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Abstract: The cruise control problem of transferring the speed of ackebetween two values in a fixed
interval of time using a predefined sequence of gears, anidmzing a cost related to fuel consumption,
is solved in this paper. This is a hybrid dynamic optimizajiwoblem since the control variables include
both a continuous variable (fuel flow) and a discrete vaeighie gear to apply at each instant). The
solution is given in the form of a hybrid optimal control atghm that computes the optimal switching
times between gears using Dynamic Programming and the alfiral profile between successive gear
boundaries using a gradient algorithm to approximate thgngon conditions. In order to reduce the
search of the optimal switching times to a search in a finiteedision graph, a procedure based on a
changing grid is used. The algorithm is illustrated by a $ation using a diesel one-dimensional car
model.

Keywords:Hybrid Optimization, Cruise Control, Optimal Control, Aunhotive.

1. INTRODUCTION high computational load Bemporad and Morari (2010); Bem-
porad and Giorgetti (2006); Hedlund and Rantzer (1999). As

Both economic and environmental concerns are boosting tB&Ch, works on cruise control rely mostly on heuristic metho
research in vehicle cruise control for both minimum fuel-con

. o . The contribution of this paper consists of a dynamic optaniz
sumption and to reduce pollutant emissions Hashingdtal.

tion based procedure to determine a suboptimal solution to
the optimal switched systems state transfer problem, ineal fix

. . : Yterval of time, with given plant dynamics sequence. The pr
This and other factors such as security, together with maj@gqyre is applied to the cruise control speed transfer gnobl
progress in sensors and reliability of automotive elet®is ¢ minimizes a cost related to fuel consumption and using a
boosting the incorporation of sophisticated control systén redefined sequence of gears.

cars, with the volume of software incorporated in the desig[%

growing exponentially. Depending on the type of system corWhere the explicit computation of the optimal control is
sidered, cruise control provides help to the driver in d@lgc needed, it is obtained by applying a recursive numericaligra
the optimal fuel flow for manoeuvres that may range fronent algorithm that provides an approximation to the coondgi
vehicle speed management or to move from the current pointpeovided by Pontryagin’s Optimum Principle.

&iﬁ:gg&g%ﬂﬂgﬂsﬁ’% ulselgt%‘ucr;\i)t?ogrs]%frrSéncE}?gnItTf?g“L:sg?The. paper is organized as foIIows_: After this introductibatt
relatively unexpensivepcars the areais t%e subject ogrehe motivates the problem, bnefl_y reviews the reIeyan; refeesn

’ and states the paper contribution and organization, the car
Recent papers address cruise control using optimal cobtyel model used is described in section 2. Section 3 describes the
namic Programming or Predictive Control techniques Gausbybrid dynamic optimization procedure and section 4 presid
meieret al. (2010); Kolmanovsky and Filev (2010); Lwtal. a simulation example in which its convergence is illustlate
(2010); Saerenst al. (2010). Cruise control for speed transferFinally, section 5 draws conclusions. For the sake of cotaple
is a hybrid optimization problem since the manipulated-variness a gradient algorithm to approximate the solution of the
ables are both continuous (fuel flow) and discrete (gean):ati optimal control problem with terminal constraints is désed
Inthe last decade progress was made in methods for sohigg tin the appendix. This is one of the building blocks of the fgbr
type of problems, but the resulting algorithms usually ieja  dynamic optimization proposed.

* This work has been performed within the frameworlacfivity 2.4.1 — Smart
drive control of project SE2A - Nanoelectronics for Safe, Fuel Efficient and
Environment Friendly Automotive SolutigreNIAC initiative.



2. ONE-DIMENSIONAL NONLINEAR CAR MODEL

This section describes a one-dimensional model for a diesel
with the following inputs:

o fuel flow as controlled inputZ/s];

¢ selected gear (manual gearbox is assumed);

e terrain inclinationrad] and wind speedim/s] as distur-
bances.

Engine torque [Nm]

The main output of the model is the car speed. Other quasititie
available from this model are:

(1) engine rotational spedtad/s]; o= : :
(2) engme torqu@]\] ]. 1000 2000 3000 4000 5000
m|, Engine speed [rpm]
(3) engine powefkW1;
(4) fuel consumptionl /100km)]. Fig. 1. Efficiency level-curves with maximum torque curve.
The dynamic model is build from elementary physical princi- Engine torque values in speed/fuel flow space

6000

ples using information publicly available for a Toyota Agen

2.0 D-4D SW for a 2007 model. All physical quantities are
measured in Sl units. Table 1 lists the values used for model so0o]
parameters.

4000 [

2.1 Engine model

3000

Engine speed [rpm]

The engine model assumes an input diesel figyy measured
in liters per second. The total poweris given by
P(t) = Eul(t). 1)
whereF is the total energy density of diesel fuel. A consider-
able percentage of this power is dissipated in thermal $sse /
and only a part is available as mechanical powy, given by o 1 >
P (t) = 0(Te(t), we(t)) x P(t). 2
whereT, andw, are the engine torque and speed arid the Fig. 2. Torque level-curves in engine speed/fuel flow space.

efficiency. The engine torque outputis given by speed, admissible engine torque values lie below this clihe
P (t)  n(Te(t),we(t)) x P(t) numerical solution of equation (3) given the efficiency ftioic
e(t) = we(?) = we(t) (3) (4) is represented in figure 2.
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1000

s 7 s 6 7
Fuel flow [L/s] x10°

Equation (3) constitutes an algebraic loop, since effigiemc 2.2 Transmission

and engine torque values are computed based on each other,

which makes computations more taxing. To overcome this, tiihe transmission links the wheels and the engine together
torque value as a function af, (¢) andu(t) can be numerically using a gear box. Its role is to increase torque and decrease
computed, by solving the algebraic loop (3) offline. wheel speed to match the operational range of the engine. The
transmission also introduces internal drag that dependien
%gine speed. In the model developed here, the internal drag
does not only model the transmission itself, but also alldbd

at the engine shaft.

For the purposes of this work, it was assumed that efficien
level-curves on théT., w.) plane are elliptical (figure 1),

T, — cr)? We — Cop )2
R e . -
T w The torque output available at the car wheels is given by
for a reasonable choice of the parametersir, ¢, andl,,. T () = rir e (To (1) — _ " 5
Constantsy and 3 perform a linear transformation, making the w(t) = rirg (To(t) — or — frwe(1) ®)
elliptic surface concavity face downwards instead of uplsar
Constantx is the value of the maximum efficiendye. when

(Te,we) = (er, cw) thenn = a. Engine rotational speed, measuredriad,/ s), is obtained from

In this specific case a closed-form solution for compufing) wheel speed by gear ratio conversion and is given by
can be easily derived by replacing (4) in (3). we(t) = rirpwi(t) (6)

wherer; is the gear ratio for gear, ry is the final drive ratio
andar, Bt are drag coefficients.

From the data available for this engine, it is known that IQ3 Traction force and wheels
achieves a maximum torque of 310 Nm at 1800-2400 rpm.

Below and above this operational range the torque is reducethe wheels are modeled as a rotational to linear movement
It is also known that a maximum power of 93kW is attaineonverter neglecting inertia and drag. Wheel rotationaksp

at 3600 rpm, implying a torqué’ — dlc S0 ~ 246.7 measured ifrad/s], is given by

Nm at that speed. From this scarce data, a maximum torque o

curve was designed as shown in figure 1. For any given engine wo(t) = —=o(t) )




is broken up into smaller state transfer problems, one foh ea

parameter value units > M : 5 )
o 1500 Kg distinct dynamics. The sequence of dynamics equations and
p 1.2 kg/m? the state values at which a switch between dynamics eqation
A 2.29 m? occur are given. The performance index, to minimize has the
Cy 0.29 - form
A 1.9852 m ty
ar 35 Nm J = / L(z(t),u(t))dt (12)
Br 0.07  Nm/rad.s™! to
E 40.8¢6 J/L wherez(t) andu(t) are the state and control vectors at some
Table 1. Non-linear car model parameter values time ¢, respectively. In the case considered, the lagrangian is
given by L = u?(t)/2. Let
gear ratio  value Xi i - L., N +1 (13) _
1 3.818 be the state values at which a switch between plant dynamics
2 1.913 occurs, which are given and fixed, such that the plant dyramic
3 1.218 fi apply when performing state value transfers frof to
T4 0.860 Xit1. The initial and final state values angy and z;. The
s 0.790 dynamic optimization procedure consists of finding theropti
76 0.673 switching instants
Ty 3.240 . .
Table 2. Non-linear car model gear ratio values tihi=1,...,N+1 (14)

in respect to the chosen state valdgswheret! corresponds to
%:e time instant at which the state valXg occurs. Naturally,
the first and last time instants atg = to andty,, = ty.

In order to determine the remaining — 1 optimal switching

where A is the wheel perimeter. The used tire dimension
are 205/55R16, corresponding to a perimeteAof 1.9852

meters. . ) ; - ‘
instants, a set af/; candidate time values is defined
Similarly, the traction force is obtained from the torquelegd t, j=1,.., M, (15)
by the engine at the wheels 5 at which each of théV — 1 intermediate state values;,: =
- .
F(t) = TTM(t) (8) 2., areattained.

This defines a grid of state/time values that can also be rep-
2.4 Car dynamic model resented as an oriented graph, as shown in figure 3. The cost
of each arc of the graph is computed by (12), where the inte-
The evolution of the car speed depends of the forces appliegfation interval corresponds to the time interval where e
The forces considered are: traction forEét), gravitational is defined. The optimal switching instants (in respect tdre!

force and aerodynamic drdg, (¢). candidates) are computed as those for which the total cost fo
1 transferring the state value frarg atto to « ¢ att s is minimum.
0(t) = =9.8sin(0) + — (F(t) = Fa(t)) (9)  Having computed all thé&/ + 1 optimal switching instants, the

resulting set of instants can be adjusted and refined byicgeat
ew sets of candidate time values (15) and repeating the same
procedure.

wheref is the terrain inclination. Aerodynamic drag is assume
to be given by

1 2 .

Fa(t) = §pACd (0(t) = vwina(t)) (10) I the sequel, when referring t, we will use the notion of
wherep is the air densityA is the frontal area of the vehicle, time value and node interchangeably, since the lower index
C, is the drag coefficient, and is the car mass. already indicates that this is a time value belonging toestat

valueX;.

Table 1 contains the values used for the nonlinear car model _
parameters. For the purposes of modeling the transmisaion] he total procedure can be separated into three phases:
sm—spegd manual gear box is used: Table 2 shOV\_/s the puﬂ)llshf Define graph nodes and arcs
gear ratios of the gear box along with the final drive ratio.
Nodes: The initial and final state values correspond to two

3. HYBRID DYNAMIC OPTIMIZATION ALGORITHM nodes;t, andty, respectively. For the remaining state values,
X5, ..., XN, define a set of candidate nodes (15), such that

The car dynamic model (9) may be represented by the nonlinetar < ¢}, ; and th* < tﬁ‘fl, fori = 2,..., N, i.e. the first

state-space model and last candidate nodes of swittimust be smaller than the
i(t) = filz(®),ult),t), i=1,..,N (11) firstand last candidate nodes of switch 1 (see figure 3).

where the state, given by the car speed, is scalar ang;theArcs: Acceptable arcs on the graph are all those that connect a

are vector fields corresponding to each of the géafsr i = node at switchX; with another node at the following switch

1, ..., N whereN is the number of gears. Xi+1, and such that the time of the former node is strictly

The following procedure consists of an algorithm to find asmaller than the time of the latter.

suboptimal solution for the optimal switched dynamicsestat2. Compute optimal control, and corresponding cost, for all
transfer problemi.e. making the state change from an initialarcs in graph

valuez att, to a desired target value; at the final timet ¢, . . . .
wheret, andt; are given and fixed. The algorithm is based offOF €ach arc connecting nodgsandt;, ,, compute the optimal

dynamic optimization in that the desired state transfgtpz¢,  control signaujj;m using the algorithm described in Appendix
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R - Sy \\ s i, s i When all nodes on the graph have been labeled with the optimal
3t Y TN - Y tt the optimal decision, the total optimal cost f
lc ) 6% . '2) 0 cost to go an the optimal decision, the total optimal cost for
SN NN A the state transfer problem & = J; . The optimal path can
S §t3 RN §t3 I : be easily reconstructed by starting from the first négand
R Y R R recursively jumping to the optimal decision until the finalde
J1 : J2 ; I3 ; is .Fi \ i Si
X f X f X f: X ty is reached. Finally, the total optimal control sigmélcan be
1 2 3 4 recovered from the individual optimal control signals ajdhe
State value optimal path.

It is remarked that the solution is suboptimal in the sensg th
the switching state valueX; are fixed and that the global
Fig. 3. Candidate time values for a switched dynamics optRPtimum may not be found.
mization problem with 3 plantsf, f> and f3 Having determined the optimal nodés, the optimal switching

Bryson and Ho (1975), and the corresponding performané@stants (14), the process can be repeated by going batk to
index value Ji*'*, for performing the optimal state value and choosing new candidate nodes nearer to the optimal ones
transfer fromX; to X,41. If a given arc is impossibles.g.the computed in this iteration.

corresponding state transfer cannot be accomplished tintlee 4. RESULTS FOR THE SPEED TRANSFER PROBLEM

interval that spans betweeh andt;, |, the cost of that arc is WITH 3 GEARS
set to+oo.
3. Determine optimal path and corresponding cost In this section, the hybrid dynamic optimization algoritfign

The minimum-cost path that connects the first and last nod
to andty, is the optimal path with respect to the candidat
nodes established h The nodes that make up the optimal patr‘ljl
correspond to the optimal switching instants (14). To cot@pU L e andw, — 70 Km/h. such that gear 2 is used when
the optimal path, a dynamic programming approach is defineg " v < iO, gear 3 is u’sed whet) < v < 55 and gear

as follows. For any given nodg there is an*optimal path that 4 js ysed whers5 < v < 70. Terrain inclination and wind
connects that node to the final node Let Uy be the optimal  gpeed were assumed to be null.

control signal that connects to the next node on its optimal After 14 iterations, the resulting optimal switching insts:
path anth*j the cost of the whole optimal path connectijg aret; = 2.662 seconds and} = 8.049 seconds with a

to t;. The dynamic programming approach consists of goingP!'esponding performance index value/of= 28.2 x 107°.

through all state values backwards, fro¥y to X, and for he evolution of the performance index along iterationshef t
each node solving ’ ’ hybrid dynamic optimization algorithm is shown in figure 9.

The resulting optimal control signal is shown in figure 10.

blem for the non-linear car model, using a predefinedfset o
gears. Here, the MEST problem was considered itk 0
ndt; = 15 seconds, with initial and final car speegs= 30

gglied to solve the minimum energy speed transfer (MEST)

uy; = argmin {JZ;l’k + S } . (16)
ot o 5. CONCLUSIONS
where the first term inside the brackets corresponds to tsie co

of going from#/ to ¢¥, | and the second term corresponds to thé hybrid dynamic optimization algorithm for solving the rin
optimal cost of going fromfﬂ to the final node; . The optimal imum energy speed transfer problem in cruise control is pre-

. ented. The algorithm proposed relies on a changing grid of
cost of the nOde]ti’ is then computed as the sum of hath term%ossible instants to switch between gears and combines Dy-

inside the brackets when (16) is achieved. The optimal ietis namic Programming with Constrained Optimal Control. The
for nodet], i.e.the nodetizrl for which (16) is achieved, is also algorithm is formulated for first order hybrid systems butyma
registered. be extended to higher orders at the expense of computational
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Appendix A. ITERATIVE SOLUTION FOR THE OPTIMAL  computer (¢ x 1 vector)
CONTROL PROBLEM WITH TERMINAL CONSTRAINTS Y= —0-1g

ty
&= f(z,ut), t€ltots], a(to) =z (Al g= [ H@H @) dt
describe the nonlinear time-varying dynamics of a planthwi is a(g x 1) vector andto
given initial conditionz, wherez(t) € R™ andu(t) € R™ are 9 .
. ; ; ;
the state and input vectors at timeespectively, and 0= / HY (O)[HY (1)) dt
to

J = é(x(ts),ty) +/ ' L(x(t), u(t), t)dt (A2) isa(g x q) matrix.

to
a performance index to maximize. A minimization problens. Compute gradient signals

can also be formulated by maximizing the performance ind . . .
Jo— ] y g P eIévaluate@b at the terminal time and compute the gradient
min T .

signalsduy(t) anddu, (¢) for all ¢ € [to, t ]
The optimal control problem with terminal constraints detss g0 T 170 1T
in finding the input signak*(t), t € [to,ts], for which the Ouy(t) = [H, (t) + v H, (2)]
plant exhibits a state trajectory (¢) such that the terminal state Suy(t) = [HY )7 Q "(ty)
value,z*(tr), verifies a set of terminal constraint functions, in
the form ofq restriction equations,

(i (x(tf)atf)] [ 0 ] o
o — ... (A.3) Compute the control correction sigrial(t)
Yol (ty),ty)

Let where

6. Compute and update the estimate of the optimal control
signal

Y(x(ty),ty) = [

0 ou(t) = —kdug(t) — nduy,(t)
and such that the performance index valiigis maximum. and update the estimate of the optimal control signal
An iterative numerical algorithm for obtaining the optincah- u(t) + u(t) + du(t)

trol signal under these circumstances is now describedoBryschoosingk < 0 (k > 0) if maximizing (minimizing) the
and Ho (1975). An initial estimate for the optimal contr@-si performance index, antl< n < 1.
nal must be provided. Each iteration consists of the foltawi

steps: 7. Evaluate stop criteria

1. Integrate state equation Compute the root-mean-square value dofi (t) and du,(t)
using the standard definition

Using the current estimate of the optimal control signét) € -

R™, integrate the state equation A.1 to obtain the state evalut (2)rms = 1 / ! ()2t

z(t) € R™ fromt to ty. e ty —to Jy,

2. Integrate co-state equations The algorithm stops ifnaz{(0ux)rms, (0ty)rms} iS Smaller

Let \®(¢), an @ x 1) vector, and\¥ (¢), an 2 x ¢) matrix, be than a specified threshold, or if the maximum number of itera-
co-state variables. Define tions is reached.

HP(O®, 2, u,t) = Lz, u,t) + A f(z,u,t),
HYO\Y 2, u,t) = AV f(x,u,t),



