
Available online at www.sciencedirect.com
www.elsevier.com/locate/newast

New Astronomy 13 (2008) 224–232
An automated method for tracking clouds in planetary atmospheres

D. Luz a,b,*, D.L. Berry c, M. Roos-Serote a
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Abstract

We present an automated method for cloud tracking which can be applied to planetary images. The method is based on a digital
correlator which compares two or more consecutive images and identifies patterns by maximizing correlations between image blocks.
This approach bypasses the problem of feature detection. Four variations of the algorithm are tested on real cloud images of Jupiter’s
white ovals from the Galileo mission, previously analyzed in Vasavada et al. [Vasavada, A.R., Ingersoll, A.P., Banfield, D., Bell, M.,
Gierasch, P.J., Belton, M.J.S., Orton, G.S., Klaasen, K.P., Dejong, E., Breneman, H.H., Jones, T.J., Kaufman, J.M., Magee, K.P., Sens-
ke, D.A. 1998. Galileo imaging of Jupiter’s atmosphere: the great red spot, equatorial region, and white ovals. Icarus, 135, 265,
doi:10.1006/icar.1998.5984]. Direct correlation, using the sum of squared differences between image radiances as a distance estimator
(baseline case), yields displacement vectors very similar to this previous analysis. Combining this distance estimator with the method
of order ranks results in a technique which is more robust in the presence of outliers and noise and of better quality. Finally, we introduce
a distance metric which, combined with order ranks, provides results of similar quality to the baseline case and is faster. The new
approach can be applied to data from a number of space-based imaging instruments with a non-negligible gain in computing time.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Cloud features have been used successfully in the past as
tracers of the winds in the atmospheres of Venus (Rossow
et al., 1990), Mars (Wang and Ingersoll, 2003), Jupiter
(Vasavada et al., 1998) and Saturn (Sánchez-Lavega
et al., 1999), and are used routinely for deriving wind pat-
terns in the terrestrial atmosphere (cf. Schmetz et al., 1993).
Imaging systems in planetary missions typically produce
data in which the wavelength dimension adds to the two
1384-1076/$ - see front matter � 2007 Elsevier B.V. All rights reserved.
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spatial dimensions. Tracking of atmospheric features at
given wavelengths, in order to derive the winds, and the
construction of global maps from such large data volumes,
become particularly time-consuming if done manually.
This highlights the importance of automated procedures
capable of analyzing sequences of data cubes with minimal
user interaction.

We present here an automated method for cloud track-
ing (CT) which can be applied to planetary orbiter images
in general, and in particular to images from the Visible and
Infrared Thermal Imaging Spectrometer (VIRTIS) and
from the Venus Monitoring Camera (VMC), the two
experiments on board Venus Express which possess imag-
ing capabilities (Drossart et al., 2007; Markiewicz et al.,
2007). The method implements a digital correlator which
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compares two consecutive images and identifies patterns by
maximizing correlations between image sections, or blocks.
We have tested four variations of the technique, including
one, applied here for the first time, that compares favorably
with one of the existing methods. The method has been
tested on real cloud images by comparing both with cloud
motions due to a prescribed wind field and with real
motions. Section 2 makes a brief overview of CT methods.
Sections 3 and 4 present the method and the numerical tests
carried out for validation.

2. Overview

There are two problems associated with the tracking of
atmospheric tracers such as clouds. First, an individual,
homogeneous, cloud mass needs to be detected for tracking
in a pair of images. The second problem is the computation
of the velocity vectors, by identifying identical cloud
masses in the pair. Some methods do not address direct fea-
ture detection, and tracking is based on the complete image
instead of individual tracers. Most methods in use for iden-
tification are based on linear correlation, using the sum of
squared differences, the normalized correlation coefficient
or another measure of cross-correlation to find the corre-
spondence between the intensity distributions of certain
areas of the images.

One example of an automated tracer-based method is
described in Nieman et al. (1997). In the feature selection
stage, the gradient of the brightness is computed in a target
area, with size defined by the operator, and the maximum is
chosen for that target. To exclude undesired tracers, two
filters are applied to the targets. Targets with large gradi-
ents are selected as tracers, and are then checked by com-
puting their mean pixel brightness to ensure that no data
is missing. Targets are divided into boxes of 3 · 3 pixels,
where means and standard deviations are computed. Those
having deviations below a given threshold are analyzed
with a two-dimensional clustering scheme in order to deter-
mine the mean brightness for the coherent clusters, only
two clusters being allowed by target. The automated algo-
rithm then generates wind vectors by following the selected
tracers through a sequence of three images. The method
compares target boxes from the first image with a search
area of the second image. The minimum of the sum of
squared differences between the pixel brightnesses is chosen
as the best match for each target box, giving the first vec-
tor. The procedure is then repeated for the second and
third images, yielding a second vector, using the first vector
to predict a tracer on the third image. A final quality con-
trolled vector is based on the differences between the two
vectors.

Mukherjee and Acton (2002) present a scale-sensitive
image classification scheme to minimize the problems of
detection of cloud mass boundaries in feature selection.
The detection of a cloud mass boundary is essentially a
problem of image segmentation. The method detects
homogeneous cloud segments with minimum intra-segment
classification error, using a scheme for cloud detection
based on an area segmentation that preserves the morphol-
ogy of the cloud. This scale space segmentation consists of
constructing a set of scaled images, called scale space, using
operators that preserve the morphological shape of the
area, avoiding the distortion of region boundaries. A filter
is then applied to remove all the small areas with high
intensities (within a dark region) and small areas with
low intensities (within a bright region), allowing objects
with similar characteristics and intensities to be clustered,
grouping pixels in an image by measuring the distance from
a cluster center. The distance is defined as the sum of the
squared differences between the intensities at a given posi-
tion and the cluster mean, through all the scales in the scale
space. For the cloud tracking process, the scale space clas-
sification is applied to the areas of homogeneous cloud
mass determined in the images, extracting the segments
that present averaged intensities higher than the average
intensity of the background. The selected features are cloud
contours that remain almost stable over a sufficiently short
time span, and which can then be cross-correlated to find
spatial correspondences between the images.

A similar automated method, which tracks the con-
nected zones of infrared images (cloud shields) based on
best matches between successive images, is described in
Morel et al. (1997). A geographical area containing the
same cloud is selected in both images, its velocity is esti-
mated from earlier tracking iterations, and translations
are computed of the selected area. Trajectories are found
by minimizing the overlapping threshold between the
selected and the translated areas. This method has also
been used to build a database of trajectories and character-
istics of Mesoscale Convective Systems from Meteosat
infrared images.

Velden et al. (1997) describe the techniques for extract-
ing terrestrial water vapor motion from GOES-8/9 and
GMS-5 satellites. Feature selection is based on the bright-
ness temperatures of the clouds, isolating the lowest values
within a pixel array, computing local bidirectional gradi-
ents for comparison with empirically determined thresh-
olds, and selecting those with maximum value. The
tracking metric searches for the minimum of the sum of
the squared differences in radiance between the target and
the search arrays, in images with a 30-min interval.

In the planetary domain, Rossow et al. (1990) analyzed
pairs of ultraviolet image sequences from the Pioneer
Venus orbiter cloud photopolarimeter (OCPP), spanning
nine years. From images with 30 km nadir resolution,
spaced approximately 4 h apart, they determined wind
speeds at the cloud tops by measuring the motions of UV
cloud features. The smaller cloud features were assumed
to move with the bulk flow, and the larger cloud features
to represent large scale waves. They describe a fully auto-
mated technique with five steps. First the planetary coordi-
nates of each pixel in latitude/longitude are determined and
projected onto a standard latitude/longitude mapping.
Next a high-pass filter is applied to the images to eliminate
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large scale brightness gradients, enhancing the brightness
contrast. The third step is the target selection, which sys-
tematically samples the first of a pair of images, without
considering any specific features. Any location is consid-
ered a valid target, and a similar set of features is searched
on the second image of the pair. Target dimensions are
32 · 32 pixels, separated by 16 pixels, with an overlap of
50% between adjacent blocks, and the search region is an
array with 69 · 152 pixels, starting at the original location
of the target in the first image. The identification process is
associated with a maximum of correlation of the two
numerical arrays representing the target selected, and the
displacement of the feature is measured by the distance
between the center of the target in the first image and the
center of the region with maximum correlation in the
search area. A similar planetary application has been
the analysis of Galileo imaging data of Jupiter’s atmo-
sphere (Vasavada et al., 1998), which will be discussed in
Section 4.

Evans (1999) presents an alternative way to find the cor-
respondence between images through the application of
ordinal measures, combined with a correlation-relaxation
labeling approach. The method of ordinal measures, which
uses the relative order ranks of the image intensities, is
known to produce less mismatches than the usual linear
correlation methods (Bhat and Nayar, 1998). The distance
metric is based on the number of elements that have chan-
ged order from the first image to the second. After applying
the tracking method, displacement vectors with higher cor-
relations are marked as candidates, and the most appropri-
ate are selected by means of a probabilistic relaxation
algorithm (Evans, 2000). The method was tested in Meteo-
sat infrared images taken at a time interval of 30 min, yield-
ing a consistent flow suitable for interpretation.

3. Cloud tracking technique

Techniques of cloud tracking can be used for meteoro-
logical and dynamical studies. They are used, on the one
hand, for deriving winds, using cloud motion vectors as
input parameters to weather models and for studying the
dynamical behavior of weather systems. On the other hand,
CT provides valuable information on growth and dissipa-
tion of cloud masses. However, the behavior of cloud struc-
tures presents major difficulties to estimation techniques
based on automated image processing, since clouds change
shape as time passes, which makes it difficult to apply prin-
ciples of rigid motion. Another problem inherent in CT
techniques for planetary atmospheres (other than the
Earth’s) is that the available data frequently present high
noise and distortion, and are often sparse both spatially
and in time. In addition, the data volume from ground-
based observations and space missions is very limited com-
pared to terrestrial data.

For a pair of subsequent images, captured at a fixed time
interval Dt, the objective is to derive the displacement vec-
tors corresponding to the motion which occurred in the
interval between the first image A0(t0) and the second,
B0(t0 + Dt). Consider size(A0) = size(B0) = M · N, for sim-
plicity. If M and N are large, processing the data becomes
quite time-consuming and an automated and optimized
tool is necessary.

Defining a distance metric, measuring the distance
between the images and finding the best correspondence,
is one of the most important aspects of the algorithm. Sev-
eral metrics can be used. Many CT techniques compute the
cross-correlation directly from radiance. In this case the
cross correlation coefficient can produce mismatches when
in the presence of noise and deformation, since the radi-
ances of the pixels in an image are neither unique nor nor-
mally distributed.

Radiance, however, is not the only possible measure of
cloud brightness at a given point. For CT purposes, it
can be replaced without loss of generality with any other
such measure that preserves the intensity variations across
the image. A robust approach is to replace radiances with
their order ranks within the images, assigning to each pixel
its corresponding order number (Bhat and Nayar, 1998;
Evans, 1999). This is less sensitive to noise and represents
better the order relation between bright and dark areas
within a given area in the presence of feature motion. In
the following we shall refer to a value of such a general
measure of cloud brightness as a number of digital units
(DU).

The methods tested here are based on an algorithm of
maximum correlation between blocks of pixels, or sub-win-
dows, selected within the images being compared. Each
sub-window (A) in the first image is compared with all pos-
sible sub-windows (B) in the subsequent image in order to
retrieve displacement vectors. At the end of the comparison
stage, a filter (described at the end of this section) is applied
to the final vector field in order to remove incoherent vec-
tors. In the following discussion we shall use the terms sub-

window and box interchangeably with the same meaning.
We test four variations of the technique, based on com-

binations of two definitions of the distance between image
pairs (which we call 2D and semi-2D, described below)
with two definitions of image brightness (pixel radiances
and order ranks).

The first distance definition is based on a Euclidean met-
ric. The differences between DUs of the sub-windows are
first computed and then the distance, computed as the
mean squared difference between the images, is minimized:

dðp; qÞ ¼
Xm�n

l¼1

ðDUB �DUAÞ2=ðm� nÞ ð1Þ

where m and n are the number of rows and columns in the
sub-windows, and p and q are labels identifying sub-win-
dows in images A and B, respectively. Point (p, q)min at
the minimum of d is taken as the center of the displaced
sub-window in B.

The distance measure defined in Eq. (1) is a 2D, m · n

sum which depends on every pixel in the chosen box, and
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its computation is the top time-consuming point in the
algorithm. As an alternative approach we introduce a
semi-2D definition, which is a combination of Eq. (1) with
a 1D distance metric, based on the average values of the
box along each of the spatial directions. Consider the
distances

dk ¼
Xm

i¼1

ð½B� � ½A�Þ2=m ð2Þ

dr ¼
Xn

j¼1

ð½B� � ½A�Þ2=n ð3Þ

where square brackets denote a mean of the box over the
image rows in Eq. (2) and columns in Eq. (3) (with the re-
sult being a column vector and a row vector, respectively).
A first trial for the distance is computed as the minimum of
dðp1; q1Þ ¼ d2

k þ d2
r . However, since this is a poor estimator

of the displacement, we also use a second distance estima-
tion, d(p2,q2), from Eq. (1), but now only from the central
[m/2 · n/2] part of the box. Finally,

dðp; qÞ ¼ minðdðp1; q1Þ; dðp2; q2ÞÞ ð4Þ
is taken as the distance between the two sub-windows. This
semi-2D method has the advantage of reducing the com-
puting time by about 20% compared with Eq. (1).

Using the measured radiances of the images as DU can
sometimes produce poor results, due to the deformation
inherent in feature motion and to noise. The post-tracking
filter can in this case sometimes remove as many as two
thirds of the wind vectors, making the traditional approach
of directly comparing radiance values one of limited utility.

In the alternative definition of image brightness, radi-
ance pixel values are ordered and replaced with their rela-
tive order ranks, i.e., the darkest pixel value is replaced
with 1, and the brightest with the value m · n. In this case,
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Fig. 1. (a) Root-mean-squared error in horizontal (*) and vertical (+) velocity
with case C (circles and diamonds). (Note the different scales.)
pixels with equal radiances have to be separated by adding
some small value of random noise to them.

The correcting filter applied to the field retrieved at the
end of the comparison stage is similar to the one described
in Vasavada et al. (1998) A vector may be considered an
outlier and be removed if: (a) it has one of its components
longer than half the box size; (b) its length is more than
50% the 1st-neighbor average (four closest points); (c) its
orientation differs from the neighbor average by more than
30�. The filtered field thus obtained can be somewhat pat-
chy, but if the number of vectors left by the filter is suffi-
cient, it can be interpolated onto a regularly spaced mesh
to produce a smooth field (but this is not done here).

4. Numerical experiments

In the tests presented here we use the following combi-
nations of distance and DU definitions: Eq. (1) and image
radiances (case A); Eq. (1) and pixel order ranks (case B);
Eq. (4) and image radiances (case C); and Eq. (4) and order
ranks (case D).

Three batteries of tests have been carried out, using
images of Jupiter’s clouds from the Galileo spacecraft’s
Solid State Imaging system (SSI). In the Galileo operation
period, SSI acquired spatial, spectral and temporal cover-
age of many features in Jupiter’s atmosphere, such as the
Great Red Spot, belts and zones, hot spots and the white
ovals. A time series of multispectral image mosaics was col-
lected for each target region during each orbit. Mosaics
were obtained in four spectral bands of reflected sunlight,
in the violet (410 nm), near infrared continuum (756 nm),
and the two CH4 absorption bands at 727 and 889 nm.
The cloud morphology is seen to vary over 1-h intervals.

Vasavada et al. (1998) tracked cloud motions in the
Great Red Spot, the equatorial region and two of the white
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Fig. 2. Motions retrieved using a square box of 40 pixels (shown in red)
and the prescribed distorting field (blue arrows). RMSU,V are both equal
to 0.85, but decrease to 0.61 and 0.56 if a 20-pixel box is used.

Fig. 3. Motions retrieved for methods A, B and D. White arrows show the ret
correcting filter has been applied.
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ovals, both manually and automatically. In the manual
technique a human operator takes measurements by
matching cloud tracers on a pair of maps, displayed side-
by-side or blinking. The automated software maximizes a
two-dimensional cross-correlation within a predefined
box of pixels. The method is more successful at matching
tracers between maps separated by short time intervals
(1 h) than long ones (10 h), because the changing morphol-
ogy of the tracers does not allow to determine their loca-
tions accurately in the latter case. Measurements with
both the manual and automated techniques are consistent.

For testing with real data, we chose images of the white
ovals, which exhibit mostly ordered circular motions, while
on the rim of the ovals and cyclonic features more complex
motions with shear are apparent. The resolution for the
white ovals is on the order of 22–28 km px�1. The images
are analyzed in detail in Vasavada et al. (1998).

Our tests are based on a pair of SSI color composite
images separated by 1.4 h, showing a white oval and a
rieved displacements vector field and black arrows show the field after the
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cyclonic feature (Fig. 10 in Vasavada et al. (1998)). In the
first set of tests only one image (A0) is used in its original
form, with the second image (B0) being generated by apply-
ing the motion of a prescribed wind field to the first image.
The prescribed wind has been defined as
U ¼ U 0 þ u0 cosðkxX þ kyY Þ ð5Þ
V ¼ V 0 � v0 sinðkxX þ kyY Þ ð6Þ
where U and V are the horizontal and vertical components,
X and Y are image pixel numbers and kx and ky are defined
arbitrarily as kx = 2p/200 and ky = 2p/100. A given pixel,
(X0, Y0) in A0, is transported to position (X0 + UDt,
Y0 + VDt) in B0. While the constant terms amount to a
simple translation, the wave components allow to intro-
duce distortion in the second image. We have performed
a series of tests either with translation or distortion. In
the end of the test the retrieved wind field (Ur, Vr) is com-
pared with the prescribed one, using the root-mean-
squared error for each component, RMSU and RMSV, with

RMSU ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ðU r � UÞ2=Np

q
(and similarly for V), where

Np is the number of points where motions were computed.
To optimize the use of computer memory and time the tests
were restricted to a region 250 · 250 px within the white
Fig. 4. Test of the method on a complete image from Galileo SSI. Blue arrows
our results, for method A with a box size of 40 px and a 4 px box step.
oval. In tests with prescribed motions we use methods A
and C as defined above, with Dt = 1 and square boxes.

The method handles simple translations (u0 = v0 = 0)
successfully, as expected, yielding a null RMS error when-
ever the displacements are within the box size (U0 and
V0 6 m/2).

Wave motions are also well retrieved, albeit with a loss
of accuracy as their amplitude increases. Fig. 1 shows
RMSU and RMSV versus u0 and v0, respectively, for a ser-
ies of tests made with a box of 40 by 40 pixels. The values
used for (u0, v0) were (�1, �1), (1, 1), (�3, �3), (3, 3),
(�5, �5), (�5, 5), (5, �5), (5, 5), (�10, 10) and (10, �10).
Panel (a) shows case A only, while panel (b) shows a com-
parison with case C.

Fig. 2 shows the retrieved wind field for the case
u0 = v0 = 3. In this case, if the box size is divided by 2, then
the RMS error decreases from �0.85 to 0.6 in both compo-
nents, indicating that for motions with distortion the accu-
racy of the method is sensitive to that parameter. For the
40-px box used in Fig. 1a, case C compares favorably with
case A because the distorting motion favors a smaller box.
Case C is also faster.

In the second set of tests we use both images in the SSI
pair. Instead of a prescribed motion, the method retrieves
the physical displacements of the features from the first
show the wind field derived by Vasavada et al. (1998) and red arrows show



Fig. 5. Same as Fig. 4 for the white oval only and a box size of 32 px. Note
the larger patches of blank areas left after correction, due to the smaller
box size.
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to the second image. In Fig. 3, methods A, B and D are
compared. The selected region is 340 · 320 px, containing
the white oval. From a total of 1088 vectors, the correcting
Fig. 6. Same as Fig. 4 for the white oval only and for method B. Note
filter removes 26% in case A, 13% in case B, 53% in case C
(not shown) and 24% in case D. The similar results for
methods A and D, with D being 20% faster, make the latter
a better choice than the classical approach of case A used in
Vasavada et al. (1998). The quality of results for case B
make the combination of the classical distance measure
with order ranks the best approach overall.

In the third group of tests we also use both images in the
SSI pair, and the retrieved field is compared with the results
of Vasavada et al. (1998). The box size was tested with
dimensions ranging from 20 · 20 to 50 · 50 px. The num-
ber of pixels between successive box positions (box step)
is not important for the vectors retrieved, affecting only
the spatial density of the field. We tested values between
4 and 10 pixels for the box step. Fig. 4 shows a comparison
between case A (red arrows) and Vasavada et al. (1998)
(blue arrows) for the full image (500 · 1000 px). From
experience, the optimal box size is on the order of 40 px.
Smaller boxes produce worse results. Fig. 5, where a 32-
px box was used, shows larger patches of blank areas where
the filter removed incoherent vectors.

Results for case B are shown in Fig. 6, where it was the
only one producing displacement vectors in the low con-
trast region at the center of the oval.

In order to compare results quantitatively, both vector
fields (after filtering) have to be interpolated onto the same
the better results (absence of blank areas) at the center of the oval.



Fig. 7. Comparison between the vector fields of Vasavada et al. (1998) (in black) and case D (white arrows), after filtering and interpolation onto a
regularly spaced grid.
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regular grid (Fig. 7). The root-mean-square difference
between the retrieved vector field in case D and the results
of the digital correlator of Vasavada et al. (1998) is 2.5 pix-
els. The mean displacement (computing the field for the full
image) is 8.4 pixels. Since they do not cite the mean error of
their wind retrievals, the similarity of the results of both
schemes is difficult to assess.

The four variations of the method presented here
impose few requirements, are simple and fast to execute.
The consecutive images must present a minimum amount
of spatial overlap, at least equal to the box size, and they
need to have similar spatial resolutions. The spatial overlap
sets an upper limit on the time interval between the images.
The minimum overlap required, equal to the box size, leads
to a very patchy vector field. It must be greater than half
the field of view, in order to ensure the continuity of the
vector field.

The image overlap depends on the detector field of view
and on its distance to the planet, as well as on the wind
velocity. For an instrument such as VIRTIS on Venus
Express, with a FOV of 64 mrad, at a typical distance of
10,000 km, Venus cloud tops moving with zonal wind
speed �100 ms�1 move across one FOV in �107 min, mak-
ing the maximum time interval �53 min.

To optimize computer memory and time, large images
have to be divided into smaller ones, typically 100 ·
100 px, which are treated separately. The partial vector
fields for the various sub-images are stored and merged
together to create the final field.

5. Conclusions

We have presented four variations of a method for
retrieving cloud motion vectors, based on the correlation
between two consecutive images. We have intentionally
avoided the problem of direct feature detection (Morel
et al., 1997; Mukherjee and Acton, 2002), which requires
extensive computational power. The method produces
coherent results for satellite images that respect certain
conditions regarding the time interval between them and
the resolution. Experiments with different cases have
shown that valid information can be retrieved for various
types of motion, including pure translation, rotation, and
in the presence of more complex cloud deformation.

Our method A is similar to the basic digital correlators
described in Vasavada et al. (1998), Rossow et al. (1990), Vel-
den et al. (1997) and Nieman et al. (1997). Method B, with the
same distance metric but correlating order ranks (Bhat and
Nayar, 1998) rather than radiances, is more robust for han-
dling real images, while keeping a computational load com-
parable to case A. As long as computer time is not an issue, it
is shown to be the best approach to the problem.
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The distance metric introduced in cases C and D is an
interesting alternative to the classical metric. Although it
gives poor results for real images when correlating radi-
ances (case C), combined with order ranks (case D) it yields
results qualitatively very similar to the classical method,
with a gain of �20% in computer time.

Our principal objective with this work has been to create
a tool to analyze planetary imaging data, in particular from
Venus Express (VEx) and its VIRTIS and VMC instru-
ments. In April 2006, VEx was inserted into Venus orbit,
and started its mission to unveil the Venusian atmosphere
and surface with unprecedented precision. Ground-based
observations and atmospheric modeling will complement
satellite data in important ways, providing data at different
wavelengths and altitude levels, and helping to understand
mechanisms which are not apparent from the separate
analysis of the various data sets.

Winds and temperatures obtained through VEx data
analysis will allow the characterization of the dynamics
of the Venus atmosphere in great detail. The present
method of cloud tracking can be applied to quickly derive
dynamical information from atmospheric feature motions.
It will help to understand superrotation and the mecha-
nisms controlling the northern and southern polar vortices,
to characterize wave phenomena with sufficient spatial and
temporal resolution, and to measure winds for data assim-
ilation purposes, testing and fine tuning general circulation
models.

This method is also available to the general scientific
community by contacting the authors.
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