A slight difference is noticeable, a
fact that does not occur in displacement-controlled problems.
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Fig. 11 Three-point bending
test: relevant data and crack path
results. A mesh with 6,585
nodes and with 12,858 triangles
is employed

Fig. 12 Three-point bending
test: vertical reaction as a
function of v

The contour plots of interested are shown in Fig. 6 for the
finer mesh.

6.2 Corner crack evolution

The following problem is considered: a reentrant corner with
a pre-existing 5 mm diagonal crack has two edges clamped
and is subject to a constant velocity applied in a corner point.

Figure 7 shows the relevant data of this problem. Again, a
PZT material is considered with typical properties (except
εm and Dc which are introduced here for verification pur-
poses, a fact not affecting the conclusions). Three uniform-
sized meshes are used to assert the sufficient independence
of the results: 5268, 11824 and 26620 mixed triangular ele-
ments. The same time step of �t = 2.5 × 10−10 s is used
for all meshes. Besides the mechanical boundary condi-
tions depicted in Fig. 7 the electric field is constrained with
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Fig. 13 Three-point bending test: electric (e), magnetic (h) and void fraction ( f ) fields for t = 8.38 × 10−9 s and α11 = 0

qs = 0 Cm−2. Now standard fracture algorithms (created by
the first Author cf. [30–32]) are employed in this example
with a insulating crack (see also [7]).

The reaction at the point of imposed displacement is mon-
itored for the three meshes and the results are shown in Fig. 8.
Close agreement occurs for the two finer meshes and very
acceptable agreement is obtained in general. A comparison
between the three crack paths is shown in Fig. 9 where ade-
quate agreement can be observed. In addition, contour plots
of relevant quantities for the finer mesh are shown in Fig. 10.

6.3 Three-point bending test

A version of the three-point bending beam is tested to assess
the effect of the piezo-electric angle in the crack path curve
and the load/displacement results. The relevant data for this
problem is shown in Fig. 11 which also shows the crack
paths for α11 = 0, π/6, π/3 and π/2 radians. It is interesting
to observe that, although we have imposed displacement,
the piezo-electric effect affects the crack path. The reaction
corresponding to v is less affected by the angle α11 as Fig. 12
illustrates. The relevant contour plots of e,h and f are shown
in Fig. 13. It is also relevant to verify that the y-component of
the electric field is anti-symmetric relative to a vertical plane,

whereas other components follow geometrical symmetry. Of
course there is some wave reflection near the null-charge
boundaries.

7 Discussion

Specialized derivations both in the strong and weak forms
of electro-magnetic coupling of dielectrics including piezo-
electricity were presented. Crack propagation based on void
fraction was introduced, which is new for electro-magnetic
finite element models.

New finite element formulations in both the continuum
element (with a variant of the MINI element) and the bound-
ary condition element were shown and three verification
numerical tests were presented. Compared with recent works
on the same theme (e.g. [14]) the inclusion of the magnetic
field, the derivation of novel electro-magnetic wave equa-
tions and the generalization of the boundary conditions were
the major contributions. Further improvements in the num-
ber of ingredients and depth of numerical tests are being
performed. The quality of implementation and correspond-
ing results holds great promises for further generalization, in
particular the adoption of consistent models for finite strains
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(as shown recently by Bustamante et al. [18] for the magnetic
field). For imposed electric charge some mesh dependence
was noted but is probably due to the basic time-integration
algorithm.

Acknowledgments The authors gratefully acknowledge financing
from the “Fundação para a Ciência e a Tecnologia” under the Project
PTDC/EME-PME/108751 and the Program COMPETE FCOMP-01-
0124-FEDER-010267. The first author is grateful to Professor Philipe
Geubelle and Dr. Scot Breitenfeld (University of Illinois) for sup-
port of SIMPLAS ([33]). The second author acknowledges the sup-
port of “Fundação para a Ciência e a Tecnologia” for the grant SFRH/
BPD/63880/2009, and the “Fundação Calouste Gulbenkian” for “Estí-
mulo à Criatividade e à Qualidade na Actividade de Investigação” in
the Science Program of 2010.

References

1. Lax M, Nelson DF (1976) Maxwell equations in material form.
Phys Rev B 13(4):1777–1784

2. Maugin GA (1988) Continuum mechanics of electromagnetic
solids. Applied Mathematics and Mechanics, vol 33. North-
Holland, Amsterdam

3. Ericksen JL (2007) On formulating and assessing continuum theo-
ries of electromagnetic fields in elastic materials. J Elast 87:95–108

4. Ericksen JL (2007) Theory of elastic dielectrics revisited. Arch
Ration Mech Anal 183:299–313

5. Dorfmann A, Ogden RW (2006) Nonlinear electroelastic deforma-
tions. J Elast 82(2):99–127

6. Belahcen A, Fonteyn K (2008) On numerical modeling of coupled
magnetoelastic problem. In: Kvamsdal T, Mathisen KM, Pettersen
B (eds) 21st nordic seminar on computational mechanics. NSCM,
Barcelona, CIMNE

7. Kuna M (2010) Fracture mechanics of piezoelectric materials—
where are we right now. Eng Fract Mech 77:309–326

8. Kuna M (2006) Finite element analyses of cracks in piezoelectric
structures: a survey. Arch Appl Mech 76:725–745

9. Bathe K-J (1996) Finite element procedures. Prentice-Hall, Engle-
wood Cliffs

10. Ogden RW (1997) Nonlinear elastic deformations. Dover Publica-
tions, Mineola, NY

11. Marsden JE, Hughes TJR (1994) Mathematical foundations of
elasticity. Dover Publications, New York

12. Haus HA, Melcher JR (1989) Electromagnetic fields and energy.
Prentice-Hall, Englewood Cliffs

13. Jackson JD (1999) Classical electrodynamics, 3rd edn. Wiley,
New York

14. Mota A, Zimmerman JA (2011) A variational, finite-deformation
constitutive model for piezoelectric materials. Int J Numer Methods
Eng 85:752–767

15. Bustamante R, Ogden RW (2006) Universal relations for nonlinear
electroelastic solids. Acta Mech 182:125–140

16. Bustamante R, Dorfmann A, Ogden RW (2006) Universal rela-
tions in isotropic nonlinear magnetoelasticity. Q J Mech Appl Math
59(3):435–450

17. Linder C, Rosato D, Miehe C (2011) New finite elements with
embedded strong discontinuities for the modeling of failure in
electromechanical coupled solids. Comp Method Appl Mech Eng
200:141–161

18. Bustamante R, Dorfmann A, Ogden RW (2011) Numerical solu-
tion of finite geometry boundary-value problems in nonlinear mag-
netoelasticity. Int J Solids Struct 48:874–883

19. Bonet J, Wood RD (2008) Nonlinear continuum mechanics for
finite element analysis, Second edition. Cambridge University
Press, Cambridge

20. Vu DK, Steinmann P, Possart G (2007) Numerical modelling of
non-linear electroelasticity. Int J Numer Methods Eng 70:685–704

21. Lemaitre J, Chaboche J-L (1990) Mechanics of solid materials.
Cambridge University Press, Cambridge

22. Lemaitre J (1996) A course on damage mechanics, Second edition.
Springer, Berlin

23. Mullins L (1969) Softening of rubber by deformation. Rubber
Chem Technol 42:339–362

24. Oliver J (1989) A consistent characteristic length for smeared
cracking models. Int J Numer Methods Eng 28:461–474

25. Truesdell C, Noll W (2004) The non-linear field theories of
mechanics, Third edition. Springer, Berlin

26. Hughes TJR (2000) The finite element method. Linear static and
dynamic finite element analysis. Dover Publications, New York
(reprint of Prentice-Hall edition, 1987)

27. Korelc J (2002) Multi-language and multi-environment generation
of nonlinear finite element codes. Eng Comput 18(4):312–327

28. Wolfram Research Inc. (2008) Mathematica, Version 7.0, Cham-
paign, IL

29. Arnold DN, Brezzi F, Fortin M (1984) A stable finite element for
the Stokes equations. Calcolo XXI(IV):337–344

30. Areias P, Dias-da-Costa D, Alfaiate J, Júlio E (2009) Arbitrary
bi-dimensional finite strain cohesive crack propagation. Comput
Mech 45(1):61–75

31. Areias P, Van Goethem N, Pires EB (2011) A damage model for
ductile crack initiation and propagation. Comput Mech 47(6):
641–656

32. Areias P, Van Goethem N, Pires EB (2011) Constrained ale-based
discrete fracture in shells with quasi-brittle and ductile materials.
In: CFRAC 2011 international conference, Barcelona, Spain, June
2011. CIMNE

33. Areias P. Simplas. https://ssm7.ae.uiuc.edu:80/simplas. Accessed
15 June 2012

123

https://ssm7.ae.uiuc.edu:80/simplas

	Damage-based fracture with electro-magnetic coupling
	Abstract
	1 Introduction
	2 Maxwell and equilibrium equations
	3 Coupled constitutive law
	3.1 Total stress
	3.2 Damage representation
	3.3 Piezo-electric matrix and orientation of axes
	3.4 Frame invariance

	4 Governing equations in reduced wave form
	5 Discretization and time integration
	6 Numerical examples
	6.1 Electric field test
	6.2 Corner crack evolution
	6.3 Three-point bending test

	7 Discussion
	Acknowledgments
	References


