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Abstract A two dimensional saturated-unsaturated Galerkin finite element numerical
model was used to predict water table height between parallel drains. A user-friendly
software (DRENAFEM) was developed to allow for the calculation of the distance
between drains and the water table height at middle space between drains. It also
allows for determination of variations of the total head throughout the entire geometric
space considered in the model. Such facts lead to the design of flow nets with streams
lines and equipotentials. The numerical drain outflow is also obtained by using the
radial flow equation, conservation of mass and finite element analysis. The results
obtained with the model agree well with Khirkam’s and Hooghoudt analytical solution
for the distribution of total head in ideal drains and for the total head calculations
midway between drains.
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Introduction

The movement of the water and solutes in the vadose zone has had an increasing interest in
diverse areas of science as the hydrology, agricultural and soil engineering. The knowledge
of the processes of transfer of water in the soil and ways to foresee, predict and control
water movement in the soil are important in the simulation of the behaviour of water table
and dispersion of solutes, in particular for the subsurface drainage., From the solution of
transient saturated/unsaturated flow equation of Richards the oscillation of the water table
levels and drain flow rate can be simulated between two parallel drains in response to a
recharge due precipitation and/or irrigation, as well as its variation in time.

Numerous solutions for the considered problem are found in the literature. The majority of
the proposed solutions are based on the hypotheses of Dupuit-Forchheimer which, when certain
initial and boundary conditions are established, allow for an exact analytical solution of the
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steady state saturated flow equation of Laplace (Yeh 1999). The mathematical solutions are
usually of two dimensions (Kirkham 1966; Gureghian and Youngs 1975) and well suited for
a variety of applications and well defined for particular cases, but they do not comply very
well when more complex problems arise, for instance when the heterogeneity and anisotropy
of the soil are to be taken into consideration, when the unsaturated flow is also to be
considered, and when there exist complex and irregular boundary conditions for drain
boundary. Only way to solve the problem is to use numerical methods.

The finite element method is a numerical method that is used as a numerical approach of
the transient saturate/unsaturated flow, especially in the search of solutions for the water
table level between two ditches or in a riverbank. France et al. (1971);Desai (1972);
Gureghian and Youngs (1975) had applied the method to solve the problem in two
dimensions for steady state and saturated flow, to determine the position of the water table
surface, subject to different boundary conditions. Neuman (1973) solved the same type of
problem considering the contribution of the flow in the unsaturated zone. The application of
the same numerical approach solution to subsurface drainage by drain pipes is described in
Zaradny and Feddes (1979).The method suffered further improvements to allow it to
represent drains in the numerical mesh (Tarboton and Wallender 2000) and also suffered
further numerical refinements to diminish the loss of mass and the numerical oscillation in
the computation (Pan et al. 1996).

There are several finite element computer codes to numerically solve the water flow in
soil, like the HYDRUS2D (Simunek et al. 1999), SWMS_3D (Simunek et al. 1995)
Aquifem-N (Townley 1990), however they all need a relatively complex set of initial and
boundary conditions.

The objective of this work is to propose a friendly computer software which solves the
transient vertical unsaturated flow in a sub-superficial drainage situation, drained by parallel
pipe drains set at the same depth Numerical approach is compared with the analytical
solution for a well-defined situation. In the case, from the well known Hooghoudt equation
and Kirkham potential theory calculations. The results of our proposed model are also
compared with the results generated byHydrus2D model of Simunek et al. (1999).

The model allows also for the simulation of drain flow rate from the concept of the mass
conservation. The solutions were also compared with the approximate solution in steady
state simulation.

Materials and methods

The theory

With water flowing into an elementary prism of soil with unit dimensions, the flow leaving
the soil is equal to that which enters it, deduced of the variation of volume of stored water.
This fact translates the principle of the mass conservation that, applied jointly with the
dynamic equation of Darcy, allows for the generalized flow equation into the soil.

Without great margin of error for the type of problem considered, that the water and the
soil are incompressible and they do not change mass between themselves, that thermal
gradients do not exist in the soil and the law of Darcy is valid in all the domain of the flow,
the general flow equation–Richards equation–can be written as
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where K(=) is the unsaturated hydraulic conductivity (m.day −1), C(=) the soil water
capacity (m -1), representing the slop of the moisture retention curve in the soil, = the
pressure water potential related to the weight of water (m), z the gravitational potential (m)
and t the time (days).

Applying the Galerkin finite element approach to the generalized flow equation,
transforming the resulting integrals into matrices and adding all the elements of the domain
a global matrice is obtained, for where the formulation of the weighed residuals for steady
state and transient flow is written as:
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Ni, Nj are the element interpolation functions, Ω the flow domain and Γ the boundary
segment. The matrix [C(=)] is a diagonal matrix carrying the coefficients of specific
capacity and the matrix [K(=)] is a symmetrical matrix, with a positive dominant diagonal
line with coefficients of the hydraulic conductivity. The vector {F} is the summation of all
flows that enter or leave the system with the flow gravitational component. Accordingly, the
value of the flows is equal to zero when no water enter or exit the system, negative when it
exits and positive when it enters the system. rn is the component of flux normal to the soil
surface.

The numerical model

Placing the drains to the same depth between the horizontal soil surface and a deeper
impermeable layer, the space between any two drains becomes symmetrical and the
problem can be represented as in Fig. 1.

The boundary conditions for the solution of a problem of this king can be classified in
two categories of the essential type, also known as the Dirichlet boundary condition and 2)
the natural type or Neumann boundary condition. boundary AB is of the natural type,
therefore to each node of the segment it is possible to apply one flux lower of the soil
infiltration capacity. The remaining borders are taken as having zero flow, that is, without
entrance or exit of water. the drain, it is represented by only one node in the point, with a
border of the type essential, since the total potential will equal there the gravitational
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potential, allowing for the potential of pressure in the drain to become zero (atmospheric
pressure).

Mathematically terms the boundary and initial conditions are written as:

AED : Kxx yð Þ @y
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E : drain nodeð Þy ¼ 0; t � 0;

A computer program (DRENAFEM) was designed to solve Eq. 1, subjected to boundary
an initial conditions where the drain is represented as one node and the surrounding
elements have the values of hydraulic conductivity adjusted from one factor, according to
the Vimoke and Taylor (1962) approach, also described by in Fipps and Skaggs (1986).
Anisotropy in the hydraulic conductivity anisotropy on vertical and horizontal directions,
two soil layers and the Brooks and Corey and van Genucthen (1980) retention models were
included into the model. The final software makes space discretization of 1,520 triangles
and 820 nodes, with larger mesh density in the unsaturated zone and near the drain.

Figure 2 shows the program main window where the geometry problem is defined, as
well as the soil physics parameters such as hydraulic conductivity, soil-water retention and
the steady drainage flux. The model has the capability to simulate ideal and non-ideal
drains, and by assigning backpressure to the drain controlled drainage problems can also be
simulated.. In the absence of real values, the model suggest values for use with soil-water
retention curves as well as saturated hydraulic conductivity values, all based in the soil

Fig. 1 The flow domain in steady state regime
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texture considered for the problem. It also automatically builds up the finite element mesh
and in the transient state mode it chooses the ideal time step to prevent numerical
difficulties and run-time errors. The time spent to obtain a solution depends of the
computer performance, with about 1 min time spent to find a steady state solution in a
Pentium IV at 800 Mhz. In a transient state simulation mode the run time depends on the
total time of the period simulation, with several minutes expected for the described above
Pentium machine.

Figure 3 shows the results of a steady state run where the water table shape is presented
as well as the head distribution from the drain to midpoint between drains, and the
numerical drain flow.

Analytical solutions of the problem

For testing the reliability of a numerical model the usual procedure is to compare the
obtained results with well know solutions. We chose two analytical solutions based on
different theory, and one numerical solution offered by a commercial software. Kirkham et
al. (1974), based in the theory of potentials considered the analytical determination of our
same problem. In their approach they did not consider the effect of the unsaturated zone in
the flow in solving the Laplace’s equation, is consequently, different from the approach
used in this work. Kirkham et al. assume that the head loss in the zone between the water
table surface and the horizontal plan of the drains is small when compared to the head loss
in the remaining region of the flow. They also consider that the soil f above the plan of

Fig. 2 The main window of software
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drains is replaced by fictitious membranes and gravel with infinite hydraulic conductivity,
so that the standard equipotential lines in that zone of flow above the horizontal drains plan
has no solution with their method.

The drains also are dealt with thickness zero and equal width to the radius. The model of
Kirkham also assumes that the flow above of the horizontal plan of the drains is vertical in
the unsaturated zone and that in the saturated zone it obeys the conventional way of looking
at the flow, that is an horizontal flow.

The model results were compared with the widely used equation for drain spacing
calculation based in the Boussinesq equation, known as the Hooghoudt equation

q ¼ 4Kshm
2 þ 8Ksdehm
L2

ð3Þ

where de is the depth of the equivalent depth layer, used to correct the convergence of the
radial flow near the drain, hm the water table above the drain at the midpoint between drains
and Ks the saturated hydraulic conductivity, L the space between two drains and q the
steady drainage flux, numerically the same at rn in the steady state regime.

Results and discussions

Several calculations were performed to test the numerical results obtained. One compared
the elevation of the water table above the drain at the midpoint between drains with the
Hooghoudt analytical solution.

Hooghoudt in his expression for the shape of the water table as an ellipse assumes that
the constant value of the flow q that crosses the water table surface is equally removed

Fig. 3 The steady state window result
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between the drains. In steady state this is true for the numerical approach. The steady
drainage flux in the surface of soil has the same value as that the one that crosses the water
table surface. Figure 4 shows the good agreement obtained between our numerical approach
and the Hooghoudt equation, for several geometric conditions. The exception is when the
water table is near or above?? the surface. In this case the midpoint head value obtained
with the numerical simulation is larger above the drains possibly due of the effect of
capillary fringe in the vadose zone. As observed, the Hooghoudt equation results are no
longer valid for pounded water table. Figure 4 also shows the effect of drain radius on the
obtained results, and the need for a numerical model that simulates well the behaviour of
the drain hole as a single mesh node. For higher values of q/Ks ratio, the drain radius effects
have influence in the results, with the need to adjust the elements surrounding the drain
node to best simulate drainage flow. For lower q/Ks ratio that need is no longer so evident.

Figure 5 shows the potential patterns computed with the finite element method (doted
lines) and the Khirkam solution (solid lines), and also the water table configuration from the
drain to the midpoint of drains.

The difference in equipotentials between the two methods explains the observed
differences for the different position of the water table. The drain radius influences
greatly the distribution of the potentials and the position and shape of the water table.
Drain radius must be reduced in the Kirkham approach to obtain satisfactory agreement
of the equipotential lines for the two methods, as seen in Fig. 5a. The values of the drain
radius used are respectively 0,05 m and 0,005 m. In the first case, the level of the water
table was lower than the level obtained with the numerical analysis simulation and, as a
result the hydraulic potential is lower for all the flow points. The variations correspond to
the difference observed between the positions of the two free surfaces. So, to obtain the
same values of water table level it is necessary to attribute an abnormally small value to
the drain radius, inducing a radial flow or an entrance resistance in the case of the
Kirkham analysis. Figure 5b) In doing so, the agreement between the water table shape
and equipotential lines is satisfactory in both methods, especially at the mid point
between the drains. However, near the drain the potential distribution estimates higher
values for the hydraulic potential. This aspect of the problem leads us to believe that a
sole analysis of the head at the half distance of the drains is not able to inform in absolute

Fig. 4 Variations of the hm/L ratio with d/L ratio for different q/Ks ratio and real drain radius. Simulations
are made for a clay soil in a homogeneous and isotropic medium
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of the adjustment between different methods of calculation. Some differences, however
less evident that the above, also exist in the way drainage occurs. The analysis using
Kirkham method practically considers a vertical flow in the corresponding zone more
significantly at the half distance of the drains and also shows a trend of if becoming
horizontal for distances close to the drains. The confluence of the flows for the drain
(radial flow), also starts at lesser distances of the drain when compared to the numerical
analysis solution. The smaller level of water table obtained with the Kirkham approach,
beyond the value attributed to the drain radius can be explanation in the fact of the flow
above of the plan of the drains being considered vertical and the Kirkham analysis
considering not important loss of head in this region.

Fig. 5 Comparison of the equipotential lines and the position of the water table according to Kirkham (solid line)
and of the numerical model (doted line).Simulation made for L=20 m, Ks=1,5 mday −1, imperme barrier at the
depth of 3 m, drain at depth of 1 m, VG parameters: n=1.09, θs=0,36 m3 m −3, θr=0,07 m3 m −3 e λ=0,5 m −1,
q=0.002 mday −1 and r=0,05 m a and r=0.005 m b
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However, the resultant equipotentials of the numerical analysis show that the flow
is practically horizontal, being the simplification made by Kirkham partially
responsibly the difference in the results. Also below of the plan level of the drains
a zone there is a definite horizontal drain flow what does not happen when the
solution of Kirkham.

To analyse the weight of the restrictions in the observed differences, as well as the
precision of the numerical method, the HYDRUS2D (Simunek et al. 1999), which uses a
finite element method was compared to our model. HYDRUS2D was used for simulations
with a mesh of regular space and 4,640 triangles that correspond 3,042 nodes. The drain in
the HYDRUS2D is also represented by only one node adjusted to the mesh by using the
Vimoke adjustment.

Several calculations were performed in the unsteady state mode, for a period of 5 days,
considering as the initial condition the soil a profile fully water saturated and a recharge q
of 0 mday−1. Despite the denser mesh of triangles of HYDRUS2D when compared to our
model, the regular mesh did not allow to greater density next to the drain where larger
values of hydraulic gradients were expected. The results are obtained directly in the model
DRENAFEM, while for the HYDRUS2D model the solution is obtained by inspection of
the hydraulic head in the node situated in the impermeable barrier, exactly half distance
between the drains, deduced of the distance of the drain to the impermeable layer. The
obtained results are shown in Fig. 6.

During the 24 h simulation period the values of hm diverge slightly, due to the large
space discretization resources of the HYDRUS2D model, and more important, due to the
use of lesser intervals of time as verified for the smaller distances of the points of the line.
However, it is in the numerical method used in the two models to solve the system of
equations that they are, in essence, different. While the DRENAFEM model uses the direct
method of LU decomposition for solving the system of equations the HYDROS2D uses the
indirect method of preconditioning conjugate gradient method, for faster and relatively little
expected problems with the round off of errors. These aspects contribute for the differences
observed in the obtained results. The execution time was the same. Taking into account
differences in the dimension of the matrices set up fro the problem, the HYDRUS2D model
is very fast.

Fig. 6 hm variation in five days period for two software packages
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Conclusion

The DRENAFEM numerical model presented good agreement in results when compared to the
Hooghoudt analytical solution for a homogeneous and isotropic soil, assuring that the hydraulic
head at the mid point between the drains can be obtained numerically with a friendly software.
All what is required is a few soil and geometric parameters to obtain steady state solutions.

When compared to Kirkham method of evaluation the results show that the drain radius
influences the shape of the water table and as result a different flow pattern is obtained with
the DRENAFEM model, especially in what concerns the calculation of the head above the
vertical plain of drain. So, despite the inherent differences of the two methods, the
representation of a drain in a mesh as a one single node must suffer improvements to handle
the simulated problem. Also differences were observed for the field potential distribution
due to differences in the drain radius and in the initial assumptions made for both models.

Despite differences in the nature of the used numerical method to solve the system of
equations and the required speed a reasonable agreement was obtained between the results
of the DRENAFEM model and the results obtained with the Hydrus2D model simulating
an unsteady flow regime.
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