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Abstract: This paper presents a framework for the offline identification of nonlinear switched
systems with unknown model structure. Given a set of sampled trajectories, and under the
assumption that they were generated by switching among a number of models, we estimate a
set of vector fields and a stochastic switching mechanism that best describes the observed data.
The switching mechanism is described by a position dependent hidden Markov model that
provides the probabilities of the next active model given the current active model and the state
vector. The vector fields and the stochastic matrix is obtained by interpolating a set of nodes
distributed over a relevant region in the state space. The work follows a Bayesian formulation
where the EM-algorithm is used for optimization.

1. INTRODUCTION

While linear systems identification is an area where so-
lutions based on least squares are common, nonlinear
systems are too vast an area to be covered by a single
technique. Several approaches have been proposed to deal
with this kinds of problems. Some assume a separation
between the linear and nonlinear parts, such as in Ham-
merstein systems, while others assume black-box models.
The current work relates to the latter.

Black-box models are universal in the sense that they are
able to describe any kind of nonlinear dynamics. Tech-
niques commonly employed are usually based on neural
networks, radially basis functions, wavelets, fuzzy sets
and Volterra expansions (see Sjöberg et al. [1995] for an
overview). In addition to the nonlinearities governing the
state evolution, some systems can abruptly switch the
active model. These systems are usually known as jump
Markov systems and a vast literature exists concerning
them. Several different problems are usually dealt with:
state estimation problems (Liu and Zhang; [2009]), identi-
fication of the dynamical model (Cinquemani et al. [2007]),
identification of transition probabilities (Orguner [2008])
and both transition probabilities and state estimation
(Tugnait [1982]).

This paper deals with jump Markov nonlinear systems,
where the Markov part depends simultaneously on the
continuous and discrete states. It follows closely the frame-
work developed in Nascimento et al. [2009], originally in-
tended for computer vision, and improvements introduced
in Barão et al. [2010]. These works are further extended
here to work for higher dimensional dynamic systems.

The main improvements introduced in this paper are:
the extension to an arbitrary D-dimensional space; the
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interpolation used to define the vector and Markov matrix
fields; and the support for irregular grids to better approxi-
mate the nonlinear behavior in certain regions of the state
space. The extension to a D-dimensional space requires
a new metric in the state space, which was not required
in the referred papers, and changes in the algorithms to
avoid numerical problems. The use of an irregular grid also
constitutes a challenge since proper node weighting has to
be selected to obtain a good interpolation. Node selection
is not considered here.

The paper is organized as follows. Section 2 formulates
the problem more precisely; Section 3 introduces some
assumptions used to define prior distributions for Bayesian
estimation; Section 4 presents the EM-algorithm along
with formulas for vector field estimation; Section 4.2.2
focus on the optimization of switching probabilities; Sec-
tion 5 presents an example showing two coupled Lorenz
strange attractors with Markov jumps between them, and
the estimated fields obtained with the algorithms devel-
oped; Finally section 6 draws conclusions.

2. PROBLEM FORMULATION

The problem under consideration tries to estimate a set
of models that best describe observed state trajectories of
an unknown nonlinear dynamic system. It is assumed that
the complete state xt ∈ Rd is accessible at discrete time
steps. The discretized nonlinear systems are assumed to
be given by

xt = xt−1 + Tkt(xt−1) + wt (1)

where Tkt(·) is a vector field describing the current active
model. It is indexed at time t by kt ∈ {1, . . . ,K}, K being
the number of models. The additive disturbance is a zero
mean multivariable Gaussian distribution wt ∼ N (0,Σk)
where a different covariance matrix Σk is assigned to each
model k.

The active model can change from one time step to the
next according to a Markov model described by a space
dependent matrix B(x) = [bij(x)], where bij(x) is the
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Fig. 1. Markov diagram showing the state variable xt and
active model kt updates.

probability from switching from model i to model j when
the state equals x, i.e.,

bij(xt−1),Pr
{
kt = j|kt−1 = i, xt−1

}
. (2)

Matrix B(x) is a stochastic matrix and switching proba-
bilities bij(x) should obey the following conditions:

bij(x) ≥ 0,

K∑
m=1

bim(x) = 1,

∀ i, j ∈ {1, . . . ,K}, x ∈ Rd. (3)

Switching probabilities bij(x) are also to be estimated from
the observed state trajectories. The active model kt at each
time instant is not observed and is unknown.

The identification is performed offline using a collection of
recorded trajectories. Each trajectory, denoted by xs, is
an ordered set of points (xs1, x

s
2, . . . , x

s
Ls

), where xst ∈ RD
and Ls is the length of the trajectory s.

The model described above has an hybrid state (xt, kt)
which is updated using equations (1) and (2). The hybrid
state has an observed part xt and an hidden part kt.

Figure 1 shows the dependencies among the variables xt
and kt as the time evolves.

2.1 Space discretization

To obtain a smooth vector field in the state space RD,
the space is discretized into a set of N nodes distributed
over the region where data is available. This nodes have
coordinates gn ∈ RD, n ∈ {1, . . . , N}.
A set of K vectors are estimated for each node n. Each of
these vectors Tnk represent the vector field Tk(x) when x is
over the node n, i.e., when x = gn. Similarly, a stochastic
matrix Bn is estimated for each node. Having estimated
vectors Tnk and stochastic matrices Bn for every node of
the grid, vector fields Tk(x) and matrix fields B(x) defined
over the entire state space are obtained by multivariate
interpolation as follows:

Tk(x),
N∑
n=1

Tnk φn(x) (4)

and

B(x),
N∑
n=1

Bnφn(x), (5)

where φn(x) is an interpolation function satisfying the
following convexity constraints:

φn(x) > 0,

N∑
n=1

φn(x) = 1, ∀x ∈ RD. (6)

While these constraints could be relaxed for the inter-
polation of the vector field alone, they are required for

the interpolated stochastic matrix B(x) to be a valid
stochastic matrix.

An interpolating function that satisfies the above con-
straints is the Inverse Distance Weighting defined by Shep-
ard Shepard [1968]. It is defined by

φn(x),


d(x, gn)−p∑N

m=1 d(x, gm)−p
if x 6= gn

1 if x = gn

(7)

where d(·, ·) is a distance function (metric) in the state
space and the parameter p adjusts the influence of neigh-
boring points with respect to a given node.

2.2 Parameter estimation

The discretized space allows the description of the vector
fields and stochastic matrices using a finite set of parame-
ters. Let T ,{Tnk } denote the set of vectors to be estimated

and B,{Bn} the set stochastic matrices. The complete set

of parameters is denoted by θ,(T ,B).

The parameter estimation then amounts to find θ from the
collection of trajectories X ,{x1, . . . , xS}, where S is the
number of trajectories observed. The methodology follows
a Bayesian viewpoint: estimated parameters are given by
the maximum a posteriori

θ̂ = arg max
θ
p(θ|X ). (8)

Applying the Bayes rule and exposing the dependence on
the hidden variables kt yields

θ̂ = arg max
θ
p(θ)

∑
K
p(X ,K|θ). (9)

The solution depends on the selection of an appropri-
ate prior p(θ) and the computation of the probability
p(X ,K|θ). The marginalization with respect to K requires
the summation over the set of all possible sequences
of active models along every observed trajectory. This
summation is unfeasible which renders the direct opti-
mization of the above equation impossible. A version of
the Expectation-Maximization algorithm Dempster et al.
[1977] is employed to deal with this limitation. The fol-
lowing two sections deal with the prior selection and EM-
algorithm.

3. PRIOR SELECTION

The selection of a prior p(θ) has an essential contribution
in the quality of the estimated model. Namely, for the
portions of the space where poor or no data is available,
the resulting model will depend heavily on the prior
information. This is specially important for the vector field
estimation since, in many occasions, data is scarce at some
state space regions. At the same time, some independence
assumptions have to be considered to simplify and separate
the overall problem into simpler and smaller subproblems.

The first independence assumption regards a separation
between the vector field estimation and the stochastic
matrix field estimation problems. It is assumed that

p(θ) = p(T ,B) = p(T )p(B). (10)

Regarding the vector field estimation, the following addi-
tional assumptions are made:



• Vector fields of different models are independent from
each other, i.e.,

p(T ) =

K∏
k=1

p(T 1
k , . . . , T

N
k ). (11)

• For a given model, having index k, the vectors Tnk
at its nodes are not mutually independent. Their
dependence is introduced so that if there is data
near one node but not near a neighbor node, the
latter inherits some information from the former. This
“generalization” capability is introduced by a careful
selection of a prior distribution p(T 1

k , . . . , T
N
k ). The

selected prior is a multivariable Gaussian distribution
assigning an higher density when two neighbor nodes
have similar vectors. This is accomplished by first
defining the set of neighbor nodes

I ,
{

(i, j) | d(gi, gj) < dmax, i 6= j
}
. (12)

This set is used to define a sparse matrix ∆ having, at
each column, a pair (1,−1) at positions corresponding
to neighbor nodes. Then, collecting the vectors Tnk ∈
Rd in a single matrix Tk ,

[
T 1
k · · · TNk

]
∈ Rd×N ,

the product Tk∆ produces a new matrix where each
column is the difference between two neighbor nodes.
Finally, the prior can be defined to be

p(T 1
k , . . . , T

N
k ) ∝ e− 1

2 Tr(Tk∆∆T TT
k ). (13)

The previous definition may not work in all instances
since the sparsity of ∆ may lead to an improper
distribution. To ensure positive definiteness of the
covariance matrix a small additional term εQ is
added, where Q ∈ Rd×d is a positive definite metric
matrix on the state space. The prior can finally be
written as the multivariable Gaussian

p(T 1
k , . . . , T

N
k ) ∝ e− 1

2 Tr(TkΛ−1TT
k ), (14)

where

Λ−1 = εQ + ∆Q∆T . (15)

Regarding the stochastic matrices estimation, a prior p(B)
is selected. Currently, it is set to a constant density in the
K−1 simplex defined by its parameters. The main reason
this was chosen is one of simplicity. Also, it is unknown if a
different prior, like e.g. the Jeffreys non-informative prior,
has a noticeable advantage in the considered problem.

4. EXPECTATION-MAXIMIZATION ALGORITHM

Given the priors p(T ) and p(B), and a set of recorded
trajectories X = {x1, . . . , xS}, the maximum a posteriori

estimate θ̂ of the parameters θ is given by

θ̂ = arg max
θ
p(θ)

∑
K
p(X ,K|θ). (16)

As referred earlier, the summation over all the sequences of
active models K is unfeasible since it grows exponentially
with the amount of data available. To deal with this
problem the Expectation-Maximization algorithm from
Dempster et al. [1977] is employed on the complete joint
probability p(X ,K, θ). The problem is formulated as fol-
lows: First, take the logarithm of the joint distribution to
get

log p(X ,K, θ) = log p(K|X , θ)+log p(X|θ)+log p(θ). (17)

Then, it can be checked that the maximization of the
two right terms log p(X|θ) and log p(θ) is equivalent to
maximizing the difference

log p(X ,K, θ)− log p(K|X , θ) (18)

Since this maximization is still unfeasible, the EM method
suggests instead the maximization of its expected value

with respect to a previously estimated θ̂, i.e.

θ̂new = arg max
θ

(
U(θ, θ̂)− V (θ, θ̂)

)
, (19)

where

U(θ, θ̂),E
[

log p(X ,K, θ)
∣∣X , θ̂] (20)

V (θ, θ̂),E
[

log p(K|X , θ)
∣∣X , θ̂]. (21)

It can be proved that V (θ, θ̂) ≤ 0 for all θ 6= θ̂. Thus,
this term can only improve the difference in (19) and the

maximization can be performed for U(θ, θ̂) alone.

The EM algorithm iterates two steps: Computation of

U(θ, θ̂), called the E-step, and its maximization with

respect to θ while keeping θ̂ fixed, called the M-step. These
two steps are iterated until convergence to a local maxima
is attained.

4.1 E-step

In the E-step part of the algorithm, the function U(θ, θ̂)
is found to be given by

U(θ,θ̂) = C − 1

2

K∑
k=1

Tr(TkΛ
−1TT

k )+

− 1

2

∑
s,t,k

wsk(t)
∥∥∥xst − xst−1 −

N∑
n=1

Tnk φn(xst−1)
∥∥∥2

Σ−1
k

+

+
∑
s,t

K∑
i,j=1

wsij(t) log
( N∑
n=1

bnijφn(xst−1)
)
.

(22)

where the symbols wi and wij are defined by

wsj (t),Pr
{
kst = j|xs, θ̂

}
, (23)

wsij(t),Pr
{
kst−1 = i, kst = j|xs, θ̂

}
, (24)

and calculated using the forward-backward algorithm
(see Rabiner [1990]) that is described next.

In the following expressions, the symbol xs1:t,(xs1, . . . , x
s
t )

represents a trajectory from 1 to t and is introduced to
simplify the notation.

The forward part of the forward-backward algorithm
works as follows: consider the forward variable

αst (i),Pr
{
xs1:t, k

s
t = i|θ̂

}
. (25)

For any time t ∈ {1, . . . , Ls}, the computation of αst (i) can
be done with the following algorithm:

(1) Initialization: since we do not have information from
time t < 1, initialization depends only on the proba-
bility of the active model at t = 1:

αs1(i) = Pr
{
ks1 = i|θ̂

}
. (26)

(2) Induction:



αst (i) = Pr
{
xst |xst−1, k

s
t = i, θ̂

}
Pr
{
xs1:t−1, k

s
t = i|θ̂

}
= N

(
xst
∣∣xst−1 + Ti(x

s
t−1),Σkst

)
·

·
K∑
j=1

bij(x
s
t−1)αst−1(j).

(27)

The backward part of the algorithm works similarly, but
from the other end backwards in time. It is as follows:
consider the backward variable

βst (i),Pr
{
xst+1:Ls

|kst = i, xt, θ̂
}
. (28)

It is computed using the following algorithm:

(1) Initialization:
βsLs

(i) = 1. (29)
(2) Induction: since xt+1 is conditionally independent of

the remaining trajectory xt+2:Ls
given xt and kt+1,

then βst (i) is given by

βst (i) =

K∑
j=1

Pr
{
xst+1:Ls

|kst+1 = j, xst
}
·

· Pr
{
kst+1 = j|kst = i, xt

}
=

K∑
j=1

βst+1(j) N
(
xst+1

∣∣xst + Tj(xt),Σj

)
bij(xt).

(30)

The variables αst (i) and βst (i) can be combined together
to produce the weights wsi (t) and wsij(t) as shown in the
following equations:

wsi (t) =
αst (i)β

s
t (i)∑K

j=1 α
s
t (j)β

s
t (j)

. (31)

wsij(t) =
αst−1(i)bij(x

s
t−1)N

(
xst
∣∣xst−1 + Tj(x

s
t−1),Σj

)
βst (j)

Pr
{
xs
∣∣θ̂}

(32)

where the normalization constant Pr
{
xs
∣∣θ̂} is obtained by

summing the numerator over all 1 ≤ i, j ≤ K.

Having computed the expressions (22)–(24), the maxi-
mization step can be performed.

4.2 M-step

In the M-step part of the algorithm, equation (22) is
maximized with respect to the vectors Tnk and transi-
tion probabilities bnij . The vector field maximization can
be done explicitly, while the switching probabilities are
computed using an iterative algorithm.

Computation of the vector field. The stationarity points
are the solutions of the linear matrix equation

∂U(θ, θ̂)

∂Tα
= −Λ−1TT

α − AαTT
αΣ−1

α + Bα = 0, (33)

where matrices Aα and Bα are defined by

Aα,
S∑
s=1

Ls∑
t=1

wsα(t)Φ(xst−1)Φ(xst−1)T , (34)

Bα,
S∑
s=1

Ls∑
t=1

wsα(t)Φ(xst−1)(xst − xst−1)TΣ−1
α (35)

and
Φ(x), [φ1(x) · · · φN (x)]

T
. (36)

Premultiplying (33) by the positive definite matrix Λ
yields an equivalent form of the Sylvester equation

(−ΛAα)TT
αΣ−1

α −TT
α + ΛBα = 0, (37)

which can be readily solved for Tα using standard numer-
ical packages.

Computation of the switching probabilities. When dif-

ferentiating U(θ, θ̂) with respect to the transition prob-
abilities bnij care has to be taken since they satisfy the

constraint
∑K
j=1 b

n
ij = 1 and, therefore, parameters are

not independent. For differentiation, only independent
probabilities bnij where j = 2, . . . ,K are selected. This
differentiation yields

∂U(θ, θ̂)

∂bγαβ
=

S∑
s=1

Ls∑
t=1

( wsαβ(t)∑N
n=1 b

n
αβφn(xst−1)

+

− wsα1(t)∑N
n=1 b

n
α1φn(xst−1)

)
φγ(xst−1).

(38)

Unfortunately, the stationarity condition ∂U(θ, θ̂)/∂bγαβ =
0 doesn’t appear to have a simple explicit solution. A
natural gradient iterative method is then used to estimate
the parameters bnij (see Barão et al. [2010] for details of
this approach).

5. SIMULATION RESULTS

As an illustrative example, the algorithm was applied to
two interwound Lorenz strange attractors in R3, randomly
switching between the two with nonzero but low probabil-
ity.

One Lorenz attractor is described by the following differ-
ential equations:

ẋ1 = 10(x2 − x1)

ẋ2 = x1(28− x3)− x2

ẋ3 = x1x2 − 8
3x3

A second Lorenz attractor was generated with the vari-
ables x1 and x2 interchanged, producing a mirror effect.
Figure 2 shows a set of sampled trajectories from a sim-
ulation with stochastic switching. The trajectory color
indicates the active model used at each time instant.

For the estimation procedure, a regularly spaced 5 × 5 ×
5 grid was used. Two vector fields and corresponding
transition probabilities were estimated. Figure 3 shows the
results obtained for the vector fields after 50 interations of
the EM algorithm.

The proposed benchmark is a difficult problem for several
reasons: the simulated systems are strongly nonlinear;
there is no data in many regions of the state space; and the
two attractors are sufficiently close so that the switching
can in some instances be simply justified by the estimation
algorithm as a state disturbance instead of a jump.

To visually check the obtained model, a stochastic sim-
ulation was performed using the estimated vector fields
and switching probabilities. Figure 4 shows the results
obtained. It can be seen that while the model does not



Fig. 2. Trajectories generated by two Lorenz strange
attractors with stochastic switching between them.
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Fig. 3. Estimated vector fields using the EM-method.

precisely replicate the original trajectories, it can reason-
ably resemble the original systems behavior. It should be
emphasized that this results were obtained with a very
coarse grid having only 5 nodes for each dimension. A
quantitative measure of fitness for the estimated model
can be obtained for these kind of problems using the ford-
ward part of the forward-backward algorithm described in
section 4.1.

6. CONCLUSIONS AND FUTURE DIRECTIONS

This paper attempts to provide a framework for black box
system identification of jump Markov nonlinear systems
following a Bayesian approach. The proposed dynami-
cal system is based on the multivariable interpolation of
vectors and stochastic matrices in the state space. The
interpolation defines a set of vector fields that describe
the observed system behavior. For the Bayesian estima-
tion procedure several prior assumptions were used which
proved to be determinant in the quality of the resulting

Fig. 4. Stochastic simulation using the estimated vector
fields.

vector fields. Namely the prior for the vectors Tnk allows
the algorithm to have a “generalization” capability and
smoothly extend the vector field from the regions where
data is abundant to regions where no observations are
available. The estimation procedure makes use of the
Expectation-Maximization algorithm and is demonstrated
in a difficult synthetic example.

Several problems are open to further enhancements and
are currently under active research. One such problem
is the grid selection that should be generated optimally
for the data instead of using an a priori fixed (possibly
irregular) grid. Also, a few parameters are still requiring
manual tuning, namely the regularization imposed on the
prior p(T ), the distance metric and the power p used in
the interpolation.
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