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Abstract

This paper addresses the problem of iterative optimiza-

tion of the Kullback-Leibler (KL) divergence on discrete

(finite) probability spaces. Traditionally, the problem is

formulated in the constrained optimization framework

and is tackled by gradient like methods. Here, it is

shown that performing the KL optimization in a Rie-

mannian space equipped with the Fisher metric pro-

vides three major advantages over the standard meth-

ods: 1. The Fisher metric turns the original constrained

optimization into an unconstrained optimization prob-

lem; 2. The optimization using a Fisher metric behaves

asymptotically as a Newton method and shows very fast

convergence near the optimum; 3. The Fisher metric is

an intrinsic property of the space of probability distri-

butions and allows a formally correct interpretation of a

(natural) gradient as the steepest-descent method. Sim-

ulation results are presented.

1. Introduction

The problem considered in this paper is motivated

by the design of probabilistic controllers [4, 5, 7] for

controlled Markov chains, that imply the optimization

of the Kullback-Leibler divergence. The optimization

literature (e.g. [6]) refers many minimization algorithms

that apply to smooth cost functions. Most methods

are based on a cost function descent towards a local

minimum. They provide, at each iteration, a direction

computed from the cost functions local properties, usu-

ally the gradient and, sometimes, the hessian. Meth-

ods based on the gradient alone are usually slow, while
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methods using the second order information, such as

quasi-Newton and conjugate gradient methods, yield

faster convergence rates. Quasi-Newton methods are

also called variable-metric methods since the Hessian

can be seen as a metric in the parameter space. This

“metric” is, however, a property of the cost function and

not a characteristic of the underlying parameter space.

Amari suggests [1, 2], instead, the use of the Fisher met-

ric to compute the natural gradient in probability spaces

and to proceed in the resulting direction.

In the present paper, Amari’s natural gradient

method is applied to the optimization of the Kullback-

Leibler divergence on discrete (finite) probability

spaces. The main results can be divided into two dis-

tinct domains. First, properties derived from the under-

lying space alone show that the Fisher metrics smoothly

modifies the gradient direction, so that it flows within

the feasible region and, therefore, constraints never be-

come active. This property is an intrinsic property of the

space of discrete probability functions and does not de-

pend on the cost function to be optimized. If, for some

reason, some constraints become active, the method be-

haves as the gradient projection method. The second

result is more specific to the Kullback-Leibler diver-

gence. It is shown that, since the Fisher information

approaches the Hessian of the K-L divergence D(p‖q)
when p is close to q, the natural gradient can be seen as

a quasi-Newon method for this specific cost function.

With this approach the computational requirements are

minimal: only marginally larger than the standard gra-

dient; constant in time and space; and using only addi-

tions and multiplications.

The paper is organized as follows. Section 2 in-

troduces the theoretical material used to treat the dis-

crete probability distributions as points in a Riemannian

space. Section 3 presents the definition of natural gradi-

ent and gives a numerically robust and efficient way to

compute the natural gradient. Section 4 shows the stop-

ping condition used. Section 5 analyzes some properties

of the natural gradient in the current framework, namely
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that the parameters evolution is (naturally) bounded by

the constraints. Section 6 presents some simulations

and section 7 draws conclusions.

2. Preliminaries

Let P denote the set of probability mass functions

(p.m.f.) p(x), where x ∈ {0,1, . . . ,N}. The p.m.f. p(x)
can be represented in many ways. One such way is

to define the parameters as θ i def
=Pr{X = i} = p(i), for

i = 0,1, . . . ,N. Since probabilities add to one, the N +1

parameters θ i are not independent. Selecting N param-

eters from those gives a representation of p(x) where

all parameters are independent. This parametrization

defines a coordinate system of P where θ i are the co-

ordinates. Let the N parameters (θ 1, . . . ,θ N) be the co-

ordinates, while the remaining parameter θ 0 is automat-

ically determined by θ 0 def
=1−∑N

i=1 θ i.

The probabilities are constrained to positive real

numbers and thus θ i > 0, for i = 0,1, . . . ,N. The con-

straint on θ 0 can also be written in terms of the inde-

pendent coordinates alone by ∑N
i=1 θ i < 1.

The region in the parameter space that satisfies all

constraints is called the feasible region. It is a convex

open set in R
N . It has, however, a richer structure than

R
N , a feature captured by the metric tensor of a Rieman-

nian space that tells how independent the dimensions

are. It has been suggested [3] that the Fisher informa-

tion matrix should be used as the metric tensor when

dealing with probabilities.

2.1. The Fisher information metric

The Fisher information matrix is a symmetric pos-

itive (semi-)definite matrix G, whose components are

determined by

gi j(θ )
def
=Ep

[∂ log p(x)

∂θ i

∂ log p(x)

∂θ j

]

. (1)

The matrix G is not constant over the parameter space.

The components depend on the particular point where

the expectation is taken and the coordinate system used.

In the problem under consideration, the compo-

nents of the Fisher information matrix specialize to

gi j(θ ) =
1

1−∑N
k=1 θ k

+
δi j

θ i
, (2)

where δ is the Kronecker delta function. The corre-

sponding Fisher information matrix G is given by

G =
1

1−∑N
k=1 θ k







1 · · · 1
...

...

1 · · · 1






+







1/θ 1 0

. . .

0 1/θ N






.

(3)

It is a nonsingular matrix in the feasible region, but di-

verges as one or more probabilities approach zero.

2.2. Differentials and gradients

Given a function F(p) defined on the space P , the

coordinate system θ allows a new function F(θ ) to be

defined. The function that gives the rate of change of

F(θ ) in an arbitrary direction v is the differential of F ,

denoted by dF(v). It is a linear operator on the lin-

ear space where v lives. If v is represented as a col-

umn matrix v, then dF can be represented as the row

matrix of partial derivatives of F , such that dF(v) =
[

∂F
∂θ 1 · · · ∂F

∂θ N

]

v. The direction of greatest increase

of F at some point θ is given by the gradient vector ∇F

defined such that the following identity holds:

〈∇F,v〉 = dF(v), ∀v 6= 0. (4)

In standard euclidean spaces, the inner product 〈·, ·〉 is

simply the dot product, and (4) yields, in matrix nota-

tion, ∇F =
[

∂F
∂θ 1 · · · ∂F

∂θ N

]T
. In riemannian spaces,

however, the inner product is defined by the metric ten-

sor gi j which, in matrix notation, reads 〈v,w〉 = vT Gw.

The gradient defined in (4) with respect to the rie-

mannian inner product is called the natural gradient,

and denoted by ∇̃F . It is given in matrix notation by

∇̃F = G−1
[

∂F
∂θ 1 · · · ∂F

∂θ N

]T

. (5)

It coincides with the standard gradient only for eu-

clidean spaces, where the metric G is the identity ma-

trix.

2.3. The steepest descent method

Optimization of a p.m.f. p(x) can be formulated

as a constrained optimization problem in R
N , where the

coordinates are confined to the feasible region. One op-

timization method is the steepest descent method. It

states that parameters should follow the gradient flow

– or its negative – on the parameter space. Ideally, this

means that θ̇ = −∇F(θ ), where θ̇ is a velocity vector

denoting the rate of change of θ . In practice, the dis-

cretized version

θ[k+1] = θ[k] −η[k]∇F(θ ) (6)

is used, where η is the discretization step size.

In euclidean spaces the steepest descent direction

is given by ∇F , but in riemannian spaces the steepest

descent direction is given by the natural gradient ∇̃F

defined in (5). Thus, in riemannian spaces, the steepest

descent method becomes

θ[k+1] = θ[k] −η[k]G
−1∇F, (7)
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where G−1 and ∇F are taken at θ[k].

3. Fast natural gradient computation

The natural gradient defined in (5) requires an in-

version of the metric G. For discrete p.m.f the metric

given in (3) is badly conditioned and numerical prob-

lems arise quite frequently. To overcome this limita-

tions, the matrix G is written as G = A+ bcbT , where

A =







1/θ 1 0

. . .

0 1/θ N






, b =







1
...

1






, (8)

and c = 1/(1−∑N
i=1 θ i). Using the Woodbury identity,

the inverse G−1 can be written as

G−1 = A−1 −A−1b(bT A−1b+ c−1)−1bT A−1, (9)

which can be further simplified to

G−1 =







θ 1 0

. . .

0 θ N






−







θ 1

...

θ N







[

θ 1 · · · θ N
]

.

(10)

As can be seen, the inverse metric G−1 can be exactly

computed without any inversions. Even scalar inver-

sions are avoided. This allows a numerically robust im-

plementation of the natural gradient method described

in section 2.3.

If the parameters θ are in column matrix form, then

the natural gradient ∇̃F can be computed from ∇F by

∇̃F = θ ◦∇F −θ
(

θ ·∇F
)

, (11)

where ◦ denotes the Hadamard (a.k.a. Shur or element-

wise) product and · denotes the dot product. Thus, it is

not required to explicitly build the whole matrix G−1 to

compute the product G−1∇F .

Noting that the dot product can be obtained by sum-

ming together the components of θ ◦∇F , then (11) only

requires 2N multiplications and 2N − 1 additions. It

scales linearly with the problem size and, therefore, is

computationally time efficient. Memory requirements

are also minimal. Space for vectors θ , ∇F and ∇̃F

is all that is necessary. This amounts to 3N floating

point numbers, scales linearly with the problem size,

and therefore is also computationally space efficient.

4. Stopping criteria

The iterative procedure requires a stopping criteria.

One possibility is to compare the gradient vector com-

ponents to a precision threshold ε , but this method has

two problems: it does not take into account the geomet-

ric nature of the underlying space; and, due to curvature

of F , parameters can be more sensible in some direc-

tions than in others. To tackle this issues, the natural

gradient norm is used instead.

The riemannian norm is taken from the Fisher met-

ric by ‖v‖g
def
=vT Gv. When this norm is applied to the

natural gradient, it becomes

‖∇̃F‖g = ∇̃FT G∇̃F = ∇FT G−1∇F. (12)

A more computational efficient way to compute it is

available, that does not make explicit use of either G

or G−1 and requires only a single dot product between

two previously available vectors:

‖∇̃F‖g = ∇FT ∇̃F. (13)

Finally, the norm is compared against a threshold ε to

decide when to stop. Equation (13) can also be inter-

preted as

‖∇̃F‖g = dF(∇̃F), (14)

i.e., the greatest rate of change of F , from the rieman-

nian point of view. Thus, the iterative procedure stops

when the greatest (riemannian) rate of change of F is

below ε .

5. Properties

The natural gradient exhibits a remarkable property

that is not provided by the euclidean gradient. It can be

shown that the natural gradient flow is bounded to the

admissible region for any admissible initial condition,

i.e., it intrinsically satisfies the constraints

θ i > 0,
N

∑
i=1

θ i < 1. (15)

To prove this assertion, define the matrices

Λ =







θ 1 0

. . .

0 θ N






,

√
θ =







√
θ 1

...√
θ N






, (16)

and let
√

Λ denote the unique positive-definite matrix

such that Λ =
√

Λ
√

Λ. Then, since θ =
√

Λ
√

θ , equa-

tion (10) can be factorized into

G−1 =
√

Λ

(

I−‖
√

θ‖2

√
θ

‖
√

θ‖

√
θ

T

‖
√

θ‖

)√
Λ

T
. (17)

Furthermore,

‖
√

θ‖2 =
√

θ
T√

θ =
N

∑
i=1

θ i = 1−θ 0. (18)
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This fact suggests that it is possible to factorize (17) as

a product of matrices resembling projection transforma-

tions1. Defining

H0
def
=I− (1−θ 0)

√
θ

‖
√

θ‖

√
θ

T

‖
√

θ‖
, (19)

Hi
def
=I− (1−θ i)eie

T
i , i = 1, . . . ,N, (20)

where ei denotes the i-th standard basis. Then, equa-

tion (17) can be written in either of the following forms:

G−1 =
(
√

Λ
)−1

HN · · ·H2H1H0

(
√

Λ
)

, (21)

G−1 =
(
√

Λ
)

H0H1H2 · · ·HN

(
√

Λ
)−1

. (22)

Equations (21) and (22) allow a better understanding

of the metrics role in the natural gradient. First, the ma-

trix
√

Λ is performing a change of basis vectors at each

point. In the new basis, the transformed vectors suffer

a rescaling given by the product H0 · · ·HN . Each one of

the factors produce an incomplete projection onto the

subspace defined by the respective constraint. For in-

stance, if θ 1 = 0, then

H1 =











0

1

. . .

1











(23)

is a projection into the subspace defined by θ 1 = 0.

Otherwise, if θ 1 6= 0, the projection is incomplete and

the resulting vector will have the first component scaled

by θ 1, leaving the other components unchanged. The

same goes for each one of the factors from H2 up to

HN . The factor H0 is different, however. It scales by θ 0

along the direction
√

θ . Although, it may seem differ-

ent, the scaling role of H0 is similar to the others, since

it produces a projection onto the “subspace” (strictly

speaking it is not a linear subspace as it does not con-

tain the origin) defined by θ 0 = 0, or equivalently, to

∑N
i=1 θ i = 1, which in the new coordinates is the unit

sphere ‖
√

θ‖ = 1 (see (18)). Basically, the the new co-

ordinates allow a scaling to be performed independently

on each of the N + 1 constraints, i.e., constraints inter-

sect at 90◦.

To see that the natural gradient (continuous) flow

does not violate the constraints, it suffices to check that

the constraints define invariant subspaces. Thus, since

the continuous flow can not cross these invariant sub-

spaces, it is confined to the feasible region.

Assume for instance that θ 1 = 0. Then, rewriting

(21) as G−1 = H1HN · · ·H2

(√
Λ

)−1
H0

(√
Λ

)

, it is clear

1A projection matrix P = I− uuT , where u are unitary vectors,

eliminates the components of a vector v along the direction u.

that H1 cancels any possible change in θ 1. The con-

straints on the remaining parameters θ i, i > 1, work the

same way. Here, use was made of the property that,

since all matrices except H0 are diagonal, they can be

reordered arbitrarily (with exception of H0).

To check the invariance on the constraint θ 0 = 0,

or equivalently, ∑N
i=1 θ i = 1, equation (22) is used in

the form G−1 =
(√

Λ
)

H0

(√
Λ

)−1
HN · · ·H2H1. Now,

the natural gradient flow given by θ̇ = −G−1∇F , when

started with the constraint θ 0 = 0 active, will stay active

implying ∑N
i=1 θ̇ i = 0. It suffices to prove that

[

1 · · · 1
]

θ̇ =
[

1 · · · 1
]

G−1∇F = 0. (24)

Collapsing HN · · ·H1∇F into a single vector v, yields

[

1 · · · 1
]
√

ΛH0

√
Λ
−1

v =

=
[

1 · · · 1
]
√

Λ(I−
√

θ
√

θ
T
)
√

Λ
−1

v

=
[

1 · · · 1
](

I−θ
[

1 · · · 1
])

v

=
(

1−
N

∑
i=1

θ i
)

[

1 · · · 1
]

v

= 0.

(25)

Thus, if the constraint ∑N
i=1 θ i = 1 is active, then the

flow emanating from θ will maintain this property.

From the above observations, it can be concluded

that the feasible region has an invariant boundary. Thus,

under conditions of existence and unicity of solutions of

ODEs, the gradient flow is continuous and consequently

bounded to the feasible region.

6. Simulation results

To illustrate the application of the natural gradient

method, three examples are presented. In the first, a

p.m.f. p(x) is sought to minimize the K-L divergence

D(p‖q) to a given target p.m.f. q(x). This is an artificial

problem as the answer p(x) = q(x) is already known.

Its interest stems from being a problem where both gra-

dient and natural gradient methods can be easily com-

pared. In the second example, the same K-L divergence

D(p‖q) is minimized, but p is not completely free. It is

assumed that p is a joint p.m.f. generated by the chain

rule of probabilities pX ,Y (x,y) = pX(x) pY |X(y|x), where

only pX (x) is free. This problem is related in part to

closed-loop optimization common in probabilistic con-

trol systems. The third example considers a closed loop

probabilistic control problem and shows the viability of

the algorithm in large scale optimizations.

Example 1 Using the parametrization introduced in
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Figure 1. Optimization of D(p‖q) using the stan-
dard and natural gradient methods.

the previous sections, the p.m.f p(x) is, in matrix no-

tation, p =
[

θ 0 θ 1 · · · θ N
]T

, where (θ 1, . . . ,θ N)

are free parameters and θ 0 = 1−∑N
i=1 θ i is a depen-

dent parameter. The gradient of D is given by

∇D =







−1 1 0
...

. . .

−1 0 1






(logp− logq), (26)

the logarithms being taken elementwise over the proba-

bility vectors p and q.

Let q = [0.2494;0.0025;0.7481]be the target p.m.f.

and p = [ 1
3
; 1

3
; 1

3
] the initial guess. Use of the standard

gradient method with fixed step size yields erratic be-

havior on the parameter space. Figure 1 shows, on the

left, a simulation using a constant step-size of η = 0.01.

This example shows two known weakness of the stan-

dard gradient: when the curvature differs greatly in dif-

ferent directions a small step is required and slow con-

vergence is obtained; if η is large then instability oc-

curs. Figure 1 shows, on the right, the same problem

solved by the natural gradient method with a bigger step

size η = 0.18. The convergence is very fast in this case.

The justification is due to the Fisher information matrix

being also the Hessian of the K-L divergence at p = q.

Thus, the natural gradient behaves as a quasi-Newton,

variable metric, method as it approaches the optimum.

Example 2 Another example is the optimization of

D(p‖q), where p is generated by

pX ,Y (x,y) = pX(x) pY |X (y|x). (27)

Here, pY |X (y|x) is assumed to be previously specified

and fixed, while pX (x) is free. The optimization is per-

formed on the later distribution. For the sake of com-

pactness, the subscripts in pX , pY |X and pX ,Y will be

dropped in the foregoing expressions whenever they are

understood from context. The gradient of D(p‖q) with

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

θ
1

θ
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θ
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Figure 2. Optimization of D(p‖q) where p is
jointly distributed p(x,y) = pθ (x)p(y|x).

respect to parameters θ which specify p(x) has compo-

nents given by

∂D

∂θ i
=

N

∑
x=0

M

∑
y=0

p(y|x) log
p(y|x)p(x)

q(x,y)

∂ p(x)

∂θ i
. (28)

In matrix notation, let pX denote the column matrix

of probabilities p(x), PY |X the M × N transition ma-

trix, and PY,X and QY,X the joint probability matrices

of p(x,y) and q(x,y), respectively. Subscript positions

of X and Y are used to index rows and columns, so

PY,X = (PX ,Y )T . Using this notation, the gradient ∇D

can be computed by

PY,X = PY |X ◦ (pX

[

1 · · · 1
]

)T , (29)

TY,X = pY |X ◦ (logPY,X − logQY,X), (30)

∇D =







−1 1 0
...

. . .

−1 0 1






TX ,Y







1
...

1






, (31)

where the logarithms are taken elementwise over the

matrices PY,X and QY,X .

The G−1 matrix is the same as in the previous sec-

tions, since it is computed for p(x) alone. Then, the

natural gradient is given, as in equation (11).

A low dimensional problem was setup for illustra-

tive purposes where PX ,Y and QX ,Y are 3×2 matrices.

Figure 2 shows the parameter evolutions in both meth-

ods (standard and natural gradient).

Here, the cost D
(

p(x,y)‖q(x,y)
)

does not converge

to zero since there is no distribution p(x) satisfying

p(x)p(y|x) = q(x,y), as was the case in example 1.

Example 3 This example addresses a more complex

optimization problem. We seek to minimize, as before,

the K-L divergence D(p‖q). The difference, here, is the

highly dimensional nature of p and q and the intricate

structure of p. Assume that the distribution p results
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Figure 3. Target q(x0:T ,y1:T ) (continuous curve)
and histogram obtained in closed loop simula-

tion using the optimal controller.

from the Markov chain

p(x0:T ,y1:T ) = p(x0)
T

∏
i=1

p(yi|xi−1)p(xi|xi−1,yi), (32)

where p(yi|xi−1) is free for all i = 1, . . . ,T , while the

remaining transition probabilities are fixed. This kind

of formulation arises in design of probabilistic control

systems, where p(yi|xi−1) is the controller generating a

signal Y given the observation X. The remaining fixed

transition probabilities p(xi|xi−1,yi) are a model of the

process for which the control system is designed. This

process has an external input Y , generated by the con-

troller, and an internal state X.

Without diving into the details of the solution, it

briefly consists in the division of the control horizon

T into a sum of costs. This can be achieved using K-

L decomposition properties and dynamic programming.

The resulting algorithm requires an iterative approach

for each instant i in the horizon. This is where the nat-

ural gradient enters into action: optimizing p(yi|xi−1),
T times, one for each i in the control horizon.

For illustrative purposes, a first order unstable sys-

tem was sampled by an 8 bit A/D converter, for which

a “controller” p(yi|xi−1) is to be found such that the

closed loop behavior is as close as possible (in K-L

sense) to a desired q(x0:T ,y1:T ).
With the above framework, a target p.m.f q was de-

fined such that variables X and Y have probabilities as

indicated in figure 3, where the stationary marginal dis-

tribution q(x) was selected to be bimodal. In this ex-

ample, the initial optimization by the natural gradient

method discovered a 256×256 transition matrix in 9 it-

erations, starting from a uniform distribution and using

adaptive step-size ensuring a decreasing cost (not line

search). The following optimizations for the remain-

ing control horizon took successively less iterations.

This amounts to a grand total of 256× 256× 200 =
13107200 parameters being discovered in under 13 sec-

onds on a today’s desktop computer.

7. Conclusions

This paper presented an application of the natural

gradient learning method to discover discrete probabil-

ity mass functions. It was shown that the natural gradi-

ent can be obtained in a computationally very efficient

and numerically robust way. It was also shown that the

natural gradient is strongly tied to the geometrical struc-

ture of the underlying space and, as a consequence, its

flow is always feasible. It is, for this reason, much eas-

ier to apply than constrained optimization methods.

Furthermore, when the optimizing function is the

K-L divergence, the natural gradient method becomes a

quasi-Newton method and is therefore much faster than

the standard gradient near the solution.

Three examples were presented with increasing

level of complexity. The first two, of low dimen-

sion, illustrate the trajectories followed in comparsion

to the standard gradient, while the third showed that the

method works well for highly dimensional problems.
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[7] E. Nováková and M. Kárný. Fully probabilistic control

design for markov chains. In European Control Confer-

ence, 1997.

203

Authorized licensed use limited to: INESC. Downloaded on April 6, 2009 at 09:37 from IEEE Xplore.  Restrictions apply.


