Zeolites and Related Materials: Trends, Targets and Challenges Proceedings of 4th International FEZA Conference A. Gédéon, P. Massiani and F. Babonneau (Editors) © 2008 Elsevier B.V. All rights reserved. 1319 ## Mesoporous silica containing sulfonic acid groups as catalysts for the alpha-pinene methoxylation José E. Castanheiro^{a,b*}, Liliana Guerreiro^a, Isabel M. Fonseca^a, Ana M. Ramos^a, Joaquim Vital^a ^aREQUIMTE, CQFB, Departamento de Química, FCT, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal ^bCentro de Química de Évora, Departamento de Química, Universidade de Évora, 7000-671 Évora, Portugal *Corresponding author. Tel.: +351 266745311; fax.: +351 266744971; E-mail address: jefc@uevora.pt ## Abstract The methoxylation of α -pinene was studied over sulfonic acid-functionalized mesoporous silica (MCM-41, PMO) at 60°C. The support functionalization was achieved by the introduction of 3-(mercaptopropyl)trimethoxysilane onto the surface of these materials either by grafting or by co-condensation. The thiol groups were oxidized to SO₃H by treatment with H₂O₂. All the catalysts were active in the studied reaction being the PMO-SO₃H-g the best one. Good values of selectivity to α -terpinyl methyl ether were obtained with these catalysts. Catalytic stability of the PMO-SO₃H-g was evaluated by performing consecutive batch runs with the same catalyst sample. After the third batch it was observed a stabilisation of the activity. **Keywords**: α-pinene; methoxylation, mesoporous silica; sulfonic acid groups.