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a b s t r a c t

The purpose of this paper is to study the symmetry effect on the kneading theory for sym-
metric unimodal maps and for symmetric bimodal maps. We obtain some properties about
the kneading determinant for these maps, that implies some simplifications in the usual
formula to compute, explicitly, the topological entropy. As an application, we study the
chaotic behaviour of the two-well Duffing equation with forcing.

� 2009 Elsevier Ltd. All rights reserved.

1. Motivation and introduction

The Duffing equation has been used to model the nonlinear dynamics of special types of mechanical and electrical sys-
tems. This differential equation has been named after the studies of Duffing in 1918 [1], has a cubic nonlinearity and
describes an oscillator. It is the simplest oscillator displaying catastrophic jumps of amplitude and phase when the frequency
of the forcing term is taken as a gradually changing parameter. It has drawn extensive attention due to the richness of its
chaotic behaviour with a variety of interesting bifurcations, torus and Arnold’s tongues. The main applications have been
in electronics, but it can also have applications in mechanics and in biology. For example, the brain is full of oscillators at
micro and macro level [15]. There are applications in neurology, ecology, secure communications, cryptography, chaotic syn-
chronization, and so on. Due to the rich behaviour of these equations, recently there has been also several studies on the
synchronization of two coupled Duffing equations [13,14]. The most general forced form of the Duffing equation is
x00 þ ax0 þ ðbx3 �x2

0xÞ ¼ b cosðxt þ /Þ. Depending on the parameters chosen, the equation can take a number of special
forms. In [9,4], Mira et al. studied this equation with b ¼ 1, x0 ¼ 0, x ¼ 1 and / ¼ 0. They studied the bifurcations sets in
the plane for different values of the parameter a, based on the notions of crossroad area, saddle area, spring area, island,
lip and quasi-lip.

If the coefficient of x is positive, this equation represents the single-well Duffing equation and if it is negative, we have the
two-well Duffing equation. But there are also studies of a three-well Duffing system with two periodic forcings [3]. We will
study the two-well equation with x2

0 ¼ 1, b ¼ 1 and / ¼ 0, i.e.,

x00 þ ax0 þ x3 � x ¼ b cos xtð Þ: ð1Þ

In [2], Xie et al. used symbolic dynamics to study the behaviour of chaotic attractors and to analyze different periodic win-
dows inside a closed bifurcation region in the parameter plane. Symbolic dynamics is a rigorous tool to understand chaotic
motions in dynamical systems.

In this work, we will use techniques of kneading theory due essentially to Milnor and Thurston [8] and Sousa Ramos [5–
7], applying these techniques to the study of the chaotic behaviour. We will use kneading theory to evaluate the topological
entropy, which measures the chaoticity of the system. Generally, the graphic of the return map is a very complicated set of
points. Therefore, in order to be able to apply these techniques, we show, in Section 2, regions in the parameter plane where
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the first return Poincaré map is close to a one-dimensional object. Indeed, by numerical simulations, we found a region U

where the return map is like a unimodal map and a region B where the return map is like a bimodal map, see Fig. 1. Fur-
thermore, we notice that some parameter values in region U correspond to pairs of unimodal maps that are symmetric (see
Table 2). In the same way, some parameter values in region B correspond to symmetric bimodal maps. In fact, in Table 3, we
may see two kinds of symmetric bimodal map. In Section 3, we briefly describe the kneading theory for a general m-modal
map and then we study the effects of symmetry on the kneading determinant for symmetric unimodal maps and for sym-
metric bimodal maps. It is well known that symmetry is an important issue and has been intensively studied [11,12]. We
prove that the kneading matrix present some simplifications due to this symmetries. Examples are given, in Section 4, for
the Duffing equation, but this method can be applied to others equations, whose return maps have this kind of symmetry.

2. Poincaré maps, bifurcation diagrams, unimodal and bimodal regions

We choose the Poincaré section defined by the plane y ¼ 0, since it is transversal to the flow, it contains all fixed points
and captures most of the interesting dynamics. For our choice of the Poincaré section, the parameterization is simply realized
by the x coordinates of the points. In terms of these fxig, a first return Poincaré map xn ! xnþ1 is constructed. This will be
done for each choice of the parameters a, b and w. In the examples presented in Section 4, we will fix the parameter
w ¼ 1:18 and we will study the first return Poincaré map for different values of the parameters ða; bÞ. We will denote this
Poincaré map by fa;b. In order to see how the first return Poincaré map change with the parameters, we make bifurcation
diagrams. For example, in Fig. 2, we plot the variation of the first coordinate of the first return Poincaré map, xn, versus
the parameter b 2 ½0:15;0:5�, for a fixed value a ¼ 0:25. We see clearly the growing of complexity as the parameter b
increases.

To have a more precise notion of this complexity, we may compute the topological entropy of the first return Poincaré
map in each region U and B. Let us first look, in the parameter plane ða; bÞ, for those regions where the first return Poincaré
map behaves like a unimodal or a bimodal map, because we have an explicit way to evaluate the topological entropy in those
cases. For example, for a ¼ 0:25, we found that when b 2 ½0:254;0:260� the first return Poincaré map fa;b behaves like a uni-
modal map and when b 2 ½0:479;0:483� the first return Poincaré map fa;b behaves like a bimodal map. These range of values
correspond to two narrow vertical bands in the bifurcation diagram in Fig. 1.

3. Kneading theory and topological entropy

Consider a compact interval I � R and a m-modal map f : I ! I, i.e., the map f is piecewise monotone, with m critical
points and mþ 1 subintervals of monotonicity. Suppose I ¼ ½c0; cmþ1� can be divided by a partition of points
P ¼ fc0; c1; . . . ; cmþ1g in a finite number of subintervals I1 ¼ ½c0; c1�; I2 ¼ ½c1; c2�; . . . ; Imþ1 ¼ ½cm; cmþ1�, in such a way that the
restriction of f to each interval Ij is strictly monotone, either increasing or decreasing. Assuming that each interval Ij is
the maximal interval where the function is strictly monotone, these intervals Ij are called laps of f and the number of distinct
laps is called the lap number, ‘, of f. In the interior of the interval I, the points c1; c2; . . . ; cm are local minimum or local max-
imum of f and are called turning or critical points of the function. The limit of the n-root of the lap number of f n (where f n

denotes the composition of f with itself n times) is called the growth number of f, i.e., s ¼ limn!1
ffiffiffiffiffiffiffiffiffiffi
‘ðf nÞn

p
. In [10], Misiurewicz

and Szlenk define the topological entropy as the logarithm of the growth number htopðf Þ ¼ log s. In [8], Milnor and Thurston
developed the concept of kneading determinant, denoted by DðtÞ, as a formal power series from which we can compute the
topological entropy as the logarithm of the inverse of its minimum real positive root. On the other hand, Sousa Ramos et al.,
using homological properties proved a precise relation between the kneading determinant and the characteristic polynomial
of the Markov transition matrix associated with the itinerary of the critical points. In fact, they proved that the topological
entropy is the logarithm of the spectral radius of this matrix.

Fig. 1. Unimodal region ðUÞ and bimodal region ðBÞ.
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The intervals Ij ¼ ½cj�1; cj� are separated by the critical points, numbered by its natural order c1 < c2 < � � � < cm. We com-
pute the images by f ; f 2; . . . ; f n; . . . of a critical point cj ðj ¼ 1; . . . ;m� 1Þ and we obtain its orbit

OðcjÞ ¼ cn
j : cn

j ¼ f nðcjÞ; n 2 N
n o

:

If f nðcjÞ belongs to an open interval Ik ¼�ck�1; ck½, then we associate to it a symbol Lk with k ¼ 1; . . . ;mþ 1. If there is an
r such that f nðcjÞ ¼ cr , with r ¼ 1; . . . ;m, then we associate to it the symbol Ar . So, to each point cj, we associate a sym-
bolic sequence, called the address of f nðcjÞ, denoted by S ¼ S1S2 � � � Sn � � �, where the symbols Sk belong to the m-modal
alphabet, with 2mþ 1 symbols, i.e., Am ¼ fL1;A1; L2;A2; . . . ;Am; Lmþ1g. The symbolic sequence S ¼ S0S1S2 � � � Sn � � � can be
periodic, eventually periodic or aperiodic [7]. The address of a critical point cj is said eventually periodic if there is a
number p 2 N, such that the address of f nðcjÞ is equal to the address of f nþpðcjÞ, for large n 2 N. The smallest of such
p is called the eventual period.

To each symbol Lk 2Am, with k ¼ 1; . . . ;mþ 1, define its sign by

eðLkÞ ¼
�1 if f is decreasing in Ik

1 if f is increasing in Ik

�
ð2Þ

and eðAkÞ ¼ 0, with k ¼ 1; . . . ;m. We can compute the numbers sk ¼
Qk�1

i¼0 eðLkÞ for k > 0, and take s0 ¼ 1. The invariant coor-
dinate of the symbolic sequence S, associated with a critical point cj, is defined as the formal power series

hcj
ðtÞ ¼

Xk¼1
k¼0

sktkSk: ð3Þ

The kneading increments of each critical point cj are defined by

mcj
ðtÞ ¼ hcþ

j
ðtÞ � hc�

j
ðtÞ with j ¼ 1; . . . m; ð4Þ

where hc�
j
ðtÞ ¼ limx!c�

j
hxðtÞ. Separating the terms associated with the symbols L1; L2; . . . ; Lmþ1 of the alphabet Am, the incre-

ments mjðtÞ, are written in the form

mcj
ðtÞ ¼ Nj1ðtÞL1 þ Nj2ðtÞL2 þ � � � þ Nj mþ1ð ÞðtÞLmþ1: ð5Þ

The coefficients Njk in the ring Z½½t�� are the entries of the m� ðmþ 1Þ kneading matrix

NðtÞ ¼

N11ðtÞ � � � N1ðmþ1ÞðtÞ

..

. . .
. ..

.

Nm1ðtÞ � � � Nmðmþ1ÞðtÞ

2664
3775: ð6Þ

From this matrix, we compute the determinants DjðtÞ ¼ det bNðtÞ, where bNðtÞ is obtained from NðtÞ removing the j column
ðj ¼ 1; . . . ;mþ 1Þ, and

Fig. 2. Bifurcation diagram for xn as a function of b with a ¼ 0:25 and b 2 ½0:15; 0:5�.
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DðtÞ ¼ ð�1Þjþ1DjðtÞ
1� eðLjÞt

ð7Þ

is called the kneading determinant. Here, eðLjÞ is defined like in (2).
Let f be a m-modal map and DðtÞ defined as above. Let s be the growth number of f, then the topological entropy of the

map f is, see [8],

htopðf Þ ¼ log s with s ¼ 1
t�

and t� ¼minft 2 ½0;1� : DðtÞ ¼ 0g: ð8Þ

3.1. Symmetry effect on the kneading theory for unimodal maps

To each value of the parameters ða; bÞ, consider a function fa;b : I ! I, from the compact interval I � R to itself, such that
I ¼ ½c0; c1� is divided in two subintervals L ¼ ½c0; c� and R ¼ ½c; c1�, where c denote the single critical point of fa;b and suppose
that fa;bjL, and fa;bjR are monotone functions. Such a map is called a unimodal map. With the above procedure, we can com-
pute the topological entropy for the unimodal maps. In Table 1, we show the kneading data and the topological entropy asso-
ciated to unimodal first return Poincaré map fa;b, obtained for some values of the parameters ða; bÞ 2 U and w ¼ 1:18. Note
that some sequences of Table 1 have zero topological entropy. They have periods power of two, so this result, obtained by
numerical computation, was expected as a consequence of Sharkovsky theorem. Note also, that some sequences of Table 1
are eventually periodic, see [7]. Looking at Table 1, we notice that there are pairs of maps fa;b and fa1 ;b1 with kneading se-
quences such that we can obtain one of them by changing the symbols L by R and R by L. They are somehow symmetric
and they have the same topological entropy. In Table 2, we have some pairs of symmetric unimodal maps, chosen from Table
1. We wonder if this equality between entropies holds for all symmetric unimodal maps. In order to prove that, we must
define more precisely what we mean by mirror symmetric unimodal maps.

Definition 1. Let fa;b and fa1 ;b1
be two unimodal maps. Assume that fa;b has a critical point c1 and has a periodic kneading

sequence ðAS1S2 � � � Sp�1Þ1, being A the symbol corresponding to c1. Then, we say that fa1 ;b1
, with a critical point c2, is the

mirror symmetric map of fa;b if and only if fa1 ;b1
has the kneading sequence ðBbS1

bS2 � � � bSp�1Þ1, such that

c2 is a minimum if c1 is a maximum
c2 is a maximum if c1 is a minimum

�
and

bSj ¼ R if Sj ¼ L;bSj ¼ L if Sj ¼ R;

(
ð9Þ

where B is the symbol corresponding to c2. In that case, we call to (9) a mirror transformation to the unimodal maps fa;b and fa1 ;b1 .

Lemma 2. If fa;b and fa1 ;b1 are two mirror symmetric unimodal maps, in the sense of (9), then

N11fa;b
ðtÞ ¼ �N12fa1 ;b1

ðtÞ and N12fa;b
ðtÞ ¼ �N11fa1 ;b1

ðtÞ:

Table 1
Kneading data and topological entropy for some unimodal maps.

ða; bÞ Kneading data for fa;b htopðfa;bÞ

(0.40000,0.34840) ðCLRLLLRLÞ1 0.0
(0.40000,0.34850) ðCLRLLLRLÞ1 0.0
(0.40000,0.35000) ðCLRLLLRLÞ1 0.0
(0.40000,0.35100) ðCLRLLLRLRLRLÞ1 0.12030. . .

(0.40000,0.35200) ðCLRLLLRLRLRLÞ1 0.12030. . .

(0.40000,0.35300) CLRLLðLRÞ1 0.17329. . .

(0.40000,0.35500) CLRLLðLRÞ1 0.17329. . .

(0.40000,0.35600) CLRLLðLRLRÞ1 0.17329. . .

(0.40000,0.35700) ðCLRLLLRLRLÞ1 0.20701. . .

(0.40000,0.35730) ðCLRLLLRLRLÞ1 0.20701. . .

(0.40000,0.35780) ðCLRLLLÞ1 0.24061. . .

(0.40000,0.35810) ðCLRLLLÞ1 0.24061. . .

(0.29540,0.28100) ðCLRLLLRLÞ1 0.0
(0.29540,0.28115) ðCLRLLLRLÞ1 0.0
(0.29540,0.28520) ðCRLRRRLÞ1 0.17329. . .

(0.29540,0.28628) CRðLRRRÞ1 0.24061. . .

(0.29540,0.28750) ðCRLRRRÞ1 0.24061. . .

(0.30000,0.28620) ðCLRLLLÞ1 0.24061. . .

(0.30000,0.28580) CRðLRRRÞ1 0.24061. . .

(0.20000,0.22900) ðCLRLLLRLÞ1 0.0
(0.20000,0.22920) ðCRLRRRLRÞ1 0.0
(0.25000,0.25390) ðCLRLLLRLLLRLLLRLÞ1 0.0
(0.25000,0.25520) ðCLRLLLRLÞ1 0.0
(0.25000,0.25870) ðCLRLLLÞ1 0.24061. . .
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Proof. Let ðAS1S2 � � � Sp�1Þ1 and ðBbS1
bS2 � � � bSp�1Þ1 be the kneading sequences of fa;b and fa1 ;b1 , respectively, where

cþ1 ! ðRS1S2 � � � Sp�1Þ1; cþ2 ! ðRbS1
bS2 � � � bSp�1Þ1;

c�1 ! ðLS1S2 � � � Sp�1Þ1; c�2 ! ðLbS1
bS2 � � � bSp�1Þ1:

The invariant coordinates of the sequence associated to the critical point of fa;b and fa1 ;b1 are, respectively,

hcþ1
ðtÞ ¼

Xk¼1
k¼0

sk cþ1
� �

tkSk ¼ Rþ
Xk¼p�1

k¼1

sk cþ1
� �

tkSk

 !
1

1� sp cþ1
� �

tp ;

hc�1
ðtÞ ¼

Xk¼1
k¼0

sk c�1
� �

tkSk ¼ Lþ
Xk¼p�1

k¼1

sk c�1
� �

tkSk

 !
1

1� sp c�1
� �

tp ;

hcþ2
ðtÞ ¼

Xk¼1
k¼0

sk cþ2
� �

tkbSk ¼ Rþ
Xk¼p�1

k¼1

sk cþ2
� �

tkbSk

 !
1

1� sp cþ2
� �

tp ;

hc�2
ðtÞ ¼

Xk¼1
k¼0

sk c�2
� �

tkbSk ¼ Lþ
Xk¼p�1

k¼1

skðc�2 ÞtkbSk

 !
1

1� spðc�2 Þtp :

Note that, spðc�1 Þ ¼ spðcþ2 Þ ¼ �spðcþ1 Þ ¼ �spðc�2 Þ, because eðSkÞ ¼ eðbSkÞ and due to (9). Denoting by

Lkðc�j Þ ¼
Xk�1

i¼1

Si or bSi¼L

si c�j
� �

ti and Rk c�j
� �

¼
Xk�1

i¼1

Si or bSi¼R

si c�j
� �

ti

with j ¼ 1;2, we notice that Lpðc�1 Þ ¼ Rpðc	2 Þ and Rpðc�1 Þ ¼ Lpðc	2 Þ, because the number of symbols L in cþ1 is equal to the num-
ber of R in c�2 and the number of symbols R in cþ1 is equal to the number of L in c�2 . Separating the terms associated with the
symbols L and R of the alphabet A ¼ fA; L;Rg, we may write the invariant coordinates in the following way:

hcþ1
ðtÞ ¼ Rþ Lp cþ1

� �
Lþ Rp cþ1

� �
R

� 	 1
1� sp cþ1

� �
tp ;

hc�
1
ðtÞ ¼ Lþ Lp c�1

� �
Lþ Rp c�1

� �
R

� 	 1
1þ sp cþ1

� �
tp

and

hcþ2
ðtÞ ¼ Rþ Rp c�1

� �
Lþ Lp c�1

� �
R

� 	 1
1þ sp cþ1

� �
tp ;

hc�
2
ðtÞ ¼ Lþ Rp cþ1

� �
Lþ Lp cþ1

� �
R

� 	 1
1� sp cþ1

� �
tp :

Consequently, the entries of the kneading increments for the points c1 and c2 are

N11fa;b
ðtÞ ¼

Lp cþ1
� �

1þ sp cþ1
� �

tp
� 	

� 1þ Lp c�1
� �� 	

1� sp cþ1
� �

tp
� 	

1� s2
p cþ1
� �

t2p

and

N12fa;b
ðtÞ ¼

1þ Rp cþ1
� �� 	

1þ sp cþ1
� �

tp
� 	

� Rp c�1
� �

1� sp cþ1
� �

tp
� 	

1� s2
p cþ1
� �

t2p :

It follows, as desired, that N11fa;b
ðtÞ ¼ �N12fa1 ;b1

ðtÞ and N12fa;b
ðtÞ ¼ �N11fa1 ;b1

ðtÞ. h

Table 2
Some pairs of parameter values corresponding to symmetric unimodal maps.

ða; bÞ ða1; b1Þ htop

(0.40000,0.34840) (0.20000,0.22920) 0
(0.20000,0.22920) (0.20000,0.22900) 0
(0.20000,0.25520) (0.20000,0.22920) 0
(0.40000,0.35300) (0.29540,0.28520) 0.17329. . .

(0.40000,0.35780) (0.29540,0.28750) 0.24061. . .

(0.29540,0.28750) (0.40000,0.35810) 0.24061. . .

(0.30000,0.28620) (0.29540,0.28750) 0.24061. . .

(0.25000,0.25870) (0.29540,0.28750) 0.24061. . .
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The above lemma suggests the next result.

Proposition 3. The mirror symmetric unimodal maps fa;b and fa1 ;b1
, under the conditions of the previous lemma, have the same

topological entropy.

Proof. This statement is a consequence of Lemma 2, i.e.,

D1fa;b
ðtÞ ¼ N12f a;b

ðtÞ ¼ �N11fa1 ;b1
ðtÞ ¼ �D2fa1 ;b1

ðtÞ

and

D2fa;b
ðtÞ ¼ N11f a;b

ðtÞ ¼ �N12fa1 ;b1
ðtÞ ¼ �D1fa1 ;b1

ðtÞ:

By (7) and noticing that eðLfa;b Þ ¼ �eðLfa1 ;b1
Þ, we have

Dfa;b
ðtÞ ¼

D1fa;b
ðtÞ

1� eðLfa;b
Þt ¼ �

D2fa;b
ðtÞ

1þ eðLfa;b
Þt

¼ �
D2fa1 ;b1

ðtÞ

1þ eðLfa1 ;b1
Þt ¼

D1fa1 ;b1
ðtÞ

1� eðLfa1 ;b1
Þt ¼ Dfa1 ;b1

ðtÞ:

So, the maps fa;b and fa1 ;b1 have the same kneading determinant DðtÞ and, consequently, they have the same topological
entropy. h

3.2. Symmetry effect on the kneading theory for bimodal maps

To each value of the parameters ða; bÞ, consider a function fa;b : I! I, from the closed interval I to itself, such that I is
divided in three subintervals L ¼ ½c0; c1�, M ¼ ½c1; c2� and R ¼ ½c2; c3�, where c1 and c2 denote the critical points of fa;b and
suppose that fa;bjL, fa;bjM and fa;bjR are monotone functions. Such a map is called a bimodal map. For a bimodal map, the
symbolic sequences corresponding to periodic orbits of the critical points c1, with period p, and c2 with period k, may be
written as

AS1S2 � � � Sp�1
� �1

; BQ1 � � �Q k�1ð Þ1
� �

:

In this case, we have two periodic orbits, but in other cases of bimodal maps we have a single periodic orbit, of period pþ k,
that passes through both critical points (bistable case), for which we write only

ðAP1 � � � Pp�1BQ1 � � �Q k�1Þ1:

See some examples in Table 3.
Now, we will study these two cases, with the additional condition that p ¼ k and the symbols Q j are the symmetric of the

symbols Pj, in the sense of the following definition.

Definition 4. Let fa;b be a symmetric bimodal map for which the periodic kneading sequence, with period q ¼ 2p, is

S ¼ ðAS1S2 � � � Sp�1Þ1; ðBbS1
bS2 � � � bSp�1Þ1

� �
ð10Þ

or

S ¼ ðAS1S2 � � � Sp�1BbS1
bS2 � � � bSp�1Þ1 ð11Þ

with S1; S2; . . . ; Sp�1 2 fL;M;Rg, such thatbSj ¼ R if Sj ¼ LbSj ¼ L if Sj ¼ RbSj ¼ M if Sj ¼ M

8>><>>: and A$ B: ð12Þ

Table 3
Kneading data for some bimodal maps.

ða; bÞ Kneading data for fa;b

(0.40000,0.61320) ððALRMRLÞ1; ðBRLMLRÞ1Þ
(0.40000,0.61420) ðALRMRLLBRLMLRRÞ1

(0.40000,0.61500) ðALRMRLLLRMRLMLRBRLMLRRRLMLRMRLÞ1

(0.40000,0.61600) ðALRMRLLLRBRLMLRRRLÞ1

(0.40000,0.61900) ALRðMRLLLRBRLMLRRÞ1

(0.40000,0.62350) ðALRðMRLLÞ; BRLðMLRRÞÞ1

(0.40000,0.62300) ðALRðMRLLÞ; BRLðMLRRÞÞ1
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The bimodal map fa;b is called a symmetric bimodal map and (12) is called a mirror transformation for this map.

We call bSj the mirror image of Sj. The second half of S is obtained from the first one by the mirror transformation, see [2].
Note that, this definition of symmetry is just for one bimodal map, while in Section 3.1 we defined symmetry between two
different unimodal maps.

In the next results, we will find some interesting properties of the kneading theory due to this symmetry.

Lemma 5. Let S ¼ ððAS1S2 � � � Sp�1Þ1; ðBbS1
bS2 � � � bSp�1Þ1Þ be a symmetric bimodal kneading sequence satisfying the mirror

transformation (12). Then, we have

D1ðtÞ ¼ D3ðtÞ ¼ N12ðtÞðN13ðtÞ � N11ðtÞÞ and D2ðtÞ ¼ N2
13ðtÞ � N2

11ðtÞ:

Proof. Set

cþ1 ! ðMS1S2 � � � Sp�1Þ1; cþ2 ! ðRbS1
bS2 � � � bSp�1Þ1;

c�1 ! ðLS1S2 � � � Sp�1Þ1; c�2 ! ðMbS1
bS2 � � � bSp�1Þ1:

The invariant coordinates of the sequences associated to the critical points of fa;b are

hcþ1
ðtÞ ¼

Xk¼1
k¼0

sk cþ1
� �

tkSk ¼ M þ
Xk¼p�1

k¼1

sk cþ1
� �

tkSk

 !
1

1� sp cþ1
� �

tp ;

hc�1
ðtÞ ¼

Xk¼1
k¼0

sk c�1
� �

tkSk ¼ Lþ
Xk¼p�1

k¼1

sk c�1
� �

tkSk

 !
1

1� sp c�1
� �

tp ;

hcþ
2
ðtÞ ¼

Xk¼1
k¼0

sk cþ2
� �

tkbSk ¼ Rþ
Xk¼p�1

k¼1

sk cþ2
� �

tkbSk

 !
1

1� sp cþ2
� �

tp ;

hc�
2
ðtÞ ¼

Xk¼1
k¼0

sk c�2
� �

tkbSk ¼ M þ
Xk¼p�1

k¼1

sk c�2
� �

tkbSk

 !
1

1� sp c�2
� �

tp :

Note that, spðc�1 Þ ¼ spðcþ2 Þ ¼ �spðcþ1 Þ ¼ �spðc�2 Þ, because eðSkÞ ¼ eðbSkÞ and due to (12). Denoting by

Lk c�j
� �

¼
Xk�1

i¼1

Si or bSi¼L

si c�j
� �

ti; Mk c�j
� �

¼
Xk�1

i¼1

Si or bSi¼M

si c�j
� �

ti

and Rk c�j
� �

¼
Xk�1

i¼1

Si or bSi¼R

si c�j
� �

ti with j ¼ 1;2:

We notice that

Lp c�1
� �

¼ Rp c	2
� �

; Mp c�1
� �

¼ Mp c	2
� �

; Rp c�1
� �

¼ Lp c	2
� �

;

Lp c�1
� �

¼ �Lp c	1
� �

; Mp c�1
� �

¼ �Mp c	1
� �

; and Rp c�1
� �

¼ �Rp c	1
� �

:

Separating the terms associated with the symbols L, M and R of the alphabet A ¼ fA; L;M;B;Rg, the kneading increments for
the points c1 and c2 are

mc1 ðtÞ ¼
Lp cþ1
� �

1� sp cþ1
� �

tp �
1� Lp cþ1

� �
1þ sp cþ1

� �
tp

 !
Lþ

1þMp cþ1
� �

1� sp cþ1
� �

tp �
�Mp cþ1

� �
1þ sp cþ1

� �
tp

 !
M þ

Rp cþ1
� �

1� sp cþ1
� �

tp �
�Rp cþ1

� �
1þ sp cþ1

� �
tp

 !
R

and

mc2 ðtÞ ¼
�Rp cþ1

� �
1þ sp cþ1

� �
tp �

Rp cþ1
� �

1� sp cþ1
� �

tp

 !
Lþ

�Mp cþ1
� �

1þ sp cþ1
� �

tp �
1þMp cþ1

� �
1� sp cþ1

� �
tp

 !
M þ

1� Lp cþ1
� �

1þ sp cþ1
� �

tp �
Lp cþ1
� �

1� sp cþ1
� �

tp

 !
R:

So, we have N23ðtÞ ¼ �N11ðtÞ, N22ðtÞ ¼ �N12ðtÞ and N21ðtÞ ¼ �N13ðtÞ, and consequently,

D1ðtÞ ¼ N12ðtÞN23ðtÞ � N13ðtÞN22ðtÞ ¼ N12ðtÞðN13ðtÞ � N11ðtÞÞ;
D2ðtÞ ¼ N11ðtÞN23ðtÞ � N13ðtÞN21ðtÞ ¼ ðN13ðtÞ þ N11ðtÞÞðN13ðtÞ � N11ðtÞÞ;
D3ðtÞ ¼ N11ðtÞN22ðtÞ � N12ðtÞN23ðtÞ ¼ N12ðtÞðN13ðtÞ � N11ðtÞÞ: �

For the particular case of bistable symmetric bimodal maps, we get a similar result.
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Lemma 6. Let S ¼ ðAS1S2 � � � Sp�1BbS1
bS2 � � � bSp�1Þ1 be a symmetric bimodal kneading sequence with period q ¼ 2p, satisfying the

mirror transformation (12). Then, we have

D1ðtÞ ¼ D3ðtÞ ¼ N12ðtÞðN13ðtÞ � N11ðtÞÞ and D2ðtÞ ¼ N2
13ðtÞ � N2

11ðtÞ:

Proof. The kneading matrix NðtÞ has entries obtained from mcj
ðtÞ (5) and mcj

ðtÞ is defined by (4). Set

cþ1 ! ðMS1S2 � � � Sp�1MbS1
bS2 � � � bSp�1Þ1 and c�1 ! ðLS1S2 � � � Sp�1RbS1

bS2 � � � bSp�1Þ1;

cþ2 ! ðRbS1
bS2 � � � bSp�1LS1S2 � � � Sp�1Þ1 and c�2 ! ðMbS1

bS2 � � � bSp�1MS1S2 � � � Sp�1Þ1:

Note that, due to the symmetry of the map, the right side of AðMÞ, is the mirror of the left side of BðMÞ and the left side of AðLÞ,
is the mirror of the right side of BðRÞ. The mirror of Sk is bSk, for all k ¼ 1; . . . ; p� 1. Thus, we have

hcþ1
ðtÞ ¼ M þ

Xk¼p�1

k¼1

sk cþ1
� �

tkSk þ sp cþ1
� �

tpM þ
Xk¼p�1

k¼1

spþk cþ1
� �

tpþkbSk

 !
1

1� t2p

and

hc�1
ðtÞ ¼ Lþ

Xk¼p�1

k¼1

sk c�1
� �

tkSk þ sp c�1
� �

tpRþ
Xk¼p�1

k¼1

spþk c�1
� �

tpþkbSk

 !
1

1� t2p :

Attending to the periodicity of S, these formal power series are geometric series and have a common positive ratio t2p, be-
cause the number of symbols L, M and R are even in each sequence of 2p consecutive terms of the series. Denote by

Lk c�j
� �

¼
Xk�1

i¼1
Si¼L

si c�j
� �

ti; Mk c�j
� �

¼
Xk�1

i¼1
Si¼M

si c�j
� �

ti

and

Rk c�j
� �

¼
Xk�1

i¼1
Si¼R

si c�j
� �

ti with j ¼ 1;2:

Looking to the first p symbols of the sequences of cþj and c�j , we see that the only difference is in S0, which have opposite
signs, so we have, skðcþj Þ ¼ �skðc�j Þ, for 0 < k < p, and j ¼ 1;2. Analogously, we see that the difference between the complete
sequences of cþj and c�j is in S0 and Sp, which have the same sign, so we have, spþkðcþj Þ ¼ spþkðc�j Þ. This implies that

Lp cþj
� �

¼
Xp�1

i¼1
Si¼L

si cþj
� �

ti ¼ �
Xp�1

i¼1
Si¼L

si c�j
� �

ti ¼ �Lp c�j
� �

;

Lq�p cþj
� �

¼
Xp�1

i¼1
Si¼L

spþi cþj
� �

tpþi ¼
Xp�1

i¼1
Si¼L

spþi c�j
� �

tpþi ¼ Lq�p c�j
� �

;

Mp cþj
� �

¼ �Mp c�j
� �

; Mq�p cþj
� �

¼ Mq�p c�j
� �

;

Rp cþj
� �

¼ �Rp c�j
� �

and Rq�p cþj
� �

¼ Rq�p c�j
� �

with j ¼ 1;2:

So, the kneading increment is

mc1 ðtÞ ¼ �1þ 2Lp cþ1
� �� 	

Lþ 1þ sp cþ1
� �

tp þ 2Mp cþ1
� �� 	

M



þ �sp c�1
� �

tp þ 2Rp cþ1
� �� 	

R
� 1

1� t2p : ð13Þ

Notice that, due to eðSiÞ ¼ eðbSiÞ, for all i, we have

sp c�1
� �

¼ sp cþ2
� �

and sp cþ1
� �

¼ sp c�2
� �

;

consequently,

Lp cþ2
� �

¼ �Rp cþ1
� �

; Mp cþ2
� �

¼ �Mp cþ1
� �

and Rp cþ2
� �

¼ �Lp cþ1
� �

: ð14Þ

In the same way, we compute the invariant coordinates and the kneading increment of c2 and by equalities (14), we may
write

mc2 ðtÞ ¼ sp c�1
� �

tp � 2Rp cþ1
� �� 	

Lþ �1� sp cþ1
� �

tp � 2Mp cþ1
� �� 	

M



þ 1� 2Lp cþ1
� �� 	

R
� 1

1� t2p : ð15Þ
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From (13) and (15), it follows immediately the kneading matrix and the desired result. h

As a consequence of the above results, we have

Proposition 7. Let fa;b be a symmetric bimodal map of type (10) or (11) in the sense of Definition 4 and DðtÞ the kneading
determinant (7). Let s ¼ 1=t� be the growth number of fa;b, where

t� ¼min t 2 ½0;1� : N13ðtÞ � N11ðtÞ ¼ 0f g:

Then, the topological entropy of the map fa;b is log s.

Proof. Considering (8) and by formula (7), the roots of DðtÞ are also the roots of D1ðtÞ, D2ðtÞ and D3ðtÞ. From Lemmas 5 and 6,
we have

D1ðtÞ ¼ D3ðtÞ ¼ N12ðtÞ½N13ðtÞ � N11ðtÞ�

and

D2ðtÞ ¼ ½N13ðtÞ þ N11ðtÞ�½N13ðtÞ � N11ðtÞ�:

So, the smaller real positive root of DðtÞ occurs when the common factor of D1ðtÞ, D2ðtÞ and D3ðtÞ vanish. h

Notice that, although the sequence S has 2p terms, it suffices the first p terms to determine its dynamics and the symbols M
does not matter in the evaluation of the topological entropy. This suggests that the behaviour of a symmetric bimodal map is
determined by some unimodal map, as pointed out in [2].

4. Duffing application

Example 8. Let us take the Duffing equation (1) with the parameter values a ¼ 0:2954 and b ¼ 0:2875. In this case, the
attractor and the unimodal Poincaré return map are shown in Fig. 3. The symbolic sequence is ðCRLRRRÞ1, so we have

cþ ! ðRRLRRRÞ1 and c� ! ðLRLRRRÞ1:

The invariant coordinates of the sequence S associated with the critical point c are

hcþ ðtÞ ¼
t2

1þ t6 Lþ 1� t þ t3 � t4 þ t5

1þ t6 R;

hc� ðtÞ ¼
1� t2

1� t6 Lþ t � t3 þ t4 � t5

1� t6 R:

The kneading increment of the critical point, mcðtÞ ¼ hcþ ðtÞ � hc� ðtÞ, is

mcðtÞ ¼
�1þ 2t2 � t6

1� t12 Lþ 1� 2t þ 2t3 � 2t4 þ 2t5 � t6

1� t12 R:

So, the kneading matrix is NðtÞ ¼ ½N11ðtÞ N12ðtÞ� ¼ ½D2ðtÞ D1ðtÞ�, i.e.,

NðtÞ ¼ �1þ 2t2 � t6

1� t12

1� 2t þ 2t3 � 2t4 þ 2t5 � t6

1� t12

� 
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Fig. 3. Duffing attractor and Poincaré return map for a ¼ 0:2954 and b ¼ 0:2875.
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and the kneading determinant is

DðtÞ ¼ ð�1þ tÞð�1þ t2 þ t4Þ
1� t12 :

The smallest positive real root of D1ðtÞ is t� ¼ 0:786 . . ., so the growth number is s ¼ 1=t� ¼ 1:272 . . . and the topological en-
tropy is htop ¼ 0:2406 . . .

Example 9. Let us take, for example, the case a ¼ 0:5 and b ¼ 0:719 in the Duffing equation (1). See in Fig. 4 the attractor and
the return map, which behaves, in this case, like a symmetric bimodal map. The symbolic sequence is bistable and symmetric
ðALRMRLLLRBRLMLRRRLÞ1. Thus we have

cþ1 ! ðMLRMRLLLRMRLMLRRRLÞ1; c�1 ! ðLLRMRLLLRRRLMLRRRLÞ1;
cþ2 ! ðRRLMLRRRLLLRMRLLLRÞ1; c�2 ! ðMRLMLRRRLMLRMRLLLRÞ1:

Computing the invariant coordinates hc�
i
ðtÞ and the kneading increments mc�

i
ðtÞ (i ¼ 1;2), we obtain the kneading matrix,

from which we have

D1ðtÞ ¼ D3ðtÞ ¼
ð1þ tÞ2ð1� 3t þ t2Þð1� t þ t2Þð�1� t3 þ t6Þð�1þ t3 þ t6Þ

1� t18 :

From D1ðtÞ ¼ 0, we get t ¼ 0:381966 . . ., s ¼ 2:61803 . . . and htopðf Þ ¼ 0:962424 . . .

See in Table 3, the kneading data associated to symmetric bimodal maps fa;b for some values of ða; bÞ 2 B and w ¼ 1:18.
For all these examples, we have chaotic behaviour and the topological entropy has exactly the same value 0.962424. . .
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Fig. 4. Duffing attractor and Poincaré return map for a ¼ 0:5 and b ¼ 0:719.
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