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Abstract

Background: Previous studies suggested that dietary tannin ingestion may induce changes in mouse salivary
proteins in addition to the primarily studied proline-rich proteins (PRPs). The aim of the present study was to
determine the protein expression changes induced by condensed tannin intake on the fraction of mouse whole
salivary proteins that are unable to form insoluble tannin-protein complexes. Two-dimensional polyacrylamide gel
electrophoresis protein separation was used, followed by protein identification by mass spectrometry.

Results: Fifty-seven protein spots were excised from control group gels, and 21 different proteins were identified.
With tannin consumption, the expression levels of one a-amylase isoform and one unidentified protein increased,
whereas acidic mammalian chitinase and Muc10 decreased. Additionally, two basic spots that stained pink with
Coomassie Brilliant Blue R-250 were newly observed, suggesting that some induced PRPs may remain
uncomplexed or form soluble complexes with tannins.

Conclusion: This proteomic analysis provides evidence that other salivary proteins, in addition to tannin-precipitating
proteins, are affected by tannin ingestion. Changes in the expression levels of the acidic mammalian chitinase precursor
and in one of the 14 salivary a-amylase isoforms underscores the need to further investigate their role in tannin ingestion.

Background
Saliva is an important fluid that rapidly adjusts to
changes in dietary conditions. Salivary glands are mainly
under nervous system control, and the composition of
salivary secretions is rapidly altered over a wide range in
response to various stimuli. Saliva serves as a physiologi-
cal buffer against variations between the external and
internal milieus. Such variations may be reflected in dif-
ferent salivary protein profiles resulting from different
dietary habits. It was proposed that saliva protein com-
position varies also considerably among species, reflect-
ing diverse diets and modes of digestion [1]. Animals
using identical feeding niches may present similarities in
their salivary protein composition, whereas the presence
of particular proteins may be specific for particular feed-
ing niches. For example, salivary amylase levels correlate
with starch levels in each animal species’ diet [2]. More-
over, salivary protein composition is modulated by diet.
One example is the induction of salivary cystatins in

rats ingesting capsaicin-containing diets [3]. Studies in
humans have demonstrated changes in the salivary pro-
teome induced by different basic tastes [4].
Several other studies on the adaptation of salivary pro-

tein composition to diet have investigated tannins (for
review, see [5]). Tannins are plant secondary metabolites
(PSMs) found in most food and drinks of vegetable origin,
with a high capacity to bind proteins, polysaccharides, car-
bohydrates, and other macromolecules. Particularly with
proteins, tannins may form stable complexes that tend to
precipitate [6]. Tannins highly influence diet selection, and
their presence may result in food avoidance attributable to
either their astringent properties or detrimental post-
ingestive effects [7].
Feeding tannins to mice and rats induces a consider-

able amount of a particular group of salivary proteins–
the proline-rich proteins (PRPs) [8,9]–that protect
animals against the negative post-ingestive effects of
tannin and appear to reduce the aversive bitter or
astringent properties of tannins [8-10].
Although PRPs, and particularly those belonging to

the basic subgroup, appear to be the most effective
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tannin-binding salivary proteins [6] and the first line of
defense to tannin ingestion, other less abundant salivary
proteins may also be affected by tannin consumption.
For example, histatins constitute a group of relatively
small proteins with high tannin affinity. However, their
presence was only found in saliva from humans and
some primates [11]. The presence of tannin-binding sali-
vary proteins other than PRPs has also been suggested
in some herbivores, although these proteins have not
been characterized [12].
Our group has been developing research on the relation-

ship between salivary protein composition and dietary
choice. In our previous one-dimensional electrophoresis
study [13], we observed an increase in the expression level
of one a-amylase isoform, suggesting that the effects of
tannin ingestion on mouse salivary protein composition
go beyond the increase in salivary PRPs. Our hypothesis is
that expression of other salivary proteins would
also change as a consequence of tannin ingestion. The
present study sought to augment the knowledge of such
putative changes in the salivary protein profile by using
two-dimensional electrophoresis (2-DE) coupled with mass
spectrometry. Such an approach has already been used in
studies of human and small ruminant salivary proteomes,
resulting in a high number of proteins identified and a
more reliable protein expression comparison [14-17].
Although mouse has developed into a premier mam-

malian model system for exploring potential causes and
treatments for human disease when human experimenta-
tion is not feasible or ethical, to our knowledge an overall
characterization of this species’ saliva proteome had not
yet been made. Mouse saliva and salivary glands have
been studied for diet-induced changes, and 2-DE maps of
rodent saliva have been reported for rat parotid [18] and
submandibular [19] saliva. However, no extensive protein
characterization was performed in any of these studies.
Mice have been used traditionally in studies concerning
the complex physiological ingestive and digestive sys-
tems, and such protein characterization is important.
We used 2-DE coupled with mass spectrometry (matrix-

assisted laser desorption ionization time-of-flight mass
spectrometry [MALDI TOF MS] and MALDI TOF-TOF
MS/MS) to characterize the mouse soluble fraction of
whole saliva (SFWS) and to study the effects of tannin
ingestion. The changes induced by tannin-enriched diets
were assessed after tannin-protein insoluble complexes
were removed. Histology of salivary gland morphology
was performed to confirm the effects of tannin levels used
in the experiments.

Materials and methods
Animals
Twelve inbred male Balb/c mice, five weeks of age, were
obtained from the licensed bioterium of Instituto

Gulbenkian de Ciência (Oeiras, Portugal). The animals
were housed in type IV mouse cages (Techniplast; six
mice per cage), according to European Union recommen-
dations and the revision of Appendix A of the European
Convention for the Protection of Vertebrate Animals used
for Experimental and Other Scientific Purposes (ETS No.
123). Animals were maintained on a 12 h/12 h light/dark
cycle at a constant temperature of 22°C with ad libitum
access to water and a standard diet with 21.86% crude pro-
tein (dry basis) in the form of pellets (RM3A-P; Dietex
International, Essex, UK). The animals were subjected to a
7 day acclimation period to minimize the effects of stress
associated with transportation, followed by a 7 day pretrial
period to allow adaptation to the ground diet used during
the feeding trials. The standard pellet diet was ground
daily with a blender [13]. Before the feeding trial period,
the animals were individually weighed and allocated to
two experimental groups, with no significant differences in
body mass (25.5 ± 1.7 g). All animal procedures were
approved by the scientific committee, were supervised by
a scientist trained by the Federation of European Labora-
tory Animal Science, and conformed with Portuguese law
(Portaria 1005/92), which followed European Union
Laboratory Animal Experimentation Regulations.

Feeding Trials
A 10 day experimental period was initiated immediately
after the pretrial period. The control group (n = 6)
received a tannin-free diet consisting of the same stan-
dard ground diet administered during the pretrial per-
iod. The quebracho group (n = 6) received the standard
ground diet enriched with quebracho. Quebracho
(Tupafin-Ato, SilvaChimica SRL, Cuneo, Italy) is a nat-
ural extract obtained directly from quebracho wood and
is sold commercially, mainly for use in the leather
industry. These extracts are commonly used in herbi-
vore feeding studies as a model of condensed tannins
(e.g., [20]). According to the manufacturer’s information,
the extract contains 72 ± 1.5% condensed tannins with a
small amount of simple phenolics. This product was
added to the standard diet to obtain a mixture that con-
tained 7 g tannin/100 g wet weight, which is a dosage
previously found to induce PRPs in mouse salivary
glands [9]. The diets were prepared daily, and food and
water were provided ad libitum.

Saliva and salivary gland collection and sample
preparation
After the 10 day feeding trial (day 11) individual mouse
whole saliva secretion was induced with an intraperito-
neal injection of pilocarpine and collected by aspiration
from the mouth as described elsewhere [13]. Prior to
protein quantification, saliva samples were centrifuged
at 16,000 × g for 5 min at 4°C to remove particulate
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matter and salivary proteins that could be precipitated
because they form a complex with tannins. Only the
soluble fraction was used for further analyses. After sal-
iva collection, the animals were euthanized with an
overdose of xylazine hydrochloride combined with keta-
mine hydrochloride. The parotid glands were dissected,
washed briefly with 0.1 M phosphate buffer, pH 7.4, and
fixed in 10% neutral buffered formalin for routine
histology.

Histology
To confirm that the quebracho doses used in this study
did, in fact, affect the salivary glands, parotid morphol-
ogy was observed by light microscopy using a Nikon
Eclipse 600 microscope (Kanagawa, Japan). After
embedding the fixed parotid glands in paraffin wax
using routine procedures, a series of 5 μm thick sections
were cut with a microtome, and the slides were stained
with hematoxylin and eosin. For each animal, 10 digital
pictures from random areas of the parotid glands were
collected with a Nikon DN 100 camera (Kanagawa,
Japan) at 200× magnification. For each animal, the areas
and perimeters of a minimum of 100 acini were ran-
domly chosen and measured using SigmaScan Pro 5.0
software (SPSS, Chicago, IL, USA).

Separation by two-dimensional gel electrophoresis (2-DE)
The soluble fraction of whole saliva (SFWS) protein
concentration was determined using the bicinchoninic
acid method (Pierce, Rockford, IL, USA), with bovine
serum albumin (BSA) as the standard.
Individual mouse SFWS samples (n = 6) containing

100 μg total protein were mixed with rehydration buffer
[17]. Samples were subjected to isoelectric focusing
(IEF: first dimension) at 20°C in 13 cm IPG strips, pH
3-10, NL (Amersham Biosciences Europe GmbH, Frei-
burg, Germany) using an IPGphor Isoelectric Focusing
System (Amersham Biosciences Europe GmbH, Frei-
burg, Germany). The following IEF program was used:
2 h at 0 V, 12 h at 30 V (active rehydration), 1 h at 200
V, 1 h at 500 V, 1 h at 1000 V, 1 h at a 1000-8000 V
linear gradient, and 6 h at 8000 V. After focusing, pro-
teins in the IPG strips were equilibrated and horizon-
tally applied on top of a 12% sodium dodecyl sulfate
polyacrylamide gel electrophoresis (SDS-PAGE: second
dimension) gel (1 × 160 × 200 mm) [17]. Broad range
molecular mass markers (Ref 161-0317; BioRad, CA,
USA) were run simultaneously with the samples to cali-
brate the molecular masses of protein spots. Gels were
stained with Coomassie Coloidal G-250 [21]. Addition-
ally, a PRP-specific stain/destain procedure [22] was
used in some gels to assess the induction of these pro-
teins by tannins.

Gel analysis
Digital 2-DE gel images were acquired using a scanning
densitometer with internal calibration (Molecular
Dynamics, Amersham Biosciences Europe GmbH,
Freiburg, Germany) with LabScan software (Amersham
Biosciences Europe GmbH, Freiburg, Germany). Gel
analysis was performed using Image Master Platinum
v.6 software (Amersham Biosciences Europe GmbH,
Freiburg, Germany). Spot volume normalization in the
various 2-DE maps was performed using relative spot
volumes (% vol). Spot detection was first performed in
automatic mode, followed by manual editing for spot
splitting and noise removal. The gel containing the
greatest number of protein spots for each diet condition
was chosen as the reference gel. All other gels from the
same experimental condition were matched to the refer-
ence gel by placing user landmarks on approximately
10% of the visualized protein spots to assist in automatic
matching. After completion of automatic matching, all
matches were checked for errors by manual editing.

Protein identification
In-gel digestion
Stained spots were excised, washed in acetonitrile, and
dried in a SpeedVac. The proteins were digested with
trypsin as previously described [23].
Peptide mass fingerprinting
Peptide mass fingerprinting was performed as described
elsewhere [23], with mass spectra obtained by matrix-
assisted laser desorption/ionization-time of flight mass
spectrometry (MALDI TOF MS) using a Voyager-DE
STR (Applied Biosystems, Foster City, CA, USA)
MALDI TOF mass spectrometer in the positive ion
reflectron mode. Database searches were performed
against SwissProt, MSDB, and NCBInr following the
same criteria described previously [23], both to perform
the search and to accept the identification.
Protein identification using MALDI TOF-TOF data
Protein identification was performed by MALDI TOF-
TOF analysis using an Applied Biosystems 4800 Proteo-
mics Analyzer (Applied Biosystems, Foster City, CA,
USA) in both MS and MS/MS mode. Positively charged
ions were analyzed in the reflectron mode over the m/z
range of 800-3500 Da, typically using 800 laser shots per
spectra and a fixed laser intensity of 3500 V. External
calibration was performed using the 4700 Calibration
Mix (Applied Biosystems). The 10 best s/n precursors
from each MS spectrum were selected for MS/MS ana-
lysis by Collision-Induced Dissociation assisted with air
using a collision energy of 1 kV and a gas pressure of
1 × 106 torr. Two thousand laser shots were collected
for each MS/MS spectrum using a fixed laser intensity
of 4500 V. Raw data were generated by 4000 Series
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Explorer v3.0 RC1 software (Applied Biosystems, Foster
City, CA, USA). All contaminant m/z peaks were
included in the exclusion list used to generate the pep-
tide mass list for the database search. The generated
mass spectra were used to search UniProtKB (released
July 7, 2009) and Uniref100 (released July 7, 2009).
Searches were conducted using two algorithms: Paragon
from Protein Pilot v.2.0 software (Applied Biosystems,
MDS Sciex) and Mowse from MASCOT-demon v.2.1.0
software (Matrix-Science, London, UK). Protein identifi-
cations were accepted with a probability filter cutoff of
99% (Prot Score ≥ 2.0) for Paragon and 95% (p < 0.05)
for Mowse. For Protein Pilot, the search parameters
were the following: enzyme (trypsin), Cys alkylation
(iodoacetamide), special factor (urea denaturation), spe-
cies (none), and ID focus (biological modification). For
Mascot, the interpretation of the combined MS+MS/MS
data was performed using GPS Explorer v.3.5 software
(Applied Biosystems, Foster City, CA, USA), with the
following parameters: missed-cleavage (one), peptide tol-
erance (75 ppm), fragment mass tolerance (0.25 Da),
fixed modification (carbamidomethylation of cysteine),
and variable modification (methionine oxidation). Addi-
tionally, all MS/MS spectra were further analyzed with
Peaks Studio v.4.5 software (Bioinformatics Solutions,
Waterloo, ON, Canada) for automatic de novo sequen-
cing combined with database searching, selecting trypsin
as the enzyme and a parent and fragment mass error
tolerance of 0.08 U.

Prediction of post-translational modifications
For salivary a-amylase, which was identified in several
spots for which apparent molecular masses and pI dif-
fered, potential post-translational modifications (PTMs)
were predicted as described previously [17]. Briefly, Find-
Mod (http://www.expasy.ch/tools/findmod/; accessed
June 17, 2010), NetPhos 2.0 (http://www.cbs.dtu.dk/ser-
vices/NetPhos/; accessed June 17, 2010), and Signal IP
3.0 (http://www.cbs.dtu.dk/services/SignalP/; accessed
June 17, 2010) search engines were used. Glycosylation
and phosphorylation information present in the Swis-
sProt database were also considered. Only the predicted
PTMs associated with peptides not matched to the iden-
tified protein were considered.

Statistical analysis
All data were analyzed for normality using the Kolmo-
gorov-Smirnoff test and homoscedasticity using the
Levene test. The values of salivary protein concentration
were normally distributed, and independent sample
t-tests were performed to assess differences between
diet treatments. Spot relative volume (% vol) and parotid
acinar areas and perimeters did not present normal dis-
tributions or homoscedasticity. Consequently, the

differences in the expression levels between the control
and quebracho groups for each protein spot and for his-
tomorphometric data were determined using the non-
parametric Mann-Whitney test. Means were considered
significantly different when p < 0.05. All statistical ana-
lyses were performed using SPSS v.15.0 software (SPSS,
Chicago, IL, USA).

Results
Histology
The acinar area and perimeter of the parotid glands
from the animals fed a quebracho-enriched diet were
significantly higher than the control group (Table 1).
Levels of 7 g tannin per 100 g wet weight in the diet
produced hypertrophy of parotid gland secretory tissue
(Figure 1).

Pattern of soluble fraction of whole saliva (SFWS)
proteins
After the 10 day feeding trial, the protein concentration
of the soluble fraction of whole saliva, measured after
centrifugation and precipitate removal, was significantly
lower in the quebracho group than in the control group
(Table 1), indicating that a smaller amount of salivary
proteins remains soluble after tannin ingestion.
A two-dimensional map of mouse SFWS was con-

structed with a non-linear pI range of 3-10 and a mole-
cular mass ranging from approximately 10 to 100 kDa
(Figure 2). A total of 86 protein spots were reproducibly
displayed in Coomassie Colloidal G-250-stained gels,
from which the 57 most intense ones were analyzed by
mass spectrometry. From these, 48 protein spots, corre-
sponding to 21 polypeptides, were identified by peptide
mass fingerprinting and MS/MS (Table 2). Some pro-
teins were identified in a high number of spots, namely
salivary amylase (14 different spots), androgen binding
proteins (6 different spots), and several forms of kallik-
reins (8 different spots). Concerning salivary amylase,
glycosylation and deamidation are predicted PTMs,
according to the analysis of the mass spectra and pre-
sence of consensus regions (Table 3).

Effects of quebracho consumption on SFWS protein
patterns
Three protein spots were found to change significantly
in terms of relative volume (Table 4). The levels of one
isoform of a-amylase (spot 62) and one unidentified
protein (spot 24) increased in the quebracho group,
whereas the levels of acidic mammalian chitinase (spot
38) decreased. Two new protein spots (Q1 and Q2),
which were not observed in the control group gels, were
consistently present in the gels from the quebracho
group, whereas spot 30, corresponding to Muc 10, was
absent (Figure 3). For other protein spots, no statistical
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significant differences were determined due to high
variability between individuals in their expression levels.
When both the control and quebracho gels were sub-

jected to the Coomassie Brilliant Blue R-250 modified
staining procedure for PRPs [22], the Q1 and Q2 spots,
present at the basic extremity of the gels and with
apparent molecular masses of 42 and 64 kDa, respec-
tively, appeared with a slightly dark pink color, whereas
the remaining spots appeared as blue spots in both gels
(Additional file 1: supplementary Figure S1).

Discussion
Using 2-DE and MS/MS, a proteome profile of mouse
SFWS comprising 21 different proteins was established,
extending knowledge and aiding studies on ingestive
physiology and salivary secretion physiology using a
mouse model.
Williams et al. [18] obtained 2-DE maps from rat par-

otid saliva using a pI range similar to that used in the
present study (pH 3-10). Comparisons with our gels
indicate a similar distribution for some spots, notably
those we identified as a-amylase, deoxyribonuclease,
parotid secretory protein, and demilune cell and parotid
protein. However, several differences observed between

the two patterns are not surprising because they stem
from distinct genotypes (rat vs. mice) and different
glandular origin secretions (parotid vs. whole saliva).
The presence of basic and acidic PRPs was suggested in
a rat parotid saliva 2-DE pattern [18]. These proteins
are not constitutively expressed in mouse salivary glands
[9], but rather induced by isoproterenol administration
or tannin ingestion [5,9], which can also explain the fail-
ure to detect them in our control samples.
In the present study, different spots resulted in the

identification of the same protein (Figure 2; Table 2).
A similar feature was also observed in the human saliva
proteome [24] and recently by us in small ruminant
parotid saliva [17]. This observation may be attributable
to the presence of isoforms, protein fragments, or
PTMs, among which glycosylation and phosphorylation
were reported to be a common feature of salivary pro-
teins [25,26].
Fourteen spots were identified as salivary a-amylase.

A high number of salivary a-amylase spots with a simi-
lar distribution has also been observed in human whole
saliva [15,16,27], suggesting similarities between humans
and mice in the digestive functions of saliva, in contrast
to ruminants, which lack salivary a-amylase [17,22].

Figure 1 Examination by ligth microscopy of parotid glands. Original magnification X200 (bar = 50 μm). Acini from control group (A) are
significantly lower than those from quebracho tannin-enriched diet group (B). a - acinus; d - salivary ducts.

Table 1 Comparison of parotid histomorphological parameters and saliva protein concentration between mice control
(n = 6) and quebracho groups (n = 6)

Parameters Control Group Quebracho Group Significance

Area (Pixel) 13,415 ± 4,334 33,353 ± 14,413 13.0a

Perimeter (Pixel) 464 ± 78 739 ± 160 12.9a

Protein concentration (μg/mL) 2920 ± 289 1941 ± 138 0.00012b

Values presented correspond to mean ± standard deviation
a Differences are significant for Z > 1.96
b Differences are significant for P < 0.05
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The apparent molecular masses were approximately 58
kDa, and the pI ranged from 3.4 to 6.2. The theoretical
molecular mass of the native form of a-amylase is 56
kDa, with a pI of 6.4. Glycosylation with neutral and
acidic (sialic acid) oligosaccharides and spontaneous
post-secretion deamidation of salivary a-amylase have
been previously demonstrated [27,28]. The consensus
sequence for glycosylated asparagine residues is Asn-X-
Ser/Thr; therefore, two possible N-glycosylation sites for
mouse a-amylase are 427-429 and 475-477 (Table 3).

These two sites were also previously mentioned for
human [27,28] salivary a-amylase. The described glyco-
sylations may explain the higher apparent molecular
mass of the a-amylase isoforms compared with the
native a-amylase form and the pI differences between
the several protein spots. Moreover, from the MS spec-
tra analysis of the several spots identified as a-amylase,
the absence of one or both peptides containing the con-
sensus region for N-glycosylation was apparent, suggest-
ing the possibility of such a PTM. No potential

Figure 2 Two-dimensional proteome profile of mice whole saliva. Aliquots containing 100 μg of proteins from control animals were
subjected to IEF in a 3-10 NL range, separated by molecular masses in 12% polyacrylamide gels and stained with Coomassie Coloidal G-250.
Molecular markers masses are represented on the left side of the gel. Numbered protein spots were collected for protein identification.
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Table 2 Proteins from the soluble fraction of mice whole saliva identified by Mass spectrometry

Protein name Swiss-Prot accession number Spot Est. MW (kDa)/pI Theor. MW (kDa)/pI Identified by

PMF Scorea MS/MS Scoreb

Acidic mammalian
chitinase

CHIA_MOUSE 38 53/4.8 50/4.9 170 694

56 97/5.0 — 192

Androgen binding
protein alpha

Q9WUM8 36 15/5.0 10/5.4 78 —

Androgen binding
protein beta

Q8R1E9 26 11/5.2 12/5.1 102 394

27 11/5.0 80 140

Androgen binding
protein gamma

Q8JZX1 42 11/7.2 13/7.7 121 —

43 10/6.1 157 546

44 10/6.0 69* 442

Carbonic
anhydrase VI

CAH6_MOUSE 9 44/5.0 35/5.8 177 428

10 44/5.1 156 637

11 44/5.2 193 699

12 44/5.3 134 535

Cysteine-rich
secretory protein

1

CRIS1_MOUSE 13 33/6.0 26/4.5 82* 243

14 33/6.3 79* 107

Dcpp1 protein Q64097 34 21/5.9 18/6.1 70* —

35 20/6.2 82*

Dcpp2 protein Q6PCW3 18 17/6.8 16/7.8 97 421

Deoxyribonuclease-1 DNAS1_MOUSE 50 39/4.9 30/4.7

90 300

Glandular
Kallikrein K1

KLK1_MOUSE 20 18/5.7 26/4.9 79 476

41 21/5.1 — 113

a 33/3.4 110

Glandular
Kallikrein K13

P36368 40 12/5.1 26/8.3 71 —

Glandular
Kallikrein K5

K1KB5_MOUSE 47 32/5.4 26/5.3 109 514

Glandular
Kallikrein K9

K1KB9_MOUSE 21 12/6.4 26/7.2 84 283

Glandular
Kallikrein K22

K1B22_MOUSE 15 30/5.9 26/6.0 111 300

45 31/5.6 77* —

Muc 10 Q8VC95 30 11/9.2 20/10.2 85* —

Odorant binding
protein Ia

P97336 23 17/5.2 17/5.2 182 761

Odorant binding
protein Ib

P97337 48 18/5.4 17/5.5 118 506

Parotid secretory
protein

PSP_MOUSE 46 25/4.9 23/5.0 82 776

c 25/3.4 — 360

Prolactin-inducible
protein homolog

PIP_MOUSE 37 15/4.8 14/4.8 — 107
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phosphorylations were observed for the protein spots
identified as a-amylase, and the presence of the signal
peptide was predicted for all of the spots.
Eight protein spots, from acidic to neutral and with

several different molecular masses, were identified as
five different kallikrein forms. These proteins belong to
a family of serine proteases that are involved in hor-
mone and growth factor processing [29]. The tremen-
dous amount and diversity of kallikreins present
in mouse saliva was not previously observed using

SDS-PAGE [13]. Some authors already reported the
expression of several kallikreins in mouse submandibu-
lar glands [30]. Besides, these salivary proteins were also
found in humans [31] and rats [32]. The relative propor-
tion of the various tissue kallikreins secreted by rat sub-
mandibular glands was found to be differentially
influenced by the two branches of the autonomic ner-
vous system: kallikreins in sympathetic-induced saliva
were derived by exocytosis of pre-packaged granules in
granular tubules, whereas kallikreins in parasympathetic-
induced saliva were likely secreted through a constitu-
tive vesicular route [33]. In the present study, we used
pilocarpine to stimulate mouse saliva secretion, and we
hypothesize that the identified forms derive mainly from
a constitutive vesicular route. This may be important for
future studies that apply parasympathetic agonists to sti-
mulate salivary flow and collect saliva.
When tannins were introduced in the diet, changes in

mouse SFWS 2-DE profiles were observed. Tannins are
generally believed to be synthesized by plants to act as
deterrents because of their bitter and astringent proper-
ties [34,35]. The challenge is to ingest plant-derived
foods without suffering the ill effects of tannins. Saliva
components are the first defense line against tannins,
partially by minimizing their unpalatable astringent
properties [10]. Hypertrophy of parotid glands was
reported in rats and mice, which coincided with a dra-
matic increase in salivary PRP production after 2-3 days
of tannin ingestion [8,9]. Similar results were found in

Table 3 Alpha-amylase predicted posttranslational
modifications

Spot PTM

N-glyc.1 Deamidation2

1 —— 417; 419; 431

2 427; 475 ———

3 —— 417; 419; 431

4 475 364; 365; 379

5 427; 475 364; 365; 379; 417; 419; 431

6 —— 364; 365; 379

7 475 364; 365; 379

39 427; 475 ——

Here residues are indicated for which PTMs are predicted, according with
mass spectra analysis
1 Based on the existence of a consensus region and the absence of the
peptide from tryptic peptide maps
2 Based on FindMod and the absence of the peptide from the tryptic peptide
maps

Table 2 Proteins from the soluble fraction of mice whole saliva identified by Mass spectrometry (Continued)

Salivary amylase AMY1_MOUSE 1 58/5,5 56/6.5 88 887

2 58/5,6 193 834

3 58/5,7 193 777

4 58/5,8 217 772

5 58/5,9 230 738

6 58/6,0 270 795

7 58/6,1 226 632

8 58/6,2 232 804

16 58/3,4 155 632

33 58/5,4 107 774

39 58/3,7 148 825

61 58/5,8 132 927

62 58/5,9 163 853

63 58/6,0 149 795

Vomeromodulin
precursor

Q80XI7 54 66/5.6 61/5.5 81# —

55 66/5.7 68#
a Score is significant (p < 0.05) when higher than 75 (search performed with no taxonomic restriction), 67 (* search restricted to mammal database), or 61 (#
search restricted to rodent database);
b Total Ion Score is a result of the sum of all ion scores of the fragmented ions. Ions were only considered for protein identification if a significant ion score was
obtained (p < 0,05).
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the present study, where a significant increase in acinar
size was observed in animals fed quebracho tannin-
enriched diets.
The protein concentration of the SFWS from the

quebracho group was lower compared with the control
group, suggesting that the stable insoluble complexes
formed between salivary proteins and dietary tannins in
the mouth [36] were lost during the centrifugation step
during sample preparation, which was intentional and
allowed us to analyze the minor expressed salivary
proteins.
In the present work, only one mucin was identified in

mouse SFWS. Mucins represent a high proportion of
salivary proteins (approximately 16% of the total pro-
teins in human whole saliva), play a protective role, and
contribute to oral coating and lubrication [37]. The fail-
ure to identify mucins may be related to the difficulty of

assessing these proteins because of their large molecular
mass, high viscosity, and poor solubility in aqueous sol-
vents [38]. The Muc10 spot, although present in the
control group, was absent in the 2-DE profile of mouse
SFWS from the quebracho group. Salivary mucins can
also form complexes with tannins [39], and Muc10-tannin
complexes may have been removed during the centrifuga-
tion step.
The level of chitinase decreased in the quebracho

group. The presence of this protein in mouse saliva was
already observed by one-dimensional electrophoresis,
but its level did not change after tannin consumption
[13]. This protein has been reported in mice [40] and
humans [41,42], and a digestive or defensive role against
chitinous pathogens [40-42] has been proposed. Future
studies may clarify the biological role of this protein in
tannin ingestion.

Figure 3 Changes in the proteome of mice whole saliva after quebracho consumption. A) representative gel of an individual from control
group; B) representative gel of an individual of quebracho group. A decrease in relative volume was observed for spot 38, whereas spots 24 and
62 increased after quebracho consumption. Spot 30 was only observed in the gels from control group, whereas spots Q1 and Q2 were only
observed in 2-DE gels from quebracho group. These last spots were dark pink stained. Coloured pictures are presented in supplementary Figure
S1. Some of the spots for which expression levels are different in this figure did not change consistently in all individuals and, consequently, are
not discussed.

Table 4 Comparison of the expression levels of selected proteins (%Vol, mean ± SD) between control (N = 6) and
quebracho-fed animals (N = 6)

Spot N° Control group Quebracho group Pa Protein

24 17.07 ± 41.23 110.87 ± 59.55 0.0099 Not identified

38 475.26 ± 272.43 110.99 ± 132.25 0.015 Acidic mammalian chitinase precursor

62 0.28 ± 0.02 0.44 ± 0.05 0.00015 Salivary amylase
a Differences are significant for P < 0.05
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From the protein spots that newly appeared in the
quebracho group, spots Q1 and Q2 stained dark pink
(Additional file 1: supplementary Figure S1), suggesting
that these may be PRPs [21]. The proteins present in
these two spots were not identified by mass spectrome-
try. A failure in identifying PRPs by mass spectrometry
was previously reported [43], which the authors attribu-
ted to the particular characteristics of this family of pro-
teins. Identification of PRPs by mass spectrometry is
challenging because of the primary sequence of these
proteins, for which tryptic digests produce only a reduced
number of high m/z values [43]. This behavior also
causes difficulties when extracting the peptides from the
gel. In fact, the peptide maps for both spots are similar
and poor with regard to the number of m/z peaks
detected. The location of the Q1 and Q2 spots at the
basic extremity of the gels is consistent with studies
arguing that basic PRPs act as a defense mechanism
against dietary tannins [6,36]. Moreover, their induction
was observed in salivary glands of polyphenol-fed rats [8]
and BALB/c mice [9]. Salivary basic PRPs have a very
high affinity for tannins, leading to the formation of inso-
luble complexes [6]. The observation of pink spots even
after centrifugation also demonstrates the presence of
free PRPs or PRP-tannin soluble complexes [44].
The increase in expression level of one a-amylase iso-

form was previously observed in mice fed tannin-
enriched diets [13]. This increase was suggested to be a
co-adjuvant of the inhibition of tannin biological activity
or as a response to counteract the amount of this
enzyme that was potentially inactivated by tannin bind-
ing [13]. Inhibition of salivary a-amylase by dietary poly-
phenols has been demonstrated [45], and a recent report
revealed the mechanisms involved in the tannin/a-
amylase interaction [41]. The observation of changes in
only one of the isoforms, previously [13] and in the
present study, supports the hypothesis of different func-
tional activities among the several isoforms. Further
studies are needed to elucidate the functional differences
between amylase isoforms.

Conclusion
The present study characterized the mouse saliva protein
profile, which is an animal model used in studies of sali-
vary gland physiology. Salivary protein composition cor-
relates with systemic conditions, and the knowledge of its
normal composition may elucidate the differences
induced by treatments. Despite the similarities to the
extensively studied human saliva protein profile, signifi-
cant differences were also found, demonstrating the spe-
cies specificity of saliva. Additionally, we demonstrated
that mouse SFWS 2-DE profile changes in response to
introducing quebracho tannins into diet, namely by
increasing the expression of one salivary amylase isoform

and decreasing the expression of the acidic mammalian
chitinase precursor. Because these are proteins which did
not precipitate tannins, they may act through an alterna-
tive mechanism to impede them to have negative effects
in the digestive tract. These findings suggest that salivary
proteins other than PRPs may play a role in the modula-
tion of saliva composition according to the characteristics
of ingested material. Proteomics will be useful in nutri-
tion studies for monitoring changes in saliva composition
induced by foods with particular characteristics.

Additional material

Additional file 1: Supplementary Figure S1 - Changes in the
proteome of mice whole saliva after quebracho consumption. Spots
Q1 and Q2, which were only observed in 2-DE gels from quebracho
group, appear dark pink following Beeley et al.24 CBB R-250 stainning
protocol for PRPs.
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dimensional electrophoresis; MS: mass spectrometry; MS/MS: tandem mass
spectrometry; MALDI TOF: Matrix assisted laser desorption ionization time-of-
flight; BSA: bovine serum albumin; IEF: isoelectric focusing; IPG: Immobilized
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