
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. (2011)
Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/cpe.1855

SPECIAL ISSUE PAPER

Targeting the Cell Broadband Engine for constraint-based
local search

Daniel Diaz 1, Salvador Abreu 2,*,† and Philippe Codognet 3

1University of Paris 1-Sorbonne, Paris, France
2Universidade de Évora and CENTRIA, Évora, Portugal
3JFLI, CNRS/UPMC/University of Tokyo, Tokyo, Japan

SUMMARY

We investigated the use of the Cell Broadband Engine (Cell/BE) for constraint-based local search and
combinatorial optimization applications. We presented a parallel version of a constraint-based local search
algorithm that was chosen because it fits very well the Cell/BE architecture because it requires neither shared
memory nor communication among processors. The performance study on several large optimization bench-
marks shows mostly linear time speedups, sometimes even super linear. These experiments were carried out
on a dual-Cell IBM (Armonk, NY, USA) blade with 16 processors. Besides getting speedups, the execution
times exhibit a much smaller variance that benefits applications where a timely reply is critical. Copyright
© 2011 John Wiley & Sons, Ltd.

Received 29 June 2011; Accepted 22 August 2011

KEY WORDS: constraint satisfaction; local search; Cell/BE; parallel programming

1. INTRODUCTION

The Cell Broadband Engine (Cell/BE) has proved suitable for graphical applications and scientific
calculations [1], because of its innovative multicore architecture with its eight independent, spe-
cialized processing units. However, its ability to perform well for general-purpose applications is
questionable, as it is very different from classical homogeneous multicore processors from Intel,
AMD, or Sun (Niagara), or even from the IBM (Armonk, NY, USA) Power6 and Power7. In this
paper, we investigate the use of Cell/BE for combinatorial optimization. This is a first step towards
a large-scale implementation on a massively parallel architecture with reduced communication.

It is worth noticing that, in these domains, most of the attempts to take advantage the parallelism
available in modern multicore architectures have targeted homogeneous systems, for instance, Intel
or AMD-based machines, and make use of shared memory [2–4]. The different cores are working
on shared data structures that somehow represent a global environment in which the subcomputa-
tions are taking place. Such an approach cannot be used for Cell-based machines, because heavy
use of shared memory would degrade the overall performance of this particular multicore system.
In order to extend the use of the Cell processor for combinatorial optimization and constraint-based
problem solving, new approaches have to be investigated, in particular, those that can lead to inde-
pendent subcomputations requiring little or no communication among processing units and limited
or even no accesses to the main (shared) memory. We decided to focus on local search (LS) algo-
rithms, also called ‘metaheuristics’, which have attracted much attention over the last decade from

*Correspondence to: Salvador Abreu, Universidade de Évora and CENTRIA, Évora, Portugal.
†E-mail: spa@di.uevora.pt

Copyright © 2011 John Wiley & Sons, Ltd.



D. DIAZ, S. ABREU AND P. CODOGNET

both the operations research and the artificial intelligence communities, in order to tackle very large
combinatorial problems that are out of range for the classical exhaustive search methods. LS and
metaheuristics have been used in combinatorial optimization for finding optimal or near-optimal
solutions and have been applied to many different types of problems such as resource allocation,
scheduling, packing, layout design, and frequency allocation.

We have developed a parallel extension of a constraint-based LS algorithm called adaptive search
(AS) [5]. This metaheuristic is quite efficient, in practice, compared with classical propagation-
based constraint solvers, especially for large problems. We implemented a parallel version of AS
for Cell (AS/Cell). To assess the viability of this approach, we experimented AS/Cell on several
classical benchmarks from CSPLib [6]. These structured problems are abstractions of real problems
and therefore representative of real-life applications; they are classically used for benchmarking new
methods. The results for the parallel AS method show a good behavior when scaling up the num-
ber of cores: speedups are practically linear, especially for large-scale problems, and sometimes we
reach super linear speedups because the simultaneous exploration of different subparts of the search
space may converge faster towards a solution.

Another interesting aspect is that all experiments show a better robustness of the results when
compared with the sequential algorithm. Because LS makes use of randomness for the diversifica-
tion of the search, execution times vary from one run to another. When benchmarking such methods,
execution times have to be averaged over many runs (we take the average of 50 runs). Our imple-
mentation results show that with AS/Cell running on 16 cores, the difference between the minimum
and maximum execution times, as well as the overall variance of the results, decreases significantly
with respect to the reference sequential implementation. Execution times become more predictable:
this is a clear advantage for real-time applications with bounded response time requirements.

The rest of this article is organized as follows. Section 2 presents Parallel LS. Section 3 discusses
the AS algorithm, and its parallel version is presented in Section 4. A performance analysis is
shown in Section 5. The robustness of the method is studied in Section 5.5. A short conclusion ends
this paper.

2. PARALLEL LOCAL SEARCH

Parallel implementations of LS metaheuristics have been studied since the early 1990s, when
multiprocessor machines started to become widely available; see [7] for a general survey and con-
cepts or [8] for the basic parallel version of tabu search, simulated annealing, greedy randomized
AS procedure, and genetic algorithms. With the availability of clusters in the early 2000s, this
domain became active again [9, 10]. Apart from domain-decomposition methods and population-
based method (such as genetic algorithms), one usually distinguishes between single-walk and
multiple-walk methods for LS. Single-walk methods consist in using parallelism inside a single-
search process, for example, for parallelizing the exploration of the neighborhood; see, for instance,
[11] for such a method making use of graphics processing units for the parallel phase. Multiple-
walk methods (also called multistart methods) consist in developing concurrent explorations of the
search space, either independently or cooperatively, with some communication among concurrent
processes. A key point is that independent multiple-walk methods are the most easy to implement
on parallel computers and can lead to linear speedup if the solutions are uniformly distributed in the
search space and if the method is able to diversify correctly [12]. Sophisticated cooperative strate-
gies for multiple-walk methods can be devised by using solution pools [13] but requires shared
memory or emulation of central memory in distributed clusters, impacting thus on performance.

In artificial intelligence, parallel implementation of search algorithms has a long history [14]. For
constraint satisfaction problems (CSP), early work has been carried out in the context of distributed
artificial intelligence and multiagent systems [15], but these methods cannot lead to efficient algo-
rithms and cannot compete with good sequential implementations. Only very few implementations
of efficient constraint solvers on parallel machines have been reported, for instance, [2], for a shared-
memory architectures with eight-core CPUs. The Comet system [16] has been parallelized for small
clusters of PCs, both for its LS solver [17] and its propagation-based constraint solver [18]. Recent
experiments have been carried out with up to 12 processors [19], and speedups tend somehow to

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe



TARGETING THE CELL/BE FOR CONSTRAINT-BASED LOCAL SEARCH

level after 10 processors. In the domain of SAT solving (Boolean satisfiability), most parallel imple-
mentations have targeted multicore architectures with shared memory [4,20,21]. Very recently, [22]
extended a solver for PC cluster architectures by using a hierarchical shared memory model in order
to minimize communication between independent machines.

3. THE ADAPTIVE SEARCH ALGORITHM

A CSP is defined as a triple .X ,D,C/, where X is a set of variables, D is a set of domains, that is,
finite sets of possible values (one domain for each variable), and C is a set of constraints restricting
the values that the variables can simultaneously take. Classical CSPs usually consider finite domains
for the variables (integers or naturals) and solvers based on arc-consistency techniques originating
from artificial intelligence research carried out in the 1970s and now generalized under the term
of propagation-based methods [23, 24]. Such solvers keep an internal representation of variable
domains in order to handle all types of constraints. However, during the last decade, the application
of LS techniques in the CSP community has started to draw some interest [16, 25–27].

A generic, domain-independent LS method named AS was proposed in [5, 26]. AS is a meta-
heuristic that takes advantage of the structure of the problem to guide the search more precisely
than a unique global cost function like the number of violated constraints. This method is generic,
that is, can be applied to a large class of constraints (e.g., linear and nonlinear arithmetic constraints
and symbolic constraints) and intrinsically copes with overconstrained problems. It can deal with
satisfaction problems such as classical CSPs (i.e., searching for an assignment of the problem vari-
ables satisfying all constraints) or with optimization problems requiring the minimization of an
objective function.

The input is a problem in CSP format, that is, a set of variables with their domains of possible
values and a set of constraints over these variables. For each constraint, an ‘error function’ also
needs to be defined; it will give, for each tuple of variable values, a quantification of how much the
constraint is violated. Consider an n-ary constraint c.X1, : : : ,Xn/ and associated variable domains
D1, : : : ,Dn. An error function fc associated to the constraint c is a function fromD1�� � ��Dn such
that fc.X1, : : : ,Xn/ has a value zero if and only if c.X1, : : : ,Xn/ is satisfied. The error function is
used as a heuristic to represent the degree of satisfaction of a constraint and thus gives an indication
on how much the constraint is violated. This idea has also been proposed independently by Galin-
ier and Hao [25], where it is called ‘penalty function’, and then reused by the Comet System [16],
where it is called ‘violation’. This error function can be seen as (an approximation of) the distance
of the current configuration to the closest satisfiable region of the constraint domain. For instance,
the error function associated with an arithmetic constraint X < c, for a given constant c > 0, could
be max.0,X � c/. Finally a ‘global cost function’ must be provided to capture the distance of the
current assignment (configuration) to a solution. The AS algorithm performs an iterative improve-
ment, by trying to minimize this global cost. For pure CSP instances, this cost is zero if and only if
a solution is found. For problems involving an objective function to minimize, the cost function will
encompass both the satisfiability of the configuration and the objective function (e.g., by a simple
sum, a weighted sum, or any other combination operator).

Adaptive search relies on iterative repair, based on variable and constraint errors, seeking to
reduce the error on the worst variable. The basic idea is to compute the error function for each con-
straint and then combine, for each variable, the errors of all constraints in which it appears, thereby
projecting constraint errors onto the relevant variables. Finally, the variable with the highest error
will be designated as the ‘culprit’, and its value will be modified. In this second step, the min-conflict
heuristic [28] is used to select the value in the variable domain that is most promising, that is, the
value for which the global cost of the next configuration is minimal. To prevent being trapped in
local minima, the AS method includes a short-term memory mechanism in the spirit of tabu search
(variables can be marked tabu and ‘frozen’ for a number of iterations). It also integrates reset tran-
sitions to escape stagnation around local minima. A reset consists in assigning fresh random values
to some variables (randomly chosen) and is guided by the number of variables being marked tabu.
It is also possible to restart from scratch when the number of iterations becomes too large (this sort
of ‘reset over all variables’ is guided by the number of iterations).

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe



D. DIAZ, S. ABREU AND P. CODOGNET

The core ideas of AS can be summarized as follows:

� To consider for each constraint a heuristic function that is able to compute an approximate
degree of violation (the current ‘error’ on the constraint).
� To aggregate constraints on each variable and project the constraint errors on each vari-

ables. This will allow focus on the ‘worst’ variable and to try to repair it with the most
promising value.
� To define a ‘global cost’ function to approximate the distance from the current configuration to

a solution. This can be simply the sum of the absolute values of all constraint errors or a more
complicated operator (e.g., weighted sum and sum of squares). This function will be used as a
success criterion (i.e., the algorithm will iteratively try to minimize it). In case of optimization
problems, the ‘global cost’ must include the objective function to minimize.
� To keep a short-term memory (tabu list) to avoid looping, together with a reset mechanism.

Adaptive search is a simple algorithm (Algorithm 1) but turns out to be quite effective in practice
[5]. For example, on CSPs such as the magic square problem that will be detailed in Section 5,

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe



TARGETING THE CELL/BE FOR CONSTRAINT-BASED LOCAL SEARCH

the AS algorithm of [5] is about 15–40 times faster than dialectic search [27], (which is about as
fast as the initial AS algorithm from 2001 [26]) and about 100–400 times faster than a tabu search
algorithm implemented in the Comet System [16] (see [27] and [5] for timings carried out on the
same machine). Considering the complexity/efficiency ratio, this can be a very effective way to
implement constraint solving techniques, especially for ‘anytime’ algorithms where (approximate)
solutions have to be computed within a bounded amount of time.

In order to deal with optimization problems, the AS algorithm memorizes the best configuration
(see variables .Opt_Sol, Opt_Cost/ in Algorithm 1) each time an improvement is found. Observe
that, for problems dealing with the satisfaction of CSP instances (for which only a solution is
required), this bookkeeping is not necessary because a solution is found if and only if the global
cost is zero. In that case, Opt_Sol will contain the last configuration computed and therefore does
not need to be stored. However, for optimization problems or overconstrained CSPs, the returned
pair .Opt_Sol, Opt_Cost/ corresponds to the ‘best’ configuration found. In the case of optimization
problems, we clearly cannot guarantee that the solution encountered is the optimum, as it hap-
pens with any incomplete method. However, a good modeling and parameter fine tuning can greatly
improve the quality of the solution found. Current experiments on the quadratic assignment problem
[29] provide already encouraging results and seems to support this claim.

4. A PARALLEL VERSION OF ADAPTIVE SEARCH ON CELL BROADBAND ENGINE

We now present AS/Cell: our implementation of the AS algorithm on the Cell/BE. Some features
of the Cell/BE processor deserve mention because they strongly shape what applications stand a
chance to succeed when ported on such architecture.

� It is a hybrid multicore architecture, with a general-purpose ‘controller’ processor (the
Power Processor Element [PPE], a PowerPC instance) and eight specialized streaming single-
instruction multiple-data (SIMD) processors (Synergistic Processing Elements or SPEs), as can
be seen on Figure 1.
� The SPEs are connected via a very high-bandwidth internal bus, the element interconnect bus,

with an aggregate peak performance of about 200 GB/s.
� The SPEs may only perform computations on their local store (256 kB for code and data).
� The SPEs may access the main memory (RAM in Figure 1) and each other’s local store via

atomic direct memory access (DMA) operations.
� Moreover, two Cell/BE processor chips may be linked via the input/output controllers, on a

single system board, to appear as a multiprocessor with 16 SPEs, a feature that we exploited in
our performance analysis.

S
P

E
0

S
P

E
1

S
P

E
2

S
P

E
3

S
P

E
4

S
P

E
5

S
P

E
6

S
P

E
7

PPE
I/O 

controller

I/O 
controller

EIB

RAM MIC

Figure 1. The Cell Broadband Engine processor organization. PPE, Power Processor Element; SPE, Syn-
ergistic Processing Element; I/O, input/output; EIB, element interconnect bus; MIC, memory interface

controller.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe



D. DIAZ, S. ABREU AND P. CODOGNET

The interested reader may refer to the IBM Redbook [1] for further information, as well as for
the performance and capacity trade-offs that affect Cell/BE programs. The AS algorithm seems to a
priori fit the requirements fairly well, justifying thus our choice.

The basic idea in extending AS for parallel implementation is to have several distinct parallel
search engines for exploring simultaneously different parts of the search space, thus giving an inde-
pendent multiple-search version of the sequential AS. This is very natural to achieve with the AS
algorithm: one just needs to start each engine with a different, randomly computed, initial con-
figuration, that is, a different assignment of values to variables. Subsequently, each ‘AS engine’
can perform the sequential algorithm independently, and, as soon as one processor finds a solution
or when all have reached the maximum number of allowed iterations, all processors halt, and the
algorithm finishes. The Cell/BE processor architecture is mapped onto the task structure, with a
controller system thread on the PPE and a worker thread on each SPE.

� The system processor (a PPE) obtains the present real time T 0, launches a given number of
threads (SPEs),‡ each with an identical SPE context, and then waits for a solution.
� Each SPE starts with a random configuration (held entirely in its local storage) and improves it

step by step, applying Algorithm 1.
� As soon as one SPE finds a solution, it stores it in the main memory (using a DMA operation)

and informs the PPE.
� The PPE then instructs all other SPEs to stop and waits until all SPEs have performed so

(join). After that, it gets the real time T1 and provides both the solution and the execution time
T D T1 � T 0 (this is the real elapsed time since the beginning of the program until the join
including SPEs initialization and termination).

This simple parallel version seems feasible and does not require complex data structures (e.g.,
shared tables). Note that SPEs do not communicate, only doing so with the PPE upon termination:
each SPE works blindly on its configuration until it reaches a solution or fails. We plan to further
extend this algorithm with communication among SPEs of some information about partial solutions
but always with the aim of limiting data communication as much as possible.

It remains to be seen whether the space limitations of the Cell/BE processor, in particular, the size
of the SPE local stores, are not crippling in terms of problem applicability. It turns out we managed
to fit both the program and the data in the 256-kB local store of each SPE, even for large benchmarks.
This was possible for two reasons: the relative simplicity of the AS algorithm and the compactness
of the encoding of combinatorial search problems as a CSP, that is, variables with finite domains and
many predefined constraints, including arithmetic ones. This is especially relevant when compared,
for instance, with SAT encodings where only Boolean variables can be used, and each constraint has
to be explicitly decomposed into a set of Boolean formulas, thereby yielding problem formulations
that easily reach several hundred thousand literals.

In short, the AS method is very thrifty in its resource requirements, which makes it a good
candidate for running on Cell/BE: little data and long computations.

5. PERFORMANCE EVALUATION

We now present and discuss our assessment of the performance of the implementation of AS/Cell.
The code running on each SPE is a port of that used in [5], an implementation of AS specialized for
CSP permutation problems. It should be noted that no code optimizations have been made to benefit
from the peculiarities of Cell/BE (namely SIMD vectorization, loop unfolding and parallelization,
and branch removal). Our measurements, made on the IBM system simulator, lead us to believe it is
reasonable to expect a significant speedup when these aspects are taken into account, as the SPEs are
frequently stalled when executing the present code. In order to assess the performance of AS/Cell,
we use a pertinent set of classical benchmarks from CSPLib [6] consisting of the following:

‡It may be the case that the second Cell/BE processor in the dual-CPU blade may be involved in setting up the SPE
thread: this happens for the ninth and subsequent threads.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe



TARGETING THE CELL/BE FOR CONSTRAINT-BASED LOCAL SEARCH

� all-interval: the all-interval series problem (prob007 in CSPLib).
� partit: the number partitioning problem (prob049 in CSPLib).
� perfect-square: the perfect-square placement problem (prob009 in CSPLib).
� magic-square: the magic square problem (prob019 in CSPLib).

Although these are academic benchmarks, they are abstractions of real-world problems and repre-
sentative of actual combinatorial optimization applications. These benchmarks involve a very large
combinatorial search space, for example, the 100 � 100 magic square requires 10,000 variables
whose domains range over 10,000 values. No polynomial-time solution is known for any of the
problems we are addressing as benchmarks. The search spaces we are pushing AS into are so large
as to be off limits for most complete, propagation-based constraint solvers, which are bound to do an
exhaustive search, even when resorting to heuristics to speed up the process. It is also worth noting
that, here, we tackle pure CSP instances and thus each solution returned by AS is exact (i.e., the
global cost is zero if and only if a solution is found).

The rest of this section evaluates the performances of AS/Cell on the benchmarks. For each prob-
lem, we provide a short description and its AS modeling. We then analyze the behavior of AS/Cell
when both the size of the problem and the number of used SPEs vary. The experiment has been
executed on an IBM QS21 dual-Cell blade system (times are measured in seconds). Because AS
uses random configurations and progression, we sampled each benchmark 50 times. The displayed
execution time is the average of the 50 runs after removing both the lowest and the highest times.

5.1. The All-Interval series problem

This problem is described as prob007 in the CSPLib. This benchmark is in fact a well-known
exercise in music [30] where the goal is to compose a sequence of N notes such that all are dif-
ferent and tonal intervals between consecutive notes are also distinct. This problem is equivalent
to finding a permutation of the N first integers such that the absolute difference between two con-
secutive pairs of numbers are all different. This amounts to finding a permutation .X1, : : : ,XN / of
f0, : : : ,N � 1g such that the list .abs.X1�X2/, abs.X2�X3/, : : : , abs.XN�1�xN // is a permuta-
tion of 1, : : : ,N � 1. A possible solution for N D 8 is .3, 6, 0, 7, 2, 4, 5, 1/ because all consecutive
distances are different:

3 3 6 6 0 7 7 5 2 2 4 1 5 4 1.

Adaptive search for Cell modeling only maintains the list of N variables Xi and ensures it forms
a permutation by swapping values inside the list. It is worth noticing that the constraint on the dis-
tances (absolute values between each .Xi �XiC1/ is not encoded as a data structure but is ensured
via the cost function (this further reduces the amount of data in the local storage). The cost function
of a configuration is the largest missing distance (largest distances are the hardest to place and thus
should be privileged). Obviously, a solution is found when this cost is zero.

Table I presents the average time of 50 runs for several instances of this benchmark together
with the speedup obtained when using different numbers of SPEs. From this data, one can conclude
that the speedup increases linearly with the number of SPEs to reach about 11 with 16 SPEs. The
speedup appears to be constant whatever the size of the problem.

5.2. Number partitioning

This problem is described as prob049 in the CSPLib and consists in finding a partition of numbers
f1, : : : ,N g into two groups A and B of the same cardinality such that the sum of numbers in A is
equal to the sum of numbers in B and the sum of squares of numbers in A is equal to the sum of
squares of numbers in B . A solution for N D 8 is AD .1, 4, 6, 7/ and B D .2, 3, 5, 8/.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe



D. DIAZ, S. ABREU AND P. CODOGNET

Table I. Timings (s) and speedups for all-interval series.

Speedup with k SPEs

Problem instance Time 1 SPE 2 4 8 12 16 Time 16 SPEs

all-interval 100 1.392 1.6 3.3 5.0 5.7 7.4 0.189
all-interval 150 9.496 2.3 4.4 6.3 9.0 10.4 0.910
all-interval 200 28.165 1.5 3.0 6.1 7.8 9.0 3.139
all-interval 250 61.437 1.8 3.8 5.1 6.5 9.8 6.282
all-interval 300 147.178 1.7 2.9 5.6 7.3 9.2 15.920
all-interval 350 346.790 2.3 4.4 5.6 9.6 12.2 28.359
all-interval 400 508.819 1.6 3.3 7.6 8.8 10.8 46.989
all-interval 450 946.860 2.0 4.1 8.7 9.2 11.0 85.936

SPE, Synergistic Processing Element.

The problem is modeled withN variables Vi 2 f1, : : : ,N g that form a permutation of f1, : : : ,N g.
The first N=2 variables form the group A, and the N=2 last variables the group B . There
are two constraints:

†
N=2
iD1Vi D †NiDN=2C1Vi D N.N C 1/=4,

†
N=2
iD1V

2
i D †NiDN=2C1V

2
i D N.N C 1/.2N C 1/=12.

The possible moves from one configuration consist in all possible swaps exchanging one value in
the first subset with another one in the second subset. The errors on the two equality constraints are
computed as the absolute value of the difference between the actual sum and the expected constant
(e.g., N.N C 1/=4). In this problem, as for the all-interval example, all variables play the
same role, and there is no need to project errors on variables. The global cost of a configuration is
the sum of the absolute values of both constraint errors. A solution is found when the global cost
is zero.

Table II details the average runtime (in seconds) for several instances of this problem together
with the speedup obtained when using different numbers of SPEs. Similarly to what occurred with
the all-interval series, the speedup increases linearly up to a factor of 11. Again, the speedup appears
to be independent from the size of the problem.

5.3. The perfect-square placement problem

This problem is cataloged as prob009 in CSPLib. The perfect square placement problem (also
called the squared square problem [31]) is to pack a set of squares with given integer sizes into a
bigger square of given integer size in such a way that no squares overlap each other and all square

Table II. Timings (s) and speedups for number partitioning.

Speedup with k SPEs

Problem instance Time 1 SPE 2 4 8 12 16 Time 16 SPEs

partit 1400 6.227 2.7 3.7 6.0 7.2 11.2 0.556
partit 1600 7.328 1.8 3.4 6.0 7.5 10.1 0.727
partit 1800 11.559 2.0 3.7 6.4 9.4 10.9 1.062
partit 2000 13.802 1.7 3.1 6.1 9.5 10.6 1.303
partit 2200 18.702 2.3 3.5 6.2 10.0 10.8 1.735
partit 2400 21.757 2.1 3.3 5.5 7.1 10.2 2.129
partit 2600 29.890 1.8 3.8 6.9 8.6 11.0 2.716

SPE, Synergistic Processing Element.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe



TARGETING THE CELL/BE FOR CONSTRAINT-BASED LOCAL SEARCH

borders are parallel to the border of the big square (the term ‘perfect’ means all squares have differ-
ent sizes). The sum of the square surfaces is equal to the surface of the packing square, so that there
is no spare capacity. The smallest solution involves 21 squares that must be packed into a master
square of size 112 (see figure).

Because the implementation we are basing our work on (AS) only deals with permutation
problems, we have modeled this problem as a set of N variables whose values correspond
to the sizes of the squares to be placed in order—this is not the best modeling but complies
with the requirements of the available implementation. Each square in a configuration is placed in
the lowest and leftmost possible slot. The aforementioned solution corresponds to the configuration
(33, 37, 42, 29, 4, 25, 16, 18, 24, 9, 7, 2, 17, 6, 50, 15, 11, 19, 35, 8, 27).

Moving from a configuration to another consists in swapping two variables. For the cost of a
configuration to be computed, the squares are packed as explained earlier. As soon as a square does
not fit in the lowest/leftmost slot, the placement stops. The cost of the configuration is a formula
depending on the set of unplaced squares (number of unplaced squares and size of the largest) and
on the remaining slots in the master square (sum of heights, largest height, and sum of widths). As
usual, a configuration is a solution when its cost drops to zero.

We tried five different instances of this problem, taken from CSPLib and [32] whose input data
are summarized in Table III.

Table IV presents the data associated with the average case for these instances. Running 16 SPEs,
the speedup ranges from 14 to 16, depending on the instance.

5.4. Magic squares

The magic square problem is listed as prob019 in CSPLib and consists in placing the numbers
f1, 2, : : : ,N 2g on an N �N square such that each row, column, and main diagonal equal the same
sum (the constant N.N 2 C 1/=2). For instance, here is a well-known solution for N D 4 (depicted
by Albrecht Dürer in his engraving Melancholia I, 1514).

The modeling for AS/Cell involves N 2 variables X1, : : : ,XN2 . The error function of an equation
X1 C X2 C : : :C Xk D b is defined as the value of X1 C X2 C � � � C Xk � b. The combination
operation is the sum of the absolute values of the errors. The global cost function is the addition of
absolute values of the errors of all constraints. A configuration with zero cost is a solution.

Table III. Perfect-square instance data.

Squares to place

Problem instance Master square size Number Largest

perfect-square 1 112 � 112 21 50 � 50
perfect-square 2 228 � 228 23 99 � 99
perfect-square 3 326 � 326 24 142 � 142
perfect-square 4 479 � 479 24 175 � 175
perfect-square 5 524 � 524 25 220 � 220

Table IV. Timings (s) and speedups for perfect square.

Speedup with k SPEs

Problem instance Time 1 SPE 2 4 8 12 16 Time 16 SPEs

perfect-square 1 14.844 1.9 4.9 8.1 11.3 16.6 0.894
perfect-square 2 30.395 1.5 4.4 6.7 10.0 14.4 2.105
perfect-square 3 55.973 1.6 2.9 6.5 12.7 14.1 3.963
perfect-square 4 75.915 1.8 3.0 5.4 9.3 15.4 4.933
perfect-square 5 143.436 2.1 3.7 6.7 10.7 15.1 9.517

SPE, Synergistic Processing Element.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe



D. DIAZ, S. ABREU AND P. CODOGNET

Table V. Timings (s) and speedups for magic squares.

Speedup with k SPEs

Problem instance Time 1 SPE 2 4 8 12 16 Time 16 SPEs

magic-square 30 0.855 2.2 3.3 4.4 5.9 6.9 0.125
magic-square 40 2.496 2.0 3.6 5.7 6.1 7.4 0.335
magic-square 50 3.903 1.8 2.5 3.8 5.2 5.6 0.702
magic-square 60 9.834 2.2 3.8 5.6 7.2 6.8 1.441
magic-square 70 17.571 2.2 3.4 4.8 6.6 8.5 2.065
magic-square 80 31.889 3.0 4.3 5.8 7.6 8.6 3.689
magic-square 90 57.746 2.9 3.8 7.2 9.3 10.8 5.323
magic-square 100 189.957 5.9 9.3 13.9 21.9 22.6 8.387

SPE, Synergistic Processing Element.

Table V details the average running times (in seconds) for several instances of this problem
together with the speedup obtained when using different numbers of SPEs. With the use of 16 SPEs,
the obtained speedup increases with the size of the problem to reach 22 for the largest instance.

5.5. Performance evaluation summary

The aforementioned performance evaluation has shown that the AS method is a good match for the
Cell/BE architecture, proving its suitability for effectively solving highly combinatorial problems.
All the problems we tested clearly benefited from using several SPEs. For three of the problems, the
ultimate speedup obtained with 16 SPEs seems constant whatever the size of the problem, which
is very promising. Moreover, for the magic square benchmark, the speedup tends to increase as the
problem becomes larger, which is also a very useful property. Figure 2 provides a global view of the
measured speedups, as applied to the hardest instances of each problem. We observe that increasing
the number of SPEs always results in a speed increase, which is one of the basic goals we had for
this implementation.

Concerning raw performance, it is worth noticing that AS/Cell performs very well even on dif-
ficult problems. As a case study, consider the magic square problem (one of the most challenging
problem: most solvers cannot even handle instances larger than 20�20). With one SPE, the average
time to solve magic square 100� 100 is around 3 min. Using 16 SPEs, AS/Cell drastically reduces
the computation time, bringing it to barely over 8 s. Moreover, these results are obtained with a

0

5

10

15

20

25

0 2 4 6 8 10 12 14 16

sp
ee

du
p

all-interval 450
partit 2600

perfect-square 5
magic-square 100

number of SPEs

Figure 2. Evolution of the speedup depending on the number of Synergistic Processing Elements (SPEs).

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe



TARGETING THE CELL/BE FOR CONSTRAINT-BASED LOCAL SEARCH

straightforward port of the AS sequential code, not yet specialized to benefit from the potential of
Cell/BE.

We performed some initial code profiling and datapath-level simulations to check the low-level
performance and effective hardware utilization. At the SPE level, our first port yields a CPI (cycles
per instruction) of 2.05, which puts us at about one-third of the performance that we can expect
to attain. Approximately half the cycles in SPE executions are spent in stalls, of which about 60%
are branch misses whereas the remaining 40 % are spent on dependency stalls. Again, these results
are not surprising, because we did a direct port of the existing, sequential code. This leads us to
expect a significant performance increase from execution analysis and code reorganization. We also
plan on experimenting with SIMD vectorization, loop unrolling, branch removal, and other known
techniques to further improve performance.

Our first assessment clearly shows that the AS method is a good match for the Cell/BE architec-
ture: this processor is definitely effective in solving nontrivial highly combinatorial problems.

6. ROBUSTNESS EVALUATION

In the previous section, each benchmark was run 50 times, and the average time was taken, leaving
the extreme values out. This is a classical approach and gives us a precise idea of the general behav-
ior of AS/Cell. In this section, we study the degree of variation between the various runs and what
influence do AS/Cell runtime parameters have. One way to measure dispersion is to consider, for
each instance, the longest execution time among the 50 runs. This is interesting for situations such
as real-time applications because it represents the ‘worst case’ one can encounter: too high a value
can even preclude its use in time-critical situations. Figure 3 depicts the graph of the 50 executions
for all-interval 450 both with 1 and 16 SPEs—we only show this particular benchmark, but
a similar study exists for all the other problems, and they all display similar characteristics. This
graph clearly exposes the difference, in terms of runtime dispersion, using between only 1 SPE and
all 16 SPEs.

Table VI summarizes the results, focusing on the worst case—meaning we only took the highest
time across all runs. We also only show the values for the hardest instance of each problem, so as
to unclutter the charts. This evaluation uncovers a significant improvement: the obtained speedup is
always better than the one obtained in the average case. For instance, with 16 SPEs, the worst case
is improved by a factor 26 for all-interval 450 and by a factor 500 for magic-square 100
(the corresponding average time speedups are 11 and 22.6). Clearly, AS/Cell greatly narrows the
range of possible execution times for a given problem.

Another way to measure this is to consider the standard deviation: Table VII charts the evolution
of the standard deviation of the execution times for the hardest instance of each problem, varying
the number of SPEs. The standard deviation rapidly decreases as more SPEs are used. For instance,

0

1000

2000

3000

4000

0 10 20 30 40 50

tim
e 

(s
ec

)

1 SPE
16 SPEs

executions

Figure 3. Dispersion analysis for the 50 runs of all-interval 450. SPE, Synergistic Processing
Element.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe



D. DIAZ, S. ABREU AND P. CODOGNET

Table VI. Timings (s) and speedups for the worst case (max of 50 runs).

Speedup with k SPEs

Problem instance Time 1 SPE 2 4 8 12 16 Time 16 SPEs

all-interval 450 4661.870 2.4 4.7 15.3 10.5 26.3 177.210
partit 2600 105.030 1.2 3.6 7.2 11.9 17.1 6.160
perfect-square 5 456.470 2.1 3.9 7.1 9.7 16.6 27.550
magic-square 100 9013.330 62.9 152.3 154.5 534.6 505.5 17.830

SPE, Synergistic Processing Element.

Table VII. Standard deviation for the worst case.

Standard deviation with k SPEs

Problem instance 1 2 4 8 12 16

all-interval 450 891 460 224 65 61 40
partit 2600 24 16 7 3 2 2
perfect-square 5 122 54 27 16 10 6
magic-square 100 916 19 13 10 3 4

SPE, Synergistic Processing Element.

if we take magic square 100 � 100, the standard deviation decreases from 916 to less than 4. This
amounts to a dramatic performance improvement for the worst-case scenario. Take magic square
100 � 100. With one SPE, execution takes 2.5 h, at worst, to complete. When using 16 SPEs, this
drops to 18 s.

AS/Cell limits the dispersion of the execution times: we say that the multicore version is more
robust than the sequential one. The execution time is more predictable from one run to another in
the multicore version, and more cores means more robustness. This is a crucial usability feature
for real-time systems or even for some interactive applications such as games. To further test this
idea, we tried a slight variation of the method that consists in starting all SPEs with the same initial
configuration (instead of a random one). Each SPE then diverges according to its own internal ran-
dom choices. The results of this experiment show that the overall behavior is practically the same
as the original method, only a little slower: on the average less than 10%. This slowdown was to be
expected because the search has less diversity to start with and therefore might take longer to explore
a search space that contains a solution. However, this limited slowdown shows that the method is
intrinsically robust, can restore diversification, and again, takes advantage of the parallel search in
an efficient manner.

7. CONCLUSION

We presented a simple yet effective parallel adaptation of the AS algorithm to the Cell/BE architec-
ture to solve combinatorial problems. We chose to target the Cell/BE because of its promise of high
performance and, in particular, to experiment with its heterogeneous architecture, which departs
significantly from most multicore architectures with shared memory. The implementation drove us
to minimize communication of data among processors and between a processor and the main mem-
ory. We view this experiment as the first step towards a large-scale implementation on a massively
parallel architecture, where communication costs are at a premium and should be eschewed.

The experimental evaluation we carried out on a dual-CPU blade with 16 SPE cores indicates that
linear speedups can be expected in most cases, and even some situations of super linear speedups
are possible. Scaling the problem size seems never to degrade the speedups, even when dealing with
very difficult problems. We even ran a reputedly very hard benchmark with increasing speedups
when the problem size grows. An important, if somewhat unexpected, fringe benefit is that the
worst-case execution time becomes even higher speedups than the average case. This characteristic
opens up several domains of application to the use of combinatorial search problem formulations:

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe



TARGETING THE CELL/BE FOR CONSTRAINT-BASED LOCAL SEARCH

this is particularly true of real-time applications and other time-sensitive uses, for instance,
interactive games.

Recall that AS is an ‘anytime’ method: it is always possible to interrupt the execution and obtain
the best pseudosolution computed so far. Regarding the issue, this method can easily benefit from
an architecture such as Cell/BE: when running several SPEs in parallel, the PPE simply queries
each SPE to obtain its best pseudosolution (together with the corresponding cost) and then chooses
the best of these best. Another good property of the Cell/BE organization is that the only data an
SPE needs to pass, when copying, is the current configuration (a small array of integers) and its
associated cost, which can be carried out very efficiently.

Our early results clearly demonstrate that heterogeneous architectures with internal parallelism,
such as Cell/BE, have a significant potential to make good on solving combinatorial problems.
Concerning further development, we plan to work along two directions: to optimize the Cell/BE
code following the recommendations of [1] and to experiment with several forms of communication
among the processors involved in a computation. The extension of the algorithm beyond a single
dual-Cell blade is also in our plans, in particular, to extend our approach with cluster communica-
tion mechanisms, such as message passing interface or the remote DMA-based global address space
programming interface[33].

ACKNOWLEDGEMENTS

The equipment used in this work was provided as a grant from the IBM Corporation Shared Univer-
sity Research (SUR) program awarded to CENTRIA and U. of Évora. Acknowledgements are due to the
FCT/Egide Pessoa grant ‘CONTEMP—CONTraintes Executées sur MultiProcesseurs’.

REFERENCES

1. Redbooks IBM. Programming the Cell Broadband Engine Architecture: Examples and Best Practices. Vervante,
2008.

2. Perron L. Search procedures and parallelism in constraint programming. In proceedings of CP’99. Springer Verlag,
1999; 346–360.

3. Holzmann GJ, Bosnacki D. The design of a multicore extension of the SPIN model checker. IEEE Transactions on
Software Engineering 2007; 33(10):659–674.

4. Hamadi Y, Jabbour S, Sais L. ManySAT: a parallel SAT solver. Journal on Satisfiability, Boolean Modeling and
Computation 2009; 6:245–262.

5. Codognet P, Diaz D. An efficient library for solving CSP with local search. In MIC’03, 5th International Conference
on Metaheuristics, Ibaraki T (ed.), 2003.

6. Gent IP, Toby W. CSPLIB: a benchmark library for constraints. In CP, 1999; 480–481.
7. Verhoeven M, Aarts E. Parallel local search. Journal of Heuristics 1995; 1(1):43–65.
8. Pardalos PM, Pitsoulis LS, Mavridou TD, Resende MGC. Parallel search for combinatorial optimization: genetic

algorithms, simulated annealing, tabu search and grasp. In proceedings IRREGULAR’95, 1995; 317–331.
9. Crainic TG, Toulouse M. Special issue on parallel meta-heuristics. Journal of Heuristics 2002; 8(3):247–388.

10. Alba E. Special issue on new advances on parallel meta-heuristics for complex problems. Journal of Heuristics 2004;
10(3):239–380.

11. Luong TV, Melad N, Talbi E-G. Parallel local search on GPU. Technical Report RR 6915, INRIA, Lille, France,
2009.

12. Aiex RM, Resende MGC, Ribeiro CC. Probability distribution of solution time in GRASP: an experimental
investigation. Journal of Heuristics 2002; 8(3):343–373.

13. Crainic TG, Gendreau M, Hansen P, Mladenovic N. Cooperative parallel variable neighborhood search for the
-median. Journal of Heuristics 2004; 1(3):293–314.

14. Kergommeaux JCD, Codognet P. Parallel logic programming systems. ACM Computing Surveys 1994; 26(3):295–
336.

15. Yokoo M, Durfee EH, Ishida T, Kuwabara K. The distributed constraint satisfaction problem: Formalization and
algorithms. IEEE Transactions on Knowledge and Data Engineering 1998; 10(5):673–685.

16. Hentenryck PV, Michel L. Constraint-Based Local Search. The MIT Press, 2005.
17. Michel L, See A, Hentenryck PV. Distributed constraint-based local search. In proceedings of CP’06, 12th Inter-

national Conference on Principles and Practice of Constraint Programming, Vol. 4204, Benhamou F (ed.), Lecture
Notes in Computer Science. Springer, 2006; 344–358.

18. Michel L, See A, Hentenryck PV. Parallelizing constraint programs transparently. In proceedings of CP’07, Bessiere
C (ed.). Springer Verlag, 2007; 514–528.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe



D. DIAZ, S. ABREU AND P. CODOGNET

19. Michel L, See A, Hentenryck PV. Parallel and distribited local search in Comet. Computers and Operations Research
2009; 36:2357–2375.

20. Chu G, Stuckey P. A parallelization of MiniSAT 2.0. In Proceedings of SAT Race, 2008.
21. Schubert T, Lewis MDT, Bernd B. PaMiraXT: parallel SAT solving with threads and message passing. Journal on

Satisfiability, Boolean Modeling and Computation 2009; 6:203–222.
22. Ohmura K, Ueda K. c-sat: a parallel SAT solver for clusters. In Proceedings of SAT’09. Springer Verlag, 2009;

524–537.
23. Hentenryck PV. Constraint Satisfaction in Logic Programming. The MIT Press, 1989.
24. Bessiere C. Constraint propagation. In Handbook of Constraint Programming, Rossi F, Beek PV, Walsh T (eds).

Elsevier, 2006; 29–83.
25. Galinier P, Hao J-K. A general approach for constraint solving by local search. In 2nd Workshop CP-AI-OR’00,

Paderborn, Germany, 2000.
26. Codognet P, Diaz D. Yet another local search method for constraint solving. In Proceedings of SAGA’01. Springer

Verlag, 2001; 73–90.
27. Kadioglu S, Sellmann M. Dialectic search. In CP 2009, International Conference on Principles and Practice of

Constraint Programming. Springer Verlag: Lisbon, Portugal, 2009.
28. Minton S, Johnston MD, Philips AB, Laird P. Minimizing conflicts: A heuristic repair method for constraint

satisfaction and scheduling problems. Artificial Intelligence 1992; 58(1-3):161–205.
29. Koopmans TC, Beckmann M. Assignment problems and the location of economic activities. Econometrica: Journal

of the Econometric Society 1957; 25(1):53–76.
30. Truchet C, Codognet P. Musical constraint satisfaction problems solved with adaptive search. Soft Computing - A

Fusion of Foundations, Methodologies and Applications 2004; 8(9):633–640.
31. van Lint JH, Wilson RM. A Course in Combinatorics. Cambridge University Press, 1992.
32. Bouwkamp CJ, Duijvestijn AJW. Catalogue of simple perfect squared squares of orders 21 through 25. Technical

Report Technical Report 92 WSK 03, University of Technology, Department of Mathematics and Computer Science,
Eindhoven, The Netherlands, 1992.

33. Machado R, Lojewski C. The Fraunhofer virtual machine: a communication library and runtime system based on the
RDMA model. Computer Science-Research and Development 2009; 23(3):125–132.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe


