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Abstract

The purpose of this paper is to study the dynamical behavior of a family of two-
dimensional nonlinear maps associated to an economic model. Our objective is to
measure the complexity of the system using techniques of symbolic dynamics in
order to compute the topological entropy. The analysis of the variation of this im-
portant topological invariant with the parameters of the system, allows us to distin-
guish different chaotic scenarios. Finally, we use a another topological invariant to
distinguish isentropic dynamics and we exhibit numerical results about maps with
the same topological entropy. This work provides an illustration of how our under-
standing of higher dimensional economic models can be enhanced by the theory of
dynamical systems.
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Introduction

The application of dynamical systems to economics is an enormous and in-
teresting area, but it is a subject that is not systematically studied. In fact,
the theory of dynamical systems (via differential equations and discrete time
maps) has only been applied, in a large scale, to economic analysis in recent
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years. One of the most interesting theories of business cycles in the Keyne-
sian vein is still the work of Nicholas Kaldor [12]. The main difference from
most other contemporary models consists in the use of non-linear functions,
which produce endogenous cycles, rather than the linear multiplier-accelerator
model which maintain regular cycles due to exogenous factors. The mathemat-
ical models that describe and mimic the behavior of economies appear from
the relationships between different variables, such as, employment, income or
savings. In Kaldor’s model, investment and savings depend on the economic
activity in a nonlinear relationship, although the usual formulation of the
Kaldor model restricts the nonlinear relationship to the investment relation,
with a linear relation for savings. Chang and Smyth [3] translated Kaldor’s
trade cycle model into a more rigorous context: the former into a limit cycle
and the latter into catastrophe theory. One of the factors that difficult the
mathematical treatment of the economic models, in general, is that they are,
in the majority of the cases, described by models of dimension greater than
one. There are few generalizations that can be made about high-dimensional
dynamics from low-dimensional dynamics. The possibility of measuring signif-
icant quantities becomes very difficult. Therefore, a geometrical understanding
of how these systems behave is, in general and from an intuitive standpoint,
very insightful. In the present paper we consider the discrete two-dimension
economic model of the Kaldor type, due to Hermann [10] and studied by
many authors. For additional literature about different studies concerning the
Kaldor model, the reader is also referred to [4], [5] [6], [11], [14] and [18].
In the present work, we will focus our attention on the study of a particular
case of the chosen Kaldor model version. We provide a contribution for its
detailed analysis, more precisely, using techniques of symbolic dynamics, we
compute the topological entropy and we study some important features of its
dynamics. We show the influence of the different parameters of the system on
the variation of the topological entropy. This measure quantifies the amount of
chaos in the dynamical system and allows us to distinguish different states of
complexity. We also introduce a second invariant to distinguish maps with the
same topological entropy and, in particular, how this second invariant changes
within a given type of topological entropy level set (see some applications in
other context in [8] and [7]). As far as the concept of entropy is concerned, it
was originally developed in a branch of physics - the thermodynamics - and it
has been adapted and applied in other different research areas such as: ther-
moeconomics, information theory, evolution and string theory. As an example,
we can mention the work developed in [9], where a number of interconnected
issues involving superstring theory, entropy and the particle content of the
standard model of high energy physics, have been studied.

The Kaldor business cycle model consists in two principal equations using the
following four variables: investments, capital stock, savings and income. Let
us denote investments by I, capital stock by K, savings by S and income by
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Y . So, we have:










Yt+1 − Yt = α(It − St)

Kt+1 = (1 − δ)Kt + It

, (1)

where α is a positive number and represents the speed of reaction to the excess
demand and δ (0 < δ < 1) represents the capital stock depreciation rate. A
value of α smaller than one means a prudent reaction. Conversely, a high value
of α means rash reactions. The state of an economy modeled by this discrete
version of the Kaldor model is completely determined by the income and the
capital stock.
Savings are such that,

St = Yt − C(Yt), (2)

where C(Yt), the consumption function, has a sigmoid shape similar to Kaldor’s
investment function:

C(Yt) = c0 +
20

π
arctan

(

cπ(Yt − Y ∗)

20

)

, (3)

with c0, c and Y ∗ constants. The parameters c0 and c are related with the sig-
moidal shape of the consumption function. Y ∗ represents the equilibrium level
of income. Net investment depends proportionally on possible discrepancies
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Fig. 1. The shape of the consumption function, C(Yt), for c0 = 0 and Y ∗ = 0.

between the desired capital stock, Kd
t , and actual capital stock:

It = β(Kd
t − Kt) + δKt. (4)

Considering the desired capital stock depending linearly on income,

Kd
t = γYt,

and inserting expressions (2) and (4) in equation (1) we have the following
two dimensional nonlinear map:
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









Yt+1 = α(β (γYt − Kt) + δKt + C(Yt) − Yt) + Yt

Kt+1 = (1 − β)Kt + β γYt

, (5)

where the system parameters satisfy: α, c, γ > 0, 0 < δ, β < 1 and C(Yt) is
given by Eq. 3.

Considering the particular case, when β = δ, the map becomes:










Yt+1 = α
(

βγYt + c0 + 20
π

arctan
(

cπ(Yt−Y ∗)
20

)

− Yt

)

+ Yt

Kt+1 = (1 − β)Kt + β γYt

. (6)

This map have the peculiarity that its first component doesn’t depend on the
second, and it is called a triangular map (or skew map). An immediate con-
sequence of this structure is that the first equation works like an independent
one-dimensional map, which means, from the economic point of view, that
the income depends only on the income itself. The first component of the
map is called the basis map and the second is called the fiber map. A second
consequence of this triangular structure is the possibility to apply mathemat-
ical methods to compute relevant quantities that characterize the system as
chaotic or non chaotic.
The outline of the paper is as follows. In Section 1 we present the model and
investigate its dynamics. In Section 2 we introduce the symbolic dynamics
techniques necessary to our study of the model and the main results related
to the computation of topological entropy. We illustrate the computation of
this numerical invariant and we show its variation with the different relevant
parameters of the system. In Section 3 we study the second topological in-
variant in a specific entropy level set and, finally, in the last section we make
some final considerations.

1 Triangular maps and chaos

Consider the family F : R
2 −→ R

2, F (y, k) = (f(y), g(y, k)) given by

F







y

k





 =







α
(

βγ y + c0 + 20
π

arctan
(

cπ (y−y∗)
20

)

− y
)

+ y

(1 − β)k + β γy





 (7)

where α, δ, γ and β are real parameters such that α, δ, γ > 0, 0 < β < 1. The
Fig. 2 and the Fig. 3 show the graphical representation of attractors associated
to F for some values of the parameters.
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Fig. 2. Attractors associated to the family F for some values of the parameters. In
plot (a) α = 20.3, β = 0.2, c = 0.75, γ = 1.65 and in plot (b) α = 21.5, β = 0.2,

c = 0.75, γ = 1.65.
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Fig. 3. Attractors associated to the family F for some values of the parameters. In
plot (a) α = 19.5, β = 0.2, c = 0.75, γ = 1.65 and in plot (b) α = 21.84, β = 0.2,

c = 0.75, γ = 1.65.

Let P = {x0, x1, ..., xp−1} be a periodic orbit of period p of the map f such
that f (xi) = xi+1 for i = 0, ..., p − 2 and f (xp−1) = x0. We define the map
gp : Y −→ Y as

gp (y) = g (xp−1, g (xp−2, ...g (x1, g (x0, y)) ...)) . (8)

If Q = {y0, y1, ..., yq−1} is a periodic orbit of period q of the map gp such
that gp (yi) = yi+1 for i = 0, ..., q − 2 and gp (yp−1) = y0, we can define the
product P.Q as the set containing the p.q pairs:

(x0, y0) (x1, g (x0, y0)) . . . (xp−1, g (xp−2, ...g (x1, g (x0, y0)) ...))

(x0, y1) (x1, g (x0, y1)) . . . (xp−1, g (xp−2, ...g (x1, g (x0, y1)) ...))
...

...
. . .

...

(x0, yq−1) (x1, g (x0, yq−1)) . . . (xp−1, g (xp−2, ...g (x1, g (x0, yq−1)) ...)) .

The orbits of the one-dimensional maps f and gp determine the orbits of the
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triangular map T , as we show in the following Lemma:

Lemma 1 Let T = (f, g) : X×Y −→ X×Y be a continuous triangular map.
Then the following hold:
(1) If f has a periodic orbit P and gp has a periodic orbit Q, then P.Q is a
periodic orbit of T.
(2) Conversely, each periodic orbit of T can be obtained as a product of a
periodic orbit P of f by a periodic orbit of gp.

PROOF. See [2].

The topological entropy is a measure of complexity of a dynamical system.
Let T be a triangular map like defined in the earlier Lemma. The Bowen’s
formula for the inferior and superior values of the topological entropy of T ,
htop(T ), is valid, that is,

max {htop(f), htop(gp)} ≤ htop(T ) ≤ htop(f) + htop(gp), (9)

where htop(f) and htop(gp) represent, respectively, the topological entropy of
the basis map, f, and the topological entropy of the fiber map associated to
the orbit P , gp.

According to (9), to compute topological entropy it is necessary to compute
first the topological entropy of f , a 4-parameter family representing the basis
map,

f(y) = α

(

βγ y + c0 +
20

π
arctan

(

cπ (y − y∗)

20

)

− y

)

+ y (10)

Observing the solutions of the equation f ′(y) = 0 we can see that the map
f is a bimodal map, that is, a continuous map on the interval with three
monotonic subintervals and two turning points c1 and c2 (see Figure 4), when
c > 1 − βγ − 1

α
> 0. This is the situation we will consider. The relative

minimum c1 and the relative maximum c2 are given by:

c1 = y∗ −

√

√

√

√

202c

1− 1

α
−βγ

− 202

c2π2
and c2 = y∗ +

√

√

√

√

202c

1− 1

α
−βγ

− 202

c2π2
.

In order to study clearly the variation of the topological entropy of our family
of maps, it is relevant to analyze the following cases:

(1) c0 = Y ∗ = 0

(2) c0 6= 0 and Y ∗ 6= 0
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Fig. 4. Graphical representation of f when c > 1 − βγ − 1
α
. In this case α = 26.0,

β = 0.2, c = 0.75 and γ = 1.65.

Firstly, we are going to consider c0 = Y ∗ = 0. In this case the turning points
c1 and c2 are symmetric.

The figures Fig. 5 show the variation of the behavior of the basis map when
we change one parameter, α or c, at the time. The other parameters, β and
γ, modify the bimodal map in the same way as the parameter c.
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Fig. 5. The behavior of the basis map. In plot a) when α varies, the other parameters
are: β = 0.2, c = 0.75 and γ = 1.65. In plot b) when c varies, the other parameters
are: α = 15, β = 0.2 and γ = 1.65.

We are now in position to exhibit some interesting properties of the topological
entropy of the basis map for some value of the parameters.
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1.1 Symbolic dynamics and Topological entropy

Using techniques of symbolic dynamics, in particular some results concerning
to Markov partitions associated to bimodal maps, we compute the topological
entropy of the basis map for c0 = Y ∗ = 0 (for more details see [13] and [16]).
As we pointed out before, our basis map is a bimodal map. Therefore, the
symbolic dynamics for cubic maps is particularly important to study our type
of systems.

Let us consider a bimodal map f (piecewise monotone map) on the interval
I = [c0, c3], where I is subdivided into three subintervals:

L = [c0, c1[ , M = ]c1, c2[ , R = ]c2, c3]

such that, f is strictly decreasing in L and R intervals, increasing in the
interval M and c1 and c2 denote, respectively, the relative minimum and the
relative maximum of f . The points c1 and c2 play an important role. The
dynamics of the interval is characterized by the symbolic sequences associated
to the orbits of points c1 and c2. Such orbits are, respectively,

O (c1) =
{

xi : xi = f i (c1) , i ∈ N

}

and O (c2) =
{

yi : yi = f i (c2) , i ∈ N

}

.

We associate to each orbit O (ci) a sequence of symbols S = S1S2...Sj ... ∈ Σ =

{L, A, M, B, R}N , where























































Sj = L

Sj = A

Sj = M

Sj = B

Sj = R

if f j(ci) < c1

if f j(ci) = c1

if c1 < f j(ci) < c2

if f j(ci) = c2

if f j(ci) > c2

.

The set of symbols Σ has an order relation that depends on the LR-parity. If
we denote by nLR the number of times the symbols L and R occur in S it
is possible to define the LR-parity of a sequence, ρ(S) = (−1)nLR, mean-
ing odd or even according to nLR . Given P , Q two sequences such that
P1P2...Pk−1 = Q1Q2...Qk−1 and Pk 6= Qk, if the LR-parity of the common
block is even (that is, ρ(P1P2...Pk−1) = +1) then P < Q if Pk < Qk in the
order L < A < M < B < R and if the LR-parity of the common block
is odd (that is, ρ(P1P2...Pk−1) = −1) then P < Q if Pk < Qk in the order
R < B < M < A < L. If there is no such index k then P = Q. When
O (c1) or O (c2) is a k-periodic orbit the sequence of symbols can be charac-
terized by a block of length k, S(k) = S1...Sk−1Ci. In what follows we restrict
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our study to the case when c1 and c2 are periodic (respectively, eventually
periodic) such that O(c1) is p-periodic and O(c2) is q-periodic (respectively,
f p(c1) = c2 or f q(c2) = c1). We shall note that O(c1) is realizable iff the
block P = P1...Pp−1A is maximal, that is, σi(P ) ≤ P , where 1 < i ≤ p and
σ(PiPi+1Pi+2...) = Pi+1Pi+2... is the usual shift operator. Note also that O(c2)
is realizable iff the block Q = Q1...Qq−1B is minimal, that is, σj(Q) ≥ Q,
where 1 < j ≤ q. Finally, note that the pair of sequences that are realizable
satisfies the following conditions σi(P ) ≥ Q, for 1 ≤ i ≤ p and σj(Q) ≤ P, for
1 ≤ j ≤ q. The set of such pair of sequences will be denoted by Σ(A,B). The

pairs
(

P (p), Q(q)
)

∈ Σ(A,B) where P (p) = P1...Pp−1A, Q(q) = Q1...Qq−1B, the
bistable sequence P1...Pp−1BQ1...Qq−1A, and the eventually periodic sequence
P1...Pp−1BQ1...Qq−1B or.Q1...Qq−1AP1...Pp−1A are called kneading data.

In [16], Milnor-Thurston, introduced the concept of kneading increments and
kneading-matrix. These are power series that measure the discontinuity eval-
uated at the turning points ci, i = 1, 2, ..., m, of m-modal maps. For the case
of bimodal maps we have two kneading-increments defined by

νi(t) = θc+
i
(t) − θc−

i
(t), i = 1, 2

where θx(t) is the invariant coordinate of the sequence S0S1S2...Sj ... associated
to the itinerary of the point x. The invariant coordinate is defined by

θx(t) =
∞
∑

j=0

τ j tj Sj ,

where τ j =
J−1
∏

i=0

ε(Si) for j > 0, τ 0 = 1 for j = 0,

ε(Si) =























































−1 if Si = L

0 if Si = A

1 if Si = M

0 if Si = B

−1 if Si = R

and θc±
i
(t) = lim

x→c±
i

θx(t). Separating the terms associated to the symbols L, M

and R, we obtain

νi(t) = Ni1(t) L + Ni2(t) M + Ni3(t) R.
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The 2 × 3 kneading-matrix is defined by

N(t) =







N11(t) N12(t) N13(t)

N21(t) N22(t) N23(t)







and the corresponding kneading determinent, D(t), is

D(t) =
D1(t)

1 − ε(L)t
= −

D2(t)

1 − ε(M)t
=

D3(t)

1 − ε(R)t

=
D1(t)

1 + t
= −

D2(t)

1 − t
=

D3(t)

1 + t
,

where D1(t) = N12(t)N23(t)−N22(t)N13(t), D2(t) = N11(t)N23(t)−N21(t)N13(t)
and D3(t) = N11(t)N22(t) − N21(t)N12(t).

Now we consider the topological entropy. As we pointed out before, this im-
portant numerical invariant is related to the orbit growth and allows us to
quantify the complexity of the dynamics. It represents the exponential growth
rate for the number of orbit segments distinguishable with arbitrarily fine
but finite precision. In a sense, the topological entropy describes in a sugges-
tive way the total exponential complexity of the orbit structure with a single
number.

A definition of chaos in the context of one-dimensional dynamical systems
states that a dynamical system is called chaotic if its topological entropy is
positive. Thus, the topological entropy can be computed to express whether
a map has chaotic behavior.

Let s be the growth number of a bimodal map f . The topological entropy of
f , denoted by htop (f), is given by

htop (f) = log s,

where

s =
1

t∗
,

with t∗ the root of D(t), which has the lowest modulus.

In order to illustrate the outlined formalism about the computation of the
topological entropy, we discuss the following example.

Example 2 Let us fix α = 21.054, β = 0.2, c = 0.75 and γ = 1.65 (see
map of Figure 4). For this parameter values the orbits of the turning points
define the pair of sequences (LMLLA, RMRRB). The symbolic sequences that
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correspond to the orbits of the points c+
1 , c−1 , c+

2 and c−2 are

c+
1 −→ M (LMLLL)∞

c−1 −→ L (LMLLL)∞

c+
2 −→ R (RMRRR)∞

c−2 −→ M (RMRRR)∞ .

Note that the block LMLLL corresponds to the sequence LMLLA where the
symbol A is replaced by L because the parity of the block LMLL is odd and
the block RMRRR corresponds to the sequence RMRRB where the symbol B
is replaced by R because the parity of the block RMRR is odd. The invariant
coordinates are

θc+
1
(t) = M + Lt − Mt2 − Lt3 + Lt4 − Lt5 + Lt6 − Mt7 − ...

= M + t (L − Mt − Lt2 + Lt3 − Lt4) + t6(L − Mt − Lt2 + Lt3 − Lt4) + ...

= M + t (L − Mt − Lt2 + Lt3 − Lt4) (1 + t5 + t10 + ...)

= M +
t(L−Mt−Lt2+Lt3−Lt4)

1−t5
,

θc−
1
(t) = L − Lt + Mt2 + Lt3 − Lt4 + Lt5 − Lt6 + Mt7 + ...

= L − t (L − Mt − Lt2 + Lt3 − Lt4) − t6(L − Mt − Lt2 + Lt3 − Lt4) − ...

= L − t (L − Mt − Lt2 + Lt3 − Lt4) (1 + t5 + t10 + ...)

= L −
t(L−Mt−Lt2+Lt3−Lt4)

1−t5

and

θc+
2
(t) = R − Rt + Mt2 + Rt3 − Rt4 + Rt5 − Rt6 + Mt7 − ...

= R − t (R − Mt − Rt2 + Rt3 − Rt4) − t6(R − Mt − Rt2 + Rt3 − Rt4) − ...

= R − t (R − Mt − Rt2 + Rt3 − Rt4) (1 + t5 + t10 + ...)

= R −
t(R−Mt−Rt2+Rt3−Rt4)

1−t5
,

θc−
2
(t) = M + Rt − Mt2 − Rt3 + Rt4 − Rt5 + Rt6 − Mt7 + ...

= M + t (R − Mt − Rt2 + Rt3 − Rt4) + t6(R − Mt − Rt2 + Rt3 − Rt4) − ...

= M + t (R − Mt − Rt2 + Rt3 − Rt4) (1 + t5 + t10 + ...)

= M +
t(R−Mt−Rt2+Rt3−Rt4)

1−t5
.
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The kneading increments, ν1 and ν2, are given by

ν1(t) = θc+
1
(t) − θc−

1
(t)

= M +
t(L−Mt−Lt2+Lt3−Lt4)

1−t5
−
(

L −
t(L−Mt−Lt2+Lt3−Lt4)

1−t5

)

=
(

−1+2t−2t3+2t4−t5

1−t5

)

L +
(

1−2t2−t5

1−t5

)

M

and

ν2(t) = θc+
2
(t) − θc−

2
(t)

= R −
t(R−Mt−Rt2+Rt3−Rt4)

1−t5
−
(

M −
t(R−Mt−Rt2+Rt3−Rt4)

1−t5

)

=
(

−1+2t2+t5

1−t5

)

M +
(

1−2t+2t3−2t4+t5

1−t5

)

R.

From the previous definitions, the kneading matrix is

N(t) =







−1+2t−2t3+2t4−t5

1−t5
1−2t2−t5

1−t5
0

0 −1+2t2+t5

1−t5
1−2t+2t3−2t4+t5

1−t5





 .

Since D(t) = D1(t)
1+t

= −D2(t)
1−t

= D3(t)
1+t

, we obtain

D(t) =
(1 − 2t2 − t5) (1 − 2t + 2t3 − 2t4 + t5)

(1 − t) (1 − t5)2 .

Therefore t∗ = 0.660992... and the topological entropy is given by

htop (f) = log
(

1

t∗

)

= 0.414012....

To see the long term behavior for different values of the parameters, we plot,
in Fig. 6 and Fig. 7 typical bifurcation diagrams starting from the initial
conditions c1 and c2.

With these figures it is easier to understand Fig. 8 and Fig. 9 that present some
numerical results of the variation of the topological entropy with each of the
parameters α and c, in some regions of the parameter space. For these values
of the parameters, these graphs suggest that the topological entropy htop is
monotone increasing. This behavior is determined by the symbolic sequences
ordering associated to the successive orbits of the two turning points and
allows us to distinguish the return maps.

As far as basis map is concerned, it is important to notice that for the pa-
rameter values corresponding to a stable periodic orbit of the basis map f(y),
gp (k) is given by
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0.66 0.7 0.74 0.78
c

-5

0

5

y

Fig. 7. Bifurcation diagram of the map f for c ∈ [0.63, 0.79] , α = 21, β = 0.2 and
γ = 1.65.

gp (k) = g (yp−1, ... g (y2, g (y1, g (y0, k)) ...)) (11)

= (−1)pk(−1 + β)p +

+β
(

yp−1 − yp−2(−1 + β) + yp−3(−1 + β)2 − ... + (−1)p−1y0(−1 + β)p−1
)

γ.

Note that gp (k) represents a straight line which means that the topological
entropy is zero in the fiber map. In this situation we can enunciate that the
topological entropy htop(F (y, k)) of the map F (y, k), representing the kaldor
model considered, is such that

htop(F (y, k)) = htop(f(y)).

Concerning the study of the topological entropy, it may occur situations of
isentropics dynamics (that is, dynamics with the same entropy) that can raise
interesting questions.
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Fig. 8. Variation of the topological entropy with α, for c = 0.75, γ = 1.65 and
β = 0.2, β = 0.25 and β = 0.3.

0.6 0.65 0.7 0.75
c

0.2

0.4

0.6

0.8

1

htop

Β=0.2

Β=0.25

Β=0.3

Fig. 9. Variation of the topological entropy with c,for α = 25.5, γ = 1.65 and
β = 0.2, β = 0.25 and β = 0.3.

2 Isentropic dynamics

To start with, let us consider the case pointed out before where

c0 6= 0 and Y ∗ 6= 0.
14



To illustrate this idea of isentropic dynamics, we are going to fix Y ∗ = 0.8,
α = 22, β = 0.2, γ = 1.6. and search for some maps with topological entropy
log(2.147899...) = 0.764490..., when parameters c and c0 change. In our study
we consider the restriction of the family of maps

fc,co
(y) = α

(

βγ y + c0 +
20

π
arctan

(

cπ (y − y∗)

20

)

− y

)

+ y

to its invariant region Ω ∈ R
2

Ω = {(c, c0) ∈ R
2 : fc,co

(fc,co
(c1)) < fc,co

(c2) and

fc,co
(fc,co

(c2))> fc,co
(c1) and fc,co

(c2) > c2 and fc,co
(c1) < c1},

the set of parameters such that the basis map is bimodal.

The region Ω is presented in Fig.10.

W

0.70 0.72 0.74 0.76 0.78 0.80

0.45

0.50

0.55

0.60

0.65

c

c0

Fig. 10. The region Ω of the parameter space.

With the above procedure, we can compute the topological entropy for the
maps. The following tables show the kneading data and the characteristic
polynomial associated to each map. It is important to notice that the common
factor (−1− 2t− t2 + t3) determines the spectral radius 2.147899.. and, there-
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fore, the same topological entropy htop (fc,co
) = log(2.147899...) = 0.764490...,

(c, c0) with Y ∗ = 0.8 kneading data of fc,co

(0.77505, 0.52026) (ALB, BRM3A)

(0.7729695, 0.528732) (ALMRB, BRM3L5MR2MB)

(0.77092, 0.54465) (ALM2R3B, BRM2L3M2R4MB)

(0.775037, 0.567662) (ALM3B, BRA)

(0.772511, 0.557187) (ALM3RB, BRML5M3R2MB)

(0.770934, 0.543232) (ALM2RB, BRM2L5M2R2MB)

(0.77295, 0.55914) (ALM3R3B, BRML3M3R4MB)

(0.7725154, 0.530723) (ALMR3B, BRM3L3MR4MB)

(0.7743488, 0.523392) (ALMRM3RB, BRM3L2M3LM2RM3RMRMB)

(0.771405, 0.5505) (ALM2B, BRMA)
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(c, c0) with Y ∗ = 0.8 characteristic polynomial of M(fc,co
)

(0.77505, 0.52026) (−1 − 2t − t2 + t3)(−1 + t − 2t2 + t3)

(0.7729695, 0.528732)
(−1 − 2t − t2 + t3)(1 − t)t3

(−2 + t − 2t2 − t4 − t5 − t6 − t7 − t9 + t10)

(0.77092, 0.54465)
(−1 − 2t − t2 + t3)(−1 + t)t6

(−2 + t − 2t2 − t4 − t5 − t6 − t7 − t9 + t10)

(0.775037, 0.567662)
(−1 − 2t − t2 + t3)(−1 + t)(1 + t)

(−1 + t − 2t2 + t3)

(0.772511, 0.557187)
(−1 − 2t − t2 + t3)(−1 + t)t5

(−2 + t − 2t2 − t4 − t5 − t6 − t7 − t9 + t10)

(0.770934, 0.543232)
(−1 − 2t − t2 + t3)(1 − t)t5

(−2 + t − 2t2 − t4 − t5 − t6 − t7 − t9 + t10)

(0.77295, 0.55914)
(−1 − 2t − t2 + t3)(1 − t)t7

(−2 + t − 2t2 − t4 − t5 − t6 − t7 − t9 + t10)

(0.7725154, 0.530723)
(−1 − 2t − t2 + t3)(1 − t)t5

(−2 + t − 2t2 − t4 − t5 − t6 − t7 − t9 + t10)

(0.7743488, 0.523392)
(−1 − 2t − t2 + t3)t7(−2 + 3t − t2 − 2t3 + 3t4 − 4t5

+4t6 − t8 + t9 − 2t10 + t11 − t15 + t16 − 2t17 + t18)

(0.771405, 0.5505) (−1 − 2t − t2 + t3)(−1 + t − 2t2 + t3)

At this point of our study, we emphasize that in all the examples we have
chaotic behavior and the topological entropy has exactly the same value. One
question appears naturally: how can we distinguish these isentropic maps?

In the following lines we address a contribution to the answer to this question.

It is interesting to exhibit a numerical result about the isentropic maps studied.
To each point (c0, c) in Fig. 11 corresponds a map with the topological entropy
htop (fc,co

) = log(2.147899...) = 0.764490.... We also represent the isentropic
points in the Ω region (see Fig. 12).

The topological entropy by itself is no longer sufficient to classify the maps
introduced. We need to consider a new topological invariant in order to dis-
tinguish the maps with the same entropy.
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0.771 0.773 0.775

0.52

0.54

0.56

c

c0

Fig. 11. Representation of points (c, c0), for Y ∗ = 0.8. To each point corresponds a
map with topological entropy htop (fc,co

) = log(2.147899...) = 0.764490....

W
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c
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Fig. 12. Representation of points (c, c0), for Y ∗ = 0.8. To each point corresponds a
map with topological entropy htop (fc,co

) = log(2.147899...) = 0.764490....

The study of topological classification for bimodal maps f leads to the intro-
duction of two topological invariants: one of them is the well known growth
number s (f) = ehtop(f) and the other numerical quantity, denoted by r, is
associated to the relative positions of the turning points of the map. The
topological invariant r is introduced using the hypothesis s (f) > 1 and the
Milnor-Thurston results about the topologically semi-conjugate by λ of fc,c0

to a piecewise linear map Fe,s having slope ±s (f) everywhere (see [1], [16],
[15] and [17]).
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There exists one and only one map

Fr,s : [0, 1] −→ [0, 1] so that Fr,s (λ (x)) = λ (fc,c0 (x))

for every x ∈ [0, 1] such that

Fr,s (y) =



























−s y + 1 if 0 ≤ y < λ (c1)

s y + r − 1 if λ (c1) ≤ y < λ (c2)

−s y + s if y ≥ λ (c2)

where λ (c1) = (2 − r)/(2s), λ (c2) = (1 + s − r)/(2s) (see Fig. 13). Then, to

0 0.2 0.4 0.6 0.8 1
y

0

0.2

0.4

0.6

0.8

1

F
r
,
s
H
y
L

Fig. 13. Piecewise linear map for s = 2.147899... and r = 0.534428....

each bimodal map fc,c0, characterized by a kneading sequence (P (p), Q(q)), we
can associate two topological invariants. One of them is the growth number
s (f), as we saw, and the other is the new invariant, r(f), given by

r(f) = (3 + e)/2 − s(λ (c1) + λ (c2))

with

λ (c1) =
nL+1
∑

i=1

vi and λ (c2) =
nL+nM+2
∑

i=1

vi

where nL (resp. nM ) denote the number of symbols L (resp. symbols M) and
the vector v is the Perron eigenvector associated to the eigenvalue λmax = s,
Mv = λmaxv, where M is the transition matrix with the extreme intervals
I0 = [0, z1] and Ip+q = [zp+q, 1] included. It is important to note that r (f) is in
fact a topological invariant because all the variables λ (c1), λ (c2) and s (f) that
lead to r (f) are topological invariants (see [1]). In the piecewise linear case,
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Fs,r, the parameter r(f) is the invariant that distinguish isentropic dynamics
and r ∈ [0, 3 − s] .

Now regarding the previous considerations, we derive our main result

Theorem 3 The maps fc,c0 can be topologically classified by the pair of topo-

logical invariants (s, r), where s is the laps growth number
(

s (f) = ehtop(f)
)

and r is the invariant given by

r(f) = (3 + e)/2 − s(λ (c1) + λ (c2)).

and λ the map defined by the semi-conjugacy to the piecewise linear map Fe,s.

We discuss the following example which well illustrates the nature of our work.

Example 4 For the kneading data (LMMMB, RA) we can apply the previ-
ous algorithm to compute the topological invariants associated to this sequence.
The transition matrix

M =



















































0 0 0 1 1 1 1 1

0 1 1 0 0 0 0 0

0 1 1 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 1 1 1 1 1 0

1 1 0 0 0 0 0 0



















































with Mv = λmaxv the equation of Perron eigenvector. Then we have

λ (c1) =
2
∑

i=1

vi = 0.341164... and λ (c2) =
6
∑

i=1

vi = 0.608378...

(with v normalized to the unit interval). We obtain

s = 2.147899... and r = 0.534428...

The semi-conjugate piecewise linear map associated to this kneading data is
given in the Fig. 13. The corresponding parameters of the map fc,c0 are c =
0.775037, c0 = 0.567662 and Y ∗ = 0.8.

To each kneading data
(

P (p), Q(q)
)

corresponds one and only one value of r.

For the set of points studied, we present in figures 14 and 15 some numerical
results of the variation of the topological invariant r with each of the param-
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eters c and c0. The graphs of figures 12 and 14 have a similar shape which is
a consequence of the relation between r and c0.

0.771 0.773 0.775
c

0.35

0.4

0.45

0.5

r

Fig. 14. Variation of the topological invariant r with c.

0.52 0.54 0.56
c0

0.35

0.4

0.45

0.5

r

Fig. 15. Variation of the topological invariant r with c0.

Due to the fact that formula (11) is valid for all values of the parameters, the
equality

htop(F (y, k)) = htop(f(y))

remains for c0 6= 0 and Y ∗ 6= 0. Therefore, the isentropic situations studied
for f(y) still occur for the triangular map F (y, k).

3 Final considerations

In this article we have studied the chaotic dynamics of a Kaldor model, in-
volving the income and the capital stock variables, in the case when it reduces
to a map of the triangular type. In the available literature, the detailed ex-
amination of this model involves many different issues, both in the economic
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and mathematical domains, and its scientific investigation is still an active
research area.

A detailed analysis of the model became possible by the study of the variation
of the topological entropy with the parameter α (that represents the speed
of reaction to the excess demand) and with the parameter c (which is di-
rectly related with the sigmoidal shape of the consumption function). Indeed,
the Kaldor model exhibits positive topological entropy, which means that in
certain conditions the associated economy has a chaotic nature. Our analysis
reveals that when the parameter α increases (which means a rasher reaction to
excess demand) the topological entropy also increases. In a similar way, when
the parameter c increases this numerical invariant also increases. Therefore,
high values of these control parameters tend to introduce more complexity to
the economy. To each value of these control parameters corresponds a value of
the topological entropy which is a quantifier for the complex orbit structure
and an atribute efficiently used to identify different chaotic states.

We introduced a second topological invariant as a tool to distinguish isentropic
maps. It is interesting to notice that an increase in the control parameter
c0 means an increase in the numerical invariant r. Regarding our numerical
simulations, is it possible to expect one identification of the parameter c0 and
the topological invariant r? In the context of economic models, what is the
meaning of this topological invariant and what does it represent? These are
open questions which may lead to future significant research works.
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