
An Argumentation-Based Negotiation for Distributed
Extended Logic Programs�

Iara Carnevale de Almeida1,2 and José Júlio Alferes1

1 CENTRIA, Universidade Nova de Lisboa
2829-516 Caparica, Portugal

{ica|jja}@di.fct.unl.pt
2 Department of Computer Science, Universidade de Évora

Colégio Luis Verney; 7000-671 Évora, Portugal
ica@di.uevora.pt

Abstract. The paradigm of argumentation has been used in the literature to as-
sign meaning to knowledge bases in general, and logic programs in particular.
With this paradigm, rules of a logic program are viewed as encoding arguments
of an agent, and the meaning of the program is determined by those arguments
that somehow (depending on the specific semantics) can defend themselves from
the attacks of other arguments.

Most of the work on argumentation-based logic programs semantics has fo-
cused on assigning meaning to single programs. In this paper we propose an
argumentation-based negotiation semantics for distributed knowledge bases rep-
resented as extended logic programs that extends the existing ones by consider-
ing sets of (distributed) logic programs, rather than single ones. For specifying the
ways in which the various logic programs may combine their knowledge we make
use of concepts that had been developed in the areas of defeasible reasoning, dis-
tributed knowledge bases, and multi-agent setting. In particular, we associate to
each program P a cooperation set (the set of programs that can be used to com-
plete the knowledge in P ) and the argumentation set (the set of programs with
which P has to reach a consensus).

1 Introduction

The ability to view logic programming as a non-monotonic knowledge representation
language brought to light the importance of defining clear declarative semantics for
logic programs, for which proof procedures (and attending implementations) are then
defined. This work is by now well established and consolidated in what concerns the
semantics of single logic programs, in particular approaches where the argumentation
metaphor is used for providing such clear declarative semantics e.g. [6,11,3,16,15,10].
This metaphor seems adequate too for modelling situations where there are distrib-
uted logic programs, each with some ‘knowledge about the world’, that might negotiate
in order to determine the truth value of common conclusions. However, the previous
mentioned works do not directly address this issue.

� The work was partially supported by the Brazilian CAPES, and by the European Commission
within the 6th Framework Programme project REWERSE, number 506779.

K. Inoue, K. Satoh, and F. Toni (Eds.): CLIMA VII, LNAI 4371, pp. 191–210, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



192 I.C. de Almeida and J.J. Alferes

In this paper we propose an argumentation-based negotiation semantics for sets of
knowledge bases distributed through a multi-agent setting (MAS). In it different agents
may have independent or overlapping knowledge bases Kb, each Kb being represented
by an extended logic program with denials. If all such agents have complete access to
the knowledge bases of all other agents, then they should be able to build arguments
using rules of others (cooperate) and would have to defend their arguments against
arguments build by the others (argue). In this case, the semantics of argumentation-
based negotiation framework should coincide with the semantics of the union of the
knowledge bases, viewed as a single one. Here we want to deal with cases where the
semantics of multi setting does not necessarily coincide with the union. The basis of
our proposal is that agents negotiate by exchanging parts of their knowledge to obtain
a consensus concerning the inference of an agent’s beliefs. Furthermore, our proposal
allows modelling of multi setting with different kinds of purposes. For instance each
agent may represent “acquired knowledge” in different periods of time, and we want
to know the truth value of some agent’s belief in a specific period of time. Another
example is when the whole set represents a kind of hierarchy of knowledge such as
an organisation where each agent has incomplete (or partial) knowledge of the overall
process. Yet another, when we want to “organise” the knowledge about taxonomy into
different agents and so represent their natural relation of preferences.

Moreover, a multi-agent setting A might have the agent’s knowledge base physically
distributed over a computer network. Therefore, an agent Ag of A does not need to, and
sometimes cannot, argue and/or to cooperate with all agents in A. In our proposal, we
state that every agent Ag in A has associated two sets of agents: the set of agents with
which it can cooperate in order to build arguments, and the set of agents with which
it must defend from attacks (argue) in order to reach some consensus. In general, little
is assumed about these sets: we only impose that every agent argues and cooperates
with itself because it would make little sense for an agent neither to access its own
knowledge nor to obtain a consensus based upon its own knowledge.

The ability of associating these sets to each agents provides a flexible framework
which, besides reflecting the possibly existing physical network, may serve for diffe-
rent purposes as the ones above. For example, for modelling knowledge over a hierarchy
where each node of the hierarchy is represented by a Kb that cooperates with all its in-
feriors, and must argue with all its superiors. Another example is modelling knowledge
that evolves. Here the “present” can use knowledge from the “past” unless this knowl-
edge from the past is in conflicting with later knowledge. This can be modelled by
allowing any present node to cooperate with its past nodes, and forcing any past node
to argue with future nodes. In all these cases, it is important that the knowledge is not
flattened, as in the union of all knowledge bases, and that the semantics is parametric on
the specific Kb. I.e. it might happens that an argument is acceptable in a given (agent)
Kb, and not acceptable in another (agent) Kb of the same system.

As with other argumentation based frameworks (e.g. the ones mentioned above) the
semantics is defined based on a notion of acceptable arguments, this notion being it-
self based on an attacking relation among arguments. Moreover, as in [12], based on
acceptability, all arguments are assigned a status: roughly, justified argument are those
that are always acceptable; overruled arguments are those that are attacked by a justified



An Argumentation-Based Negotiation for Distributed Extended Logic Programs 193

argument; other arguments (that may or may not be acceptable but are not attacked by
a justified one) are called defensible.

It is also a goal of the proposed framework to be able to deal with mutually inconsis-
tent, and even inconsistent, knowledge bases. Moreover, when in presence of contradic-
tion we want to obtain ways of multi-agent setting reasoning, ranging from consistent
(in which inconsistencies lead to no result) to paraconsistent. For achieving this, the
agents may exchange strong or weak arguments, as it is made clear below. This also
yield a refinement of the possible status of arguments: justified arguments may now be
contradictory, based on contradiction or non-contradictory.

In the next section we define the declarative semantics of the proposed framework.
The paper continues by showing some properties of the framework, namely properties
that relate it to extant work on argumentation and on other semantics for logic programs.
We then present a couple of illustrative examples, and end with some conclusions. For
lack of space all proofs have been removed from this version of the paper.

2 Declarative Semantics

As motivated in the introduction, in our framework the knowledge bases of agents are
modelled by logic programs. More precisely, we use Extended Logic Program with de-
nials, itself an extension of Extended Logic Programs [7], for modelling the knowledge
bases. Formally:

Definition 1 (Language). An alphabet B of a language L is a finite disjoint set of
constants and predicate symbols. Moreover, the symbol ⊥ /∈ B.

An atom over B is an expression of the form p(t1, . . . , tn) where p is a predicate
symbol of B and the ti’s are terms. A term over B is either a variable or a constant.
An objective literal over B is either an atom A or its explicit negation ¬A. A default
literal over B is of the form not A where A is an objective literal. A literal is either an
objective literal or a default literal. By not {L1, . . . , Ln} we mean the set of default
literals {not L1, . . . , not Ln}. By (negative) hypothesis of an objective literal L we
mean not L. By explicit complement of an objective literal L we mean ¬L if L is an
atom, or A if L = ¬A.

A term (resp. atom, literal) is called ground if it does not contain variables. By the
Extended Herbrand Base H of B, H(B), we mean the set of all ground objective literals
of B.

Definition 2 (Extended Logic Program with Denials). An extended logic program
with denials (ELPd) over a language L is a (finite) set of (ground) rules of the form

L0 ← L1, . . . , Ll, not Ll+1, . . . , not Ln (0 ≤ l ≤ n)

or of denials of the form

⊥ ← L1, . . . , Ll, not Ll+1, . . . , not Ln (0 ≤ l ≤ n)

where each Li (0 ≤ i ≤ n) is an objective literal of L. A rule is ground if all literals
are ground. As usual L0 is called the head, and L1, . . . , not Ln the body of the rule. If
n = 0 the rule is called a fact and the arrow symbol is omitted.



194 I.C. de Almeida and J.J. Alferes

Besides the knowledge base, in our framework each argumentative agent Ag in a multi-
agent setting A must have a unique identity of Ag in A, and two sets of agents’ iden-
tifiers corresponding to argumentative and cooperative agents with Ag, respectively.
Moreover, the identity of Ag is in both sets of argumentative and cooperative agents
with Ag:

Definition 3 (Argumentative Agent). An argumentative agent (or agent, for short)
over a language L and a set of identifiers Ids is a tuple

Ag =< α, Kbα, Argueα, Cooperateα >

where α ∈ Ids, Kbα is an ELPd over L, Argueα ⊆ Ids and Cooperateα ⊆ Ids such
that α ∈ Argueα and α ∈ Cooperateα.

We denote by Id(Ag) (resp. KbId(Ag), ArgueId(Ag) and CooperateId(Ag)), the 1st
(resp. 2nd, 3rd and 4th) position of the tuple Ag, and by H(Id(Ag)) the set of all atoms
and explicitly negated atoms of KbId(Ag).

Hereafter, we say ‘arguments from CooperateId(Ag) (or ArgueId(Ag))’ instead of ‘ar-
guments from agents whose identities are in CooperateId(Ag) (or ArgueId(Ag))’.

Definition 4 (Multi-agent argumentative setting). Let L be a language, and Ids be
a set of identifiers. A Multi-Agent argumentative setting (or Multi-Agent setting, for
short) A is a set of agents

A = {Ag1, . . . , Agn}
such that all of the Agis are agents over L and Ids, and no two Agis have the same
identifier. The Extended Herbrand Base of A, H(A), is the union of all H(αi) such that
αi ∈ Ids.

An argument, of an agent Ag, for some objective literal L is a complete well-defined
sequence concluding L over the set of rules of Ag’s knowledge base. A complete
sequence of rules means that all required rules are in the sequence. A well-defined
sequence means a (minimal) sequence of rules concluding some L. For dealing with
consistent and paraconsistent reasoning, we define strong and weak arguments, based
on strong and weak sets of rules, the former being simply the rules in the Kbs of agents.
A weak set of rules results from adding to rule bodies the default negation of the head’s
complement, and of ⊥, thus making the rules weaker (more susceptible to being con-
tradicted/attacked).

Definition 5 (Strong and Weak Sets of rules). Let L be a language, and P be an ELPd
over L. The strong set of rules of P is Rs

P = P and the weak set of rules of P is

Rw
P = { L ← Body, not ¬L, not ⊥ | L ← Body ∈ P }

We say RP is a set of rules, if it is either a strong or a weak set of rules of P .

A well-defined sequence for an objective literal L is then built by chaining rules as fol-
lows: the head of the last rule in the chain is L; furthermore, if some atom L′ (ignoring
default literals) appears in the body of a rule then there must be a rule before this one
with L′ in the head; moreover, the sequence must not be circular and only use rules that
are strictly necessary.



An Argumentation-Based Negotiation for Distributed Extended Logic Programs 195

Definition 6 (Well-defined Sequence). Let P be an ELPd, and L ∈ H(P ). A well-
defined sequence for L over a set of (ground) rules S is a finite sequence [r1; . . . ; rm]
of rules ri from S of the form Li ← Bodyi such that:

– L is the head of the rule rm, and
– an objective literal L′ is the head of a rule ri (1 ≤ i < m) only if L′ is not in the

body of any rk (1 ≤ k ≤ i) and L′ is in the body of some rj (i < j ≤ m)

We say that a well-defined sequence for L is complete if for each objective literal L′ in
the body of the rules ri (1 ≤ i ≤ m) there is a rule rk (k < i) such that L′ is the head
of rk .

Since we are concerned with modelling knowledge bases distributed over a multi-agent
setting, partial arguments of Ag for L must be considered. In fact, an agent alone might
not have in its knowledge base enough rules to form a complete argument, but may
have part of an argument (a partial argument) that can be complete with knowledge
from other agents with which it is able to cooperate. By a partial argument of Ag for L
we mean a non-complete well-defined sequence for L, called SeqL, over the set of rules
of Ag’s knowledge base. The (both complete and partial) arguments of Ag built only
with its own rules are called local arguments of Ag. Since we want to deal with local
partial arguments, an argumentation-based semantics with cooperation is proposed. By
argumentation, we mean the evaluation of arguments to obtain a consensus about a
common knowledge; by cooperation, we mean the granting of arguments to achieve
knowledge completeness.

Definition 7 (Local (Partial or Complete) Argument). Let A be a MAS, Ag be an
agent in A, α = Id(Ag), Kbα be the ELPd of Ag, Rs

α (resp. Rw
α ) be the strong (resp.

weak) set of rules of Kbα, and L ∈ H(A).
A strong (resp. weak) local partial argument of α for L is a pair (α, SeqL) such

that SeqL is a well-defined sequence for L over Rs
α (resp. Rw

α ). A strong (resp. weak)
local complete argument of α for L is any strong (resp. weak) partial local argument
(α, SeqL) such that SeqL is complete and non-empty. We say that (α, SeqL) is a k-
local argument of α for L, LAk

α(L), if it is either a local partial argument or a local
complete argument over Rk

L of α for L (where k is either s, for strong arguments, or w,
for weak ones).

The set of local arguments of Ag contains all possible local (complete and partial)
arguments over Ag’s knowledge base.

Definition 8 (Set of Local Arguments). Let A be a MAS, and α be an agent’s identity
in A. The set of k-local arguments of α is:

LAk
A(α) =

⋃
L ∈ H(A)

LAk
α(L)

where LAs
α(Li) (resp. LAw

α (Li)) is the set of all strong (resp. weak) local arguments
of α for Li. Local arguments of α are

LAA(α) = LAs
A(α) ∪ LAw

A(α)

and we denote by LA(A) the union of all local arguments of agents in A.



196 I.C. de Almeida and J.J. Alferes

Note that an agent Ag in a multi-agent setting A is able to build arguments for an
objective literal L in H(A) even when Ag has no knowledge about such L (i.e. there is
no rule L ← Body in KbId(Ag)). This is so because empty sequences are not ruled out
by Definition 7. Now, partial arguments of an agent may be completed with the “help”
of a sets of (complete and partial) arguments from CooperateId(Ag).

To complete a local partial argument of an agent Ag with (partial or complete) argu-
ments from CooperateId(Ag), we need first to define an operator to concatenate these
arguments in terms of well-defined sequences1.

Definition 9 (Operator +). Let 1 ≤ i ≤ n, Seqi is a well-defined sequence for an
objective literal Li, and Ri be the set of all rules in Seqi.

The concatenation Seq1 + . . . + Seqn is the set of all well-defined sequences for Ln

over
⋃n

i=1 Ri.

We introduce cooperation by defining a set of available arguments of an agent Ag given
a set S of (complete or partial) arguments. Every (complete or partial) argument of Ag
in S is considered an available argument of Ag. Moreover, if a partial argument for an
objective literal L of Ag may be further completed with arguments in S belonging to
CooperateId(Ag), this further completed argument is also available.

Definition 10 (Set of Available Arguments). Let A be a MAS and α be an agent’s
identity in A. The set of available arguments given a set S of arguments, Av(S), is the
least set such that:

– if (α, SeqL) ∈ S then (α, SeqL) ∈ Av(S), and
– if ∃{(β1, SeqL′), . . . , (βi, SeqL)} ⊆ Av(S) and {β1, . . . , βi} ⊆ Cooperateα then

for any NSeqL ∈ SeqL′ + . . . + SeqL, (α, NSeqL) ∈ Av(S)

where α, β1, . . . , βi are agent’s identifiers in A. Let LA(A) be the set of local argu-
ments of A. We denote by Args(A) the set of available arguments of A given LA(A),
and dub it the set of all available arguments in A. Members of Args(A) will be called
arguments.

As mentioned in the Introduction, we are concerned with obtaining ways of reasoning
in a multi-agent setting, ranging from consistent to paraconsistent. For this, the agents
cooperate and argue by exchanging strong and weak arguments. We assume that every
proponent (resp. opponent) agent in a given multi-agent setting exchanges arguments
in the same way, i.e. every proposed (resp. opposing) argument is a strong or weak
argument. The following two properties reinforce such an assumption. According to
the first property, every available argument is of the same kind, strong or weak, as the
given set of arguments. From the second property, we see that an agent might have all
arguments from its cooperative agents.

Proposition 1. If S is a set of strong (resp. weak) arguments, then Av(S) is also a set
of strong (resp. weak) arguments.

1 In short, several distinct well-defined sequences are obtained when concatenating two or more
well-defined sequences. Furthermore, we can obtain well-defined sequences that are not in fact
complete.



An Argumentation-Based Negotiation for Distributed Extended Logic Programs 197

Proposition 2. Any available argument (β, SeqL) of β for L is an available argument
(α, SeqL) of α for L iff β ∈ Cooperateα.

The following example illustrates how available arguments are built via operator +.
This example also depicts available arguments built by agents that are not directly in-
terrelated, i.e. there is an “indirect cooperation” between such agents.

Example 1. Let be A = {Ag1, Ag2, Ag3} such that each agent is

Ag1 = < 1, {a ← b}, {1}, {1} >
Ag2 = < 2, {c ← not b}, {2}, {1, 2} >
Ag3 = < 3, {b; d ← not a}, {3}, {2, 3} >

The set of strong local arguments of A is

LAs(A) =

⎧⎨
⎩

(1, []), (1, [a ← b]),
(2, []), (2, [c ← not b]),

(3, []), (3, [b]), (3, [d ← not a])

⎫⎬
⎭

For simplicity, we call LAs(A) as S. Based on the first condition of Definition 10, every
argument in S is an available argument, i.e. Av(S) = S. Based on the second condition
of Definition 10, we further obtain the following available arguments:

– (1, [c ← not b]) because {(2, [c ← not b]), (1, [])} ⊂ Av(S);
– since {(3, [b]), (2, [])} ⊂ Av(S), (2, [b]) ∈ Av(S).

Similarly (2, [d ← not a]) ∈ Av(S), because {(3, [d ← not a]), (2, [])} ⊂ Av(S);
– as a consequence, (1, [b]) and (1, [d ← not a]) are available arguments because

{(2, [b]), (1, [])} ⊂ Av(S) and {(2, [d ← not a]), (1, [])} ⊂ Av(S), respectively;
– because {(1, [a ← b]), (1, [b])} ∈ Av(S), (1, [b; a ← b]) ∈ Av(S) 2.

The least set of available arguments of A given LAs(A) is

Av(LAs(A)) = LAs(A) ∪ { (1, [c ← not b]), (2, [b]), (2, [d ← not a]),
(1, [b]), (1, [d ← not a]), (1, [b; a ← b]) }

From Definition 10, Args(A) contains all available arguments of an agent Ag built via
cooperation with agents in CooperateId(Ag). However, some of these arguments might
not be acceptable with respect to arguments in Args(A) from ArgueId(Ag). We now
describe how a negotiation process should be performed, where cooperation and argu-
mentation are interlaced processes. Initially, assume that an available argument A of Ag
is acceptable w.r.t. a set of arguments S if every argument against A from ArgueId(Ag)
is attacked by an argument in S. Intuitively, if an agent Ag builds an available argument
A by concatenating its local partial argument with arguments from CooperateId(Ag),

2 (1, [b; a ← b]) can also be obtained from the set of available arguments

{(1, [a ← b]), (2, [b])}

Both ways to complete the local partial argument (1, [a ← b]) of agent Ag1 are correct, but
the former is less intuitive. So, we prefer to illustrate it in the former way.



198 I.C. de Almeida and J.J. Alferes

then A must be evaluated by every argumentative agent in ArgueId(Ag). It means that
each argumentative agent Aga should try to build an available argument CA against A.
Two situations may occur:

1. Aga argues and cooperates only with itself. If Aga cannot build a complete argu-
ment CA by itself, and since there is no other agent to cooperate with Aga, Aga

cannot argue against A. On the other hand, if CA is built by Aga, Aga does not
need evaluation of CA by any other agent than itself, and so Aga might use its
argument against A; or

2. Aga argues and/or cooperates with other agents. In such a case, to build a CA
may require the concatenation of arguments from CooperateId(Aga) and then the
evaluation of CA by agents in ArgueId(Aga). The argumentative process for CA
of Aga finishes when the acceptability of CA with respect to arguments from
ArgueId(Aga) is obtained.

Independently of which situation occurs for each Aga ∈ ArgueId(Ag), if there exists
at least one acceptable argument CA from ArgueId(Ag) against the available argument
A of Ag, then A is not acceptable (with respect to ArgueId(Ag)); otherwise, A is an
acceptable argument.

The following example illustrates the above informal description.

Example 2. Let be A = {Ag1, Ag2, Ag3, Ag4, Ag5, Ag6} such that each agent is

Ag1 = < 1, {a ← not b, c; c}, {1, 2, 3}, {1} >
Ag2 = < 2, {b ← not d, f}, {2, 5}, {2, 4} >
Ag3 = < 3, {b ← d}, {3}, {3} >
Ag4 = < 4, {f}, {4}, {4} >
Ag5 = < 5, {d ← not g}, {5, 6}, {5} >
Ag6 = < 6, {g}, {6}, {6} >

Assume that Ag1 needs to deduce the acceptability of an argument for a. These
are the steps to the solution: Ag1 should have an argument for the objective literal a
and such an argument must be acceptable w.r.t. Argue1 = {2, 3}. Since Ag1 has an
argument As

1(a) = (1, [c; a ← not b, c]), Ag2 and Ag3 should have an argument against
As

1(a).

1. Ag3 does not have any argument against As
1(a) because it has only a partial argu-

ment for b and there is no argument from Cooperate3 to complete it.
2. Ag2 has a partial argument for b that can be completed by Ag4’s argument for f ,

i.e. As
2(b) = (2, [f ; b ← not d, f ]) ∈ (2, [b ← not d, f ])+(4, [f ]). So, Ag5 should

have an argument against As
2(b).

(a) Ag5 has the argument As
5(d) = (5, [d ← not g]), and now agent Ag6 should

have an argument against As
5(d).

i. Ag6 has the argument As
6(g) = (6, [g]). The argument As

6(g) is, therefore,
acceptable because there is no argument from Argue6 against it.

Thus, As
5(d) is not acceptable because it is attacked by As

6(g).
Since Ag5 has no acceptable argument against As

2(b), As
2(b) is an acceptable argu-

ment w.r.t. arguments from Argue2.



An Argumentation-Based Negotiation for Distributed Extended Logic Programs 199

Finally, As
1(a) is not acceptable because there is at least one acceptable argument from

Argue1 against it, viz. As
2(b).

We proceed by exposing the required definitions for this informal description. First of
all, it is necessary to determine the available arguments that can be used to attack. As
expected, only complete arguments in Args(A) should be considered. These arguments
are called attacking arguments.

Definition 11 (Attacking Argument). Let A be a MAS, α an agent’s identity in A, and
S ⊆ Args(A). (α, Seq) is an attacking argument given S iff it is a complete argument
and belongs to Av(S). If (α, Seq) is either a s-argument or a w-argument, we refer to
it by s-attacking or w-attacking argument, respectively.

Intuitively, both strong and weak arguments can be attacked in the same way. Since a
(weak or strong) argument makes assumptions, other arguments for the complement of
one such assumption may attack it. In other words, an argument with not L can be at-
tacked by arguments for L. This definition of attack encompasses the case of arguments
that are directly conflicting, e.g. an argument for L (with not ¬L) can be attacked by an
argument for ¬L. The previous claim that any weak argument Aw

α (L) = (α, Seqw
L ) (and

also a strong argument As
α(L) = (α, Seqs

L) which verifies not ⊥ ∈ Assump(Seqs
L))

can be attacked by every argument for ⊥. However, it does not make sense to attack
arguments for objective literals if they do not lead to falsity. By “an objective literal
L leads to falsity” we mean that there is an argument Aα(L) such that Aβ(⊥) is built
based on such an argument, e.g.

As
β(⊥) : As

α(L) + [⊥ ← L, not L′]

We only consider objective literals that are in the body of the rule for ⊥ because these
literals immediately lead to falsity. We assume that the involvement of other objective
literals are not as strong as those in the body of the denial3. Then objective literals are
directly conflicting with Aβ(⊥) if the following holds:

Definition 12 (Directly Conflict with A⊥). Let Aβ(⊥) be an argument of β for ⊥,
‘⊥ ← Body’ be the rule in Aβ(⊥) and {L1, . . . , Ln} be the set of all objective literals
in Body. The set of objective literals directly conflicting with Aβ(bot) is

DC(Seq⊥) = {⊥} ∪ {L1, . . . , Ln}

If an argument of α for L has a default negation not L′ in it, any argument for L′

attacks Aα(L) (by undercut [11]). The other attacking relation (called rebut [11]) states
that an argument also attacks another one when both arguments have complementary
conclusions (i.e. one concludes L and the other ¬L). With strong and weak arguments,
rebut can be reduced to undercut4. So, we can say informally that “an argument of α

3 We further assume they can be detected in a process of “belief revision”, e.g. [4]. However, a
discussion of this issue is beyond the scope of this proposal.

4 This simplification has been proposed in [3,5,14]. [3] defines a methodology for transforming
non-exact, defensible rules into exact rules with explicit non-provability conditions and shows
that this transformation eliminates the need for rebuttal attacks and for dealing with priori-
ties in the semantics. In [14,5], it is proposed that “attacks” can be reduced to “undercut” by
considering weaker version of arguments.



200 I.C. de Almeida and J.J. Alferes

for a conclusion L attacks an argument of β with an assumption not L”. Such a “notion
of attack” shows that we need to make both the conclusions and the assumptions of an
argument precise before defining an attack.

Definition 13 (Conclusions and Assumptions). Let Aα(L) = (α, SeqL) be an ar-
gument of α for L. The conclusions of Aα(L), Conc(SeqL), is the set of all objec-
tive literals that appear in the head of rules in Aα(L). The assumptions of Aα(L),
Assump(SeqL), is the set of all default literals appearing in the bodies of rules in
Aα(L).

Intuitively, we want to define attack in terms of both attacking and available arguments.
However, we still need to determine which attacking arguments can be used to attack
available ones. Moreover, to prevent cyclic definitions, an attack is defined only in terms
of arguments.

Definition 14 (Attack). Let A be a MAS, α and β be agent’s identifiers in A, and
Argueα be the α’s set of argumentative agents. An argument (β, SeqL1) of β for L1
attacks an argument (α, SeqL2) of α for L2 iff

– β ∈ Argueα; and
– SeqL1 is a well-defined sequence over Rβ , or α ∈ Argueβ and

SeqL1 ∈ SeqL2 + Seq′L1

where Seq′L1
is a well-defined sequence for L1 over Rβ; and

– L1 is the symbol ⊥, not ⊥ ∈ Assump(SeqL2) and L2 ∈ DC(SeqL1), or L1 is an
objective literal different from ⊥ and not L1 ∈ Assump(SeqL2).

Recall that, as with other argumentation based frameworks the semantics is defined
based on a notion of acceptable arguments, where a set of arguments is acceptable if
any argument attacking it is itself attacked by the set. Now, in this distributed setting,
care must be taken about which arguments can be used to attack a set of arguments, and
which arguments are available for being used to defend the attacks. Before presenting
the definition of acceptable arguments we motivate for the definition in such a distrib-
uted setting. Moreover, note that the above definition of attack has a condition that
foresees cases where “indirect cooperation” between argumentative agents is needed.
The following example illustrates such a situation.

Example 3. Consider A = {Ag1, Ag2} where:

Ag1 = < 1, {c; a ← c, not b}, {1, 2}, {1} >
Ag2 = < 2, {b ← c; z ← not a}, {1, 2}, {2} >

The set of available arguments of A given LA(A) is

Args(A) = {As
1(c), A

s
1(a), PAs

2(b), A
s
2(z)}

Moreover, from Definition 14, the complete argument As
1(a) attacks As

2(z) and the
partial argument PAs

2(b) attacks As
1(a). However, we only want attacking arguments



An Argumentation-Based Negotiation for Distributed Extended Logic Programs 201

(i.e. complete arguments) to be used to determine the acceptability of an argument w.r.t.
Args(A) . Then, PAs

2(b) will not be used and, consequently, As
2(z) is not acceptable.

Nevertheless, As
1(a) has a rule for c that can be used to complete PAs

2(b). If agent Ag2
may ‘use’ such a rule from As

1(a) to complete its partial argument PAs
2(b), Ag2 has an

argument
(2, [c; b ← c])

that can be used against As
1(a). Therefore, As

2(z) is acceptable w.r.t. Args(A).

At this point, it is quite clear that we should evaluate available arguments of a multi-
agent setting A to conclude which of them are acceptable with respect to a set S of
arguments (that are already considered acceptable with respect to a set of arguments
from A). However, should an argument of an agent Ag be acceptable in ArgueAg if
such an argument is to be used in a cooperation process? For instance, consider:

Ag1 = < 1, {q ← a; c}, {1}, {1, 2} >

Ag2 = < 2, {a ← not b; b ← not a, not c}, {2}, {2} >

and assume that every argument in LA(A) is a strong argument.
For having an acceptable argument for q in Ag1, Ag1 must complete its available

argument for q, viz. PAs
1(q) = (1, [q ← a]). Agent Ag2 has an available argument for

a, As
2(a) = (2, [a ← not b]). However, Ag2 has also an attacking argument As

2(b) =
(2, [b ← not a, not c]) against As

2(a). Two possible approaches can deal with this
situation:

1. since both arguments attack each other, neither As
2(a) nor As

2(b) are acceptable in
Argue2, and so As

2(a) cannot be used to complete PAs
1(q); or

2. since there is no acceptable argument in Argue2 attacking As
1(a), it is defensi-

ble. Furthermore, As
1(a) is used to complete PAs

1(q) and so the resulting available
argument is

As
1(q) = [a ← not b; q ← a]

However, As
1(q) should be evaluated by Argue1. Via cooperation, Ag1 has an at-

tacking argument
As

1(b) = (1, [b ← not a, not c])

against As
1(q). But Ag1 has also an attacking argument As

1(c) = (1, [c]) against
As

1(b) which no argument attacks. Thus, As
1(c) = (1, [c]) is acceptable and, con-

sequently, As
1(b) is not acceptable (both with respect to arguments from Argue1).

Therefore, As
1(q) is acceptable with respect to arguments from Argue1.

The second approach allows us to draw more acceptable arguments than the first
one. In fact, the arguments evaluated are acceptable if we consider the overall agent’s
knowledge. Moreover, this approach is more credulous than the first one. Therefore,
we follow the latter and define that for a given agent Ag in a multi-agent setting A, an
agent Agc ∈ CooperateId(Ag) cooperates with an available argument A under one of
the following conditions: (i) A is not attacked by any argument from ArgueId(Agc), or
(ii) A is attacked, but every attacking argument B against A is attacked by some argu-
ment from ArgueId(Agc). In both cases, A is considered a defensible argument. The



202 I.C. de Almeida and J.J. Alferes

following operator defines which are the defensible arguments, given a set of available
arguments of a multi-agent setting. In the remainder, we use the notation p and o to
distinguish the proposed argument from the opposing one, i.e. p (resp. o) is a (strong or
weak) proposed (resp. opposing) argument.

Definition 15 (Operator Defp,o(S)). Let A be a MAS, Args(A) be the set of avail-
able arguments of A, S ⊆ Args(A) be a set of p-arguments. Defp,o(S) is the set of
all o-arguments of Args(A) that are not attacked by any attacking argument given S.
Arguments in Defp,o(S) are called defensible arguments.

Assume that arguments in the set of defensible arguments are opposing arguments,
and every argument in a set of available arguments is a proposed argument. Now we
can determine how available p-arguments are acceptable with respect to a set S of p-
arguments from Args(A), such that S is a pre-defined set of acceptable arguments. In
order to determine the set of acceptable arguments with respect to S, the following steps
must be performed:

1. obtain the opposing arguments via Def = Defp,o(S). This encompasses the fol-
lowing two sub-steps:
(a) get the set Atts of p-attacking arguments given S, i.e. the complete arguments

in Av(S). This sub-step also allows p-partial arguments in S to be completed
by arguments in S and so new p-arguments are built;

(b) reject o-arguments in Args(A) that are attacked by arguments in Atts.
2. obtain the proposed (partial or complete) arguments given S, i.e. Av(S). This sub-

step also allows p-partial arguments to be completed by arguments in S and so new
p-arguments are built.

3. determine which are (i) the opposing arguments attacking some proposed argument
and (ii) the opposing arguments attacked by arguments in S.

Definition 16 (Acceptable Argument). Let A be a MAS, Args(A) be the set of ar-
guments of A, S ⊆ Args(A) be a set of p-arguments, and α, β, and γ be agent’s
identifiers in A. A p-argument (α, SeqL) for a literal L is acceptablep,o w.r.t. S iff (i)
it is either a local argument, or it belongs to the set of available arguments given S;
and (ii) for any o-attacking argument (β, SeqL′) for a literal L′ given Defp,o(S): if
(β, SeqL′) attacks (α, SeqL) then there exists a complete p-argument (γ, SeqL′′) for a
literal L′′ in S that attacks (β, SeqL′).

We now formalise the concept of acceptable arguments with a fixpoint theory and also
define a characteristic function p o of multi-agent setting A over a set of acceptable
arguments S as follows:

Definition 17 (Characteristic Function). Let A be a MAS, Args(A) be the set of
available arguments of A, and S ⊆ Args(A) be a set of p-arguments. The characteris-
tic function p o of A over S is:

F p,o
A : 2Args(A) → 2Args(A),

F p,o
A (S) = {Arg ∈ Args(A) | A is acceptablep,o w.r.t. S}



An Argumentation-Based Negotiation for Distributed Extended Logic Programs 203

We can see that, if an argument A is acceptablep,o w.r.t. S, A is also acceptablep,o

w.r.t. any superset of S. In fact, it can be shown that Defp,o(S) is anti-monotonic, and
so F p,o

A is monotonic. Being monotonic, it is guaranteed that F p,o
A always has a least

fixpoint (according to the set inclusion ordering over sets of arguments):

Proposition 3. Define for any A the following transfinite sequence of sets of
arguments:

S0 = ∅
Si+1 = F p,o

A (Si)
Sδ =

⋃
α<δ

Sα for limit ordinal δ

1. F p,o
A is monotonic, and so there must exist a smallest λ such that Sλ is a fixpoint of

F p,o
A , and Sλ = lfp(F p,o

A ).

2. If F p,o
A is finitary then lfp(F p,o

A ) = F p,o↑ω

A (∅).

By knowing the set S of all acceptable arguments of A, we can split all complete ar-
guments from Args(A) into three classes: justified arguments, overruled arguments or
defensible arguments. An argument A is justified when A is in S. An argument A is
overruled when A is attacked by at least one argument in S. Finally, an argument A is
defensible when A is attacked by an argument B ∈ Args(A), and neither A nor B are
attacked by acceptable arguments.

Definition 18 (Justified, Overruled or Defensible Argument). Let A be a MAS,
Args(A) be the set of available arguments of A, S ⊆ Args(A), and F p,o

A be the
characteristic function p o of A and over S. A complete p-argument for a literal L of
an agent with identity α is:

– justifiedp,o
A iff it is in lfp(F p,o

A )
– overruledp,o

A iff there exists a justifiedo,p
A o-argument for a literal L′ of an agent β

in A attacking it
– defensiblep,o

A iff it is neither justifiedp,o
A nor overruledp,o

A .

We denote the lfp(F p,o
A ) by JustArgsp,o

A .

Example 4. Let A = {Ag1, Ag2, Ag3} such that each agent is

Ag1 = < 1, { a ← not b }, {1, 2}, {1}} >
Ag2 = < 2, { b ← not c}, {2, 3}, {2} >
Ag3 = < 3, { c ← not a }, {2, 3}, {3}} >

In this example we show how to obtain lfp(F s,s
A (∅)). First of all, we determine the set

of strong local arguments of A:

LAs(A) =

⎧⎨
⎩

(1, []), (1, [a ← not b]),
(2, []), (2, [b ← not c]),
(3, []), (3, [c ← not a])

⎫⎬
⎭

and the set of available arguments of A given LAs(A), i.e Args(A) = LAs(A)



204 I.C. de Almeida and J.J. Alferes

– let S0 = ∅. Since Atts0 = ∅, the set of opposing arguments is

Def0 = Defs,s(S0) = {(1, [a ← not b]), (2, [b ← not c]), (3, [c ← not a])}

The set of proposed arguments is Av(S0) = LAs(A). Then we determine the
following attacks

opposing argument proposed argument
(2, [b ← not c]) (1, [a ← not b])
(3, [c ← not a]) (2, [b ← not c])

(3, [c ← not a])
(1, []), (2, []), (3, [])

So S1 = F s,s
A (S0) = {(3, [c ← not a]), (1, []), (2, []), (3, [])};

– since Atts1 = {(3, [c ← not a])},

Def1 = Defs,s(S1) = {(1, [a ← not b]), (3, [c ← not a])}

The set of proposed arguments is Av(S1) = S1. Despite the opposing argument
As

2(b) = (2, [b ← not c]) attacks the proposed argument (1, [a ← not b]), As
2(b)

is attacked by the acceptable argument (3, [c ← not a]), so

S2 = F s,s
A (S1) = S1 ∪ {(1, [a ← not b])}

– since F s,s
A (S2) = S2, the set of justifieds,s

A arguments is

JustArgss,s
A = {(3, [c ← not a]), (1, [a ← not b]), (1, []), (2, []), (3, [])}.

Argument (2, [b ← not c]) is overruleds,s
A because it is attacked by the justifieds,s

A
argument (3, [c ← not a]). No argument in Args(A) is defensibles,s

A .

3 Properties

Here we assume very little about the sets of argumentative and cooperative agents of an
agent. By imposing restriction on these sets different properties of the whole setting can
be obtained. In particular, as expected, if all agents in a multi-agent setting A argue and
cooperate with all others, then the result is exactly the same as having a single agents
with the whole knowledge:

Theorem 1. Let A be a MAS over L and Ids such that for every agent Ag ∈ A :
CooperateId(Ag) = Ids and ArgueId(Ag) = Ids, and F p,o

A be the characteristic func-
tion p o of A. Let P = {< β, Kbβ, {β}, {β} >} such that

Kbβ =
⋃

αi ∈ Ids

Kbαi

and F p,o
P be the characteristic function p o of P .

Then, for every agent αi ∈ Ids: (αi, Seq) ∈ lfp(F p,o
A ) iff (β, Seq) ∈ lfp(F p,o

P ).



An Argumentation-Based Negotiation for Distributed Extended Logic Programs 205

Corollary 1. If A is as in Theorem 1 then for any pair of agents in A, with identifiers
αi and αj :, (αi, Seq) ∈ lfp(F p,o

A ) iff (αj , Seq) ∈ lfp(F p,o
A ).

However, the semantics at one agent can different from that of the union, as desired:

Example 5. Consider A = {Ag1, Ag2, Ag3} such that each agent is

Ag1 = < 1, { a ← not b }, {1, 2, 3}, {1, 2, 3}} >
Ag2 = < 2, { b ← not c}, {1, 2, 3}, {1, 2, 3} >
Ag3 = < 3, { c ← not a }, {1, 2, 3}, {1, 2, 3}} >

Defs,s(∅) = {(1, []), (2, []), (3, []), (1, [a ← not b]), (2, [a ← not b]), (3, [a ←
not b]), (1, [b ← not c]), (2, [b ← not c]), (3, [b ← not c]), (1, [c ← not a]), (2, [c ←
not a]), (3, [c ← not a])}. The arguments As(a), As(b), and As(c)) are attacked5. As
there is no “counter-attack” to any of those attacks, lfp(F s,s

A (∅)) = JustArgss,s
A = ∅.

No argument in Args(A) is overruleds,s
A , and all of arguments are concluded to be

defensibles,s
A . However, we obtain a different result if we consider that

Ag1 = < 1, { a ← not b }, {1, 2}, {1, 2}} >
Ag2 = < 2, { b ← not c}, {2, 3}, {2, 3} >
Ag3 = < 3, { c ← not a }, {3}, {3}} >

Here Defs,s(∅) = {(1, []), (2, []), (3, []), (1, [a ← not b]), (1, [b ← not c]), (1, [c ←
not a]), (2, [b ← not c]), (2, [c ← not a]), (3, [c ← not a])}, and lfp(F s,s

A (∅)) =
JustArgss,s

A = {As
2(c), A

s
3(c)}. Note here how the result differs also from agent to

agent.

Due to space limitations we do not detail here general properties when some other
weaker restriction are imposed (e.g. imposing transitivity, symmetry in the cooperation
or argumentation set, etc). Instead, we discuss about some properties of JustArgsp,o

A
and comparisons. Since p (resp. o) denote the kind of a proposed (resp. an opposing)
argument, i.e. strong argument or weak argument, assume that p (resp. o) in {s, w}.
Both JustArgsw,w

A and JustArgsw,s
A are both conflict-free6 and non-contradictory7.

Thus, every argument in both JustArgsw,w
A and JustArgsw,s

A is non-contradictory,
i.e. it is not related to a contradiction at all. Furthermore, Fw,w

A has more defensible
arguments than Fw,s

A . Therefore, we obtain a consistent way of reasoning in a multi-
agent setting A if we apply Fw,w

A over Args(A).
In contrast, JustArgss,s

A and JustArgss,w
A may be contradictory. However, to eva-

luate the acceptability of available arguments without considering the presence of fal-
sity or both arguments for L and ¬L, the proposed arguments should be strong ones,
and every opposing argument is a weak argument. Since F s,w

A respects the ‘Coherence

5 For simplicity, since every agent argues with every other, we omit agent identity of the
arguments.

6 A set S of arguments is conflict-free if there is no argument in S attacking an argument in S.
7 A set S of arguments is non-contradictory if neither an argument for falsity nor both arguments

for L and ¬L are in S.



206 I.C. de Almeida and J.J. Alferes

Principle’ of [9,1], i.e. given that every opposing argument is a weak one, it can be at-
tacked by any proposed argument for its explicit negation. Therefore, we obtain a para-
consistent way of reasoning in a multi-agent setting A if we apply F s,w

A over Args(A).
Moreover, a justifieds,w

A argument of an agent in A is related to a contradiction with
respect to JustArgss,w

A :

Definition 19 (Relation to a Contradiction). Let A be a MAS, α and β be agents’
identity in MAS, β ∈ Argueα, and JustArgss,w

A be the lfp(F s,w
A ). A justifieds,w

A s-
argument As

α(L) = (α, SeqL) is:

– contradictorys,w
A if L is the symbol ⊥, or there exists a justifieds,w

A s-argument
(β, Seq⊥) such that L ∈ DC(Seq⊥), or there exists a justifieds,w

A s-argument
(β, Seq¬L); or

– based-on-contradictions,w
A if As

α(L) is justifieds,w
A , it does not exists a justifieds,w

A
s-argument (β, Seq¬L) and As

α(L) is also overruleds,w
A ; or

– non-contradictorys,w
A , otherwise.

As already said, any agent’s belief should be concluded only with respect to both sets of
argumentative and cooperative agents with such an agent. Intuitively, we can conclude
that different truth values of a given literal L over a multi-agent setting A might be
obtained. It happens because it depends on which agent the literal L is inferred from,
and also on what the specification of both sets of cooperative and argumentative agents
is, given the overall agents in A. Then, a truth value of an agent’s conclusion in a
(consistent or paraconsistent) way of reasoning is as follows:

Definition 20 (Truth Value of an Agent’s Conclusion). Let A be a MAS, α is an
agent’s identity of A, k ∈ {s, w}, and L be an objective literal or the symbol ⊥. L over
A is:

– falsek,w
α iff for all argument of α for L: it is overruledk,w

A
– truek,w

α iff there exists a justifiedk,w
A argument of α for L. Moreover, L is

• contradictoryk,w
α if L is the symbol ⊥ or there exists a justifiedk,w

A argument of
α for ¬L

• based-on-contradictionk,w
α if it is both truek,w

α and falsek,w
α

• non-contradictoryk,w
α , otherwise.

– undefinedk,w
α iff L is neither truek,w

α nor falsek,w
α .

Note that this point that truth is defined parametric of the agent. So, it is only natural
that the truth value of a proposition may differ from agent to agent.

Proposition 4. Let k ∈ {s, w}. L is undefinedk,w
α iff there is no justifiedk,w

A argument
of α for L and at least one argument of α for L is not overruledk,w

A .

This paraconsistent semantics for multiple logic programs is in accordance with the
paraconsistent well-founded semantics WFSXp [1]. In fact, both coincide if there is a
single program (or a set, in case all cooperate and argue with all other, cf. Theorem 1):

Theorem 2 (WFSXp semantics vs F s,w
A ). Let P be an ELP such that ⊥ /∈ H(P ),

and let L be an objective literal in H(P ). L ∈ WFSXp(P ) iff L is trues,w
A , not L ∈

WFSXp(P ) iff L is falses,w
A , and {L, not L} ∩ WFSXp(P ) = ∅ iff L is undefineds,w

A .



An Argumentation-Based Negotiation for Distributed Extended Logic Programs 207

Moreover, there is a relation between the consistent reasoning is obtained of Fw,w
A and

[6]’s grounded (skeptical) extension if the following holds. To show this, we first relate
[6]’s definitions of both RAA-attack and g-attack to our definition of attack as follows:

Lemma 1. Let P be an ELP such that ⊥ /∈ H(P ), (AL, L) be an argument for L,
{(AL, L), (AL′ , L′), (A¬L, ¬L)} ⊆ Args(P ) such that not L ∈ AL′ , {1, 2, 3} is a
subset of agent’s identities of A, and {(1, Seqw

L ), (2, Seqw
L′), (3, Seqw

¬L)} ∈ Args(A)
such that not L ∈ Assump(Seqw

L′).
If (AL, L) g-attacks (AL′ , L′) then (1, Seqw

L ) attacks (2, Seqw
L′).

If (A¬L, ¬L) RAA-attacks (AL, L) then (3, Seqw
¬L) attacks (1, Seqw

L ).

Theorem 3 (Grounded extension vs Fw,w
A ). Let P be an ELP such that ⊥ /∈ H(P ),

L be an objective literal in H(P ), B be the Ground Extension’s characteristic function
of P , (AL, L) be an argument for L, and α be an agent’s identity of A.

An argument (AL, L) ∈ lfp(B) iff ∃(α, Seqw
L ) ∈ lfp(Fw,w

A ).
An argument ({not L}, L) ∈ lfp(B) iff ¬∃(α, Seqw

L ) ∈ gfp(Fw,w
A ).

4 Illustrative Examples

To illustrate the results of the proposed semantics, we present here some examples. The
first example illustrates how the framework can be used to model over a hierarchy and
in the second to model evolving knowledge.

Example 6 (Business Process Management). This example is derived from ADEPT
project8 which developed negotiating agents for business process management. One
such process deals with the provision of customer quotes for networks adapted to the
customer’s needs. The agents’ interaction involves both argumentation and coopera-
tion as follows: customer service division (CSD) must not quote if the customer is not
credit-worthy which it should assume by default.

So, CSD should obtain an agreement with vet customer (VC) which means that
VC may counter-argue and give evidence for the credit-worthiness of the customer. In
case credit is approved, if CSD does not have a portfolio item for the solicited quote,
it needs from design department (DD) a quote for it. DD might do this task if surveyor
department (SD) does not argue that such a task is not important. DD needs information
held by CSD.

Considering first the customer service division, it knows about the client’s equipment
(dubbed eq) and its requirements (dubbed req): requirements 2 and 3, and equipments
2 and 3. Furthermore, CSD knows the customer is important. These can be represented
as facts: req(2); req(3); eq(2); eq(3); and important. Besides these facts about a par-
ticular client, CSD has general rules such as requirements 1, 2 and 3 together make
up a portfolio and can be quoted if a previous quote exists (otherwise, the DD has to
prepare a quote):

portofolio ← req(1), req(2), req(3)
quote ← portfolio, previousQuote

8 See details in http://lsdis.cs.uga.edu/Projects/



208 I.C. de Almeida and J.J. Alferes

CSD does not provide a quote if the client is not credit-worthy:

¬quote ← not creditWorthy

The Vet Customer knows the client is not credit-worthy: it has a fact ¬creditWorthy.
The design department knows that there is no need to survey the client site if the client
has equipments 1, 2 and 3. It can be represented by the rule:

¬need2survey ← eq(1), eq(2), eq(3)

In general, DD assumes that the SD does a survey unless it is busy which can be
represented by the rule survey ← not busySD. The quote of DD can be obtained by
a simple design cost if there was no need survey; otherwise, by a complex design cost:

quote ← ¬need2survey, simpleDesignCost
quote ← survey, complexDesigCost
simpleDesignCos
complexDesignCost

Finally, the knowledge of Surveyor Department is fairly simple: its domain is its own
busyness and since it is lazy it derives that it is busy unless the customer is important

busySD ← not important

Since such a system must have consistent conclusions we illustrate the results in a weak-
weak reasoning. The truth value of the main conclusions are as follows: important is
truew,w

csd , complexDesignCost and survey are truew,w
dd , ¬creditWorthy is truew,w

vc ;
busySD is falsew,w

sd ; both quote and ¬quote are undefinedw,w
csd .

Example 7. In this example we illustrate the usage of the proposed framework to reason
about evolving knowledge bases. For it, each argumentative agent represents the knowl-
edge (set of rules) added at a point of time. Moreover, each such agents can cooperate
with all agents representing past states, and has to argue with all agents representing
future states. Consider a concrete example taken from [2] where initially, in Ag1:

sleep ← not tv on
tv on ←

watch tv ← tv on

It is easy to see that with this knowledge in Ag1, there is a justifieds,w
A argument for

watch tv and that the only argument for sleep is overruleds,w
A . The knowledge base is

then updated, in Ag2 by adding the rules:

¬tv on ← power failure
power failure ←

The reader can check that, for Ag2 the previous argument for watch tv is now over-
ruled, and that the argument for sleep is justifieds,w

A . Now if another update comes, e.g
stating ¬power failure, in Ag3 the argument for sleep is again overruleds,w

A , and for
watch tv justifieds,w

A , as expected. Note how, in this example, the cooperation is used
to inherit rules from the past, and the argumentation to make sure that previous rules in
conflict with later ones are overruled.



An Argumentation-Based Negotiation for Distributed Extended Logic Programs 209

5 Conclusion and Further Work

We propose an argumentation-based negotiation for agent’s knowledge bases. We de-
fine a declarative semantics for Argumentation-based Negotiation for a multi-agent set-
ting (MAS). Moreover, every agent Ag in a MAS argues and cooperates with a subset
of agents in the MAS, i.e. Ag has a set of argumentative agents and a set of cooper-
ative agents. Then, the semantics for Argumentation-based Negotiation is composed
by two interlaced processes, viz. argumentation and cooperation. The former imposes
that every agent should argue with other agents to evaluate its knowledge. The latter
allows an agent to handle its incomplete knowledge with ‘help’ of other agents. The
Argumentation-based Negotiation proposal allows to model a multi-agent setting with
different kinds of representation. Furthermore, any agent in a MAS can be queried re-
garding the truth value of a conclusion. Moreover, a truth value of an agent’s belief
depends on which agent such a belief is inferred, and also how is the specification of
both sets of cooperative and argumentative agents given the overall agents in the MAS.
Nevertheless, such answer is always consistent/paraconsistent with the knowledge base
of such agents.

Besides the comparisons above, it is worth mentioning [8], which proposes a nego-
tiation framework to be applied in a context of that an agent is a tuple, consisting of
its arguments, its domains9, and lists of its argumentation and cooperation partners. We
differ from the authors when they said that an agent should be aware of its domains.
A domain is understood by those authors as the set of predicates defining the agent’s
domain expertise. We assume that our agent has no explicit knowledge about the multi-
agent setting domain but we restrict the agents communication by defining the sets of
argumentative and cooperative agents. [13] follows the [8]’s specification of an agent.
They propose an operational semantics for argumentation by assuming local and global
ancestors to detected loop. However, it is not clear how they detected the global ancestor
to prove the truth value of an objective literal L.

For the declarative semantics defined here, we have also defined an operational se-
mantics, based on sets of dialogues trees, and an accompanying distributed implementa-
tion. The definition of this operational semantics and implementation is however outside
the scope of this paper, and is part of a forthcoming one. Also part of ongoing and future
work is the comparison of this approach with approaches for dealing with preferences
and also with updates in the context of logics programs. It seems clear that the flexibility
offered by the sets of cooperative and argumentative agents allows for giving priority to
sets of rules over other sets of rules. This is somehow similar to what is done in prefer-
ences in the context of logics programs, and a comparison with these frameworks is in
order. Also in order is a comparison with logic programming updates. Example 7 sug-
gests how our framework can be used for modelling updates. In this example, the results
coincide with those of [2], but a study on how general this equivalence is ongoing.

We also intend to introduce the capability of the agents to revise their knowledge
as consequence of internal or external events. In case of no agreement in a negotiation
process the agents would be able to discuss (or negotiate again) how and when they got
their knowledge, and try to find a way to get an agreement.

9 A set of predicate names defining the agent’s domain expertise.



210 I.C. de Almeida and J.J. Alferes

References

1. J. J. Alferes, C. V. Damásio, and L. M. Pereira. A logic programming system for non-
monotonic reasoning. Journal of Automated Reasoning, 14(1):93–147, 1995.

2. J. J. Alferes, J. A. Leite, L. M. Pereira, H. Przymusinska, and T. C. Przymusinski. Dy-
namic updates of non-monotonic knowledge bases. The Journal of Logic Programming,
45(1–3):43–70, September/October 2000.

3. A. Bondarenko, P. M. Dung, R. Kowalski, and F. Toni. An abstract, argumentation-theoretic
approach to default reasoning. Journal of Artificial Intelligence, 93(1–2):63–101, 1997.

4. L. M. Pereira e M. Schroeder C. V. Damásio. Revise: Logic programming and diagnosis.
In U. Furbach J. Dix and A. Nerode, editors, 4th International Conference (LPNMR’97),
volume LNAI 1265 of Logic Programming and NonMonotonic Reasoning, pages 353–362.
Springer, July 1997.

5. Iara de Almeida Móra and José Júlio Alferes. Argumentative and cooperative multi-agent
system for extended logic programs. In F. M. Oliveira, editor, XIVth Brazilian Symposium
on Artificial Intelligence, volume 1515 of LNAI, pages 161–170. Springer, 1998.

6. P. M. Dung. On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games. Journal of Artificial Intelligence,
77(2):321–357, 1995.

7. M. Gelfond and V. Lifschitz. Logic programs with classical negation. In Warren and Szeredi,
editors, 7th International Conference on LP (ICLP), pages 579–597. MIT Press, 1990.

8. S. Parsons, C. Sierra, and N. R. Jennings. Agents that reason and negotiate by arguing.
Journal of Logic and Computational, 8(8):261–292, 1998.

9. L. M. Pereira and J. J. Alferes. Well founded semantics for logic programs with explicit
negation. In European Conference on Artificial Intelligence (ECAI), pages 102–106. John
Wiley & Sons, 1992.

10. J. L. Pollock. Defeasible reasoning with variable degrees of justification. Journal of Artificial
Intelligence, 133:233–282, 2002.

11. H. Prakken and G. Sartor. Argument-based extended logic programming with defeasible
priorities. Journal of Applied Non-Classical Logics, 7:25–75, 1997.

12. H. Prakken and G. A. W. Vreeswijk. Handbook of Philosophical Logic, volume 4, chapter
Logics for Defeasible Argumentation, pages 218–319. Kluwer Academic, 2 edition, 2002.

13. M. Schroeder and R. Schweimeier. Arguments and misunderstandings: Fuzzy unification
for negotiating agents. Journal of Computational Logic in Multi-Agent Systems, 93:1–18,
August 2002.

14. Michael Schroeder, Iara de Almeida Móra, and J. J. José Júlio Alferes. Vivid agents arguing
about distributed extended logic programs. In Ernesto Costa and Amilcar Cardoso, edi-
tors, Progress in Artificial Intelligence, 8th Portuguese Conference on Artificial Intelligence
(EPIA), volume 1323 of LNAI, pages 217–228. Springer, 1997.

15. R. Schweimeier and M. Schroeder. Notions of attack and justified arguments for extended
logic programs. In F. van Harmelen, editor, 15th European Conference on Artificial Intelli-
gence. IOS Press, 2002.

16. G. A. W. Vreeswijk. Abstract argumentation systems. Journal of Artificial Intelligence,
90(1–2):225–279, 1997.


	Introduction
	Declarative Semantics
	Properties
	Illustrative Examples
	Conclusion and Further Work

