Title: Improved immunodiagnosis of Besnoitia besnoiti-infection in cattle by the use of ELISA and Westernblot

Article Type: Research Paper

Keywords: Besnoitia, cattle, immunodiagnosis, ELISA, Westernblot

Corresponding Author: Professor B. Gottstein,

Corresponding Author's Institution: Universität Bern, Institut für Parasitologie

First Author: H. Cortes

Order of Authors: H. Cortes; S. Nunes; Y. Reis; D. Staubli; R. Vidal; H. Sager; A. Leitao; B. Gottstein

Abstract:
Improved immunodiagnosis of Besnoitia besnoiti-infection in cattle by the use of ELISA and Westernblot.

H. Cortes¹, S. Nunes², Y. Reis³, D. Staubli², R. Vidal⁴, H. Sager², A. Leitão³, B. Gottstein⁷

¹Laboratório de Parasitologia, Núcleo da Mitra, ICAM, Universidade de Évora, Apartado 94, 7000-554 Evora, Portugal

²Institute of Parasitology, Vetsuisse Faculty, University of Bern, Langgass-Strasse 122, Bern, Switzerland

³Instituto de Investigação Científica e Tropical (CIISA), FMV, Av. da Universidade Técnica, 1300-447 Lisboa, Portugal.

⁴Faculdade de Farmácia (Laboratório de Engenharia Genética). Universidade de Lisboa, Portugal

*Corresponding authors

Address for correspondance: Prof. Dr. Bruno Gottstein, Institute of Parasitology, University of Bern, Laenggassstrasse 122, CH-3012 Bern, Switzerland

Tel. +41 31 631 24 18; Fax +41 31 631 26 22.

e-mail-address: bruno.gottstein@ipa.unibe.ch
Abstract

Besnoitia besnoiti, an obligate intracellular apicomplexan protozoan parasite, is the causative agent of bovine besnoitiosis. This infection may dramatically affect body condition, be responsible for abortion and, in males, lead to irreversible infertility, thus overall resulting in important economical losses in livestock production. Identification of infected animals for subsequent culling is one of the only presently appropriate measures of control. While identification of clinical cases is relatively easy to carry out, the finding of subclinical forms of infection is more difficult, thus serology may be an appropriate diagnostic tool. In view to improve and validate immunodiagnosis, we evaluated an enzyme-linked immunosorbent assay (ELISA), complemented with a Westernblot (both using a somatic *B. besnoiti*-tachyzoite antigen) to detect anti-*Besnoitia besnoiti* antibodies in bovine sera. The comparative evaluation of the two methods, using 13 sera from animals affected by the chronic phase of besnoitiosis and 10 asymptomatic carriers, yielded a diagnostic sensitivity of 87% for ELISA and 91% for Westernblot analyses. Specificity was tested with sera from animals with confirmed *Toxoplasma gondii* (n=5) and *Neospora caninum* (n=12) infection, and with 64 negative sera from either an endemic or a non-endemic area. The ELISA specificity ranged between 97.4% - 98%, the Westernblot specificity between 94.9% - 100%. The present study demonstrated that ELISA and Westernblot, using in vitro generated somatic *B. besnoiti* antigen, is a useful tool combination to reliably detect animals that have been exposed to *Besnoitia besnoiti* infection, including both asymptomatic and symptomatic courses of disease.

Key words: *Besnoitia*, cattle, immunodiagnosis, ELISA, Westernblot
1. Introduction

Bovine besnoitiosis is caused by infection with Besnoitia besnoiti (Marotel 1912). This tissue cyst-forming coccidian protozoan parasite is classified in the family of Sarcocystidae within the Phylum Apicomplexa (Fayer, 1981; Tadros & Laarman, 1982). All cattle breeds, both sexes, and animals of all ages can be affected, except that clinical disease occurs rarely in calves less than 6 months of age (Bigalke, 1968).

Bovine besnoitiosis is ubiquitously distributed in Sub-Saharan Africa (Bigalke et al., 1967; Shkap et al., 1994) and Asia (Peteshev et al., 1974; Krasov et al., 1975). In Europe, it has been reported in France (Besnoit & Robin, 1912; Bourdeau et al., 2004), Spain (Juste et al., 1990; Irigoien et al., 2000) and Portugal (Franco & Borges, 1915; Leitão, 1949; Malta & Silva, 1991; Cortes et al., 2003; Cortes et al., 2005). It is interesting to notice that, in these countries, after the first reports in the early 20th century (Besnoit & Robin, 1912; Franco & Borges, 1915) the disease received very little attention until the end of the 20th century, since when its prevalence seemed to be increasing (Cortes et al., 2005). At the acute stage of infection, tachyzoites proliferate predominantly in endothelial cells of the blood vessel walls, macrophages and fibroblasts. The result is vasculitis and thrombosis, especially in capillaries and small veins of the dermis, subcutis, fascia, testes and upper respiratory mucosae (Basson et al., 1970). Clinical signs consist of raised body temperature, increased heart and respiratory rates, serous nasal and ocular discharges, anorexia, weight loss, generalized weakness, swelling of superficial lymph nodes, generalized edema of the skin, acute orchitis with swollen, painful testes and, in some cases, anasarca (Schulz, 1960). Inspiratory dyspnea may result from inflammation of the upper respiratory mucosae (McCully et al., 1966). Diarrhoea and abortion are other more rare manifestations of the disease (Pols, 1960; Juste et al., 1990).

The subsequent, chronic stage of disease is characterized by formation of large numbers of tissue micro-cysts, up to 0.4 mm in diameter, containing bradyzoites. A low-grade, intermittent febrile reaction may be observed, reluctance to move, anorexia continues, and the loss of body condition can be severe. The characteristic cysts are formed in the same
tissues in which the tachyzoites were present during acute disease, especially in cutaneous
and subcutaneous tissues, and in intermuscular fascia (McCully et al., 1966). The skeletal
muscles, tendons, tendon sheaths and periosteum of the limbs, the testicular parenchyma,
and the upper respiratory mucosae may also be extensively involved (Basson et al., 1970).
Tiny cysts are usually apparent upon close visual inspection of the scleral conjunctiva, a
feature that is of considerable value in clinical diagnosis (Sannusi, 1991).
Dermal lesions are always present during chronic disease. These consist of rather dramatic
thickening, hardening and folding or wrinkling of the skin, especially around the neck,
shoulders and rump, always accompanied by hyperkeratosis, hyperpigmentation and
alopecia (Pols, 1960). The thickening of the skin is caused by scleroderma, (Basson et al.,
1970). Scleroderma and alopecia are permanent disfigurements in surviving animals
(Bigalke, 1960).
There may also be pronounced thickening of the limbs, and locomotion may be difficult and
painful (Pols, 1960). A mucopurulent nasal discharge may be accompanied by inspiratory
dyspnea (McCully et al., 1966). Severely affected bulls often develop irreversible
intratesticular lesions of vasculitis, focal necrosis, sclerosis and atrophy, which usually
result in permanent infertility (Ferreira et al., 1982; Cortes et al., 2005).
Few animals die during the acute stages of disease. The case fatality rate during the
chronic stage is usually on the order of 10% (Pols, 1960).
In the presence of disease on a herd level or by the time the option is on buying animals for
reproduction purposes, it is important to avoid acquirement of or to eliminate the presence
of infected animals. Clinically manifest cases, due to the occurrence of typical signs, are
easily detectable. Subclinically infected animals, however – more difficult to be diagnosed –
play an important role, as the parasite may be inapparently transmitted either iatrogenically
or by insect vectors (Bigalke, 1968). Histopathology, due to the very high number of cyst on
the skin of sick animals is a good method to diagnose acute disease, but not for the
detection of chronic or subclinical infection, where the number of cyst on an overall cattle
may still be high, but scarce on a histological skin slide (Cortes et al., 2004).
Previous studies addressing operating characteristics of the IFAT demonstrated the absence of cross-reactions with sera from animals infected with *N. caninum*, conversely no reactivity occurred when using *N. caninum* IFAT-antigen probed with *B. besnoiti* antiserum (Shkap *et al.*, 2002). The large variety of antigen preparations used e.g. in bovine neosporosis (Bjorkmann *et al.*, 1994, 1997; Lally *et al.* 1996; Williams *et al.*, 1997; Gottstein *et al.*, 1998) reflects concern about the potential problem of antigenic cross-reactivity with other closely related parasites. Whilst the use of highly purified antigen fractions or proteins may minimize the risk of cross-reactivity with other parasite species, a limited repertoire of antigenic epitopes may restrict individual recognition by sera from different animals, thus causing putative problems of diagnostic sensitivity. The use of somatic antigens in ELISA may exhibit a greater diagnostic sensitivity (Pare *et al.*, 1995), but may include some problems of specificity, thus requiring an additional test to solve this problem. We approached this by adding a Western blot that can reliably distinguish between specific reaction and non-specific or cross-reactions. Our experimental strategy was based upon an primary ELISA as proposed by Shkap (Shkap *et al.*, 1984), but complemented with an additional Westernblot test that can elucidate the problems of specificity.
2. Material and methods

2.1. Tissue culture and parasite purification

Vero cell cultures were maintained in DMEM supplemented with 10% fetal calf serum (FCS), 100 U of penicillin/ml, and 100 µg of streptomycin/ml at 37°C with 5% CO₂ in tissue culture flasks. Cultures were trypsinized at least once a week. *B. besnoiti* (Bb1Evora03) tachyzoites were grown in Vero cell monolayer with DMEM supplemented with 10% fetal calf serum, previously inactivated at 56°C for 30 min. Tachyzoites were harvested by scraping the monolayer and collection of the media with free parasites and infected Vero cells, followed by repeated passages through a 25-gauge needle at 4°C and, separation on Whatman CF-11 column as described by Shkap (Shkap *et al.*, 1990), followed by a final sedimentation at 770x g for 15 minutes at 4°C. The parasites were subsequently washed and centrifuged twice in phosphate buffered saline (PBS), pH 7.2 and stored frozen at –80°C.

2.2. Bovine Sera

A total of 104 sera were used in this study. Serum from 23 infected Portuguese cattle with *B. besnoiti* (13 with clinical signs of besnoitiosis and 10 without any clinical sign of disease, besides the presence of cysts, as determined upon histopathology (Fig. 1). Twelve sera were from Swiss cattle having experienced a *Neospora caninum*-PCR-positive abortion, and 5 sera were from Swiss cows/heifers exhibiting a *Toxoplasma gondii*-positive PCR with either cerebral or placental/fetal tissues and being serologically positive in the SAG1(P30)-ELISA. Additional (negative) control sera were collected from 39 healthy animals that were negative by histopathology and seronegative by IFAT, they were obtained from a Portuguese endemic area. Sera from 25 healthy cows were collected in a Swiss non-endemic area.
2.3. ELISA

The Besnoitia-ELISA was basically carried out as described for *N. caninum* (Gottstein et al., 1999), and included the following steps: Frozen *B. besnoiti* tachyzoite pellets were resuspended in PBS containing 0.01% NaN₃. Subsequent treatment by three freezing-thawing cycles (-50°C/+37°C) and final processing by ultrasonication (3 x 20 s at 65 W) at 1°C yielded a soluble *B. besnoiti*-extract (somatic antigen). The extract was sedimented at 10,000g at 4°C for 30 min. The soluble supernatant was used as somatic ELISA-antigen (hereinafter referred to as Besnoitia-SA-ELISA). Coating Dynatech polystyrene plates was done at a concentration of 0.4 µg protein per ml carbonate buffer (pH 9.6) at 4°C for 12 h. All protein concentrations were assessed by the Bio-Rad protein assay using bovine albumin as the standard. Besnoitia-ELISA plates were subsequently processed as described elsewhere for *N. caninum* (Gottstein et al., 1997). In brief, the washing, blocking and serum dilution solution was PBS containing 0.3% Tween 20 (PBS-Tween). The test and control sera were diluted 1:200 in PBS-Tween with 1% horse serum. Serum incubations were for 90 min at 37°C. The second antibody was an alkaline phosphatase-conjugated rabbit anti-bovine antibody (Sigma Immunochemicals, cat. No. A 0705) diluted at 1:5000 in PBS-Tween. The conjugate was incubated for 1 h at 37°C. The substrate used was 4-nitrophenylphosphate. The enzyme reaction was stopped after 15 min with 3N NaOH, and absorbance values were determined at A_{405nm} using a Dynax technologies MRX II reader coupled to a computer with the corresponding Biocalc@ software (Dynatech). Positive and negative control sera used for the Besnoitia-SA-ELISA were the same as used for the Western blot.

The basic test parameters for the Besnoitia-SA-ELISA were determined by investigating 39 sera from animals (no history of clinical disease; anamnestic lack of clinical or epidemiological signs indicative for besnoitiosis) originating from Portugal and 25 sera from Swiss cattle. For both geographically independent negative control groups, the respective ELISA ROC analysis was determined and subsequently used as the cut-off value. Any value higher than this cut-off value was considered to be “positive”; lower values were considered as “negative”. Reproducibility of ELISA results was monitored by including a low
reactive bovine control serum in triplicate, this in addition to the negative and positive standard sera, both also tested in triplicate.

2.4. Western blot

Thawed samples containing 10^8 pelleted *B. besnoiti* tachyzoites were solubilized for 10 min at 94°C in sample buffer (2% [w/v] sodium dodecyl sulfate (SDS), 7% [v/v] glycerol, 0.05% bromophenol blue, 0.75% tris(hydroxymethyl)aminomethane, pH 6.8). The samples were subsequently electrophoresed by SDS-PAGE (12.5% [w/v]) and electrophoretically transferred to PVDF (Schares *et al.*, 1998) membranes (Immobilon-P, Millipore). Strips were blocked with PBS+T+G (PBS, 0.05% [v/v] Tween 20, 2% [w/v] Fish gelatine 1%), and subsequently incubated for 60 min at 37°C with bovine sera diluted 1:100 in PBS+T+G. After washing the strips with PBS+T, antibody reactions were visualized with an anti-bovine IgG (H+L) peroxidase conjugate (Dianova, Cat. No 101-035-003) and 4-chloro-1-naphthol as a substrate. Relative molecular masses were determined by comparing with respective molecular weight standards (Precision Plus Protein™ Standards Catalogue 161-0374 BIO-RAD.)
3. Results

3.1. ELISA cut-off point determination

The operative absorbance value of each serum was expressed as the percentual absorbance value (AU%), which was calculated on the basis of the negative control serum in each microplate, in order to minimize interplate variation. Thus, the AU% was calculated according to the formula: AU% = (A404nm test serum / A404nm negative control serum) x 100.

The cut-off points were calculated by ROC analyses using the 39 and 25 negative control sera (originating from Portugal and Switzerland, respectively) and the above mentioned positive besnoitiosis sera (Fig. 2). Although the cut-off points for each geographical area were individually determined and showed some differences (see below), the differences between both was not relevant in discriminating between positive and negative cases, thus only one threshold value could be used for the sensitivity and specificity analyses (see Fig. 3).

3.2. Reactivity by ELISA

ELISA-results are presented in Table 1 and Fig. 3. Although most heterologous- or non-infection sera were clearly negative in ELISA, there was one out of five T. gondii-sera that showed an absorbance value even higher than those obtained with sera from animals infected with B. besnoiti (Fig. 3). No sera from animals infected with N. caninum showed reactivities above the cut-off value. The difference found between the two negative control groups was statistically significant (p-value = 0.031). The correlation between ELISA-findings versus histopathological and IFAT-findings – concerning the besnoitiosis sera – is shown in Table 2. These data were used to calculate diagnostic sensitivity, specificity and other operating characteristics as shown in Table 3.

3.3. Sensitivity and specificity of ELISA

The overall sensitivity of ELISA using sera from individuals in chronic symptomatic and asymptomatic phases of besnoitiosis was 87.0%. Specificity was calculated as 97.4% when
including only Portuguese negative controls and 98% when including only Swiss negative controls (Table 3). Positive predictive values, based upon an assumed prevalences of 10% for Portugal and 0.001% for Switzerland, were 78.8% and <0.001%, respectively, negative predictive values were 99% and 100%, respectively.

3.4. Western blot

Western blot performance was assessed with the same besnoitiosis and control sera as used for ELISA (Figures 4 and 5). Results showed that some negative control sera that had exhibited slightly elevated ELISA-values also recognized a few bands in the somatic parasite extract, but the pattern exhibited by infected versus non-infected animals was clearly different and thus allowed reliable discrimination. Detailed Western blot findings with regard to negative/positive discrimination of besnoitiosis sera are presented in Table 1. The typical besnoitiosis profile on the Western blot included 3 major antigenic areas of reactivity (Figs. 4 and 5). One localized in the range between 15 and 20 kDa; a second one between 22 and 37 kDa and a third one between 47 and 100 kDa. Eventual ghost bands appearing in negative control lanes were subtracted from the whole banding pattern for interpretation of findings. Sera were considered to be positive when reactivity was present against at least two out of these 3 antigenic areas. In this study, two infected individuals (number 8 and 12) out of 23 animals with *B. besnoiti* showed a negative Western blot (exemplified by no. 14 in Fig. 5, after subtraction of ghost bands in the upper area between 47 – 100 kDa). From all sera from animals selected out of a non-endemic area, no animal showed Western blot-positive results. In the Portuguese group of presumably negative animals, 2 sera showed a positive Western blot pattern (data not shown).

Sera from animals with *Toxoplasma* and *Neospora* infection (two phylogenetically closely related parasites) did not recognize any of the antigens characteristic for *B. besnoiti*-infection (data not shown).
3.5. Sensitivity and specificity of Westernblot

The sensitivity of Westernblot using sera of individuals exhibiting chronically symptomatic and asymptomatic phases of besnoitiosis was 91.3% (Table 4). Specificity was calculated as 94.9% and 100% for Portuguese and Swiss animals, respectively. As for ELISA, predictive test values of Westernblots were calculated on the basis of an assumed prevalence of 10% for Portugal and 0.001% for Switzerland. Positive predictive value was thus 67% for the Portuguese endemic and 100% for the Swiss non-endemic area, negative predictive values were 99% and 100%, respectively.

3.6. Comparison of ELISA and Westernblot

The percent agreement between ELISA and the Westernblot in infected animals was 100% \((21+2)/23\) and in non-infected animals 95.1% \((77)/81\), respectively (Table 5). The overall percent agreement combining infected and non-infected animals was 96.2% \((21+2+77)/104\). By using the data from Tables 2, 3 and 4, respectively, the Kappa values for ELISA and Westernblot provided the following features: \(K = (P_o-P_e)/(1-P_e)\), where \(P_o = a/n+d/n\) and \(P_e = ((a+c)/n) ((a+b)/n) ((b+d)/n) ((c+d)/n)\).

The ELISA \(P_o = 0.76\) and \(P_e = 0.028\), from which a Kappa value of \(K = 0.97\) resulted. The data for the Westernblot were \(P_o = 0.72\), \(P_e = 0.029\), and the resulting Kappa value was 0.97.
4. Discussion

We describe the development of an ELISA and Western blot to detect *Besnoitia*-specific antibodies in the serum of bovine hosts. A somatic in vitro cultured tachyzoite antigen was used, basically easy to produce and yielding consistent results in both assay systems. The ELISA provided a good diagnostic sensitivity including all the different clinical courses of bovine besnoitiosis, cross-reactivity was not apparent with any of the neosporosis sera, but there was some degree of cross-reactivity with toxoplasmosis sera. Such real or putative cross-reactions were the main reason to elaborate a complementary Western blot. The Western blot aimed not only at the elucidation of doubtful ELISA-findings, but also to detect potential double infections (besnoitiosis and toxoplasmosis or besnoitiosis and neosporosis) in a single host. For ELISA, we determined the cut-off absorbance value to distinguish *Besnoitia*-infected and uninfected animals by using bovine sera collected from 23 animals infected with *B. besnoiti* with different levels of infection: either with, or without clinical signs; but all infections were evidenced by histopathology, as a direct diagnostic technique, allowing to identify parasite cysts and bradyzoites. Addressing other infections with however very closely related parasites, we employed 12 sera from cattle infected with *N. caninum* and 5 sera from animals infected with *T. gondii* to elucidate specificity. Finally, serum samples obtained from 64 healthy and uninfected animals from Portugal and similar animals from Switzerland were used to elaborate the reaction range of negative bovines, thus providing background data to calculate negative/positive threshold values. Not infectiologically related non-specific reactions have been referred to bovine immunoglobulins that harbor a non-specific component that may bind to *N. caninum* tachyzoites (Williams et al., 1997) as well as to *T. gondii* tachyzoites. Horse serum was, therefore, used as a blocking agent, together with 0.3% Tween 20. This solution was selected for its highest signal/noise ratio. Consequently, by applying all these technological approaches for ELISA and combining them with Western blot, we were able to solve most of the problems that can be faced while carrying out serodiagnosis of bovine besnoitiosis.
The epidemiological information available so far concerning bovine besnoitiosis documents its existence in the South of Portugal, but the true prevalence of the disease and of the infection extensity remains unknown. Some studies, conducted in spatially defined areas, reported high seropositive percentages in analyzed herds, i.e., 36% in herds followed-up for 3 years (Cortes et al., 2004) and 93% in herds followed-up for longer time periods (data not published).

The now presented ELISA and Western blot exhibits a sensitivity and specificity that will allowed to reliably serodiagnose chronic symptomatic animals as well as asymptomatic cases in endemic areas. ELISA, with its sensitivity of 87% and specificity of 97.4%, appears suitable for a first mass-screening approach. Western blot, with its sensitivity of 91.3% and specificity of 94.9%, appears suitable as a secondary test to detect putative false positive ELISA results. For areas of very low (or absent) endemicity, however, screening of populations by ELISA, due to the very low positive predictive value of the test, will unconditionally requires specificity elucidation by Western blot. As a consequence, the test combination will now be practically investigated in sero-epidemiological studies, which are important to address the real distribution of bovine besnoitiosis not only in Portugal, but also in other countries of Europe, where the disease may be present but has not yet been detected.
5. Acknowledgements

The study was supported by the CIISA, ICAM and PRODEP. We are grateful for a short-term scientific mission financed by COST 854 and for the financial support by the Hans-Sigrist-Foundation of the University of Bern.
References

Legends to Figures and Tables

Fig. 1
Characteristic tissue cyst of *B. besnoiti*, presented in a skin biopsy specimen from an infected bovine with no other clinical sign of disease other than the presence of a small number of cysts. Hematoxylin-Eosin-stain. Bar = 200µm.

Fig. 2
ELISA cut-off determination by ROC analysis, using the 64 negative control sera from both geographical origins together versus the positive controls.

Fig. 3
ELISA operating characteristic analyses (sensitivity and specificity):
23 sera from animals infected with *Besnoitia besnoiti*; 6 sera seropositive to *Toxoplasma gondii*; 12 sera from animals with *Neospora caninum* infection, and sera from uninfected cattle (negative controls). The cut-off points were independently determined by ROC analyses for the Swiss and Portuguese situation, but finally one discriminating threshold value could be used for both.

Fig. 4
Comparative Westernblot analysis with animals suffering from besnoitiosis. 1: conjugate control; 2: negative control; 3: positive control; 4 and 5: cysts on the skin without other sign of disease; 6 and 7: with disease for two months; 8, 9 and 1: presented disease, but improved; 11 to 16: persistently sick animals.

Fig 5
Comparative Westernblot analysis with animals infected with *B. besnoiti* and negative control animals. 1: conjugate control; 2: negative control; 3: Positive control; 4 to 7:
uninfected animals; 8 to 16: cysts on the skin without other sign of disease.

Table 1

Classification of cattle with besnoitiosis and corresponding ELISA and Westernblot findings. Cattle were clustered in groups with (a) clinical findings and histopathological evidence of chronic besnoitiosis, (b) presence of B. besnoiti cyst on histopathology, PCR-positivity of biopsy specimen, Westernblot-seropositivity but absence of clinical signs. The IFAT positive cut-off titer was ≥1:256; the ELISA positive cut-off value was ≥A404nm = 0.39.

Table 2

Overall comparison between ELISA-findings and diagnosis carried out by IFAT and histology (gold standard) on animals with suspected clinical besnoitiosis (Portuguese and Swiss negative controls included together).

Table 3

Comparison of operating characteristics (sensitivity and specificity, positive and negative predictive values) of ELISA and Westernblot, based upon data derived from Tables 1 and 2 and Fig. 2. The predictive values of positive and negative results were calculated for a hypothetical prevalence of 10% for Portugal and of 0.001% for Switzerland.

Table 4

Overall comparison between Westernblot-findings and diagnosis carried out by IFAT and histology (gold standard) on animals with suspected clinical besnoitiosis (Portuguese and Swiss negative controls included together).

Table 5

Performance agreement data between the ELISA and Westernblot in diseased (+) and non-diseased (-) animals.
<table>
<thead>
<tr>
<th>Animal ID</th>
<th>Besnoitia serology</th>
<th>Parasitological characterization</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IFAT</td>
<td>ELISA</td>
</tr>
<tr>
<td>1</td>
<td>1/1024</td>
<td>0.79</td>
</tr>
<tr>
<td>2</td>
<td>1/1024</td>
<td>0.65</td>
</tr>
<tr>
<td>3</td>
<td>1/1024</td>
<td>0.45</td>
</tr>
<tr>
<td>4</td>
<td>1/512</td>
<td>0.50</td>
</tr>
<tr>
<td>5</td>
<td>1/1024</td>
<td>0.71</td>
</tr>
<tr>
<td>6</td>
<td>1/1024</td>
<td>0.71</td>
</tr>
<tr>
<td>7</td>
<td>1/512</td>
<td>0.47</td>
</tr>
<tr>
<td>8</td>
<td>1/512</td>
<td>0.09</td>
</tr>
<tr>
<td>9</td>
<td>1/1024</td>
<td>0.53</td>
</tr>
<tr>
<td>10</td>
<td>1/1024</td>
<td>0.58</td>
</tr>
<tr>
<td>11</td>
<td>1/1024</td>
<td>0.53</td>
</tr>
<tr>
<td>12</td>
<td>1/1024</td>
<td>0.18</td>
</tr>
<tr>
<td>13</td>
<td>1/1024</td>
<td>0.39</td>
</tr>
<tr>
<td>14</td>
<td>1/1024</td>
<td>0.44</td>
</tr>
<tr>
<td>15</td>
<td>1/1024</td>
<td>0.74</td>
</tr>
<tr>
<td>16</td>
<td>1/1024</td>
<td>0.41</td>
</tr>
<tr>
<td>17</td>
<td>1/1024</td>
<td>0.62</td>
</tr>
<tr>
<td>18</td>
<td>1/1024</td>
<td>0.60</td>
</tr>
<tr>
<td>19</td>
<td>1/1024</td>
<td>0.73</td>
</tr>
<tr>
<td>20</td>
<td>1/1024</td>
<td>0.60</td>
</tr>
<tr>
<td>21</td>
<td>1/1024</td>
<td>0.62</td>
</tr>
<tr>
<td>22</td>
<td>1/1024</td>
<td>0.62</td>
</tr>
<tr>
<td>23</td>
<td>1/1024</td>
<td>0.63</td>
</tr>
<tr>
<td>ELISA anti-B. besnoiti</td>
<td>Histopathology and/or IFAT</td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>---------------------------</td>
<td>-------</td>
</tr>
<tr>
<td></td>
<td>Positive</td>
<td>Negative</td>
</tr>
<tr>
<td>Positive</td>
<td>20(a)</td>
<td>2(b)</td>
</tr>
<tr>
<td>Negative</td>
<td>3(c)</td>
<td>79(d)</td>
</tr>
<tr>
<td>Total</td>
<td>23</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>ELISA</td>
<td>Westernblot</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------</td>
<td>----------------------</td>
</tr>
<tr>
<td></td>
<td>Portugal</td>
<td>Switzerland</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>87.0%</td>
<td>87.0%</td>
</tr>
<tr>
<td>Specificity</td>
<td>97.4%</td>
<td>98.0%</td>
</tr>
<tr>
<td>Positive predictive value</td>
<td>78.8%</td>
<td><0.001%</td>
</tr>
<tr>
<td>Negative predictive value</td>
<td>99.0%</td>
<td>100.0%</td>
</tr>
<tr>
<td></td>
<td>91.3%</td>
<td>91.3%</td>
</tr>
<tr>
<td></td>
<td>94.9%</td>
<td>100%</td>
</tr>
<tr>
<td></td>
<td>67.0%</td>
<td>100%</td>
</tr>
<tr>
<td></td>
<td>99.0%</td>
<td>100%</td>
</tr>
<tr>
<td>Wester blot anti-B. besnoiti</td>
<td>Positive</td>
<td>Negative</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>Positive</td>
<td>21(a)</td>
<td>2(b)</td>
</tr>
<tr>
<td>Negative</td>
<td>2(c)</td>
<td>79(d)</td>
</tr>
<tr>
<td>Total</td>
<td>23</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>Disease +</td>
<td>Disease -</td>
</tr>
<tr>
<td>----------------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>ELISA +</td>
<td>21</td>
<td>0</td>
</tr>
<tr>
<td>WB+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELISA +</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>WB-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELISA -</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>WB+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELISA-</td>
<td>2</td>
<td>77</td>
</tr>
<tr>
<td>WB-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>23</td>
<td>81</td>
</tr>
</tbody>
</table>
Fig. 3