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Abstract: The cruise control problem of transferring the speed of a vehicle between two values in a fixed
interval of time using a predefined sequence of gears, and minimizing a cost related to fuel consumption,
is solved in this paper. This is a hybrid dynamic optimization problem since the control variables include
both a continuous variable (fuel flow) and a discrete variable (the gear to apply at each instant). The
solution is given in the form of a hybrid optimal control algorithm that computes the optimal switching
times between gears using Dynamic Programming and the optimal fuel profile between successive gear
boundaries using a gradient algorithm to approximate the optimum conditions. In order to reduce the
search of the optimal switching times to a search in a finite dimension graph, a procedure based on a
changing grid is used. The algorithm is illustrated by a simulation using a diesel one-dimensional car
model.
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1. INTRODUCTION

Both economic and environmental concerns are boosting the
research in vehicle cruise control for both minimum fuel con-
sumption and to reduce pollutant emissions Hashimotoet al.
(2006). Improving the performance in this respect is increas-
ingly seen by car manufacturers as a competitive advantage.
This and other factors such as security, together with major
progress in sensors and reliability of automotive electronics is
boosting the incorporation of sophisticated control systems in
cars, with the volume of software incorporated in the design
growing exponentially. Depending on the type of system con-
sidered, cruise control provides help to the driver in selecting
the optimal fuel flow for manoeuvres that may range from
vehicle speed management or to move from the current point to
the target destination using GPS and terrain map information.
While some of the simplest functions may be currently found in
relatively unexpensive cars, the area is the subject of research.

Recent papers address cruise control using optimal control, Dy-
namic Programming or Predictive Control techniques Gause-
meieret al. (2010); Kolmanovsky and Filev (2010); Luuet al.
(2010); Saerenset al. (2010). Cruise control for speed transfer
is a hybrid optimization problem since the manipulated vari-
ables are both continuous (fuel flow) and discrete (gear ratio).
In the last decade progress was made in methods for solving this
type of problems, but the resulting algorithms usually require a
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high computational load Bemporad and Morari (2010); Bem-
porad and Giorgetti (2006); Hedlund and Rantzer (1999). As
such, works on cruise control rely mostly on heuristic methods.

The contribution of this paper consists of a dynamic optimiza-
tion based procedure to determine a suboptimal solution to
the optimal switched systems state transfer problem, in a fixed
interval of time, with given plant dynamics sequence. The pro-
cedure is applied to the cruise control speed transfer problem
that minimizes a cost related to fuel consumption and using a
predefined sequence of gears.

Where the explicit computation of the optimal control is
needed, it is obtained by applying a recursive numerical gradi-
ent algorithm that provides an approximation to the conditions
provided by Pontryagin’s Optimum Principle.

The paper is organized as follows: After this introduction that
motivates the problem, briefly reviews the relevant references
and states the paper contribution and organization, the car
model used is described in section 2. Section 3 describes the
hybrid dynamic optimization procedure and section 4 provides
a simulation example in which its convergence is illustrated.
Finally, section 5 draws conclusions. For the sake of complete-
ness a gradient algorithm to approximate the solution of the
optimal control problem with terminal constraints is described
in the appendix. This is one of the building blocks of the hybrid
dynamic optimization proposed.



2. ONE-DIMENSIONAL NONLINEAR CAR MODEL

This section describes a one-dimensional model for a dieselcar,
with the following inputs:

• fuel flow as controlled input[L/s];
• selected gear (manual gearbox is assumed);
• terrain inclination[rad] and wind speed[m/s] as distur-

bances.

The main output of the model is the car speed. Other quantities
available from this model are:

(1) engine rotational speed[rad/s];
(2) engine torque[Nm];
(3) engine power[kW ];
(4) fuel consumption[L/100km].

The dynamic model is build from elementary physical princi-
ples using information publicly available for a Toyota Avensis
2.0 D-4D SW for a 2007 model. All physical quantities are
measured in SI units. Table 1 lists the values used for model
parameters.

2.1 Engine model

The engine model assumes an input diesel flowu(t) measured
in liters per second. The total powerP is given by

P (t) = Eu(t). (1)

whereE is the total energy density of diesel fuel. A consider-
able percentage of this power is dissipated in thermal losses,
and only a part is available as mechanical power,Pm, given by

Pm(t) = η
(

Te(t), we(t)
)

× P (t). (2)

whereTe andωe are the engine torque and speed andη is the
efficiency. The engine torque output is given by

Te(t) =
Pm(t)

ωe(t)
=
η
(

Te(t), we(t)
)

× P (t)

ωe(t)
(3)

Equation (3) constitutes an algebraic loop, since efficiency η
and engine torque values are computed based on each other,
which makes computations more taxing. To overcome this, the
torque value as a function ofwe(t) andu(t) can be numerically
computed, by solving the algebraic loop (3) offline.

For the purposes of this work, it was assumed that efficiency
level-curves on the(Te, we) plane are elliptical (figure 1),

η
(

Te, we

)

= α− β

[

(Te − cT )
2

lT
+

(we − cw)
2

lw

]

(4)

for a reasonable choice of the parameterscT , lT , cw and lw.
Constantsα andβ perform a linear transformation, making the
elliptic surface concavity face downwards instead of upwards.
Constantα is the value of the maximum efficiency,i.e. when
(Te, we) = (cT , cw) thenη = α.

In this specific case a closed-form solution for computingTe(t)
can be easily derived by replacing (4) in (3).

From the data available for this engine, it is known that it
achieves a maximum torque of 310 Nm at 1800-2400 rpm.
Below and above this operational range the torque is reduced.
It is also known that a maximum power of 93kW is attained
at 3600 rpm, implying a torqueT = 93×10

3

3600

60

2π
≈ 246.7

Nm at that speed. From this scarce data, a maximum torque
curve was designed as shown in figure 1. For any given engine
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Fig. 1. Efficiency level-curves with maximum torque curve.
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Fig. 2. Torque level-curves in engine speed/fuel flow space.

speed, admissible engine torque values lie below this curve. The
numerical solution of equation (3) given the efficiency function
(4) is represented in figure 2.

2.2 Transmission

The transmission links the wheels and the engine together
using a gear box. Its role is to increase torque and decrease
wheel speed to match the operational range of the engine. The
transmission also introduces internal drag that depends onthe
engine speed. In the model developed here, the internal drag
does not only model the transmission itself, but also all theload
at the engine shaft.

The torque output available at the car wheels is given by
Tw(t) = rirf

(

Te(t)− αT − βTωe(t)
)

(5)
whereri is the gear ratio for geari, rf is the final drive ratio
andαT , βT are drag coefficients.

Engine rotational speed, measured in[rad/s], is obtained from
wheel speed by gear ratio conversion and is given by

ωe(t) = rirfωw(t) (6)

2.3 Traction force and wheels

The wheels are modeled as a rotational to linear movement
converter neglecting inertia and drag. Wheel rotational speed,
measured in[rad/s], is given by

ωw(t) =
2π

Λ
v(t) (7)



parameter value units
m 1500 Kg
ρ 1.2 kg/m3

A 2.29 m2

Cd 0.29 -
Λ 1.9852 m
αT 35 Nm
βT 0.07 Nm/rad.s−1

E 40.8e6 J/L

Table 1. Non-linear car model parameter values

gear ratio value
r1 3.818
r2 1.913
r3 1.218
r4 0.860
r5 0.790
r6 0.673
rf 3.240

Table 2. Non-linear car model gear ratio values

where Λ is the wheel perimeter. The used tire dimensions
are 205/55R16, corresponding to a perimeter ofΛ = 1.9852
meters.

Similarly, the traction force is obtained from the torque applied
by the engine at the wheels

F (t) =
2π

Λ
Tw(t) (8)

2.4 Car dynamic model

The evolution of the car speed depends of the forces applied.
The forces considered are: traction forceF (t), gravitational
force and aerodynamic dragFa(t).

v̇(t) = −9.8 sin(θ) +
1

m
(F (t)− Fa(t)) (9)

whereθ is the terrain inclination. Aerodynamic drag is assumed
to be given by

Fa(t) =
1

2
ρACd

(

v(t)− vwind(t)
)2

(10)

whereρ is the air density,A is the frontal area of the vehicle,
Cd is the drag coefficient, andm is the car mass.

Table 1 contains the values used for the nonlinear car model
parameters. For the purposes of modeling the transmission,a
six-speed manual gear box is used. Table 2 shows the published
gear ratios of the gear box along with the final drive ratio.

3. HYBRID DYNAMIC OPTIMIZATION ALGORITHM

The car dynamic model (9) may be represented by the nonlinear
state-space model

ẋ(t) = fi(x(t), u(t), t), i = 1, ..., N (11)
where the state, given by the car speed, is scalar and thefi
are vector fields corresponding to each of the gearsi, for i =
1, ..., N whereN is the number of gears.

The following procedure consists of an algorithm to find a
suboptimal solution for the optimal switched dynamics state
transfer problem,i.e. making the state change from an initial
valuex0 at t0 to a desired target valuexf at the final timetf ,
wheret0 andtf are given and fixed. The algorithm is based on
dynamic optimization in that the desired state transfer,x0 toxf ,

is broken up into smaller state transfer problems, one for each
distinct dynamics. The sequence of dynamics equations and
the state values at which a switch between dynamics equations
occur are given. The performance index, to minimize has the
form

J =

∫ tf

t0

L(x(t), u(t))dt (12)

wherex(t) andu(t) are the state and control vectors at some
time t, respectively. In the case considered, the lagrangian is
given byL = u2(t)/2. Let

Xi i = 1, ..., N + 1 (13)
be the state values at which a switch between plant dynamics
occurs, which are given and fixed, such that the plant dynamics
fi apply when performing state value transfers fromXi to
Xi+1. The initial and final state values arex0 and xf . The
dynamic optimization procedure consists of finding the optimal
switching instants

t∗i , i = 1, ..., N + 1 (14)
in respect to the chosen state valuesXi, wheret∗i corresponds to
the time instant at which the state valueXi occurs. Naturally,
the first and last time instants aret∗1 ≡ t0 and t∗N+1 ≡ tf .
In order to determine the remainingN − 1 optimal switching
instants, a set ofMi candidate time values is defined

tji , j = 1, ...,Mi (15)
at which each of theN − 1 intermediate state valuesXi, i =
2, ..., N are attained.

This defines a grid of state/time values that can also be rep-
resented as an oriented graph, as shown in figure 3. The cost
of each arc of the graph is computed by (12), where the inte-
gration interval corresponds to the time interval where that arc
is defined. The optimal switching instants (in respect to allthe
candidates) are computed as those for which the total cost for
transferring the state value fromx0 att0 toxf attf is minimum.
Having computed all theN + 1 optimal switching instants, the
resulting set of instants can be adjusted and refined by creating
new sets of candidate time values (15) and repeating the same
procedure.

In the sequel, when referring totji , we will use the notion of
time value and node interchangeably, since the lower indexi
already indicates that this is a time value belonging to state
valueXi.

The total procedure can be separated into three phases:

1. Define graph nodes and arcs

Nodes: The initial and final state values correspond to two
nodes,t0 andtf , respectively. For the remaining state values,
X2, ..., XN , define a set of candidate nodes (15), such that
t1i < t1i+i and tMi

i < t
Mi+1

i+1 , for i = 2, ..., N , i.e. the first
and last candidate nodes of switchi must be smaller than the
first and last candidate nodes of switchi+ 1 (see figure 3).

Arcs: Acceptable arcs on the graph are all those that connect a
node at switchXi with another node at the following switch
Xi+1, and such that the time of the former node is strictly
smaller than the time of the latter.

2. Compute optimal control, and corresponding cost, for all
arcs in graph

For each arc connecting nodestji andtki+1, compute the optimal

control signalui+1,k
i,j using the algorithm described in Appendix
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Fig. 3. Candidate time values for a switched dynamics opti-
mization problem with 3 plants,f1, f2 andf3

Bryson and Ho (1975), and the corresponding performance
index valueJ i+1,k

i,j , for performing the optimal state value
transfer fromXi to Xi+1. If a given arc is impossible,e.g.the
corresponding state transfer cannot be accomplished in thetime
interval that spans betweentji andtki+1, the cost of that arc is
set to+∞.

3. Determine optimal path and corresponding cost

The minimum-cost path that connects the first and last nodes,
t0 and tf , is the optimal path with respect to the candidate
nodes established in1. The nodes that make up the optimal path
correspond to the optimal switching instants (14). To compute
the optimal path, a dynamic programming approach is defined
as follows. For any given nodetji there is an optimal path that
connects that node to the final nodetf . Let u∗

t
j

i

be the optimal

control signal that connectstji to the next node on its optimal
path andJ∗

t
j

i

the cost of the whole optimal path connectingtji
to tf . The dynamic programming approach consists of going
through all state values backwards, fromXN to X1, and for
each node solving

u∗
t
j

i

= argmin
u
i+1,k

i,j

{

J i+1,k
i,j + J∗

tk
i+1

}

. (16)

where the first term inside the brackets corresponds to the cost
of going fromtji to tki+1 and the second term corresponds to the
optimal cost of going fromtki+1 to the final nodetf . The optimal
cost of the node,J∗

t
j

i

, is then computed as the sum of both terms

inside the brackets when (16) is achieved. The optimal decision
for nodetji , i.e. the nodetki+1 for which (16) is achieved, is also
registered.
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Fig. 4. Candidate time values and optimal path after iteration 1

When all nodes on the graph have been labeled with the optimal
cost to go an the optimal decision, the total optimal cost for
the state transfer problem isJ∗ ≡ J∗

t0
. The optimal path can

be easily reconstructed by starting from the first nodet0 and
recursively jumping to the optimal decision until the final node
tf is reached. Finally, the total optimal control signalu∗ can be
recovered from the individual optimal control signals along the
optimal path.

It is remarked that the solution is suboptimal in the sense that
the switching state valuesXi are fixed and that the global
optimum may not be found.

Having determined the optimal nodes,i.e.the optimal switching
instants (14), the process can be repeated by going back to1
and choosing new candidate nodes nearer to the optimal ones
computed in this iteration.

4. RESULTS FOR THE SPEED TRANSFER PROBLEM
WITH 3 GEARS

In this section, the hybrid dynamic optimization algorithmis
applied to solve the minimum energy speed transfer (MEST)
problem for the non-linear car model, using a predefined set of
3 gears. Here, the MEST problem was considered witht0 = 0
andtf = 15 seconds, with initial and final car speedsv0 = 30
Km/s andvf = 70 Km/h, such that gear 2 is used when
30 ≤ v < 40, gear 3 is used when40 ≤ v < 55 and gear
4 is used when55 ≤ v < 70. Terrain inclination and wind
speed were assumed to be null.

After 14 iterations, the resulting optimal switching instants
are t∗2 = 2.662 seconds andt∗3 = 8.049 seconds with a
corresponding performance index value ofJ∗ = 28.2× 10−6.
The evolution of the performance index along iterations of the
hybrid dynamic optimization algorithm is shown in figure 9.
The resulting optimal control signal is shown in figure 10.

5. CONCLUSIONS

A hybrid dynamic optimization algorithm for solving the min-
imum energy speed transfer problem in cruise control is pre-
sented. The algorithm proposed relies on a changing grid of
possible instants to switch between gears and combines Dy-
namic Programming with Constrained Optimal Control. The
algorithm is formulated for first order hybrid systems but may
be extended to higher orders at the expense of computational
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Fig. 5. Candidate time values and optimal path after iteration 2
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Fig. 6. Candidate time values and optimal path after iteration 3
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Fig. 7. Candidate time values and optimal path after iteration 4

load. In turn, this may be reduced by replacing the gradient
algorithm to solve state transfer with constant dynamics by
more efficient algorithms Ferreauet al. (2006).
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Appendix A. ITERATIVE SOLUTION FOR THE OPTIMAL
CONTROL PROBLEM WITH TERMINAL CONSTRAINTS

Let

ẋ = f(x, u, t), t ∈ [t0, tf ], x(t0) = x0 (A.1)

describe the nonlinear time-varying dynamics of a plant, with
given initial conditionx0, wherex(t) ∈ R

n andu(t) ∈ R
m are

the state and input vectors at timet, respectively, and

J = φ(x(tf ), tf ) +

∫ tf

t0

L(x(t), u(t), t)dt (A.2)

a performance index to maximize. A minimization problem
can also be formulated by maximizing the performance index
Jmin = −J .

The optimal control problem with terminal constraints consists
in finding the input signalu∗(t), t ∈ [t0, tf ], for which the
plant exhibits a state trajectoryx∗(t) such that the terminal state
value,x∗(tf ), verifies a set of terminal constraint functions, in
the form ofq restriction equations,

ψ(x(tf ), tf ) =

[

ψ1(x(tf ), tf )
· · ·

ψq(x(tf ), tf )

]

=

[

0
· · ·
0

]

(A.3)

and such that the performance index value,J , is maximum.

An iterative numerical algorithm for obtaining the optimalcon-
trol signal under these circumstances is now described Bryson
and Ho (1975). An initial estimate for the optimal control sig-
nal must be provided. Each iteration consists of the following
steps:

1. Integrate state equation

Using the current estimate of the optimal control signal,u(t) ∈
R

m, integrate the state equation A.1 to obtain the state evolution
x(t) ∈ R

n from t0 to tf .

2. Integrate co-state equations

Let λΦ(t), an (n × 1) vector, andλΨ(t), an (n × q) matrix, be
co-state variables. Define

HΦ(λΦ, x, u, t) = L(x, u, t) + λΦ
T
f(x, u, t),

HΨ(λΨ, x, u, t) = λΨ
T
f(x, u, t),

and integrate backwards, fromtf to t0, the adjoint equations

−[λ̇Φ]T = HΦ
x =

∂L

∂x
+ λΦ

T ∂f

∂x
,

−[λ̇Ψ]T = HΨ
x = λΨ

T ∂f

∂x
,

for which the terminal co-state conditions are

λΦ(tf ) = φTx (x(tf ), tf ),

λΨ(tf ) = ψT
x (x(tf ), tf ).

3. Compute Hamiltonian partial derivatives

Compute the Hamiltonian functions partial derivatives with
respect to the control signalu for all t ∈ [t0, tf ],

HΦ
u =

∂L

∂u
+ λΦ

T ∂f

∂u

HΨ
u = λΨ

T ∂f

∂u
HΦ

u (t) is a (1×m) vector andHΨ
u (t) is a (q ×m) matrix.

4. Compute Lagrange multiplier vectorν

Computeν (q × 1 vector)

ν = −Q−1g

where

g =

∫ tf

t0

HΨ
u (t)[HΦ

u (t)]
T dt

is a(q × 1) vector and

Q =

∫ tf

t0

HΨ
u (t)[HΨ

u (t)]T dt

is a(q × q) matrix.

5. Compute gradient signals

Evaluateψ at the terminal time and compute the gradient
signalsδuk(t) andδuη(t) for all t ∈ [t0, tf ]

δuk(t) = [HΦ
u (t) + νTHΨ

u (t)]T

δuη(t) = [HΨ
u (t)]TQ−1ψ(tf )

6. Compute and update the estimate of the optimal control
signal

Compute the control correction signalδu(t)

δu(t) = −kδuk(t)− ηδuη(t)

and update the estimate of the optimal control signal

u(t)← u(t) + δu(t)

choosingk < 0 (k > 0) if maximizing (minimizing) the
performance index, and0 < η ≤ 1.

7. Evaluate stop criteria

Compute the root-mean-square value ofδuk(t) and δuη(t)
using the standard definition

(x)rms =

√

1

tf − t0

∫ tf

t0

[x(t)]2dt

The algorithm stops ifmax{(δuk)rms, (δuη)rms} is smaller
than a specified threshold, or if the maximum number of itera-
tions is reached.


