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We derive a threshold value for the coupling strength in terms of the growth number,
to achieve synchronization of two coupled piecewise linear m-modal maps, with m = 1
and m = 2, for the unidirectional and for the bidirectional coupling. This gives us
information about the synchronization of unimodal and bimodal maps. An application
to the bidirectional coupling of two identical chaotic Duffing equations is given.

1. Introduction

The analysis of synchronization phenomena of dynamical systems started in the
17th century with the finding of Huygens that two very weakly coupled pendulum
clocks become synchronized in phase. Recently, the search for synchronization has
evolved to chaotic systems. Two or more, identical, separated, chaotic systems
starting from slightly different initial conditions would evolve in time, with com-
pletely different behaviour, but if they are coupled, we may see that after some time
they exhibit exactly the same behaviour. Synchronization is a process wherein two
or more systems adjust a given property of their motion to a common behaviour,
due to coupling or forcing. Various types of synchronization have been studied. This
includes complete synchronization (CS), phase synchronization (PS), lag synchro-
nization (LS) generalized synchronization (GS), anticipated synchronization (AS),
and so on 2. The coupled systems might be identical or different, the coupling
might be unidirectional, (master-slave or drive-response), or bidirectional (mutual
coupling) and the driving force might be deterministic or stochastic.
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In 4, A. Kenfack studied the linear stability of the coupled double-well Duffing
oscillators projected on a Poincaré section and observed numerically the bifurcations
and chaotic behaviour of the system, when the parameters change. In 5, Kyprianidis
et al. observed numerically the synchronization of two identical single-well Duffing
oscillators as a function of the coupling parameter.
In this work we investigate the unidirectional and bidirectional synchronization

of two identical unimodal and bimodal maps. We obtain, analytically, the value of
the coupling parameter for which the complete synchronization is achieved. Then,
we apply these results to the study of the chaotic synchronization of two identical
bidirectionally coupled double-well Duffing oscillators. We discuss the synchroniza-
tion in terms of symbolic dynamics. Symbolic dynamics is a fundamental tool
available to describe complicated time evolution of a chaotic dynamical system. In-
stead of representing a trajectory by infinite sequences of numbers, one uses the
alternation of symbols.

2. Main results

Consider the coupling of two identical maps xn+1 = f(xn) and yn+1 = f(yn). To
be able to say if the two systems are synchronized we must look to the difference

zn = yn − xn
and see if this difference converges to zero, as n →∞.
Denoting by k the coupling parameter, if the coupling is unidirectional½

xn+1 = f(xn)

yn+1 = f(yn) + k [f(xn)− f(yn)]
then

zn+1 = (1− k) [f(yn)− f(xn)] . (1)

If the coupling is bidirectional

½
xn+1 = f(xn)− k [f(xn)− f(yn)]
yn+1 = f(yn) + k [f(xn)− f(yn)]

then

zn+1 = (1− 2k) [f(yn)− f(xn)] . (2)

These two systems are said in complete synchronization if there is an identity
between the trajectories of the two systems. In 10 and 11 it is establish that this
kind of synchronization can be achieved provided that all the Lyapunov exponents
are negative.
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2.1. Synchronization of unimodal maps

Consider the tent map fs: [0, 1]→ [0, 1] defined by

fs(x) =

½
sx− s+ 2, if 0 6 x < 1− 1

s

s− sx if 1− 1
s 6 x 6 1

.

Recall that any piecewise monotonic map of positive entropy and growth num-
ber s is topologically semi-conjugated to a piecewise linear map with slope ±s
everywhere, see 9.
This map can be written as

fs(x) = sx− s+ 2 + 2θ (s− sx− 1) , (3)

with

θ(x) =

½
0 if 0 6 x < 1− 1

s

1 if 1− 1
s 6 x 6 1

.

Definition 2.1. Let S(n) = S1S2...Sn be a symbolic sequence, using symbols Si
belonging to some alphabet A. Define a distance between two sequences

Sx(p) = Sx1Sx2 ...Sxp and Sy(q) = Sy1Sy2 ...Syq ,

by d(Sx, Sy) = e−n, where n = min {n > 1 : Sx(n) 6= Sy(n)} .
Compare with 3.

Theorem 2.1. Let xn+1 = f(xn) and yn+1 = f(yn) be two identical coupled sys-
tems, with f given by (3) and 1 < s 6 2. Let h be the topological entropy of (3)
(h = log s) and k ∈ [0, 1] the coupling parameter. If

∃n ∈ N : d (θ(yn+j), θ(xn+j)) 6 e−n, ∀j > 0,
then,

(i) the unidirectional coupled systems (1) are synchronized if k > eh−1
eh
.

(ii) the bidirectional coupled systems (2) are synchronized if k > eh−1
2eh

.

Proof. Attending to (1) and (3),

zn+1 = (1− k) [syn − s+ 2 + 2θyn (s− syn − 1)− sxn + s− 2− 2θxn (s− sxn − 1)] .
If θyn+j = θxn+j , ∀j > 0, then zn+1 = (1− k) (1 + 2θ) szn.
It follows that, zn+m = [(1− k) (1− 2θ) s]m zn.
Thus, if θ = 0, then zn+m = [(1− k) s]m zn and if θ = 1, zn+m =

[(1− k) (−s)]m zn. In both cases, zn+m = rmzn, with |r| = (1− k) s.
So, letting m → ∞, we have lim

m→∞
rmzn = 0, iff |r| < 1, i.e., |(1− k) s| < 1 ⇒

k > eh−1
eh
, for k ∈ [0, 1] , as desired.

Attending to (2) and (3),

zn+1 = (1− 2k) [syn − s+ 2 + 2θyn (s− syn − 1)− sxn + s− 2− 2θxn (s− sxn − 1)] .
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If θyn+j = θxn+j , ∀j > 0, then zn+1 = (1− 2k) (1 + 2θ) szn.
It follows that, zn+m = [(1− 2k) (1− 2θ) s]m zn.
Thus, if θ = 0, then zn+m = [(1− 2k) s]m zn and if θ = 1, zn+m =

[(1− 2k) (−s)]m zn. In both cases, zn+m = rmzn, with |r| = (1− 2k) s.
So, letting m→∞, we have lim

m→∞
rmzn = 0, iff |r| < 1, i.e., |(1− 2k) s| < 1⇒

k > eh−1
2eh

, for k ∈ [0, 1] , as desired.

2.2. Synchronization of bimodal maps

Consider the bimodal piecewise linear map fs,r: [0, 1]→ [0, 1] , with slopes ±s, and
s > 1, defined by

fs,r(x) =

⎧⎨⎩
−sx+ 1 if 0 6 x < c1
sx+ r − 1 if c1 6 x < c2
−sx+ s if c2 6 x 6 1

with r = 3+s
2 −s (c1 + c2) and critical points c1 = 2−r

2s and c2 = 1+s−r
2s , see 8. Recall

that any transitive bimodal map is semi-conjugated to such a map.
This map can be written as

fs,r(x) = −sx+ 1 + θc1 (2sx+ r − 2) + θc2 (−2sx+ s− r + 1) , (4)

with

θci(x) =

½
0, if 0 6 x < ci
1, if ci 6 x 6 1

(i = 1, 2).

In this case, we may define θ(x) = θc1(x) + θc2(x), i.e.,

θ(x) =

⎧⎨⎩
0 if 0 6 x < c1
1 if c1 6 x < c2
2 if c2 6 x 6 1

.

Note the similarity of the meaning of the symbols {0, 1, 2} with the usual alpha-
bet {L,M,R} in the symbolic dynamics, see 9 and 6.

Theorem 2.2. Let xn+1 = f(xn) and yn+1 = f(yn) be two identical coupled sys-
tems, with f given by (4) and 1 < s 6 2. Let h be the topological entropy of (4),
(h = log s) and k ∈ [0, 1] the coupling parameter. If

∃n ∈ N : d (θ(yn+j), θ(xn+j)) 6 e−n, ∀j > 0,

then,

(i) the unidirectional coupled systems (1) are synchronized if k > 3eh−1
3eh

.

(ii) the bidirectional coupled systems (2) are synchronized if k > 3eh−1
6eh

.
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Proof. Attending to (1) and (4)

zn+1 = (1− k)
nh
−syn + 1 + θc1yn (2syn + r − 2) + θc2yn (−2syn + s− r + 1)

i
−
h
−sxn + 1 + θc1xn (2sxn + r − 2) + θc2xn (−2sxn + s− r + 1)

io
.

If θc1yn = θc1xn = θc1 and θc2yn = θc2xn = θc2 , then

zn+1 = (1− k) (−1 + 2 (θc1 − θc2)) szn.
It follows that zn+m = [(1− k) (−1 + 2 (θc1 − θc2)) s]m zn.
Denoting r = (1− k) (−1 + 2 (θc1 − θc2)) s, we have zn+m = rmzn.
Thus, if θc1 − θc2 = 0 or 1, then |r| = (1− k) s < 1⇒ k > s−1

s .

If θc1 − θc2 = −1, then |r| = 3 (1− k) s < 1⇒ k > 3s−1
3s .

So, as 3s−13s > s−1
s , to have synchronization it suffices that k >

3eh−1
3eh

.

Attending to (2) and (4)

zn+1 = (1− 2k)
nh
−syn + 1 + θc1yn (2syn + r − 2) + θc2yn (−2syn + s− r + 1)

i
−
h
−sxn + 1 + θc1xn (2sxn + r − 2) + θc2xn (−2sxn + s− r + 1)

io
.

If θc1yn = θc1xn = θc1 and θc2yn = θc2xn = θc2 , then

zn+1 = (1− 2k) (−1 + 2 (θc1 − θc2)) szn.
It follows that zn+m = [(1− 2k) (−1 + 2 (θc1 − θc2)) s]m zn.
Denoting r = (1− 2k) (−1 + 2 (θc1 − θc2)) s, we have zn+m = rmzn.
Thus, if θc1 − θc2 = 0 or 1, then |r| = (1− 2k) s < 1⇒ k > s−1

2s .

If θc1 − θc2 = −1, then |r| = 3 (1− 2k) s < 1⇒ k > 3s−1
6s .

So, as 3s−13s > s−1
s , to have synchronization it suffices that k >

3eh−1
6eh

.

3. An example: coupled Duffing oscillators

Consider two identical bidirectionally coupled Duffing oscillators, see 4 and refer-
ences therein.

½
x00(t) = x(t)− x3(t)− αx0(t) + k [y(t)− x(t)] + β Cos(wt)

y00(t) = y(t)− y3(t)− αy0(t)− k [y(t)− x(t)] + β Cos(wt)
(5)

where k is the coupling parameter. A basic tool is to do an appropriate Poincaré
section. In our case, we did a section defined by y = 0, since it is transversal to
the flow, it contains all fixed points and captures most of the interesting dynamics.
We consider parameter values for which each uncoupled (k = 0) oscillator exhibits
a chaotic behaviour, so if they synchronize, that will be a chaotic synchronization.
In a previous work we have found in the parameter plane (α,β), a region U where
the first return Poincaré map behaves like a unimodal map and a region B where
the first return Poincaré map behaves like a bimodal map. We choose, for example,
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Figure 1. Bifurcation diagram for k ∈ [0.001, 0.04]

w = 1.18, x0 = 0.5, x00 = −0.3, y0 = 0.9, y00 = −0.2 and α = 0.4, β = 0.3578, for
the unimodal case and α = 0.5, β = 0.719, for the bimodal case.
In Fig.1 the bifurcation diagram for the bidirectional coupled system (5) with

α = 0.4, β = 0.3578 and the coupling parameter k ∈ [0.001, 0.04] shows several
kinds of regions. In next section we will compute the topological entropy in some
points of this regions.
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Figure 2. Evolution of x versus y for the bidirectional coupled Duffing oscillators, for some values
of k, in the unimodal case (α = 0.4, β = 0.3578).

Numerically we can also see the evolution of the difference z = y − x with k.
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The synchronization will occur when x = y. See some examples in Fig.2 for the
unimodal case. Although not shown in this figure, the pictures for k > 0.214 . . .

are the same as for k = 0.25. Notice that, these pictures confirms numerically
the theoretical results given by theorem 2.1. For α = 0.4 and β = 0.3578 which
correspond to h = 0.2406 . . . , the synchronization occurs for k > 0.214 . . . .

4. Symbolic Dynamics

As the value of k grows, the number of initial equal symbols in the x and y symbolic
sequences, grows also. This can be expressed by the distance defined above and it
is a numerical evidence that the two systems will be synchronized.

k n

Sx : RLRRRLRLRRRLRRRLRRRLRLRLRRRLRL 0.00601

Sy : RLRRRLRRRLRRRLRRRLRRRLRRRLRRRL 7

Sx : RLRRRRRLRRRLRRRLRRRLRRRLRRRLRL 0.05

Sy : RLRRRLRLRLRLRRRLRRRLRLRRRLRRRL 5

Sx : RLRRRLRLRLRLRRRLRRRLRLRLRLRLRL 0.06

Sy : RLRRRLRLRRRLRRRLRRRLRLRLRLRLRL 9

Sx : RLRRRLRLRLRRRLRRRLRRRLRRRLRRRL 0.064

Sy : RLRRRLRLRLRLRLRRRLRRRLRLRRRLRR 11

Sx : RLRRRLRLRRRLRRRLRLRLRLRRRLRRRL 0.065

Sy : RLRRRLRLRRRLRRRLRRRLRLRLRLRLRL 17

Sx : RLRRRLRLRRRLRRRLRLRRRLRRRLRRRL 0.07

Sy : RLRRRLRLRRRLRRRLRLRRRLRRRLRRRL 30

Sx : RLRRRLRLRRRLRRRLRLRRRLRRRLRRRL 0.08

Sy : RLRRRLRLRRRLRRRLRLRRRLRRRLRRRL 30

Using techniques from Symbolic Dynamics, see 9 and 7, we compute the topological
entropy htop for some values of the coupling parameter k.

k Sx D(t) htop

0 (CRLRRR)∞
(−1+t)[(−1+t2)+t4]

1−t12 0.24061 . . .

0.00601 (CRLRRRLRLR)∞
(−1+t)[(−1+t2)(1−t4)+t8]

1−t20 0.20701 . . .

0.03 (CRLRRRLRRRLRRRLR)∞
(−1+t)[(−1+t2)(1−t4+t8−t12]

1−t32 0

0.1 (CRLRRRLRLR)∞
(−1+t)[(−1+t2)(1−t4)+t8]

1−t20 0.20701 . . .

Considering the return map for the first equation of system (5), with α = 0.4

and β = 0.3578 (unimodal case), we obtain for several values of k, the kneading
sequences Sx and the kneading determinants D(t). Notice the correspondence of
these values for the topological entropy with the evolution of k in the bifurcation
diagram, see Fig.1. We have verified that the topological entropy for several values
of k larger than k ≈ 0.032 remains constant, but positive. Meanwhile we find values,
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of the k parameter, where the topological entropy is zero, that is, where there is
chaos-destroying synchronization, see 12.

5. Conclusions

When doing Poincaré sections with y = 0, we obtained regions U and B where
the Poincaré map behaves like a unimodal and bimodal map respectively. By a
result from Milnor and Thurston 9 and Parry we know that every m-modal map F
with growth rate s is topologically semi-conjugated to a m + 1 piecewise linear
map f defined on the interval [0, 1], with slope ±s everywhere and htop(F ) =
htop(f) = log s. So, the study and conclusions about synchronization of piecewise
linear unimodal and bimodal maps, expressed in theorems 2.1 and 2.2, can be
applied to understand the behaviour of more general maps.
From the previous theorems we may also verify that the unimodal map syn-

chronizes faster than the bimodal map and that the bidirectional synchronization
occurs at half the value of the coupling parameter for the unidirectional case, as
mentioned by Belykh et al 1.

References

1. I. Belykh, M. Hasler and V. Belykh, When symmetrization guarantees synchronization
in directed networks, Int. J. Bif. Chaos, 17 (10) (2007).

2. S. Boccaletti, J. Kurths, G. Osipov, D.L. Valladares, C. S. Zhou, The synchronization
of chaotic systems, Physics Reports 366 (2002) 1-101.

3. J-R Chazottes, L Ramirez and E Ugalde, Finite type approximations of Gibbs mea-
sures on sofic subshifts, Nonlinearity 18 (2005) 445-463.

4. A. Kenfack, Bifurcation structure of two coupled periodically driven double-well Duff-
ing oscillators, Chaos Sol. Frac. 15 (2003) 205-218.

5. I. M. Kyprianidis, Ch. Volos, I. N. Stouboulos and J. Hadjidemetriou, Dynamics of
two resistively coupled Duffing-type electrical oscillators, Int. J. Bif. Chaos, 16 (2006)
1765-1775.

6. J. P. Lampreia and J. Sousa Ramos, Symbolic Dynamics for Bimodal Maps, Portu-
galiae Math. 54 (1) (1997) 1-18.

7. J. Leonel Rocha, and J. Sousa Ramos, Weighted kneading theory of one-dimensional
maps with a hole, Int. J. Math. Math. Sci. 37-40 2019-2038, (2004).

8. M. Mercês Ramos, C. Correia Ramos, R. Severino and J. Sousa Ramos, Topological
invariants of a chaotic pendulum, Int. J. Pure Appl. Math. 10 (2) (2004), 209-226.

9. J. Milnor and W. Thurston, On iterated maps of the interval I and II, Lect. Notes in
Math, No 1342, Springer-Verlag, (1988) 465-563.

10. L. M. Pecora and T. L. Carroll, Synchronization in chaotic systems, Phys. Rev. Lett.,
64, (1990) 821-824.

11. L. M. Pecora and T. L. Carroll, Driving systems with chaotic signals, Phys. Rev. A,
44, (1991) 2374-2383.

12. Pikovsky A., Rosenblum M., Kurths J., Synchronization:a universal concept in non-
linear sciences, Cambridge University Press, 2001.


