www.elsevier.com/locate/jorganchem Compromise between conjugation length and charge-transfer in nonlinear optical η^5 -monocyclopentadienyliron(II) complexes with substituted oligo-thiophene nitrile ligands: Synthesis, electrochemical studies and first hyperpolarizabilities M. Helena Garcia ^{a,b,*}, Paulo J. Mendes ^{b,c}, M. Paula Robalo ^{b,d}, A. Romão Dias ^b, Jochen Campo ^e, Wim Wenseleers ^{e,*}, Etienne Goovaerts ^e ^a Faculdade de Ciências da Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016 Lisboa, Portugal ^b Centro de Química Estrutural, Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal ^c Centro de Química de Évora, Universidade de Évora, Rua Romão Ramalho 59, 7002-554 Évora, Portugal ^d Departamento de Engenharia Química, Instituto Superior de Engenharia de Lisboa, Rua Conselheiro Emídio Navarro, 1, 1959-007 Lisboa, Portugal ^e Department of Physics, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, B-2610 Wilrijk-Antwerpen, Belgium Received 12 February 2007; received in revised form 17 March 2007; accepted 17 March 2007 Available online 23 March 2007 ## Abstract A systematic series of η^5 -monocyclopentadienyliron(II) complexes with substituted oligo-thiophene nitrile ligands of general formula [FeCp(P_P)(NC{SC₄H₂}_nNO₂)] [PF₆] (P_P = dppe, (+)-diop; n=1-3) has been synthesized and characterized. The electrochemical behaviour of the new compounds was explored by cyclic voltammetry. Quadratic hyperpolarizabilities (β) of the complexes with dppe coligands have been determined by hyper-Rayleigh scattering (HRS) measurements at two fundamental wavelengths of 1.064 and 1.550 μ m, to uncover the two-photon resonance effect and to estimate static β values. The obtained overall results are found to be better than for the related η^5 -monocyclopentadienyliron(II) complexes with p-benzonitrile derivatives. Although an increase of the resonant β at 1.064 μ m with increasing number of thiophene units in the conjugated ligand was found (up to 910 × 10⁻³⁰ esu), the static values β_0 remain practically unchanged, as shown by the 1.550 μ m measurements. Combined with the electrochemical and spectroscopic data (IR, NMR, UV-vis), this remarkable evolution of β shows that the increase of conjugation length is balanced by a decrease in charge-transfer efficiency. © 2007 Published by Elsevier B.V. Keywords: Iron complexes; Thiophene nitrile ligands; Cyclic voltammetry; Nonlinear optics; Quadratic hyperpolarizabilities; Molecular first hyperpolarizabilities ## 1. Introduction Organometallic compounds have given rise to a great deal of interest owing to their application in the field of nonlinear optics (NLO) [1–6]. For second-order nonlinear optics, strongly asymmetric systems are needed, which led to the development of typical push–pull systems in which the metal centre, bound to a highly polarizable conjugated backbone, acts as an electron releasing or withdrawing group. The strong charge-transfer (CT) transitions occurring in organometallic compounds are expected to lead to high molecular first hyperpolarizabilities β . In addition, the position of the CT band, usually at visible wavelengths, can be tuned by variation of the ligands and/or the metal ^{*} Corresponding authors. Address: Faculdade de Ciências da Universidade de Lisboa, Ed.C8, Campo Grande, 1749-016 Lisboa, Portugal (M.H. Garcia). E-mail addresses: lena.garcia@fc.ul.pt (M.H. Garcia), wim.wenseleers @ua.ac.be (W. Wenseleers).