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In this paper is presented a relationship between the synchronization and the topological
entropy. We obtain the values for the coupling parameter, in terms of the topological entropy, to
achieve synchronization of two unidirectional and bidirectional coupled piecewise linear maps.
In addition, we prove a result that relates the synchronizability of two m-modal maps with the
synchronizability of two conjugated piecewise linear maps. An application to the unidirectional
and bidirectional coupled identical chaotic Duffing equations is given. We discuss the complete
synchronization of two identical double-well Duffing oscillators, from the point of view of
symbolic dynamics. Working with Poincaré cross-sections and the return maps associated,
the synchronization of the two oscillators, in terms of the coupling strength, is characterized.
Keywords: Chaotic synchronization; topological entropy; Duffing oscillator; symbolic dynamics.

1. Introduction

Two or more oscillators are said to be coupled
if they influence each other by any chemical or
physical process. It has been observed that coupled
systems starting from slightly different initial
conditions would evolve in time, with completely

different behaviour, but after some time they adjust
a given property of their motion to a common
behaviour. As described in [Pikovsky et al, 2001],
synchronization is an adjustment of rhythms of
oscillating objects due to their weak interaction.
This phenomenon of oscillator’s synchronization
has been observed in nature like the fireflies,
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planets, pacemaker’s cells, bridges and has been
studied by mathematicians, physicists, biologists,
astronomers, engineers and social biologists.

The coupling of two oscillators may be
bidirectional, if each one influences the other,
or unidirectional or master-slave if only
one of the oscillators influence the other.
If the coupled systems undergo a chaotic
behaviour and they became synchronized, this
is called a chaotic synchronization. Even the
simplest system can display very complicated
behaviour, but they can go chaotic in the
same way. Chaotic synchronization is quite
a rich phenomenon that may present several
forms, like identical or complete synchronization,
generalized synchronization, phase synchronization,
anticipated synchronization, lag synchronization
and amplitude envelope synchronization (see
[Boccaletti et al, 2002], [Pikovsky et al, 2001] and
[Gonzlez-Miranda, 2004]).

The analysis of synchronization phenomena of
dynamical systems started in the 17th century
with the finding of Huygens that two very weakly
coupled pendulum clocks become synchronized in
phase. Since then, several problems concerning the
synchronization have been investigated, especially
to know for what values of the coupling parameter
there is synchronization. These values are, in
general, given in terms of the function describing
the local dynamics. If we have a network,
i.e., there are more than two coupled systems,
the synchronization interval depends not only on
the local dynamics of the nodes, but also on
the conexion topologie of the network and the
synchronization interval may be bounded in both
sides (see [Cao & Lu, 2006]). In a previous work
[Caneco et al, 2007] we study the synchronization
and desynchronization threshold of a network, in
terms of the topological entropy of each local node.

Duffing Equation has been the study object
as a good example of rich chaotic behavior and
also for the investigation of chaotic synchronization.
In [Luo, 2008], is studied the mapping structures
of chaos in the damped Duffing oscillator based
on the traditional Poincaré mapping section and
the switching plane defined on the separatrix
(i.e. homoclinic or heteroclinic orbit). In
[Kenfack, 2003], is studied the linear stability of the
coupled double-well Duffing oscillators projected on

a Poincaré section. In [Kyprianidis et al, 2006],
is observed numerically the synchronization of
two identical single-well Duffing oscillators. In
[Vincent & Kenfack, 2008], is studied numerically
the bifurcation structure of a double-well Duffing
oscillator coupled with a single-well one.

Symbolic dynamics is a fundamental tool
available to describe complicated time evolution of
a chaotic dynamical system. Instead of representing
a trajectory by numbers, one uses sequences
of symbols of a finite alphabet which symbols
correspond to the intervals defined by the turning
points of a map. We use symbolic dynamics
methods to compute the topological entropy, with
the goal to obtain a topological classification
of the nonlinear oscillation behaviour for these
m-modal maps (see [Rocha & Ramos, 2006] and
[Caneco et al, 2009]).

Complete synchronization is obtained when
there is an identity between the trajectories of
the two systems. In [Pecora & Carroll, 1990]
and [Pecora & Carroll, 1991] it was establish
that this kind of synchronization can be
achieved provided that all the conditional
Lyapunov exponents are negative. Since then,
some authors [Shuai et al, 1997] have reported
theirs computational experiments showing that
apparently, it is possible to achieve synchronization
without the negativity of all conditional Lyapunov
exponents and some others (see [Cao & Lu, 2006]
and references there in) have reported that
sometimes there is brief lack of synchronization
in the region where all the conditional Lyapunov
exponents are negative. It seems, that this is due to
a numerical trap, because near the synchronization
manifold, the two identical systems looks like in
complete synchronization due to finite precision of
numerical calculations (see [Pikovsky et al, 2001]).

The negativity of the conditional or transverse
Lyapunov exponents is a necessary condition
for the stability of the synchronized state (see
[Boccaletti et al, 2002]) and is a mathematical
expression of the decreasing to zero of the logarithm
average of the distance of the solutions on
the transverse manifold to the solutions on the
synchronization manifold. So, if there is a strong
convergence of this distance to zero, this average
must decrease to zero. But the converse is not true.
Even when all the conditional Lyapunov exponents
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are negative, it is possible that some orbits escape
from the synchronization manifold, because this
is only a weak synchronization, in the sense of
Milnor (see [Pikovsky et al, 2001]). Only Lyapunov
functions give necessary and sufficient conditions
for the stability of the synchronization manifold.

Nevertheless, if the coupled systems are defined
by piecewise linear maps, which is the case we are
going to study in the next section, the weak and the
strong concepts of synchronization coincides and it
occurs for k > kc. The synchronization threshold kc

obtained from the assumption that all conditional
Lyapunov exponents are negative, is expressed in
terms of the Lyapunov exponent of the local map
f. If this local map f is a piecewise linear map with
slope ±s everywhere, then its Lyapunov exponent
is exactly log |s|.

The layout of this paper is as follows: in
section 2., we present the main result of this paper,
we prove a theorem concerning conditions for the
unidirectional and bidirectional synchronization of
piecewise linear maps, in terms of the topological
entropy and another theorem generalizing this
result to piecewise monotone maps. In section 3.,
we investigate numerically the synchronization of
two identical double-well Duffing oscillators, from
the point of view of Symbolic Dynamics. First,
in subsection 3.1., we consider the uncoupled case,
searching regions in the parameter plane where
the first return map defined by a Poincare section
is like an unimodal or a bimodal map and we
use Kneading Theory from Symbolic Dynamics, to
evaluate the topological entropy for these m-modal
maps, in subsection 3.2. Next, in subsection 3.3., we
consider the coupling of chaotic Duffing equations,
i.e., for parameter values for which the topological
entropy is positive. Then, we find numerically
the values of the coupling parameter for which
there is chaotic synchronization. We consider the
unidirectional and bidirectional coupling of Duffing
oscillators and confirm the agreement of these
observations with our theoretical results. Finally,
in section 4., we discuss the relation between
the synchronization of m-modal maps and the
synchronization of the semi-conjugated piecewise
linear maps whose existence is guaranteed by
Milnor-Thurston theory.

2. Synchronization and toplogical entropy
for m-modal maps

Consider a discrete dynamical system
un+1 = f(un), where u = (u1, u2, ..., um) is
an m-dimensional state vector with f defining
a vector field f : Rm → Rm. The coupling
of two such identical maps xn+1 = f(xn)
and yn+1 = f(yn) defines another discrete
dynamical system ϕ : N0 × R2m → R2m,
i.e., ϕ(0, x, y) = (x, y), ∀(x, y) ∈ R2m and
ϕ(t + s, x, y) = ϕ(t, ϕ(s, x, y)), ∀(x, y) ∈ R2m,
∀(t, s) ∈ N2

0.
Denoting by k the coupling parameter, if we

consider an unidirectional coupling
{

xn+1 = f(xn)
yn+1 = f(yn) + k [f(xn)− f(yn)]

, (1)

then

ϕ(n, x, y) = (f(xn) , f(yn)+k [f(xn)− f(yn)]).
If the coupling is bidirectional

{
xn+1 = f(xn)− k [f(xn)− f(yn)]
yn+1 = f(yn) + k [f(xn)− f(yn)]

, (2)

then ϕ(n, x, y) = (f(xn) + k [f(yn)− f(xn)] ,
f(yn) + k [f(xn)− f(yn)]).

These two systems are said to be in complete
synchronization if there is an identity between the
trajectories of the two systems, so we must look to
the difference zn = yn−xn and see if this difference
converges to zero, as n → ∞. If the coupling is
unidirectional then

zn+1 = (1− k) [f(yn)− f(xn)] . (3)

If the coupling is bidirectional then

zn+1 = (1− 2k) [f(yn)− f(xn)] . (4)

2.1. Synchronization of piecewise linear
maps

Let I = [a, b] ⊆ R be a compact interval. By
definition, a continuous map f : I → I which is
piecewise monotone, i.e., there exist points a =
c0 < c1 < · · · cm < cm+1 = b at which f has a local
extremum and f is strictly monotone in each of the
subintervals I0 = [c0, c1] , ..., Im = [cm, cm+1] , is
called a m-modal map. As a particular case, if f
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is linear in each subinterval I0, ..., Im, then f is
called a m+1 piecewise linear map. By theorem 7.4
from [Milnor & Thurston, 1988] and [Parry, 1964]
it is known that every m-modal map f : I = [a, b] ⊂
R → I, with growth rate s and positive topological
entropy htop(f) (log s = htop(f)) is topologically
semiconjugated to a p + 1 piecewise linear map T,
with p ≤ m, defined on the interval J = [0, 1], with
slope ±s everywhere and htop(T ) = htop(f) = log s,
i.e., there exist a function h continuous, monotone
and onto, h : I → J, such that T ◦ h = h ◦ f .

f
I → I

h ↓ ↓ h
J → J

T

If, in addition, h is a homeomorphism, then f
and T are said topologically conjugated.
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Fig. 1. Semiconjugacy between piecewise monotone
and piecewise linear unimodal maps

According to the above statements, we will
investigate the synchronization of two identical p+1
piecewise linear maps with slope ±s everywhere
(Theorem 2.1.) and also the synchronization of two
identical m-modal maps (Theorem 2.2.).

In what follows we will use the symbols f and
k to represent, respectively, the m-modal map and
its coupling parameter and the symbols T and c to
represent, respectively, the p + 1 piecewise linear
map and its coupling parameter.

Let T : J = [a1, b1] ⊆ R → J, be a continuous
piecewise linear map, i.e., there exist points a1 =
d0 < d1 < · · · dp < dp+1 = b1 such that T is linear
in each subintervals Ji = [di, di+1] , (i = 0, ..., p),
with slope ±s everywhere.

Fig. 2. Semiconjugacy between piecewise monotone
and piecewise linear bimodal maps

So, the unidirectional coupled system for T is

{
Xn+1 = T (Xn)
Yn+1 = T (Yn) + c [T (Xn)− T (Yn)]

, (5)

and the difference Zn = Yn −Xn verifies

Zn+1 = (1− c) [T (Yn)− T (Xn)] . (6)

For the bidirectionally coupled system

{
Xn+1 = T (Xn)− c [T (Xn)− T (Yn)]
Yn+1 = T (Yn) + c [T (Xn)− T (Yn)]

, (7)

the difference Zn = Yn −Xn verifies

Zn+1 = (1− 2c) [T (Yn)− T (Xn)] . (8)

Theorem 2.1. Let T : J → J, be a continuous
p+1 piecewise linear map with slope ±s everywhere,
with s > 1. Let c ∈ [0, 1] be the coupling parameter.
Then one has:

(i) The unidirectional coupled system (5) is
synchronized if

c >
s− 1

s

(ii) The bidirectional coupled system (7) is
synchronized if

s + 1
2s

> c >
s− 1
2s

.
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Proof. Attending to the fact that T is linear with
slope ±s in each subinterval J0, ..., Jp, then, the
total variation of T is

V a1
b1

(T ) =

b1∫

a1

∣∣T ′(t)∣∣ dt =
p∑

i=0

di+1∫

di

∣∣T ′(t)∣∣ dt

= s

p∑

i=0

|di+1 − di| = s |b1 − a1| .

We have

|T (Yn)− T (Xn)| =

∣∣∣∣∣∣

Yn∫

Xn

T ′(t) dt

∣∣∣∣∣∣
≤

Yn∫

Xn

∣∣T ′(t)∣∣ dt

= V Xn
Yn

(T ) = s |Yn −Xn| .

Attending to (6), it follows that,

|Zn+1| ≤ |(1− c) s| |Zn|

and then
|Zq| ≤ |(1− c) s|q |Z0| .

So, letting q → ∞, we have
limq→+∞ |(1− c) s|q |Z0| = 0, if |(1− c) s| < 1.
The previous arguments shows that, if c ∈ [0, 1]
then the unidirectional coupled system (5) is
synchronized if c > s−1

s .
On the other hand, using the same arguments

as before and attending to (8), we have

|Zn+1| ≤ |(1− 2c) s| |Zn|

and then
|Zq| ≤ |(1− 2c) s|q |Z0| .

Thus, considering q → ∞, we have
limq→+∞ |(1− 2c) s|q |Z0| = 0, if |(1− 2c) s| < 1.
Therefore, we may conclude that, if c ∈ [0, 1] the
bidirectional coupled system (8) is synchronized if
s+1
2s > c > s−1

2s .

Note that, the bidirectional synchronization
occurs at half the value of the coupling parameter
for the unidirectional case, as mentioned in
[Belykh et al, 2007].

2.2. Synchronization of two piecewise
monotone maps

In this section our question is to know the
relationship between the synchronization of
two coupled identical m-modal maps and the
synchronization of the two coupled corresponding
conjugated p + 1 piecewise linear maps, with
p ≤ m. Consider in the interval J the pseudometric
defined by

d(x, y) = |h(x)− h(y)| .
If h is only a semiconjugacy, d is not a

metric because one may have d(x, y) = 0 for
x 6= y. Nevertheless, if h is a conjugacy,
then the pseudometric d, defined above, is a
metric. Two metrics d1 and d2 are said to be
topologically equivalent if they generate the same
topology. A sufficient but not necessary condition
for topological equivalence is that for each x ∈ I,
there exist constants k1, k2 > 0 such that, for every
point y ∈ I,

k1 d1(x, y) ≤ d2(x, y) ≤ k2 d1(x, y).

Consider the pseudometric d defined above,
d2(x, y) = d(x, y) and d1(x, y) = |x− y| .

Suppose h : I → J is a bi-Lipschitz map, i.e.,
∃ N, M > 0, such that,

0 < N |x−y| ≤ |h(x)− h(y)| ≤ M |x−y|, ∀(x, y) ∈ I2.
(9)

If h is a conjugacy and verifies (9), then the
metrics d and |.| are equivalents.

Let f : I [a, b] ⊂ R → I be a function
m−modal, with positive entropy. For the
unidirectional coupled system given by (1) we have
the difference (3). As for the bidirectional coupled
system given by (2) we have the difference (4).

As an extension of Theorem 2.1., for the
synchronization of piecewise linear maps, we
can establish the following result concerning
the synchronization of the corresponding
semiconjugated piecewise monotone maps.

Theorem 2.2. Let f : I → I, be a continuous and
piecewise monotone map with positive topological
entropy htop = log s and h : I → J a semiconjugacy
between f and a continuous piecewise linear map
T : J → J, with slope ±s everywhere. If there exist
constants N, M > 0 satisfying (9), then one has:
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(i) The unidirectional coupled system (1) is
synchronized if

k > 1− N

M

1
s
.

(ii) The bidirectional coupled system (2) is
synchronized if

1 +
N

M

1
2s

> k > 1− N

M

1
2s

.

Proof. If f is monotone in the interval [x, y] , then
T is monotone in the interval [h(x), h(y)], because
h is monotone, so

|h(f(x))− h(f(y))| = |T (h(x))− T (h(y))|
= s |h(x)− h(y)| .

Therefore d(x, y) = s−1d (f(x), f(y)) , if f is
monotone in the interval [x, y] . If f is not monotone
in the interval [x, y] , but there exist, points ci (i =
1, ..., p − 1), such that ci < ci+1, ci ∈ [x, y] and f
is monotone in each subinterval I1 = [x = c0, c1] ,
I2 = [c1, c2] ,..., Ip = [cp−1, y = cp] , we have

d(x, y) =
p−1∑

j=0

d(cj , cj+1)

= s−1
p−1∑

j=0

d (f(cj), f(cj+1))

= s−1
p−1∑

j=0

|h (f(cj))− h(f(cj+1))|

≥ s−1 |h (f(x))− h(f(y))|
= s−1d (f(x), f(y)) .

So, we can write d(x, y) ≥ s−1d (f(x), f(y)) ,
∀x, y ∈ I. From (9) and for the unidirectional
coupling (3) we have

d(yn+1, xn+1) ≤ M |yn+1 − xn+1|
= M |1− k| |f(yn)− f(xn)|
≤ M |1− k|N−1d (f(yn), f(xn))
≤ M |1− k|N−1s d(yn, xn).

It follows that

d(yn+r, xn+r) ≤ M r |1− k|r N−rsrd(yn, xn),

so if
∣∣M (1− k)N−1s

∣∣ < 1, d(yn+r, xn+r)→0 as r →
∞.

Then, the coupled system (1) is synchronized if

k > 1− N

M

1
s
.

For the bidirectional coupling (4) and using the
same arguments as before, we also have that

d(yn+1, xn+1)≤ M |1− 2k|N−1s d(yn, xn).
It follows that d(yn+r, xn+r) → 0 as r →∞, if∣∣M (1− 2k) N−1s

∣∣ < 1. Then, the coupled system
(2) is synchronized if

1
2

(
1 +

N

M

1
s

)
> k >

1
2

(
1− N

M

1
s

)

.

Denote by k∗ the synchronization threshold for
(1), i.e. the system of piecewise monotone functions
synchronizes for k > k∗. Denote by c∗ the value
such that for c > c∗ the system of piecewise linear
maps (5) is synchronized. Note that

N(1− k∗) = M(1− c∗). (10)

With the assumptions we made, if the piecewise
monotone coupled maps synchronizes, so do the
conjugated piecewise linear coupled maps and
conversely, if the piecewise linear coupled maps
synchronizes, so do the conjugated piecewise
monotone coupled maps. In fact, from (9) we
have d(yn, xn) ≤ M |yn − xn| , therefore if system
(1) synchronizes for k > k∗, then system (5)
synchronizes for c > c∗, because k∗ ≥ c∗.
On the other hand, we have also from (9),
|yn − xn| ≤ N−1d(yn, xn), therefore if the system
(5) synchronizes for c > c∗, then the system (1)
synchronizes for k > k∗ with k∗ verifying (10).

For the bidirectional coupling, we have

1− 1
s
≤ 1− N

M

1
s
≤ 1 +

N

M

1
s
≤ 1 +

1
s
,

so the synchronization interval for the
piecewise monotone coupled maps is contained in
the synchronization interval for the conjugated
piecewise linear coupled maps.
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3. Duffing application

In this section we test the above theoretical
results in the Duffing oscillators. First we study
the uncoupled case, choosing parameter values
for which the Duffing equation exhibits chaotic
behavior. In order to know that there is chaos
we compute the topological entropy, using methods
from Symbolic Dynamics, see [Caneco et al, 2009]
[Rocha & Ramos, 2006]. Then, we consider the
unidirectional and bidirectional coupling of two
chaotic Duffing equations and find numerically the
values of the coupling parameter for which there
is synchronization. In this case this is chaotic
synchronization.

3.1. The uncoupled case. Unimodal and
bimodal maps in the Poincaré section

Consider a periodically forced, damped Duffing
oscillator with a twin-well potential defined by

x′′(t) = x(t)− x3(t)− αx′(t) + βcos(wt), (11)

where the parameters β and w are the
excitation strength and frequency of the periodic
loading, respectively [Luo, 2008]. In the particular
case of the undamped (α = 0) and the unforced
(β = 0) one can obtain an exact solution of
this non-linear second-order differential equation.
Duffing equation is a classical example of a
dynamical system that exhibits chaotic behavior.
Attending to the complexity of the above equation,
a basic tool is to do an appropriate Poincaré section
to reduce the dimensionality. In our case, we did a
section defined by y = 0, since it is transversal to
the flow, it contains all fixed points and captures
most of the interesting dynamics. In order to see
how the first return Poincaré map change with the
parameters we did bifurcation diagrams. See in
Fig. 3 the variation of the coordinate xn of the
first return Poincaré map, versus the parameter
β ∈ [0.15, 0.5], for a fixed value of α = 0.25. It
is clear the growing of complexity as the parameter
β increases.

Consider parameter values and initial
conditions for which each uncoupled system
exhibits a chaotic behaviour and its first
return Poincaré map is like a unimodal or
like a bimodal map. Fixing, for example,

Fig. 3. Bifurcation diagram for xn as a function of
β ∈ [0.15, 0.5], for a fixed α = 0.25.

w = 1.18, x0 = 0.5, x′0 = −0.3, y0 = 0.9,
y′0 = −0.2, we choose (α, β) = (0.2954, 0.2875) and
(α, β) = (0.25, 0.2541), for the unimodal case (see
Fig. 4 and Fig. 5) and (α, β) = (0.5, 0.719) and
(α, β) = (0.25, 0.4998), for the bimodal case (see
Fig. 6 and Fig. 7).
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Fig. 4. Duffing attractor and Poincaré return map
for α = 0.2954 and β = 0.2875.
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Fig. 5. Duffing attractor and Poincaré return map
for α = 0.25 and β = 0.2541.

We found in the parameter plane (α, β), a
region U where the first return Poincaré map
behaves like a unimodal map and a region B where



8 Acilina Caneco, J. Leonel Rocha and Clara Grácio

-1.5 -1 -0.5 0.5 1 1.5

-1

-0.5

0.5

1

-1.5 -1 -0.5 0 0.5 1 1.5 2

-1.5

-1

-0.5

0

0.5

1

1.5

2

x
k

x
k+1

Fig. 6. Duffing attractor and Poincaré return map
for α = 0.5 and β = 0.719.

Fig. 7. Duffing attractor and Poincaré return map
for α = 0.25 and β = 0.4998.

the first return Poincaré map behaves like a bimodal
map, see Fig. 8.
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Fig. 8. Unimodal U and bimodal B regions in the
parameter (α, β) plane.

3.2. Entropy evaluation by kneading theory

Consider a compact interval I ⊂ R and a
m-modal map f : I → I, i.e., the map f is
piecewise monotone, with m critical points and
m + 1 subintervals of monotonicity. Suppose
I = [c0, cm+1] can be divided by a partition of
points P = {c0, c1, ..., cm+1} in a finite number

of subintervals I1 = [c0, c1] , I2 = [c1, c2] ,
... , Im+1 = [cm, cm+1] , in such a way
that the restriction of f to each interval Ij is
strictly monotone, either increasing or decreasing.
Assuming that each interval Ij is the maximal
interval where the function is strictly monotone,
these intervals Ij are called laps of f and the
number of distinct laps is called the lap number,
`, of f . In the interior of the interval I the
points c1, c2, ..., cm, are local minimum or
local maximum of f and are called turning or
critical points of the function. The limit of
the n-root of the lap number of fn (where fn

denotes the composition of f with itself n times)
is called the growth number of f , i.e., s =
limn→∞ n

√
`(fn). In [Misiurewicz & Szlenk, 1980] is

defined the topological entropy as the logarithm
of the growth number htop(f) = log s. In
[Milnor & Thurston, 1988] is developed the concept
of kneading determinant, denoted by D(t), as a
formal power series from which we can compute
the topological entropy as the logarithm of the
inverse of its minimum real positive root. On
the other hand, in [Lampreia & Ramos, 1997], is
proved, using homological properties, a precise
relation between the kneading determinant and the
characteristic polynomial of the Markov transition
matrix associated with the itinerary of the critical
points. In fact, they proved that the topological
entropy is the logarithm of the spectral radius of
this matrix.

The intervals Ij = [cj−1, cj ] are separated by
the critical points, numbered by its natural order
c1 < c2 < ... < cm. We compute the images by f,
f2, ..., fn, ... of a critical point cj (j = 1, ...,m− 1)
and we obtain its orbit

O(cj) =
{
cn
j : cn

j = fn(cj), n ∈ N
}

.

If fn(cj) belongs to an open interval Ik = ]ck−1, ck[ ,
then we associate to it a symbol Lk, with k =
1, ..., m + 1. If there is an r such that fn(cj) = cr,
with r = 1, ...,m, then we associate to it the symbol
Ar. So, to each point cj , we associate a symbolic
sequence, called the address of fn(cj), denoted by
S = S1S2...Sn..., where the symbols Sk belong
to the m-modal alphabet, with 2m + 1 symbols,
i.e., Am = {L1, A1, L2, A2, ..., Am, Lm+1} . The
symbolic sequence S = S0S1S2...Sn..., can
be periodic, eventually periodic or aperiodic
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[Rocha & Ramos, 2006]. The address of a critical
point cj is said eventually periodic if there is a
number p ∈ N , such that the address of fn(cj) is
equal to the address of fn+p(cj), for large n ∈ N .
The smallest of such p is called the eventual period.

To each symbol Lk ∈ Am, with k = 1, ..., m+1,
define its sign by

ε(Lk) =
{ −1 if f is decreasing in Ik

1 if f is increasing in Ik
(12)

and ε(Ak) = 0, with k = 1, ..., m. We can compute

the numbers τk =
k−1∏

i=0

ε(Lk) for k > 0, and take

τ0 = 1. The invariant coordinate of the symbolic
sequence S, associated with a critical point cj , is
defined as the formal power series

θcj (t) =
k=∞∑

k=0

τk tk Sk. (13)

The kneading increments of each critical point cj

are defined by

νcj (t) = θc+j
(t)− θc−j

(t) with j = 1, ...m, (14)

where θc±j
(t) = lim

x→c±j
θx(t). Separating the terms

associated with the symbols L1, L2, ...,Lm+1 of the
alphabet Am, the increments νj(t), are written in
the form

νcj (t) = Nj1(t)L1+Nj2(t)L2+ ... +Nj(m+1)(t)Lm+1.
(15)

The coefficients Njk in the ring Z [[t]] are the entries
of the m× (m + 1) kneading matrix

N(t) =




N11(t) · · · N1(m+1)(t)
...

. . .
...

Nm1(t) · · · Nm(m+1)(t)


 . (16)

From this matrix we compute the determinants
Dj(t) = det N̂(t), where N̂(t) is obtained from N(t)
removing the j column (j = 1, ..., m + 1), and

D(t) =
(−1)j+1Dj(t)

1− ε(Lj)t
(17)

is called the kneading determinant. Here ε(Lj) is
defined like in (12).

Let f be a m-modal map and D(t) defined
as above. Let s be the growth number of f ,

then the topological entropy of the map f is, see
[Milnor & Thurston, 1988],

htop(f) = log s, with s =
1
t∗

. (18)

and
t∗ = min {t ∈ [0, 1] : D(t) = 0}

Let’s take the Duffing equation (11) with the
parameter values α = 0.2954 and β = 0.2875. In
this case the attractor and the unimodal Poincaré
return map are shown in Fig. 4.

The symbolic sequence is (CRLRRR)∞, so we
have:

c+ → (RRLRRR)∞ and c− → (LRLRRR)∞.

The invariant coordinates of the sequence S
associated with the critical point c are

θc+(t) =
t2

1 + t6
L +

1− t + t3 − t4 + t5

1 + t6
R

θc−(t) =
1− t2

1− t6
L +

t− t3 + t4 − t5

1− t6
R.

The kneading increment of the critical point,
νc(t) = θc+(t)− θc−(t), is

νc(t) =
−1 + 2t2 − t6

1− t12
L

+
1− 2t + 2t3 − 2t4 + 2t5 − t6

1− t12
R.

So, the kneading matrix is N(t) =
[N11(t) N12(t)] = [D2(t) D1(t)] , with

N11(t) =
−1 + 2t2 − t6

1− t12

and

N12 =
1− 2t + 2t3 − 2t4 + 2t5 − t6

1− t12
.

The kneading determinant is

D(t) =
(−1 + t)(−1 + t2 + t4)

1− t12
.

The smallest positive real root of D1(t) is t∗ =
0.786..., so the growth number is s = 1/t∗ = 1.272...
and the topological entropy is htop = 0.2406... .

By this method, we compute some values of
the topological entropy htop for other values of the
coupling parameter k for the unimodal and for the
bimodal maps. See in Fig. 11 some examples of the
entropy for fixed α = 0.4 and varying β, showing
the growing of complexity.



10 Acilina Caneco, J. Leonel Rocha and Clara Grácio

β

α=0.4

β

h
top

Fig. 9. Evolution of the topological entropy for
the uncoupled Duffing equation, fixing α = 0.4 and
varying β.

3.3. Numerical synchronization of two
identical Duffing oscillators

Consider two identical unidirectionally coupled
Duffing oscillators





x′′(t) = x(t)− x3(t)-αx′(t) + β cos(wt)
y′′(t) = y(t)− y3(t)-αy′(t) + k [x(t)− y(t)]

+β cos(wt)
(19)

where k is the coupling parameter, see
[Vincent & Kenfack, 2008] and references therein.
We will choose parameter values for which each
uncoupled oscillator exhibits a chaotic behaviour,
so if they synchronize, that will be a chaotic
synchronization.

0.05 0.1 0.15 0.2 0.25 0.3

-1

-0.5

0.5

1

1.5

Fig. 10. Bifurcation diagram for xn as a function
of k ∈ [0.001, 0.3], for fixed values of α = 0.4 and
β = 0.3578.

In Fig. 10 the bifurcation diagram for the
unidirectional coupled system (19) with α = 0.4,
β = 0.3578 and the coupling parameter, k ∈
[0.001, 0.03], shows several kind of regions. In
Table 1, we show the topological entropy in some
points of these regions. We choose for example
the values k = 0, k = 0.05, k = 0.13, k =
0.5 and k = 0.301. We verify that for k
larger than k ≈ 0.13 the topological entropy
remains constant, but positive. Meanwhile we
find values, of the k parameter, where the entropy
is zero, that is, where there is chaos-destroying
synchronization, see [Pikovsky et al, 2001]. In
a previous work [Caneco et al, 2008] we try
to understand the relationship between the
achievement of synchronization and the evolution
of the symbolic sequences Sx and Sy, obtained for
the x and y coordinates, as described in subsection
3.2.. We verify that, as the value of the coupling
parameter k increases, the number of initial equal
symbols in the Sx and Sy sequences increases also,
which is a numerical symbolic evidence that the two
systems are synchronized.

Notice the correspondence of these values for
the topological entropy with the evolution of k in
the bifurcation diagram, see Fig. 10. Numerically
we can also see the evolution of the difference
z = y − x with k. The synchronization will occur
when x = y. See some examples in Fig. 11 for the
unimodal case and in Fig. 12 for the bimodal case.

Although not shown in this figure, the graphics
of the difference y − x for k greater then 0.122 are
always a diagonal like in the picture for k = 0.25,
showing that these Poincaré unimodal maps are
synchronized. Notice that, the pictures in Fig.11
and Fig.12 confirms numerically the theoretical
results given by the above theorems. For α = 0.4
and β = 0.3578 (Fig.11) which correspond to s =
1.272..., the synchronization occurs for k > 0.214....
For the bimodal case, α = 0.5 and β = 0.719,
(Fig.12), which correspond to s = 2, 618..., the
synchronization occurs for k > 0.873....

Consider the bidirectional coupled Duffing
oscillators
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Fig. 11. Evolution of x versus y for the unimodal case in the unidirectional coupled Duffing oscillators (α = 0.4, β = 0.3578)
for some values of k: 0.003, 0.005, 0.022, 0.103, 0.111, 0.12, 0.136, 0.195 and 0.306.

Table 1. Topological entropy, kneading determinant and sequences for x for some values of the coupling parameter

k Sx D(t) htop

0 (CRLRRR)∞
(−1+t)[(−1+t2)+t4]

1−t12
0.24061 . . .

0.05 (CRLR)∞
−(1+t)(−1+t2)

1−t8
0

0.13 (CRLRRRLRLR)∞
(−1+t)[(−1+t2)(1−t4)+t8]

1−t20
0.20701 . . .

0.5 (CRLRRRLRLR)∞
(−1+t)[(−1+t2)(1−t4)+t8]

1−t20
0.20701 . . .

0.301 (CRLRRRLRLR)∞
(−1+t)[(−1+t2)(1−t4)+t8]

1−t20
0.20701 . . .



12 Acilina Caneco, J. Leonel Rocha and Clara Grácio

-1.5 -1 -0.5 0. 5 1 1. 5
x

-1.5

-1

-0.5

0. 5

1

1. 5

y

-1.5 -1 -0.5 0. 5 1 1. 5
x

-1.5

-1

-0.5

0. 5

1

1. 5

y

-1.5 -1 -0.5 0. 5 1 1. 5
x

-1.5

-1

-0.5

0. 5

1

1. 5

y

-1.5 -1 -0.5 0. 5 1 1. 5
x

-1.5

-1

-0.5

0. 5

1

1. 5

y

-1.5 -1 -0.5 0. 5 1 1. 5
x

-1.5

-1

-0.5

0. 5

1

1. 5

y

-1.5 -1 -0.5 0. 5 1 1. 5
x

-1.5

-1

-0.5

0. 5

1

1. 5

y

-1.5 -1 -0.5 0. 5 1 1. 5
x

-1.5

-1

-0.5

0. 5

1

1. 5

y

-1.5 -1 -0.5 0. 5 1 1. 5
x

-1.5

-1

-0.5

0. 5

1

1. 5

y

-1.5 -1 -0.5 0. 5 1 1. 5
x

-1.5

-1

-0.5

0. 5

1

1. 5

y

Fig. 12. Evolution of x versus y for the bimodal case in the unidirectional coupled Duffing oscillators (α = 0.5, β = 0.719)
for some values of k: 0.003, 0.014, 0.08, 0.095, 0.1, 0.113, 0.126, 0.875 and 0.916.
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Fig. 13. Evolution of x versus y for the bidirectional coupled Duffing oscillators, for some values of k, in the unimodal case
(α = 0.4, β = 0.3578).
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x′′(t) = x(t)− x3(t)-αx′(t)− k [x(t)− y(t)]
+β cos(wt)

y′′(t) = y(t)− y3(t)-αy′(t) + k [x(t)− y(t)]
+β cos(wt)

(20)
We choose, for example, w = 1.18, x0 = 0.5,

x′0 = −0.3, y0 = 0.9, y′0 = −0.2 and α = 0.4, β =
0.3578, for the unimodal case and α = 0.5, β =
0.719, for the bimodal case.

See in Fig.13 the evolution of x versus y for
the unimodal case. Although not shown in this
figure, the graphics of the difference y − x for
k greater then 0.122 are always a diagonal like
in the picture for k = 0.25, showing that these
Poincaré unimodal maps are synchronized. For
α = 0.4 and β = 0.3578 we have htop = 0.2406 . . .,
then s = 1.272... If the coupled maps where
piecewise linear maps with slope s = ±1.272,
the synchronization will occurs for c > c∗ =
s−1
2s = 0.107 and we see numerically that these

unimodal Poincaré maps for the Duffing equations
synchronizes at a little greater value, k∗ ≈ 0.122,
so these pictures confirms numerically the above
theoretical results, though we cannot guarantee
that the semiconjugation between the unimodal and
the piecewise linear maps is a conjugation.

4. Conclusions and open problems

We obtained explicitly the value k∗ of the coupling
parameter, such that for k > k∗ two piecewise linear
maps, unidirectional or bidirectional coupled are
synchronized. Moreover we prove that, in certain
conditions, the synchronization of two m-modal
maps is equivalent to the synchronization of the
corresponding conjugated piecewise linear maps,
but for different values of the coupling parameter.

By a theorem from [Milnor & Thurston, 1988]
and [Parry, 1964] it is known that every m-modal
map f : I = [a, b] ⊂ R → I, with growth rate s and
positive topological entropy htop (log s = htop(f)) is
topologically semi-conjugated to a p + 1 piecewise
linear map T, with p ≤ m, defined on the interval
J = [0, 1], with slope ±s everywhere and htop(T ) =
htop(f) = log s.

The maps f : I → I and T : J → J
are semi-conjugated if there exist a function h

continuous, monotone and onto, h : I → J, such
that T ◦ h = h ◦ f .

If, in addition, h is a homeomorphism, then f and
T are said topologically conjugated.

We proved that in the case of topological
conjugacy the synchronization of the two piecewise
linear maps T implies the synchronization
of the two conjugated m-modal maps f .
Furthermore, by a result of [Preston, 1989],
(see also [Alves et al, 2005]), if f is topologically
transitive, then the mentioned semi-conjugacy is in
fact a conjugacy.

By [Blokh, 1982] (see also [Alves et al, 2005]),
we know that htop(f) ≥ (1/2) log 2 holds for any
topologically transitive map of the interval, but we
observed numerically that in the case of coupled
Duffing equations, the synchronization occurs for
entropy values some how less than (1/2) log 2,
so it remains an open problem to find sufficient
conditions for a semi-conjugacy to be a conjugacy.

The study and conclusions about
synchronization of piecewise linear unimodal and
bimodal maps, expressed in theorems 2.1 and 2.2,
can be applied to guarantee the synchronization of
more general maps.
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