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E-mail: mgracio@uevora.pt
3Department of Quantitative Methods,

Instituto Superior de Ciências do Trabalho e da Empresa,

Avenida das Forças Armadas, 1649-026 Lisboa, Portugal

E-mail: diana.mendes@iscte.pt
4ISEL-Instituto Superior de Engenharia de Lisboa,

Department of Chemistry, Mathematics Unit,

Rua Conselheiro Emı́dio Navarro,

1949-014 Lisboa, Portugal

and CIMA-UE, Universidade de Évora
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The study of economic systems has generated deep interest in exploring the complexity of chaotic
motions in economy. Due to important developments in nonlinear dynamics, the last two decades
have witnessed strong revival of interest in nonlinear endogenous business chaotic models. The
inability to predict the behavior of dynamical systems in presence of chaos suggests the application
of chaos control methods, when we are more interested in obtaining regular behavior. In the present
article we study a specific economic model from the literature. More precisely, a system of three
ordinary differential equations gathering the variables of profits, reinvestments and financial flow of
borrowings in the structure of a firm. Firstly, using results of symbolic dynamics, we characterize
the topological entropy and the parameter space ordering of kneading sequences, associated with
one-dimensional maps that reproduce significant aspects of the model dynamics. The analysis of the
variation of this numerical invariant, in some realistic system parameter region, allows us to quantify
and to distinguish different chaotic regimes. Finally, we show that complicated behavior arising from
the chaotic firm model can be controlled without changing its original properties and the dynamics
can be turned into the desired attracting time periodic motion (a stable steady state or into a reg-
ular cycle). The orbit sabillization is illustrated by the application of a feedback control technique
initially developed by Romeiras et al. [1]. This work provides another illustration of how our under-
standing of economic models can be enhanced by the theoretical and numerical investigation

of nonlinear dynamical systems modelled by ordinary differential equations.

PACS numbers: 89.65.Gh, 89.70.Cf, 89.75.Fb, 05.45.Ac

I. INTRODUCTION

One of the main subjects in economic dynamics is con-
cerned with the explanation of the nature of fluctuations
in economy. Most economic variables, such as gross do-
mestic product, interest rates, production, stock prices as
well as profits, investments and financial flow of borrow-
ings, exhibit fluctuations over time: for instance these
vary from fairly regular business cycles to very irregular
fluctuations.

Inspired from chaos theory, economists (see [2] and [3])
started looking for nonlinear models generating erratic
time series similar to the patterns observed in real busi-
ness cycles. This search led to new nonlinear systems
within the paradigm of optimizing behavior and perfectly
competitive markets, generating chaotic business fluctu-
ations.

A work on nonlinear dynamics and chaos may
prompt us to ask a preliminary question: why
should economists be mindful of chaos? A com-
pelling and plausible reason to apply the chaos
theory is due to the fact that chaos is no way a
rare or pathological occurrence and the obtained
results may be both mathematically sound and
economically relevant.

The existence of deterministic dynamical sys-
tems with chaotic or ‘strange’ behavior has been
known for over a century. The first discoverer of
chaos was Henri Poincaré, in 1890, while study-
ing the three-body problem. He found that sim-
ple, nonlinear, low-dimensional dynamical sys-
tems could exhibit very complicated behavior
Despite initial insights in the first half of the 20th

century, the theory of chaos became formalized
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only after mid-century. In fact, the idea of chaos
remained dormant for several years, in spite of
some fundamental contributions to the field such
as those made by Birkhoff, Cartwright and Little-
wood. The main catalyst for the development of
chaos theory was made possible by the availabil-
ity of electronic computers. A primary example
of the use of electronic computers was the work
of Lorenz, in the early sixties, whose interest in
chaos came about accidentally through his stud-
ies in the context of a numerical investigation of a
model of atmospheric turbulence. The electronic
computation allowed the ‘step-by-step’ numerical
integration of the differential equations involved
in the model. Some of the important contribu-
tors to this new research field were Smale, Ru-
elle and Takens who provided significant theoret-
ical results on chaotic dynamics and ‘strange’ at-
tractors. Other relevant studies were produced
both in the ergodic and in the geometric theory
of chaos by, among others, Kolmogorov, Arnold,
Anasov, Silnikov and Sinai. Currently, chaos the-
ory continues to be a very active research area
involving many different disciplines. A general
view about the chaos theory history is given in
the fascinating book [4] by James Gleik. The
reader can also find in [5] fundamental mathemat-
ical concepts and results in the nonlinear science
or theory of chaos.

The application of chaos theory to the analysis of a
web of complex interactions among economic structures
is particularly relevant and has generated extensive re-
search programs. With the purpose of understanding this
complexity, it is important to carefully study basic finan-
cial structures. In this context, the detailed examination
of the chaotic behavior of dynamical variables involved
in the financial structure of a firm, is accepted as critical
to the study of important economic systems.

In order to isolate essential aspects of a firm dynamics,
S. Bouali proposed in [6] a system of ordinary differen-
tial equations, extremely rich in complex dynamics, that
contains just three dynamical variables: profits, reinvest-
ments and financial flow of borrowings. With a nonlinear
relation of reinvestments, the numerical simulations car-
ried out in [6] suggest that the debt (i.e., the financial
flow of borrowings) injects perturbation into the profit
motion and seems to act as a chaos generating mecha-
nism.

In recent years, there has been a considerable re-
search effort into the analysis of chaotic systems. For
instance, control, targeting, synchronization and fore-
casting of chaotic motion have proved well established
results in the fields of applied mathematics, economy,
physics and engineering. In particular, since the publi-
cation of the seminal paper of Ott, Grebogi and Yorke
in 1990 ([7]), there has been a great deal of progress in
the development of techniques for the control of chaotic
phenomena, with applications, for example, to economy,

biochemistry, cardiology, communications, physics labo-
ratories and turbulence. The central question addressed
in the theory of chaos control is: given a chaotic system,
how can we obtain improved performance and achieve a
desired attracting time-periodic motion by making small
controlling temporal perturbations in an accessible system
parameter? ([1]).

In the context of economy, practical methods of this
new and exciting field can be applied to show that the
presence of chaotic motion in economic process does not
necessarily need to be interpreted as a curse for economic
theory and economic policy ([8]). Particularly, in order
to control economic chaotic motion, we do not need to
change the fundamental characteristics of the system, we
just have to impose upon the dynamics some small per-
turbations. The application of small external perturba-
tion to the model leaves the main features unchanged and
is able to eliminate large business cycles.

The aim of the present article is to provide a contribu-
tion for the detailed analysis of the chaotic behavior of
the Bouali model through the introduction, and compre-
hensive study of one-dimensional maps associated to the
system, in terms of symbolic dynamics theory. In fact,
we can gain some fundamental qualitative insights about
the principles and mechanisms underlying chaotic behav-
ior by studying low-dimensional maps, that incorporate
representative dynamical properties of the system’s at-
tractor.

A quantifier for the complex orbit structure - an at-
tribute used to define chaos - is the topological entropy.
This attribute of chaos can be efficiently used to perform
chaos control strategies. We also exhibit an application of
the pole placement control technique, initially proposed
by Romeiras et al. ([1]) as an extension of the OGY
method (due to Ott, Grebogi and Yorke) carried out in
[7]. In their work, these authors emphasize the fact that a
chaotic attractor typically has embedded densely within
it an infinite number of unstable periodic orbits. With
small controlling perturbations to the system, the aim of
this process is not to create new orbits with very different
properties from the already existing ones, but to exploit
the existing unstable periodic orbits in the absence of
control. The control method will be applied consider-
ing the discrete time system obtained from the induced
dynamics on a Poincaré section in the neighborhood of
the desired periodic orbit. This technique involves the
construction of a stabilizing linear map, obtained from a
least squares fitting, using the Poincaré section points.

II. DESCRIPTION OF THE MODEL

The Bouali firm model is written in first-order au-
tonomous differential equations and explores the dynam-
ics of three endogenous variables: profits (P ), reinvest-
ments (R) and financial flow of borrowings (F ). In the
next lines, we provide some details, established in [6], of
each differential equation.
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(a) Profits equation

The reinvestments R and the flow of borrowings F are
at the origin of profit creation. Therefore,

dP

dt
=

1

v
(R + F ) ,

where the coefficient 1/v represents the rate of profits.

(b) Reinvestments equation

The reinvestments are made up of a fraction of profits
according to the proportion m and of the capitalization
of reinvestments which are reassessed yearly at rate n,

dR

dt
= mP + n

(

1 − P 2
)

R.

In this relation, when the profit reaches the value 1, then
the nonlinear part (1 − P 2) becomes null and the yearly
reinvestments shall remain at a constant trend m. The
remainder of the profits as well as the capital added value
are distributed as dividends. Indeed, so long as the profit
doesn’t reach the unity threshold, the profits will be re-
injected into the financing circuit of the firm. On the
other hand, beyond the profit threshold (P > 1), the
great movement of dividend distribution reduces the cap-
italization.

(c) Flow of borrowings equation

The firm can choose an increase of its capital by bor-
rowing according to the debt rate s proportional to self-
financing and by deducting a fraction of profits according
the interest rate r, that is

dF

dt
= −rP + sR.

Gathering the previous information, we obtain the sys-
tem

dP
dt

= 1
v

(R + F )

dR
dt

= mP + n
(

1 − P 2
)

R

dF
dt

= −rP + sR

(1)

with P , R, F the dynamical variables in study and v, m,
n, r, s the parameters (v ≥ 1, m > 0, n > 0, 0.05 ≤ r ≤
0.1 and 0.2 ≤ s ≤ 0.4).

It is important to emphasize that, in a real eco-
nomic context, the heuristic Bouali system can be
used to analyze the asymptotic behavior of the fi-
nancial dynamics of a firm, where the units of
time are chosen so that time could be anything
from hours to days. As we will see below, the
interpretation given to the model dynamics is in
harmony with the established timescales.
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FIG. 1: Solution visualized as a trajectory in the three-
dimensional space for r = 0.068 and s = 0.366.

III. UNIMODAL MAPS. SYMBOLIC

DYNAMICS, TOPOLOGICAL ENTROPY AND

CHAOS

As we mentioned before, this article aims to introduce
and carefully study a family of one-dimensional maps
which allows us to characterize, in terms of symbolic
dynamics theory, representative chaotic features of the
Bouali firm model. For numerical investigation we will
use throughout v = 4.0, m = 0.04, n = 0.02 and con-
sider r and s as control parameters. As we saw earlier,
the parameter r is an interest rate and the parameter s
is a debt rate (0.05 ≤ r ≤ 0.1 and 0.2 ≤ s ≤ 0.4).

Using numerical integration of the system (1), we can
gain some insights about the geometry of the trajecto-
ries in the long run. After an initial transient, a struc-
ture emerges when the solution (P (t), R(t), F (t)) is visu-
alized as a trajectory in three-dimensional space (Figure
1). Some projections of the three-dimensional trajectory
onto a two-dimensional plane are exhibited in Figure 2
and in Figure 3

A comprehensive study of large-dimensional systems
usually involves the evaluation of the possibility to per-
form their one-dimensional discrete-time representation.

With the purpose of understanding the main features
of our three-dimensional flow, it is possible to construct
one-dimensional maps recording the successive relative
(local) maxima of the numerical solution P (t), which rep-
resents the profits (see Figure 4).

These iterated maps consists of pairs (Pn, Pn+1), where
Pn denotes the nth local maximum. As shown in Figure
5, the data from the chaotic time series appear to fall on
a logistic curve. Indeed, treating the graph as a function
Pn+1 = f(Pn) allow us to reveal particularly interesting
features about the dynamics on the attractor. It is im-
portant to notice that, clearly, there are no a priori rea-
sons for there to be any definite unidimensional relation
between such consecutive values. The one-dimensional
behavior is one of the noteworthy and eye-catching fea-
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FIG. 2: Projection of the three-dimensional trajectory onto
the PR-plane for r = 0.068 and s = 0.366.
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FIG. 3: Projection of the three-dimensional trajectory onto
the FP -plane for r = 0.068 and s = 0.366. The meaning of
the dashed line is assigned below.

tures of the dynamics.
The obtained iterated maps dynamically behave like a

unimodal map, that is, continuous map on the interval
with two monotonic subintervals and one turning point.
In order to see the long time behavior for different values
of the control parameters s and r at once, we plot typi-
cal bifurcation diagrams (see Figure 6 and Figure 7). An
increase of the parameter values induces period-doubling
cascade in the dynamics of profits. We can observe that
for s increasing the profits are increasing too (Figure 6)
and when the interest rate r is growing the profits are de-
creasing (Figure 7). Insofar, these numerical simulations
strongly suggest that the solutions of the model may in-
deed be chaotic for a large region of the parameter space.
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FIG. 4: Time sequence of profits for r = 0.068 and s = 0.366.
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FIG. 5: The iterated map constructed from the successive
local maxima of profit values (r = 0.068 and s = 0.366).

At this point, we are in position to devote our attention
to the study of the topological entropy of the logistic-like
maps using results of symbolic dynamics theory.

The techniques and ideas of symbolic dynamics have
found significant applications. One simplification in the
study of dynamical systems is to discretize time, so that
the state of the system is observed only at discrete ticks
of a clock, like a motion picture. This leads to the study
of the iterates of a single transformation. The theory of
symbolic dynamics arose as an attempt to study systems
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FIG. 6: Bifurcation diagram for P as a function of s, with
r=0.068 and s ∈[0.2,0.4].
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FIG. 7: Bifurcation diagram for P as a function of r, with
s=0.3 and r ∈[0.05,0.1].

by means of discretizing space as well as time. The idea
is to divide up the set of possible states into a number
of pieces, and keep track of which piece the state of the
system lies in at every tick of the clock. Each piece is
associated with a symbol, and in this way the evolution
of the system is described by a sequence of symbols. This
leads to a symbolic dynamical system that helps us to un-
derstand the dynamical behavior of the original system.
The paper of Milnor and Thurston [9] sets up an effec-
tive method for describing the qualitative behavior of the
successive iterates of a piecewise monotonic mapping.

In what follows, we apply techniques of symbolic dy-
namics, in particular some results concerning to Markov
partitions associated with unimodal maps. For more de-
tails see [9], [10] and [11].

A unimodal map f on the interval I = [a, b] is a 2-
piecewise monotone map with one critical point c. Thus
I is subdivided into the following sets:

IL = [a, c[, IC = {c}, IR =]c, b],

in such way that the restriction of f to interval IL is
strictly increasing and the restriction of f to interval IR

is decreasing (see Figure 5). Each such maximal intervals
on which the function f is monotone is called a lap of f ,
and the number ℓ = ℓ (f) of distinct laps is called the
lap number of f . Starting with the critical point of f , c
(relative extremum), we obtain the orbit

O (c) =
{

xi : xi = f i (c) , i ∈ N
}

.

With the purpose of studying the topological properties,
we associate to the orbit O (c) a sequence of symbols,
itinerary (i(x))j = S = S1S2...Sj ..., where Sj ∈ A =
{L, C, R} and

Sj = L if f j (x) < c,
Sj = C if f j (x) = c,
Sj = R if f j (x) > c.

The turning point c plays an important role. Since the
dynamics of the interval is characterized by the symbolic
sequence associated to the critical point orbit. When

O(c) is a k-periodic orbit, we obtain a sequence of sym-
bols that can be characterized by a block of length k, the
kneading sequence S(k) = S1S2...Sk−1C.

We introduce, in the set of symbols, an order relation
L < C < R. The order of the symbols is extended to the
symbolic sequences. Thus, for two of such sequences P
and Q in AN, let i be such that Pi 6= Qi and Pj = Qj for
j < i. Considering the R-parity of a sequence, that is the
odd or even number of occurrence of a symbol R in the
sequence, than if the R-parity of the block P1...Pi−1 =
Q1...Qi−1 is even we say that P < Q if Pi < Qi. And if
the R-parity of the same block is odd, we say that P < Q
if Pi > Qi. If no such index i exists, then P = Q.

The ordered sequence of elements xi of O (c)
determines a partition P(k−1) of the interval I =
[

f2(c), f(c)
]

= [x2, x1] into a finite number of subinter-
vals labeled by I1, I2,..., Ik−1. To this partition we
associate a (k − 1)× (k − 1) transition matrix M = [aij ]
with

aij =

{

1 if Ij ⊂ f (Ii)
0 if Ij  f (Ii)

.

Now we consider the topological entropy. As we
pointed out before, this important numerical invariant
is related to the orbit growth and allows us to quantify
the complexity of the dynamics. It represents the ex-
ponential growth rate for the number of orbit segments
distinguishable with arbitrarily fine but finite precision.
In a sense, the topological entropy describes in a sug-
gestive way the total exponential complexity of the orbit
structure with a single number.

A definition of chaos in the context of one-
dimensional dynamical systems states that a dy-
namical system is called chaotic if its topological
entropy is positive. Thus, the topological entropy
can be computed to express whether a map has
chaotic behavior, as we can see in [12] and [13]. In
these references, Glasner and Weiss, in a discus-
sion of Devaney’s definition (of chaos), proposed
positive entropy as a strong property for the char-
acterization of complex dynamical systems, more
precisely, as the essential criterium of chaos. Im-
portant results were constructed using this prop-
erty (please see [14] and [15]).

The topological entropy of a unimodal interval map f ,
denoted by htop (f), is given by

htop (f) = log λmax(M (f)) = log s (f) ,

where λmax(M (f)) is the spectral radius of the transition
matrix M (f) and s (f) is the growth rate,

s (f) = lim
k→∞

k

√

ℓ(fk),

of the lap number of fk (kth-iterate of f) (see [9], [16]
and [17]). In summary, for each value of the parameter,
the computation begins with the symbolic codification
of the critical point orbits which determines a Markov
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partition of the interval. Then we compute the transition
matrix associated with the Markov partition. Finally,
the topological entropy is given by the logarithm of the
highest eigenvalue of this transition matrix.

In order to illustrate the outlined formalism about the
computation of the topological entropy, we discuss the
following example.

Example 1 Let us consider the map of Figure 5. The
orbit of the turning point defines the period-5 kneading
sequence (RLLRC)∞. Putting the orbital points in order
we obtain

x2 < x3 < x0 < x4 < x1 .

The corresponding transition matrix is

M(f) =







0 1 1 0
0 0 0 1
0 0 1 1
1 1 0 0







which has the characteristic polynomial

p(λ) = det(M(f)−λI) = 1 − λ − λ2 − λ3 + λ4.

The growth number s(f) (the spectral radius of matrix
M(f)) is 1.72208.... Therefore, the value of the topolog-
ical entropy can be given by

htop (f) = log s (f) = 0.543535... .

To be more comprehensive we plot in Figure 8 and Fig-
ure 9 the variation of the topological entropy with each
of the parameters. As we can observe, there are large pa-
rameter intervals where the dynamic of the Bouali system
is chaotic.

As far as the interpretation of the Bouali system
is concerned, we emphasize that this firm model
analyzes an asymptotic chaotic behaviour of the
financial dynamics of a real firm. This chaotic
state does not occur for real firms for long term
but only for hours or days. The financial actions
of managers break the instability and the strange
atractor disappears. These managerial actions at
least change the kind of instability but are unable
to give a steady state growth. The model is an
heuristic system. It shows the risks of some con-
junction of facts leading to the chaotic attractors.

Notice that the symbolic dynamics theory, par-
ticularly the study of the kneading sequences, al-
lows us to represent the curves, in the parameter
space, corresponding to the periodic orbits of the
turning point C. The diagram of Figure 10 shows how
the periods (n ≤ 5) are organized throughout the param-
eter space considered (whose pairs of values (s, r) corre-
spond to logistic-like maps). From left to right in Fig-
ure 10, the corresponding kneading orbits are: 1-period -
C∞, 2-period - (RC)∞, 4-period - (RLRC)∞, 5-period -
(RLRRC)∞, 3-period - (RLC)∞, 5-period - (RLLRC)∞

0.25 0.3 0.35 0.4
s

0

0.2

0.4

0.6

0.8

1

htop

FIG. 8: Variation of the topological entropy for s ∈[0.2,0.4]
with r=0.068.
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r

0

0.2
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0.8

1

htop

FIG. 9: Variation of the topological entropy for r ∈[0.05,0.1]
with s=0.3.

and 4-period - (RLLC)∞. The sr-parameter space order-
ing of the kneading sequences leads to the identification
of different levels for the topological entropy, which re-
mains constant over each curve. Therefore, with this
procedure, we are able to identify values of the
debt rate s and values of the interest rate r which
correspond to different levels of complexity. The
following scheme represents some kneading sequences and
the corresponding topological entropy.

Kneading
sequences

Characteristic
polynomial

Topological
entropy

RC 1 − t 0
RLRC −1 + t + t2 − t3 0
RLRRC −1 + t − t2 − t3 + t4 0.414013...
RLC −1 − t + t2 0.481212...
RLLRC 1 − t − t2 − t3 + t4 0.543535...
RLLC 1 + t + t2 − t3 0.609378...

This is an example of how our understanding of the
parameter space can be enhanced by the techniques of
symbolic dynamics.
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FIG. 10: Periodic orbits (n ≤ 5) of the turning point C

in the parameter region. From left to right, the corre-
sponding kneading sequences are: C

∞, (RC)∞, (RLRC)∞,
(RLRRC)∞, (RLC)∞, (RLLRC)∞ and (RLLC)∞.

IV. CONTROL OF THE CHAOTIC FIRM

MODEL

In some practical economic situations it is desirable
to obtain regular and short-time predictable behavior,
particularly stable equilibrium instead of chaotic orbits.
In fact, and as pointed out before, the financial
managers can act over some adequate control pa-
rameters in order to break the instability and to
make the chaotic scenario disappear.

We begin by pointing out that the continuous time dy-
namics of the firm model can be discretize via a Poincaré
section, which reduces, by one unity, the dimension of the
phase space. Now, we briefly describe the construction
of a Poincaré map.

Consider a n-dimensional system dx/dt = f (x). Let V
be a (n − 1)-dimensional surface, called a Poincaré sec-
tion. V is required to be transverse to the flow. We define
a Poincaré map T from V to itself, obtained by following
trajectories from one intersection with V to the next. If
xn ∈ V denotes the nth intersection, then the Poincaré
map is defined by xn+1 = T (xn). In our particular case,
we have a system with three dynamical variables P , R
and F. Since the control is usually designed for parame-
ter values where the system is known to exhibit chaotic
motion we fix, for illustrative purposes, the parameter
values r = 0.068 and s = 0.366, where the sys-
tem’s attractor exhibits positive topological entropy (see
Example 1). We consider a Poincaré plane of the form
F = k, k ∈ R, namely, F = −0.2 (see dashed line in
Figure 3). We record the successive intersections of the
trajectory with the plane, which are specified by two co-
ordinates: Pn and Rn. This is the discrete map we are
going to consider. In the next lines we will apply the pole
placement control method to the discrete Poincaré map
in order to stabilize a unstable period-one orbit embed-
ded in the chaotic attractor. By applying small adequate
chosen perturbation to the dynamical system, the origi-
nal chaotic trajectory can be converted into the desired
stable fixed point. We consider the established fixed val-
ues for the parameters v, m, n and r, and allow the

parameter s to vary in some small interval |s − s0| < δ,
δ > 0, around the nominal value s0 = 0.366, for which
the map has a chaotic attractor.

The pole placement technique (see [18] and [1]), which
is a feedback control method, extends the OGY method,
allowing for a more general choice of the so called feed-
back matrix.

In our Poincaré surface of section F = −0.2 the unsta-
ble fixed point to be stabilized is located approximately
at (P ∗, R∗) = (7.01449, 0.306068). The control strategy
consists in finding a stabilizing local feedback control law,
which is a linear map, obtained by using least squares fit-
ting on the sampled data in a small neighborhood of the
fixed point (P ∗, R∗) given by





Pt+1 − P ∗

Rt+1 − R∗



 = A





Pt − P ∗

Rt − R∗



 + B(ρ − ρ0) (2)

where

A =





0.645454 −4.97596

−0.00694097 −0.191934



 , B =





4.00994

0.41350





(3)
and (ρ − ρ0) corresponds to a parameter which is avail-
able for small perturbations to be applied to the control
law (2). The ergodic nature of the chaotic dynamics en-
sures that the state trajectory eventually enters into the
neighborhood of the fixed point. Once inside, we apply
the stabilizing feedback control law in order to steer the
trajectory towards the desired orbit.

Now, we verify whether the system is controllable. A
system is called controllable if a matrix K1×n can be
found such that A − BK has any desired eigenvalues.
This is possible if rank(C) = n, where n is the dimension
of the state space and C is the (n × n) matrix

C =

[

B
... AB

... A2B
... ...

... An−1B

]

.

In our case it follows that

C =

[

B
... AB

]

=











4.00994
... 0.530674
...

0.41350
... −0.107198











(4)

which has rank 2, and so the system is controllable. This
matrix C is the controllability matrix.

Assume in a small neighborhood around the fixed point
(P ∗, R∗),

ρ − ρ0 = −K





Pt − P ∗

Rt − R∗



 , (5)

where K =
[

k1 k2

]

is a constant vector to be deter-
mined.
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The linearized map becomes





Pt+1 − P ∗

Rt+1 − R∗



 = [A − BK]





Pt − P ∗

Rt − R∗



 , (6)

with [A − BK] given by





0.645454− 4.00994 k1 −4.975956− 4.00994 k2

−0.00694097− 0.41350 k1 −0.191934− 0.41350 k2



 ,

which shows that the fixed point is then stable as long
as the (2× 2)− matrix A−BK is asymptotically stable,
that is, all its eigenvalues have modulus less than unity.

The determination of K, such that the eigenvalues of
the matrix A−BK have specified values is called, in the
theory of control systems, pole placement technique. The
eigenvalues λ1 and λ2 of the matrix A−BK are called the
regulator poles, and the problem of placing these poles at
the desired location, by choosing K with A and B given,
is the pole placement problem.

In our particular case, the characteristic polynomial,
associated to the matrix A − BK, is given by

p(λ) = λ2 + (−0.45352 + 4.00994 k1 + 0.4135 k2)λ +

+(−0.158423− 1.28791 k1 − 0.294728 k2).

Since the eigenvalues verify the equations

λ1λ2 = −0.158423− 1.28791 k1 − 0.294728 k2 and

λ1 + λ2 = −(−0.45352 + 4.00994 k1 + 0.4135 k2),

the lines of marginal stability can be determined by solv-
ing the equations

λ1 = ±1 and λ1λ2 = 1.

These conditions guarantee that the eigenvalues λ1 and
λ2 have modulus less than unity for k1 and k2 within a
certain region. This region is define by the three lines of
marginal stability:

k2 = −3.93048− 4.36983 k1,

k2 = −3.28725− 22.9181 k1,

k2 = 1.82865− 7.48044 k1.

We obtain stable eigenvalues considering k1 and k2 within
the triangular region depicted in Figure 11. Selecting,
for example, k1 = 0.8 and k2 = −5 inside the triangular
region, Ω, and applying the control linear law (2) we
obtain the desired time period-one orbit (see Figure 12
and Figure 13). At this stage it should be pointed
out that depending on the values of k1 and k2 in the
basin of attraction Ω, the controlled orbit will converge
towards the fixed point but takes different periods of time
in order to fully accomplish the convergence process. The

-0.5 0 0.5 1 1.5 2 2.5
k1

-10

-5

0

5

k2
W

FIG. 11: The bounded region Ω that corresponds to stable
regulator poles.
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FIG. 12: Time series data for the discrete Poincaré map with-
out and with control, setting r

2

n = P
2

n + R
2

n. The control is
activated after the 84th iterate.

chaotic trajectory will also converge to the desired fixed
point if, in contrast, we consider fixed values of k1 and
k2 and randomly choose some initial conditions inside the
neighborhood of (P ∗, R∗).

Theoretically, after switching on the control, the or-
bit continues to perform chaotic behavior for some time,
unchanged from the uncontrolled case, because it is no
close enough to the fixed point. After some steps this is
eliminated and the orbit is rapidly brought to the fixed
point. The pole placement control strategy works very
well for the chaotic firm model. In fact, our numeri-

0 50 100 150 200 250
n

30

35

40

45

50

55

rn2

FIG. 13: Time series data for the discrete Poincaré map with-
out and with control, setting r

2

n = P
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2

n. The control is
switched off after the 200th iterate.
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cal simulations revealed a fast convergence for different
initial conditions in the neighborhood of (P ∗, R∗) and
different values of k1 and k2 in region Ω.

V. FINAL CONSIDERATIONS

In this paper we have provided new insights into the
study of an economic model presented by S. Bouali,
which explores the dynamics of three continuous vari-
ables: profits, reinvestments and financial flow of bor-
rowings. The extremely rich and complex behavior of
this model allowed us to apply different theoretical and
numerical approaches. More precisely, we analyzed the
model in terms of symbolic dynamics theory and in terms
of applicability of chaos control theory.

In the field of economic sciences, where comprehen-
sive studies about chaotic attractors in terms of symbolic
dynamics and measurements of complexity are rare, the
use of powerful tools for the analysis of dynamic mod-
els, such as the symbolic dynamics theory, stands out to
be extremely effective for the computation of an impor-
tant numerical invariant related to the exponential orbit
growth - the topological entropy. In fact, the introduc-
tion and rigorous study of the iterated one-dimensional
maps related to the profits motion, that incorporate the
salient dynamical properties of the system, became possi-
ble by analyzing the variation of this measure of complex-
ity with the two control parameters s and r. Our analysis
reveals that when the debt rate s (proportional to self-
financing) and the interest rate r increase the topological
entropy starts to be zero and once has accomplished a
positive value begins to increase. Therefore, high values
of these control parameters tend to induce more com-
plexity to the model.

The representation of the isentropic curves (corre-
sponding to the periodic orbits of the turning point C) in
the sr-parameter space allowed us to introduce the pa-
rameter space ordering of the dynamics. In fact, this con-
struction gives insights about the behavior of the topo-
logical entropy in all the parameter space considered.

Indeed, the family of maps associated with the mo-
tion of profits exhibits positive topological entropy, which

demonstrates its chaotic nature. The techniques of sym-
bolic dynamics allowed us to quantify the orbit complex-
ity and to distinguish different chaotic regimes, extract-
ing order from chaos, in a significant region of the pa-
rameter space.

Motivated by the chaotic structure of the model and
the central role of regular cycles in economy, we have ap-
plied the pole placement control method in order to ob-
tain predictable behavior - the stabilized period-one or-
bit. In a real context, it is meaningful to choose a
control parameter that can be directly influenced
by the financial managers of the firm. There-
fore, we have taken the debt rate s as the control
parameter and we showed, numerically, that the
complicated motion that emerges from the dy-
namics of the model can be controlled by small
parameter perturbations (which corresponds to
the possible actions of the financial managers) in
a control linear law deduced from a Poincaré sec-
tion. The fundamental characteristics of the model are
not changed by the control procedure as the fixed point,
that forms the basin of attraction, remains the same. We
emphasize that, with the application of the chaos control
technique, the model performs fast convergence for dif-
ferent initial conditions and different values of the control
parameters. The chaotic dynamics could be converted,
by using just a small feedback control, to motion on a
desired period orbit.
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