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We prove that a subset of a virtually free group is rational
if and only if the language of geodesic words representing
its elements (in any generating set) is rational and that the
language of geodesics representing conjugates of elements in
a rational subset of a virtually free group is context-free.
As a corollary, the doubly generalized conjugacy problem is
decidable for rational subsets of finitely generated virtually
free groups: there is an algorithm taking as input two rational
subsets K; and Ky of a virtually free group that decides
whether there is one element of K; conjugate to an element
of K. For free groups, we prove that the same problem is
decidable with rational constraints on the set of conjugators.
© 2026 The Author(s). Published by Elsevier Inc. This is an
open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).

1. Introduction

Given a group G, two elements z,y € G are said to be conjugate if there is some

z € G such that * = 2z lyz, in which case we write x ~ y. The conjugacy problem
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CP(G) consists of, given z,y € G, deciding whether z ~ y or not. This was one of the
three algorithmic problems introduced by Dehn [7], together with the word problem and
the isomorphism problem.

The word problem, WP(G), is possibly the most well-studied algorithmic problem
in group theory and consists of, given a word on the generators of a group, deciding
whether the element represented by that word is the identity or not, or, equivalently,
given two words on the generators, deciding whether they represent the same group
element. The membership problem, MP(G), also known as the generalized word problem
consists of, given a finitely generated subgroup H < G and an element = € G, deciding
whether x € H or not. This can be considered more generally for subsets belonging to a
reasonably well-behaved class instead of subgroups (e.g. rational or context-free subsets).
This can also be rewritten as the question of deciding whether there is some y € H such
that © = y (see [16] for a survey on this problem). In the same spirit, a generalization of
the conjugacy problem was considered in [14] and proven to be decidable with respect
to rational subsets of finitely generated virtually free groups. The generalized conjugacy
problem with respect to C;, GCP¢(G), where C is a class of subsets of G consists then of,
given x € G and K € C, deciding whether there is some y € K such that = ~ y. Clearly,
if C contains all singletons (which occurs if C is the class of rational subsets or the class
of cosets of finitely generated subgroups), this is indeed a generalization of the conjugacy
problem.

The intersection problem IP¢(G) consists of, given two subsets Ki, Ko € C, deciding
whether K1NKy = (. Naturally, if C is a class of subsets containing all singletons, if we can
decide the intersection problem with respect to C, we can decide the membership problem
with respect to C. Thus, in some sense, the intersection problem can be seen as the doubly
generalized word problem and, as done above, it can also be rewritten as the question
of deciding whether there are some x € Ky and y € Ks such that x = y. However, if
the class of subsets is closed under product of subsets and inversion, this is equivalent
to the membership problem, as it consists of deciding whether 1 € K; K5 L This is
the case when considering rational or algebraic subsets, but does not hold in general.
In this paper, we consider the doubly generalized conjugacy problem with respect to C,
DGCP¢(G), which is the natural generalization of the conjugacy problem corresponding
to the intersection problem, that is, the problem of, given K7, K5 € C, deciding whether
there are some x € Ky and y € K3 such that x ~ y.

In case C is the class of the rational subsets of G, the following is easy to see (where <
means that the problem on the left-hand side is reducible to the one on the right-hand
side and = means that the problems are equivalent):

WP(G) < MPRat (G) = IPRat (G)
IA IN IA
CP(G) < GCPRrat(G) < DGCPRrat(G)
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Notice that IPRat(G) < DGCPRat(G), since K1 N Ky = () if and only if there is an
element in KK, ' conjugate to an element in {1}.

We will additionally consider versions of the conjugacy problems with certain con-
straints on the conjugators. In [14], it is proved that the generalized conjugacy problem
with rational constraints with respect to rational subsets of finitely generated virtually
free groups is decidable, meaning that, given a virtually free group G, there is an algo-
rithm taking as input two rational subsets L, K € Rat(G) and an element x € G and
decides if there is some z € L such that z7'zz € K.

Given K, L C G, let

a(K,L) = U u Ku.
u€L

When L = G, we simply write a(K) to denote a(K, Q)

In this paper, we will present a language-theoretical proof of the decidability of the
doubly generalized conjugacy problem with rational constraints with respect to rational
subsets of finitely generated free groups. To do so, we prove that, in a finitely generated
free group, the set a(K, L) of all elements conjugate to an element of K by an element
of L is a context-free subset of the ambient free group. It is proved in [15] that a group
is virtually free if and only if its conjugacy classes are context-free subsets. Equivalently,
a group is virtually free if and only if «(S) is context-free for all singletons S. We prove
something much stronger in the case of free groups, namely that «(K, L) is context-free
if both K and L are rational.

Theorem 3.5. Let K, L € Rat Fy. Then (K, L) is a context-free subset of Fu.

Since context-free languages are closed under intersection with regular languages and
emptiness of context-free languages is decidable, we have the following corollary:

Corollary 3.7. The doubly generalized conjugacy problem with rational constraints is de-
cidable with respect to rational subsets of a finitely generated free group.

Regarding virtually free groups, we prove a generalization of the well-known Benois’s
theorem, showing that a subset is rational if and only if the language of geodesics repre-
senting its elements is rational.

Corollary 3.13. Let G be a finitely generated virtually free group and K C G. The fol-
lowing are equivalent:

1. K € Rat(G).
2. Geox (K) is a rational language for some finite generating set X.
3. Geox(K) is a rational language for every finite generating set X.

Moreover, the constructions are effective.
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We then prove that the language of geodesics representing conjugates of a given ra-
tional subset is context-free, which yields a language-theoretic proof of the decidability
of the doubly generalized conjugacy problem for rational subsets of finitely generated
virtually free groups. Again, it follows from [15] that, for a virtually free group and a
singleton S C G, Geo(a(S)) = St~ NGeo(G) is a context-free language. We prove that
this holds for every rational subset of G.

Theorem 3.21. Let G be a virtually free group and K € Rat(G). Then Geo(a(K)) is
context-free.

Corollary 3.22. Let G be a virtually free group. Then the doubly generalized conjugacy
problem in G is decidable.

We remark that Corollaries 3.7 and 3.22 were already known, as they follow directly
from the fact that the existential theory of equations with rational constraints in free
groups is PSPACE-complete, which was proved by Diekert, Gutiérrez and Hagenah in
[8], since, for L, K7, K5 € Rat(G), the statement that there is an element of K3 conjugate
to an element of K5 by an element of L can be expressed as:

Jzelre K yeK,: 2 tuz=y.

Similarly, for virtually free groups, we can use the analogous result for virtually free
groups proved in [6]. However, to the best of our knowledge, these are the first language-
theoretic proofs of Corollaries 3.7 and 3.22. We currently do not know of a language-
theoretic proof for the doubly generalized conjugacy problem with rational constraints
on virtually free groups.

2. Preliminaries

In this section, we will present basic definitions and results on rational, algebraic and
context-free subsets of groups (for more details, the reader is referred to [2] and [1]) and
on virtually free groups.

2.1. Subsets of groups

The set {1,...,n} will be denoted by [n]. Let G = (A) be a finitely generated group,
A be a finite generating set, A=AUA and 7 : A* = G be the canonical (surjective)
homomorphism. This notation will be kept throughout the paper.

A subset K C G is said to be rational if there is some rational language L C A* such
that L7 = K and recognizable if K7~ is rational.

We will denote by Rat(G) and Rec(G) the class of rational and recognizable subsets
of G, respectively. Rational subsets generalize the notion of finitely generated subgroups.
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Theorem 2.1 (/2], Theorem II1.2.7). Let H be a subgroup of a group G. Then H € Rat(G)
if and only if H is finitely generated.

Similarly, recognizable subsets generalize the notion of finite index subgroups.

Proposition 2.2. Let H be a subgroup of a group G. Then H € Rec(G) if and only if H
has finite indez in G.

In fact, if G is a group and K is a subset of G then K is recognizable if and only if
K is a (finite) union of cosets of a subgroup of finite index.

In case the group G is a free group with basis A with surjective homomorphism
A — G, given L C X*’ we define the set of reduced words representing elements in
L7 by

L = {we A* | wis reduced and there exists u € L such that ur = wr}.

Benois’ Theorem provides us with a useful characterization of rational subsets in terms
of reduced words representing the elements in the subset.

Theorem 2.3 (Benois). Let F be a finitely generated free group with basis A and let
L C A*. Then L is a rational language of A* if and only if L is a rational subset of F.

A natural generalization of these concepts concerns the class of context-free languages.
A subset K C G is said to be algebraic if there is some context-free language L C A* such
that Lt = K and contert-free if Km~! is context-free. We will denote by Alg(G) and
CF(G) the class of algebraic and context-free subsets of G, respectively. It follows from
[10, Lemma 2.1] that these definitions, as well as the definitions of rational and recog-
nizable subsets, do not depend on the finite alphabet A or the surjective homomorphism
.

It is obvious from the definitions that Rec(G), Rat(G), CF(G) and Alg(G) are closed
under union, since both rational and context-free languages are closed under union. The
intersection case is distinct: from the fact that rational languages are closed under inter-
section, it follows that Rec(G) must be closed under intersection too. However Rat(G),
Alg(G) and CF(G) might not be. For instance, if a group G does not have the Howson
property, that is, the property that the intersection of two finitely generated subgroups
is finitely generated, then Rat(G) is not closed under intersection. Regarding Alg(G) and
CF(G), it is proved in [5, Proposition 3.10 and Example 3.11], not only that algebraic
subsets of free groups are not closed under intersection, but also that if G is virtually free
or virtually abelian, then CF(G) is closed under intersection if and only if G is virtually
cyclic, and the author conjectures that, in general, CF(G) is closed under intersection
if and only if G is virtually cyclic. Another important closure property is given by the
following lemma from [10].
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Lemma 2.4. [10, Lemma 4.1] Let G be a finitely generated group, R € Rat(G) and C €
{Rec, CF}. If K € C(G), then KR, RK € C(G).

The following is an immediate consequence of the previous lemma.

Corollary 2.5. Let K C Fy and u € Fa. Then u='Ku is context-free if and only if K is
context-free.

For a finitely generated group G, it is immediate from the definitions that
Rec(G@) C CF(G) C Alg(G)
and that
Rec(G) C Rat(G) C Alg(G).

Lemma 2.6. [10, Lemma 4.3] Let X,Y be finite alphabets and let ¥ : Y* — M, ¢ : X* —
M’ be homomorphisms onto monoids M, M'. Then every homomorphism 7 : M’ — M
can be lifted to a homomorphism h : X* — Y™ such that the diagram

commutes. As a consequence, Tt~ o™t =Ty h™1 for every T C M.

However, there is no general inclusion between Rat(G) and CF(G). For example, if G
is virtually abelian, then CF(G) C Alg(G) = Rat(G) (and the inclusion is strict if the
group is not virtually cyclic) and if the group is virtually free, then Rat(G) C CF(G)
(see [10, Lemma 4.2]).

In the case of the free group F), of rank n > 1, Herbst proves in [10] an analogue of
Benois’s Theorem for context-free subsets:

Lemma 2.7. [10, Lemma 4.6] Let F be a finitely generated free group with basis A and
let L C A*. Then L is a context-free language of A* if and only if LT is a context-free
subset of F.

A slight improvement of the previous lemma can be easily obtained:

Lemma 2.8. Let F' be a finitely generated free group and K C F. Then K € CF(F) if
and only if there is a context-free language L such that K C L C Kn~1.
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We will also make use of the following lemma, which is a simple exercise:

Lemma 2.9. Let L € Rat A* and let u,v € A*. Then the languages

U u" Lo, U u™ Lo and U u L™

n>0 0<m<n 0<m<n

are all context-free.
2.2. Virtually free groups

A group G is said to be virtually free if it has a free subgroup F' of finite index. Since
subgroups of free groups are free and every finite index subgroup contains a finite index
normal subgroup, we can assume that F' d¢; G. We will usually write

G=FbjU---UFb,,

where all cosets F'b; are disjoint.

Algebraic and context-free subsets of virtually free groups are studied in [5]. In par-
ticular, it is proved in [5, Theorem 4.3] that, if G is a finitely generated virtually free
group and H <;, G, then

CF(H) = {K C H | K € CF(G)}. (1)

Also, combining [17, Proposition 4.1] and Propositions 3.6 and 3.7 of [5] we have
that Rec(G) (resp. Rat(G), Alg(G), CF(Q)) consists of sets of the form L;b;, where
L; € Rec(F) (resp. Rat(F), Alg(F), CF(F)).

A word u = uy ...ug is said to be cyclically reduced if uy # u,;l. Every reduced word

1

u can be decomposed as u = w™tuw, where u is cyclically reduced. We refer to u as the

cyclically reduced core of u.
3. Conjugates of elements in a rational subset

In this section, we will prove that, in a free group, the set of conjugates of elements in
a rational subset K with a conjugator in a rational subset L, a(K, L), is context-free and
that a context-free grammar representing it can be effectively computed. As a corollary,
we have a language-theoretical proof that the doubly generalized conjugacy problem with
respect to rational subsets with rational constraints is decidable on a free group F'. This
result also follows from the very strong theorem by Diekert, Gutiérrez and Hagenah [8]
stating that the existential theory of equations with rational constraints in free groups
is PSPACE-complete.

We will then consider the case of virtually free groups. We start by proving a general-
ization of Benois’s theorem: a subset of a virtually free group is rational if and only if the
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language of geodesic words representing its elements is rational. Then, we show that the
language of geodesic words representing a conjugate of an element in a rational subset K
is context-free (and computable), obtaining a language-theoretical proof for the doubly
generalized conjugacy problem. This problem was already known to be decidable, as its
decidability follows from the solution of equations with rational constraints for virtually
free groups [6].

3.1. Free groups

Given K, L C Fa, we say that the product KL is reduced if K L C A*. The purpose
of this subsection is to prove that, given K, L € Rat Fy4, then «(K, L) is a context-free
subset of F4. We start by solving the particular cases where L and K satisfy some
reducibility conditions.

Lemma 3.1. Let K, L € Rat A*. Then Uwer uKuC A* isa context-free language.

Proof. Let G = (V, P, S) be the context-free grammar on the alphabet A U {$} defined
by V.= AU{$,5} and P = {(S,aSa"") | a € A} U{(S,$)}. It is immediate that
L(G) = {u'$u | u € A*}. Since context-free languages are closed under intersection
with regular languages, it follows that

{fu'$u|uell={u"'$u|uec Ay NL'$L

is context-free. Since context-free languages are closed under substitution, we can replace
the letter $ by the rational (hence context-free) language K and remain context-free.
Therefore (J,,c,, u~'Ku is a context-free language. O

Lemma 3.2. Let K,L € Rat Fa with both L~* K and KL reduced. Then «(K,L) is a
context-free subset of Fyu.

Proof. By Lemma 2.7, it suffices to show that (K, L) is a context-free language. This
same argument will be used in the next proofs without further reference.

Now a(K, L) = {u='Ku | u € L} and it follows from Benois’ Theorem that K and L
are both rational languages. By Lemma 3.1, a(K, L) is a context-free language. 0O

Lemma 3.3. Let K, L € Rat Fia with KL reduced. Then a(K, L) is a context-free subset
Of Fy.

Proof. We may assume that K and L are both nonempty. Let C denote the set of all
cyclically reduced elements of F, which is clearly a rational subset. Then K N C and
K\ C are both rational subsets of Fis. Since L™1(K \ C) and (K \ C)L are both reduced,
it follows from Lemma 3.2 that o(K '\ C, L) is a context-free subset of F4. Thus it suffices
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to show that a(K N C, L) is a context-free subset of Fl4. Therefore we may assume that
K C C, and we may also assume that 1 ¢ K.

Let A = (Q,qo,T,F) and A" = (Q', ¢, T, E’) denote respectively the minimal au-
tomata of L and K. For all I,J C Q, let L;; = L(Q,I,J,E). For all I',.J’ C @', let
Ly, =L(Q,I',J,E"). Let

Q-1
X = U Q2m+1 ~ Q/-

m=0

We show that

a(K, L) = {w™tvovrw | 3(p1, 41, -, Py Gy Pt 1,0") € X, 01 € Ly N (g Laipira )

v2 € Liyps N (N2 Lpig)s w € Ly, 7} N Ax.

(2)
Indeed, let w~tvyvyw belong to the right hand side of (2) for some (p1,q1,- - -, Pms Gm,
Pms1,q') € X. Then we have a path ¢) = ¢’ 2t/ € T" in A’ and a path

QP12 D Gt 5 P = G~ Pyt — L ET
in A. Hence vyvs € L(A’) = K and (viv2)™vjw € L(A) = L. It follows that
w lvgviw = wilvfl(v;lvfl)mvlvg(vlvg)mvlw € o(K, L).

Since wlvyviw is a reduced word by hypothesis, we get w™tvpviw € a(K, L).
Conversely, assume that u € L and v € K. We consider the longest prefix of u which

1

is a prefix of some power of v. More precisely, write v = v™v;w such that m > 0 and
v = v1vg with vy # 1. Then

u~lou = w—lvflv—mvvmvlw = w vy w.

Note that every path of the form p LN q in A with m > |@Q| must contain some loop

labelled by v* with 1 < s < |Q|, hence we may replace u = v v w by v/ = V™ v w
without changing the final outcome w~tvyv;w. Thus we assume that m < |Q|. We must

have a path
G P a5 B Gt 5 D 2 G = Pg1 —t €T

in A and a path ¢) = ¢’ ~% ' € T' in A’ Tt follows that (p1,q1, - - -, Py Gms Pms1,q) €
X, v1 € Ly o 0V (NiZo Laipisa)s v2 € Ly N (L Lypig,) and w € Ly, 7. It Temains to
show that w™tveviw is reduced.

Indeed, vovyw labels a path in a trim automaton recognizing a reduced language,
hence must be a reduced word itself. Suppose that w~1v, is not reduced. Then v5 and
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wy share the same first letter, say a. Then v™va is a prefix of v which is a prefix of v™*1,

Lyg is reduced. Since voviw is reduced

contradicting the maximality of v™v;. Hence w™
and vg # 1, then w™tvgvyw is itself reduced and so (2) holds. Now, applying Lemma 3.1
| X| times to the rational languages featuring the right hand side of (2), and taking into
account that context-free languages are closed under intersection with rational languages

and union, we conclude that a(K, L) is a context-free language as intended. O

Lemma 3.4. Let K, L € Rat Fq with L= K reduced. Then oK, L) is a context-free subset
of Fy.

Proof. We may assume that K and L are both nonempty. Since K rational implies
K~ rational and L™'K reduced implies K 'L reduced, it follows from the proof of
Lemma 3.3 that o( K1, L) is a context-free language. Now

oK, L) = | Ju Ku= (| Ju K- Tu)" = (a(E1, L))"
uel u€eLl

Since context-free languages are closed under reversal and homomorphism, it follows
easily that (a(K~1,L))~! is a context-free language. Thus «(K, L) is a context-free
language and we are done. O

Now, we can prove the main result of this subsection.
Theorem 3.5. Let K, L € Rat Fy. Then o(K, L) is a context-free subset of Fa.
Proof. We may assume that K and L are both nonempty. Since «(1,L) = 1, we may
assume that 1 ¢ K.

Let A= (Q,q,T,FE) and A" = (Q', ¢}, T', E') denote respectively the minimal au-

tomata of L and K. We keep the notation introduced in the proof of Lemma 3.3. We
define

X ={(¢,0',4") € Qx Q' X Q" | Lgoq N Ly, N (Liygr) ™, Ly \ {1} # 0}
For every a € Z, we define the possibly empty subsets of Fy4

Yo ={w lvow | 3(q,p',¢) € X, v2 € L}, ;0 N A*a,w e Lyp \ a tA*},
Zo ={w vow | 3(q.p',¢) € X, v2 € L, N aA*, w e Lyp \ aA*}.

We show that

oK, 1) = | (Ya U Za). 3)

a€A
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Let y € Y. Then there exist (¢,p',¢") € X, v2 € L, N A*q and w € Lgr \ a~1'A* such
that y = w™twew. Since (¢,p’,¢') € X, there exists some v; € Ly, N Ly N (L)t
Then we have a path ¢y — ¢ — t € T in A and a path

@ p 2 q Sy er’

in A’. Hence vivov; t € L(A') = K and vyw € L(A) = L. Tt follows that

_ -1 B
Yy=w vow=w v

(v1v207 Hviw € oK, L).
Thus Y, C «(K, L). The inclusion Z, C (K, L) is proved similarly.

Conversely, assume that u € L and v € K. We may write v = bcb™! with ¢ cyclically
reduced. Since 1 ¢ K, we have ¢ # 1. Let v; denote the longest common prefix of u and
b (which may be the empty word). Write u = vyw and v = vlvgvfl. We must have a
path

;v V2 g Ufl ’ !
g —p —q¢ —teT
in A" and a path ¢ = ¢ - t € T in A. It follows that v; € Lg4 N L;ép/ N
(Lbyp)™Y, va € Ly \ {1} and w € Lgr, hence (q,p',¢") € X. Moreover, u™'vu =
w‘lvfl(vlvgvfl)vlw = w lvow.

Now it follows from the maximality of v; that at least one of the products w1 vs, vaw
must be reduced (if v; = b, this follows from vy = ¢ being cyclically reduced). If w1y
is reduced, then v~ *vu € Z, when a denotes the first letter of vs. If vow is reduced, then
u~lvu € Y, when a denotes the last letter of vy. Therefore (3) holds.

Since

Ya = U Oé(L;/q/ mg*a,LqT \ailg*)
(¢.p",q")EX

and (L, N Z*a)(LqT \ a~'A*) is reduced, it follows from Lemma 3.3 that Y, is a
context-free subset of Fj.
Since

Zy = U (L, N aA* Lyr \ aA*)
(¢.p",0")€X

and (Lgr \ aﬁ*)_l(L;,q, N aA*) is reduced, it follows from Lemma 3.4 that Z, is a
context-free subset of Fy.
Now it follows from (3) that «(K, L) is itself a context-free subset of F4. O

The following corollary follows as an immediate application of the previous theorem
and will be useful in the next subsection to deal with the case of virtually free groups.
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Corollary 3.6. Let K € Rat F'y andu € Fa. Then |, o u™"Ku" is a context-free subset
Of FA.

Proof. Since u* € Rat F4, the claim follows immediately from Theorem 3.5. O

Since context-free languages are closed under intersection with regular languages and
emptiness of a context-free language can be decided, we can decide the doubly generalized
conjugacy problem with rational constraints with respect to rational subsets of a finitely
generated free groups. As mentioned in the introduction, this result follows from the
fact that the existential theory of equations with rational constraints in free groups is
PSPACE-complete, which was proved by Diekert, Gutiérrez and Hagenah in [8]. However,
we provide an alternative language-theoretic proof.

Corollary 3.7. The doubly generalized conjugacy problem with rational constraints is de-
cidable with respect to rational subsets of a finitely generated free groups.

Proof. Let 7 : A* — F4 be the canonical surjective homomorphism and Ky, K1, Ko €
Rat(F4) be our input (by this we mean that we get three finite state automata rec-
ognizing languages Lo, L1, Ly C A* such that L;7 = K;, for i = 0,1,2. We want to

Lequ, ie., if

decide if there are some u € Ky, 1 € K; 9 € K5 such that 1 = u~
Ky Na(Ky, Ky) = 0. In view of Theorem 3.5, we can compute a context-free grammar
G such that L(G) = (a(Kz, Ko))m~!. Then L; N L(G) is an effectively constructible
context-free language and Ky N a(Ks, Ky) = 0 if and only if Ly N L(G) = 0, which can

be decided. O
3.2. Virtually free groups

Now we turn our attention to the case of virtually free groups. Our goal is to prove
that, if K is a rational subset of a finitely generated virtually free group, then Geo(a(K))
is a context-free language, which yields as a corollary that the doubly generalized con-
jugacy problem is decidable with respect to rational subsets. We will write G to denote
a finitely generated virtually free group and put

G=FbU-- UFb,,

where F' = F4 is a free normal subgroup of G of finite index m. We will also put
B = AU{by,...,by}. Unless stated otherwise, B will be our standard generating set for
G.

For a subset K C G and a generating set X of G, let Geox (K) C X* denote the set
of all geodesics with respect to X representing elements in K. In a hyperbolic group, the

language of all geodesics, Geox (G), is rational for every generating set X (see [3]). We
say that a word u € B* is in normal form if it is of the form vb;, for some freely reduced
word v € A* and i € [m]. Clearly, for every u € B*, there is a unique @ € B* in normal
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form such that uwm = umw. Notice that, when the word u belongs to A* this corresponds
to free reduction.

Given two words u,v € X* we write u = v to emphasize that v and v are equal as
words, while um = v will be written to mean that they represent the same group element.
We write v = uy ... up if 4 = uy...u, with uy,...,u, € X. For all 1 <1< 3 < n,we
write then w7 = wuy; . ..u; and ull = w1, Given a language L, we denote by
Cyc(L) the language of all cyclic permutations of words in L. If L is rational (resp.
context-free), then Cyc(L) is also rational (resp. context-free [13, Exercise 6.4 c)]).

In [11, Proposition 3.1], it is proved that if u and v are words in a d-hyperbolic
group with um = v, u is geodesic and v is (A, €)-quasigeodesic, then u and v boundedly
asynchronously K -fellow travel for some constant K and some asynchronicity bound M,
where K and M depend only on A, € and §. With our notation, it follows from their
proof that, given A, e, there exists a K such that for all geodesic words u and all (A, €)-
quasigeodesic v such that um = v, there is a (not necessarily strictly) increasing function
h:{0,...,|v]} = {0,...,|ul} such that A(0) =0, A(|v|) = |u| and

dwir, u"Dlpy <K and (i) —h(i—1)| < 2K +1 (4)

for ¢ € [Jv]]. We will denote the boundedly asynchronously fellow travel constant by
K ()M e,0) throughout the paper. In particular, (X, €)-quasigeodesics and geodesics rep-
resenting the same elements are at Hausdorff distance at most K(\, ¢, J).

For a finite alphabet A, we say that T = (Q, qo, F, d, \) is a finite state A-transducer
if @ is a finite set of states, gy € @ is the initial state, F' C @ is a set of final states,

0:QxA—=Qand \: Q x A— A* are mappings. We will write x C‘|d—> y to mean that
(x,¢)d =y and (z,c)A = d. Given L C A*, we write

ay|wy az|ws A |Wn

T(L) ={w1...wy | Fa path go T qn € T with a; ...a, € L}.

Theorem 3.8. Let G be a finitely generated hyperbolic group, X be a generating set and
L be a rational language of (X, €)-quasigeodesic words over X, for some (fized) values \
and €. Then Geox (Lw) is an (effectively computable) rational language.

Proof. Let K be the constant from (4) and @ be the set of all geodesic words over

X of length at most K. Consider the finite transducer T with set of vertices Q, edges

w ilu% v for ¢ € X, u € X* a geodesic word of length at most 2K + 1, and v a

geodesic word representing (u~!we)m, and with the empty word being the initial and
(unique) final state. We claim that (¥(L))m C L7 and that Geox(Lw) C T(L), and so
Geox (L) = Geox(G)N%(L) is a rational language.

Let u € T(L). There must be some v =v; ...v, € L and a path of the form

v1|ur va |ug Vn—1|un—1 U [Un
€ =DPo b1 p2--- Pn—1 Pn =€
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in ¥ with v = u;---u,. But then (u;lpi,lvi) = p; for i € [n] and it follows easily

Loooui oy w7, de, um = vr € L. Therefore

by induction that 1 = p,7 = (u;
(2(L))m C Lx. So, we have proved that a word in T(L) must represent an element of
L. We will now show that T(L) contains all geodesic words representing elements of
Lm. Tt might also contain non-geodesic words representing elements of Lz, but that is
not a problem, as we then will have that Geox(Lw) = Geox(G) N ¥(L) is a rational
language.

Now, let w = uy...ur € Geox(Lw). Then ur = vm for some quasigeodesic v =
v1...v, € L. Let h : [n] — [k] be the function from (4). For ¢ = 0,...,n, let w; €

Geox (((u@) =1yl 7). We claim that there is a path in T of the form

or [ulh ] Vo [ulhHLAR)) o [ulP (= DF LR ()]
€ = wy w1 “e Wy, = €.

Indeed, it follows from (4) that w; € Q and |[ulP(=D+LRO] < 2K 11 for i € [n]. The
edges are well defined since

(( [h(i—1)+1,h(¢ )]) Wi 1%)71. — ((u[h(i—1)+1,h(i)])—1(u[h(i—l)])—lv[i—l]vi)ﬂ_

— (@PON =1l =

holds for i € [n].
Hence

U=Up .. Up = UL Up(p) € T(V1...0,) = T(v) € (L)

and so Geox(Lw) C F(L). Therefore Geox (L) = Geox(G) N T(L) is a rational lan-
guage. O

Remark 3.9. The theorem above is stated in terms of rational languages but works in
the exact same way for any class of languages preserved by rational transduction, such
as the class of context-free languages.

We will now prove that, in a finitely generated virtually free group, the language of
normal forms of words consists of quasigeodesics. For ¢ € [m] we will denote by ; the
automorphism of F' defined by uyp; = biubl-_l.

Lemma 3.10. Let w € B*, M = max{|ap;|a | a € A,i € [m]}, N = max{|u|a : Ji,j, k €
[m] : bibj = uby} and C = max{M,N}. Then, |w| < C|w|.

Proof. Let w € B*. We proceed by induction on |w|. If [w| = 0, then W = w and so
[w| = [w]|. Now assume that the result holds for all words of length up to some n and
let w € B* be such that |w] = n + 1. Then w = uzx for some x € B and we may write
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u = vb;. From the induction hypothesis, it follows that |vb;| < Clul|. If « € A, we have

that wr = (ux)m = (vbjz)m = (vm)(zmp;)b;, hence W = v(xp;)b; and
[@| < o] +|7F; | + 1 = |vbj| + M < Clu|+ C = C(Ju| + 1) = Clw|.

If z € {bl,/.—T_./bm}, say = by, then bz = yb, for some s € [m] and y € F such that
ly] < N. Hence wr = (uz)m = (vbjz)m = (vybs)m, yielding w = vyb, and

[w| < |v] + |y| +1 < |vbj| + N < Clu|+C =C(lu| +1) =Clw|. O

Corollary 3.11. Every word in normal form is a (C,0)-quasigeodesic for C defined as in
the preceding lemma.

Proof. Let w € B* be a word in normal form. We have to show that any subword of w
of length k has geodesic length at least % Since any subword of w is a word in normal
form, we only need to prove that a word u in normal formal has geodesic length of at
least Ilc‘ This follows from Lemma 3.10, since, for a word w in normal form, letting v
be a geodesic word such that vwr = wum, we have that 7 = w, and so |u] < C|v|, i.e.
| >l g

Lemma 3.12. Let G be a hyperbolic group, X,Y be two generating sets and wx : X —
G and Ty : Y — G be the natural surjective homomorphisms and put Nxy =
max{dy(l,z) | z € X}. If u = z1---zy, is a geodesic word in I'x(G), then a word
of the form v = vy - - vy, where v; is a geodesic word in I'y (G) representing x;m, is a
(N)Q(,Y7 2N§’<7Y)—quasigeodesic in Ty (G).

Proof. We have to prove that, for all 1 <1i < j < |vl,
j—i< N%ydy(@liry, ollay) +2N% 3.

v1 v2 U

umTx

Let 1 < i < j < |v|. Define k; to be the largest integer such that vy - - - v, is a prefix of
vlh and k; to be the smallest integer such that vl is a prefix of vy - - vy,,. Notice that,
for all 4, |v;] < Nx,y. Then, we have that:

J =1 < kg1 Uk |
<|k; —k;|Nxy
= Nx ydx((v1---vg,)my, (v1---vx;)Ty)

< N‘?gde(('Ul c g )Ty, (V1 v )Ty )
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< N)Z(,Y (dy((m T Uki)ﬁy, vm7ry) + dy(?)[i]’ﬂ'y,’l)[j]ﬂ'y)
+dy (v my, (vg - Ukj)WY))

< N;(,Y (NX,Y + dy(v[i]ﬂ'y,’l)[j]ﬁy) + N)Qy))

= Ng(’ydy(?}[i]ﬂ'y, U[j]ﬂ'y) + 2N)3(’Y. O

We can now combine the previous results to prove a generalization of Benois’s Theorem
for virtually free groups.

Corollary 3.13. Let G be a finitely generated virtually free group and K C G. The fol-
lowing are equivalent:

1. K € Rat(G).
2. Geox (K) is a rational language for some finite generating set X.
3. Geox(K) is a rational language for every finite generating set X .

Moreover, the constructions are effective.

Proof. It is clear from the definitions that 3 = 2 = 1. We will prove that 1 = 2
and that 2 = 3.

Compute the (rational) language L of normal forms of K: this can be done by com-
puting rational subsets L; of I such that K = (J,c(,, Lib; (see [17, Proposition 4.1]) and
then using Benois’s theorem to compute the language of reduced words L; representing
elements in L;. We then obtain that

L= U Libi.

i€[m]

In view of Corollary 3.11, the language L of normal forms representing elements in K is a
language of (C,0)-quasigeodesics over B such that Lw = K. By Theorem 3.8, Geop(K)
is rational, so we have that 1 — 2.

Now, using Lemma 3.12, we have that, given two finite generating sets X,Y and re-
placing every edge of an automaton representing Geox (K) by a path labelling a geodesic
word over Y representing the letter from X labelling the edge, the language recognized
by the new automaton will be a language L of (N§(7y, 2N§(,Y)—quasigeodesic words over
Y such that L7y = K. Hence, Geoy (K) is rational by Theorem 3.8. 0O

Remark 3.14. Similarly to what happens in Remark 3.9, the equivalence between 2 and
3 holds for any class of languages closed under rational transductions. Since rationality
(resp. context-freeness) of the language of geodesics representing a given subset is inde-
pendent of the generating set we will usually say that, for a subset K, Geo(K) is rational
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(resp. context-free) to mean that Geox (K) is rational (resp. context-free) for some (and
so, for every) finite generating set X.

We define w to be a fully (), €)-quasireduced word if w and all of its cyclic conjugates
are (A, €)-quasigeodesic words.
We now present three results from [12] and [4]:

Lemma 3.15. [12, Lemma 16] If u and v are fully (A, €)-quasireduced words representing
conjugate elements of a §-hyperbolic group, then either max(|ul, |v]) < A(8§+2K +e+1)
or there exist cyclic conjugates u' and v’ of u and v and a word o with (au'a™)T = v'w
and |a| < 2(0+K), where K is the boundedly asynchronous fellow travel constant satisfied
by (X, €)-quasigeodesics with respect to geodesics (see (4)).

Proposition 3.16. [12, Proposition 18] Let u be a geodesic word in a §-hyperbolic group
G with 6 > 1. Then we have that u = ujugug, where (usui)m = am for some word «
with |a] <6, and usa is fully (1,36 + 1)-quasireduced.

In other words, the word u' = uusaa™‘ug obtained by insertion of aa™' into u can
be split as ujuhuy such that (usul)m =1 and uh = usa is fully (1,38 + 1)-quasireduced.

Let G be a hyperbolic group with generating set A. Given g, h,p € G, we define the
Gromov product of g and h taking p as basepoint by

1
(910 = 5(da(p.9) + da(p.h) — dalg. )
We will often write (g|h), to denote (g|h);, when the generating set is clear from context.

Lemma 3.17. [/, Lemma 4.1] Let H be a hyperbolic group, u,v € H and p € N. Then
the following are equivalent:

(i) (ulv)y <p
(ii) for any geodesics o and 3 from 1 to u=! and v, respectively, we have that the
concatenation

is a (1, 2p)-quasi-geodesic
(iii) there are geodesics o and 3 from 1 to u=! and v, respectively, such that the con-
catenation

is a (1,2p)-quasi-geodesic
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Lemma 3.18. Let G be a §-hyperbolic group and g € G be an element having a fully
(1, e)-quasireduced representative word v. Then, all geodesic words w such that wr = g
are fully (1,e + 2K (1,¢,0) + 2)-quasireduced words.

Proof. Put K = K(1,¢,4). Any geodesic w is clearly a (1, + 2K + 2)-quasigeodesic.
Now let w = wjwsy and consider the cyclic permutation w’ = wew; of w. We have to
prove that w’ is a (1, e+ 2K + 2)-quasigeodesic. Consider the bigon with sides w = wyws
(top side) and v (bottom side). Since v and w are at Hausdorff distance at most K, then
there is a vertex on the bottom side at a distance at most K + 1 from the vertex reached
after reading w; on the top side (the 4+1 comes from the possibility that the closest point
of the bottom side to the vertex on the top side might not be a vertex itself) and so
there is a geodesic word « of length at most K + 1 and words v, vs such that v = vyva,
v = (wia)m and vor = (™ lws) 7.

w1 T
w1 wa
>a
Ly o g
W w

We have that (wew;)m = (qwvavia™!)m and so

d(1, (vov1)7) = d(1, (o twowy ) )
< 2|a| + d(1, (wewy) )
< d(wy  mwim) + 2(K + 1), (5)
Hence, using (5) and the facts that w = wjws is geodesic, v = vivy is a (1,¢)-

quasigeodesic (and so |v| < d(1, (viv2)m) + €), and that vev; is a (1,€)-quasigeodesic
(and so |vavy| < d(1, (vv1)7) + €), we have that

(w3 o)y = S5 ) + d1, ) — . wa)
= 5 (jwal + [wn| = d(wy 'x, wy)
< %(|w| — d(1, (vz01)7) + 2(K + 1))
< %(m — d(1, (va1)7) + 2(K + 1))
- %(Wm\ —d(1, (vav1)7) + 2(K + 1))

<SHE+D)



A. Carvalho, P.V. Silva / Journal of Algebra 694 (2026) 263—-286 281

From Lemma 3.17, it follows that wow; is a (1, + 2K(1,¢,0) + 2)-quasigeodesic. O

For convenience, we will denote K (1,38 + 1,d) by R: this should cause no confusion,
as the group, and so ¢, will be fixed. Recall that, for a subset K C G, we denote the set
of all conjugates of elements of K by «(K).

Proposition 3.19. Let G be a virtually free group and K € Rat(G). There is an effectively
constructible rational language Ly such that Lgm C a(K) and, for every element g € K,
there is at least one fully (1,30+2R+3)-quasireduced word in L representing a conjugate

of g.

Proof. Since K is necessarily contained in some finitely generated subgroup of G, we may
assume that G is finitely generated. By Corollary 3.13, we can construct a finite state
automaton recognizing Geog(K), where B is our standard generating set for G. Let 0
be a hyperbolicity constant for G, Lx = Geop(Cyc(Geop(K))r) and S = {aq,...,an}
be the set of all words in B* of length at most 8. We claim that Lx has the desired
properties.

The language Geop(K) is rational in view of Corollary 3.13, and so Cyc(Geop(K))
is rational. Hence, Cyc(Geop(K))w is a rational subset and Geop(Cyc(Geop(K))) is
rational by Corollary 3.13, which also implies that the construction is effective. Also,
Lgm C a(K), since, for every word v € Lk, there is a word u € Cyc(Geop(K)) such
that vm = um and every word in Cyc(Geop(K)) represents a conjugate of an element in
K.

Now, let ¢ € K and u € Geop(K) be a geodesic such that ur = g. Then, by
Proposition 3.16, there is some i € [n] such that u = ujugug, where (ugui)m = «;m,
and wugqy; is fully (1,38 + 1)-quasireduced. But, (uga;)m = (ugusui)m and ugugu; €
Cyc(Geop(K)). Now, any geodesic word representing (usa;)m = (uguzui)m belongs to
Geop(Cyc(Geop(K))m) and, by Lemma 3.18, it is a fully (1,30 + 2R + 3)-quasireduced
word. O

Theorem 3.20. Let G be a finitely generated virtually free group and K € Rat(G). There
exists a context-free language L' such that L't C «(K) and L' contains all the fully
(1,39 + 2R + 3)-quasireduced words representing elements in a(K).

Proof. Let Lx be the language from Proposition 3.19,
S={geG|dp(l,g) <26 +2K(1,30 +2R+3,6)}
(notice that S is finite), and L = Cyc(Lg). Since Lgm C a(K), then L7 C a(K).
By brute force, we build the set @Q of all fully (1,35 + 2R + 3)-quasireduced words of

length at most 116 + 2K (1,35 + 2R + 3,9) + 2R + 4 representing an element of a(K): it
can be checked whether a word is a quasigeodesic, and so it can be checked whether a
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word is fully quasireduced or not and, in case it is, we check if it belongs to a(K') using
the main result from [14].
Fix some 8 € S. Since Lw € Rat(G), then Lw € CF(G) (see [10, Lemma 4.2]) and

Sg:= B(Lm)B~' = LwAs € CF(G),

which follows from Lemma 2.6 by taking M = M' =G, 7 = )\51 and T = L7 and the
fact that context-free languages are closed under inverse morphism.

Put Lg = Sgr—!. All words from Lg represent a conjugate (by 3) of an element in
Lm, and so all words in Lg represent an element conjugate to an element in K, i.e.,
Lgm C a(K)

We claim that the language

L'= U Cyc(Lg)UQ

BeS

has the desired properties. Clearly, it is context-free and L'r C «(K). We claim that
it contains all the fully (1,30 + 2R + 3)-quasireduced words representing an element in
a(K).

Let v be a fully (1,30 + 2R + 3)-quasireduced word representing an element in a(K).
We know that there is at least one fully (1,30 4+ 2R + 3)-quasireduced word u € Lk such
that um ~ vm by Proposition 3.19.

From Lemma 3.15, it follows that either max(|ul,|v]) < 116+ 2K (1,36 + 2R+ 3,4) +
2R-+4 or there exist cyclic conjugates u’ and v’ of v and v and a word 3 with (Bu’B~1)7 =
v'm and |B] <26+ 2K(1,30 4+ 2R + 3,0). In the first case, we have that v € @, and so,
v € L'. So, assume that |v| > 116 + 2K (1,30 + 2R + 3,6) + 2R + 4 and that there exist
some 3 € S and cyclic permutations v’ and v’ of u and v with B(u/7)3~1 = v'7. In this
case ' € L and B(u'm)p € Sg, thus v’ € Lg and v € Cyc(Lg). O

Theorem 3.21. Let G be a finitely generated virtually free group and K € Rat(G). Then
Geo(a(K)) is context-free.

Proof. We will show that Geop(a(K)) is context-free. Let § be the maximum between 1
and the hyperbolicity constant of G (so G is §-hyperbolic and ¢ > 1). It suffices to prove
that there exists a context-free language L such that L7 C «(K) and Geog(a(K)) C L,
since, in that case Geog(a(K)) = L N Geop(G) and context-free languages are closed
under intersection with rational languages.

Let L' be the language given by Theorem 3.20. For every (8 € Z*, the language
L' N B* [ is context-free and then, so is the language Lg obtained by removing £ from
the end of every word in L' N B*/. By the Muller-Schupp Theorem, {1} € CF(G), and
so {7} € CF(G), by Lemma 2.4. Hence, the language Srr—! C B* is context-free and
so is the language Srm—1# C (B U #)*. Moreover,
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Lo = {ul#ug | Uz € ﬂmr_l} = Cyc(ﬂmr_l#) - (B @] #)*
is context-free. Since context-free languages are closed under substitution, the language
Lg = {ujugus | ug € LZ, (ugur)m = B}

obtained by replacing the symbol # by Lg in Lo is context-free. We claim that the
language

L= ] Ls

|Bl<é

is context-free and that L7 C a(K) and Geop(a(K)) C L. It is obvious that L is
context-free. Let up € L5 and uy, uz be such that (uzu;)m = fr for some 8 with 3] < 6.
Then (uym) ™ (uugus)m(uim) = (ugB)m, and so (ujugus)m ~ (uzB)m. Since us € L7,
then us8 € L' and L'm C «(K). Thus, (ujusus)m € a(K). Since ujugug is an arbitrary
element of L, we have that L7 C «(K). It remains to show that Geog(a(K)) C L.
Let w € Geop(a(K)). Then, by Proposition 3.16, we have that w = wujusus, where
(uzuq)m = B for some word 8 such that |3| < § and uo is fully (1, 36+ 1)-quasireduced.
It suffices to check that ugy € L}, i.e., that us8 € L’. This follows from Theorem 3.20, as
every fully (1,30 + 1)-quasireduced word is also fully (1,30 4+ 2R + 3)-quasireduced and
(uga)m = (ugugur)m ~wr € a(K). O

As mentioned in the introduction, Dahmani and Guirardel prove in [6] that equations
with rational constraints are solvable in virtually free groups, and so, the doubly gener-
alized conjugacy problem with rational constraints is decidable for virtually free groups.
Using the previous theorem, we provide a language-theoretic proof of the problem with-
out constraints.

Corollary 3.22. Let G be a virtually free group. Then the doubly generalized conjugacy
problem in G is decidable.

Proof. It amounts to deciding, on input S,7 € Rat(G), whether Geop(a(S)) N
Geop(T) = ), which can be done since Geog(a(S)) is context-free by Theorem 3.21
and Geopg(T) is rational by Corollary 3.13. O

Currently, we are not aware of the existence of a language-theoretic proof for the
constrained version of the problem.

Question 3.23. Is there a language-theoretic proof of the doubly generalized conjugacy
problem with rational constraints for finitely generated virtually free groups?

Remark 3.24. We remark that, in general, hyperbolic groups have undecidable (sub-
group) membership problem, and so undecidable GCP and DGCP. Most of the tools
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in our proof work for hyperbolic groups. In fact, the only obstruction is Corollary 3.13,
which can be easily seen not to hold in hyperbolic groups without the Howson property.

This last result raises two natural questions involving a finite index subgroup H of a
group G:

o if H has decidable DGCP, does G have decidable DGCP?
o if G has decidable DGCP, does H have decidable DGCP?

Since both implications fail for the CP, we conjecture that the same happens for the
DGCP. However, we are so far unable to produce counterexamples (the counterexamples
we know for the CP are not useful for this purpose).

But we can get something in particular cases. Recall that a retract of G is a subgroup
H such that there exists a homomorphism ¢ : G — H fixing the elements of H. The
second question has an affirmative answer if H is a retract of G (of finite or infinite
index):

Proposition 3.25. Let H be a retract of a group G. If G has decidable DGCP, then H
also has decidable DGCP.

Proof. Let ¢ : G — H be a homomorphism fixing the elements of H and let K,L €
Rat H C Rat G. It suffices to show that

JreKIyel3heH :y=hzh ' e IxcKIyecLIge G :y=gzg '

The direct implication holds trivially and the converse follows from

1

y=gzg ' = yp=(grg o =y=(9p)z(gp)”". O

We consider now a strengthening of the DGCP, which we call the doubly generalized
twisted conjugacy problem (DGTCP) for a group G: given K, L € Rat G and ¢ € Aut G,
we must decide whether there are some z € K,y € L and g € G such that y = g~z (gyp).

Proposition 3.26. Let H be a finite index normal subgroup of a group G. If H has decid-
able DGTCP, then G has decidable DGCP.

Proof. Since [G : H] < oo, there exist by, ...,by, € G such that G = HbgU...UHb,y,
and by = 1. Since H <G, then ¢; : H — H defined by hy; = b;hbd; 1 is an automorphism
of H fori=0,...,m.

Let K,L € RatG. By [17, Proposition 4.1], there exist Ko,...,Kmn,Lo..., Ly €
Rat H such that K = KybgU...UK,,b,, and L = LgbgU...UL,,b,,. Since G =
HboU...UHb,y,, it suffices to show that, for all ¢, j, k € {0, ..., m}, we can decide whether
there exists some (z,y,z) € L; x K; x H such that (zby)~!(zb;)(2br) = yb;. Now
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(2br) "1 (xb;) (2by) = yb; & b;lzflxbizbk =yb; & 27 labz = bkybjbgl
& 27 a(z9;) = (yor)beb;by 'b; 1,

hence bkbjblzlbi_l € H is an obvious necessary condition. Assuming that this holds,
then since rational subsets are closed under homomorphism, we get that KJ’- =
{(yor)brbjby b7+ y € K;} € Rat H. Since H has decidable DGTCP, then we can
decide whether or not there are some x € L;, y € K and z € H such that y = 27 'z(zp).
Therefore G has decidable DGCP. 0O

A group is virtually abelian if it has an abelian subgroup of finite index. We can now
prove the following result:

Theorem 3.27. Every finitely generated virtually abelian group has decidable DGCP.

Proof. A finite index subgroup of a finitely generated group is itself finitely generated.
Hence, by Proposition 3.26, it is enough to show that every finitely generated abelian
group has decidable DGTCP.

Let G be an abelian group generated by the finite set A, let K,L € RatG and
© € AutG. Let M = {u=Y(uyp) : u € G}. Since G is abelian, we have

(w0) " (wv)p = v~ (up) (ve) = (v (v)) (u™ (up))

for all u,v € G, hence M = (a"'(ap) : a € A) € RatG. Since y = g~ lz(gyp) for
some g € G if and only if y = zg~'(gy) for some g € G if and only if 7'y € M,
then deciding whether or not there exist some z € K, y € L and g € G such that
y = g 'z(gyp) is equivalent to deciding whether or not K ~'LNM # (), which is equivalent
tole K~'LM~'. Since K,L,M € RatG, also K~', M~! and K~'LM ™! are rational,
so the result follows from finitely generated abelian groups having decidable membership

problem for rational subsets [9]. O
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