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We prove that a subset of a virtually free group is rational 
if and only if the language of geodesic words representing 
its elements (in any generating set) is rational and that the 
language of geodesics representing conjugates of elements in 
a rational subset of a virtually free group is context-free. 
As a corollary, the doubly generalized conjugacy problem is 
decidable for rational subsets of finitely generated virtually 
free groups: there is an algorithm taking as input two rational 
subsets K1 and K2 of a virtually free group that decides 
whether there is one element of K1 conjugate to an element 
of K2. For free groups, we prove that the same problem is 
decidable with rational constraints on the set of conjugators.
© 2026 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).

1. Introduction

Given a group G, two elements x, y ∈ G are said to be conjugate if there is some 
z ∈ G such that x = z−1yz, in which case we write x ∼ y. The conjugacy problem 
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CP(G) consists of, given x, y ∈ G, deciding whether x ∼ y or not. This was one of the 
three algorithmic problems introduced by Dehn [7], together with the word problem and 
the isomorphism problem.

The word problem, WP(G), is possibly the most well-studied algorithmic problem 
in group theory and consists of, given a word on the generators of a group, deciding 
whether the element represented by that word is the identity or not, or, equivalently, 
given two words on the generators, deciding whether they represent the same group 
element. The membership problem, MP(G), also known as the generalized word problem 
consists of, given a finitely generated subgroup H ≤ G and an element x ∈ G, deciding 
whether x ∈ H or not. This can be considered more generally for subsets belonging to a 
reasonably well-behaved class instead of subgroups (e.g. rational or context-free subsets). 
This can also be rewritten as the question of deciding whether there is some y ∈ H such 
that x = y (see [16] for a survey on this problem). In the same spirit, a generalization of 
the conjugacy problem was considered in [14] and proven to be decidable with respect 
to rational subsets of finitely generated virtually free groups. The generalized conjugacy 
problem with respect to 𝒞, GCP𝒞(G), where 𝒞 is a class of subsets of G consists then of, 
given x ∈ G and K ∈ 𝒞, deciding whether there is some y ∈ K such that x ∼ y. Clearly, 
if 𝒞 contains all singletons (which occurs if 𝒞 is the class of rational subsets or the class 
of cosets of finitely generated subgroups), this is indeed a generalization of the conjugacy 
problem.

The intersection problem IP𝒞(G) consists of, given two subsets K1,K2 ∈ 𝒞, deciding 
whether K1∩K2 = ∅. Naturally, if 𝒞 is a class of subsets containing all singletons, if we can 
decide the intersection problem with respect to 𝒞, we can decide the membership problem 
with respect to 𝒞. Thus, in some sense, the intersection problem can be seen as the doubly 
generalized word problem and, as done above, it can also be rewritten as the question 
of deciding whether there are some x ∈ K2 and y ∈ K2 such that x = y. However, if 
the class of subsets is closed under product of subsets and inversion, this is equivalent 
to the membership problem, as it consists of deciding whether 1 ∈ K1K

−1
2 . This is 

the case when considering rational or algebraic subsets, but does not hold in general. 
In this paper, we consider the doubly generalized conjugacy problem with respect to 𝒞, 
DGCP𝒞(G), which is the natural generalization of the conjugacy problem corresponding 
to the intersection problem, that is, the problem of, given K1,K2 ∈ 𝒞, deciding whether 
there are some x ∈ K2 and y ∈ K2 such that x ∼ y.

In case 𝒞 is the class of the rational subsets of G, the following is easy to see (where ≤
means that the problem on the left-hand side is reducible to the one on the right-hand 
side and ≡ means that the problems are equivalent):

WP(G) ≤ MPRat(G) ≡ IPRat(G)

≤
 

≤
 

≤
 

CP(G) ≤ GCPRat(G) ≤ DGCPRat(G)
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Notice that IPRat(G) ≤ DGCPRat(G), since K1 ∩ K2 = ∅ if and only if there is an 
element in K1K

−1
2 conjugate to an element in {1}.

We will additionally consider versions of the conjugacy problems with certain con
straints on the conjugators. In [14], it is proved that the generalized conjugacy problem 
with rational constraints with respect to rational subsets of finitely generated virtually 
free groups is decidable, meaning that, given a virtually free group G, there is an algo
rithm taking as input two rational subsets L,K ∈ Rat(G) and an element x ∈ G and 
decides if there is some z ∈ L such that z−1xz ∈ K.

Given K,L ⊆ G, let

α(K,L) =
⋃︂
u∈L

u−1Ku.

When L = G, we simply write α(K) to denote α(K,G)
In this paper, we will present a language-theoretical proof of the decidability of the 

doubly generalized conjugacy problem with rational constraints with respect to rational 
subsets of finitely generated free groups. To do so, we prove that, in a finitely generated 
free group, the set α(K,L) of all elements conjugate to an element of K by an element 
of L is a context-free subset of the ambient free group. It is proved in [15] that a group 
is virtually free if and only if its conjugacy classes are context-free subsets. Equivalently, 
a group is virtually free if and only if α(S) is context-free for all singletons S. We prove 
something much stronger in the case of free groups, namely that α(K,L) is context-free 
if both K and L are rational.

Theorem 3.5. Let K,L ∈ RatFA. Then α(K,L) is a context-free subset of FA.

Since context-free languages are closed under intersection with regular languages and 
emptiness of context-free languages is decidable, we have the following corollary:

Corollary 3.7. The doubly generalized conjugacy problem with rational constraints is de
cidable with respect to rational subsets of a finitely generated free group.

Regarding virtually free groups, we prove a generalization of the well-known Benois’s 
theorem, showing that a subset is rational if and only if the language of geodesics repre
senting its elements is rational.

Corollary 3.13. Let G be a finitely generated virtually free group and K ⊆ G. The fol
lowing are equivalent:

1. K ∈ Rat(G).
2. GeoX(K) is a rational language for some finite generating set X.
3. GeoX(K) is a rational language for every finite generating set X.

Moreover, the constructions are effective.
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We then prove that the language of geodesics representing conjugates of a given ra
tional subset is context-free, which yields a language-theoretic proof of the decidability 
of the doubly generalized conjugacy problem for rational subsets of finitely generated 
virtually free groups. Again, it follows from [15] that, for a virtually free group and a 
singleton S ⊆ G, Geo(α(S)) = Sπ−1 ∩Geo(G) is a context-free language. We prove that 
this holds for every rational subset of G.

Theorem 3.21. Let G be a virtually free group and K ∈ Rat(G). Then Geo(α(K)) is 
context-free.

Corollary 3.22. Let G be a virtually free group. Then the doubly generalized conjugacy 
problem in G is decidable.

We remark that Corollaries 3.7 and 3.22 were already known, as they follow directly 
from the fact that the existential theory of equations with rational constraints in free 
groups is PSPACE-complete, which was proved by Diekert, Gutiérrez and Hagenah in 
[8], since, for L,K1,K2 ∈ Rat(G), the statement that there is an element of K1 conjugate 
to an element of K2 by an element of L can be expressed as:

∃z ∈ L ∃x ∈ K1 ∃y ∈ K2 : z−1xz = y.

Similarly, for virtually free groups, we can use the analogous result for virtually free 
groups proved in [6]. However, to the best of our knowledge, these are the first language
theoretic proofs of Corollaries 3.7 and 3.22. We currently do not know of a language
theoretic proof for the doubly generalized conjugacy problem with rational constraints 
on virtually free groups.

2. Preliminaries

In this section, we will present basic definitions and results on rational, algebraic and 
context-free subsets of groups (for more details, the reader is referred to [2] and [1]) and 
on virtually free groups.

2.1. Subsets of groups

The set {1, . . . , n} will be denoted by [n]. Let G = ⟨A⟩ be a finitely generated group, 
A be a finite generating set, ˜︁A = A ∪A−1 and π : ˜︁A∗ → G be the canonical (surjective) 
homomorphism. This notation will be kept throughout the paper.

A subset K ⊆ G is said to be rational if there is some rational language L ⊆ ˜︁A∗ such 
that Lπ = K and recognizable if Kπ−1 is rational.

We will denote by Rat(G) and Rec(G) the class of rational and recognizable subsets 
of G, respectively. Rational subsets generalize the notion of finitely generated subgroups.
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Theorem 2.1 ([2], Theorem III.2.7). Let H be a subgroup of a group G. Then H ∈ Rat(G)
if and only if H is finitely generated.

Similarly, recognizable subsets generalize the notion of finite index subgroups.

Proposition 2.2. Let H be a subgroup of a group G. Then H ∈ Rec(G) if and only if H
has finite index in G.

In fact, if G is a group and K is a subset of G then K is recognizable if and only if 
K is a (finite) union of cosets of a subgroup of finite index.

In case the group G is a free group with basis A with surjective homomorphism 
π : ˜︁A∗ → G, given L ⊆ ˜︁A∗, we define the set of reduced words representing elements in 
Lπ by

L = {w ∈ ˜︁A∗ | w is reduced and there exists u ∈ L such that uπ = wπ}.

Benois’ Theorem provides us with a useful characterization of rational subsets in terms 
of reduced words representing the elements in the subset.

Theorem 2.3 (Benois). Let F be a finitely generated free group with basis A and let 
L ⊆ ˜︁A∗. Then L is a rational language of ˜︁A∗ if and only if Lπ is a rational subset of F .

A natural generalization of these concepts concerns the class of context-free languages. 
A subset K ⊆ G is said to be algebraic if there is some context-free language L ⊆ ˜︁A∗ such 
that Lπ = K and context-free if Kπ−1 is context-free. We will denote by Alg(G) and 
CF(G) the class of algebraic and context-free subsets of G, respectively. It follows from 
[10, Lemma 2.1] that these definitions, as well as the definitions of rational and recog
nizable subsets, do not depend on the finite alphabet A or the surjective homomorphism 
π.

It is obvious from the definitions that Rec(G), Rat(G), CF(G) and Alg(G) are closed 
under union, since both rational and context-free languages are closed under union. The 
intersection case is distinct: from the fact that rational languages are closed under inter
section, it follows that Rec(G) must be closed under intersection too. However Rat(G), 
Alg(G) and CF(G) might not be. For instance, if a group G does not have the Howson 
property, that is, the property that the intersection of two finitely generated subgroups 
is finitely generated, then Rat(G) is not closed under intersection. Regarding Alg(G) and 
CF(G), it is proved in [5, Proposition 3.10 and Example 3.11], not only that algebraic 
subsets of free groups are not closed under intersection, but also that if G is virtually free 
or virtually abelian, then CF(G) is closed under intersection if and only if G is virtually 
cyclic, and the author conjectures that, in general, CF(G) is closed under intersection 
if and only if G is virtually cyclic. A̧ nother important closure property is given by the 
following lemma from [10].
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Lemma 2.4. [10, Lemma 4.1] Let G be a finitely generated group, R ∈ Rat(G) and C ∈
{Rec,CF}. If K ∈ C(G), then KR,RK ∈ C(G).

The following is an immediate consequence of the previous lemma.

Corollary 2.5. Let K ⊆ FA and u ∈ FA. Then u−1Ku is context-free if and only if K is 
context-free.

For a finitely generated group G, it is immediate from the definitions that

Rec(G) ⊆ CF(G) ⊆ Alg(G)

and that

Rec(G) ⊆ Rat(G) ⊆ Alg(G).

Lemma 2.6. [10, Lemma 4.3] Let X,Y be finite alphabets and let ψ : Y ∗ → M , φ : X∗ →
M ′ be homomorphisms onto monoids M,M ′. Then every homomorphism τ : M ′ → M

can be lifted to a homomorphism h : X∗ → Y ∗ such that the diagram

X∗ Y ∗

M ′ M

h

φ ψ

τ

commutes. As a consequence, Tτ−1φ−1 = Tψ−1h−1 for every T ⊆ M .

However, there is no general inclusion between Rat(G) and CF(G). For example, if G
is virtually abelian, then CF(G) ⊆ Alg(G) = Rat(G) (and the inclusion is strict if the 
group is not virtually cyclic) and if the group is virtually free, then Rat(G) ⊆ CF(G)
(see [10, Lemma 4.2]).

In the case of the free group Fn of rank n ≥ 1, Herbst proves in [10] an analogue of 
Benois’s Theorem for context-free subsets:

Lemma 2.7. [10, Lemma 4.6] Let F be a finitely generated free group with basis A and 
let L ⊆ ˜︁A∗. Then L is a context-free language of ˜︁A∗ if and only if Lπ is a context-free 
subset of F .

A slight improvement of the previous lemma can be easily obtained:

Lemma 2.8. Let F be a finitely generated free group and K ⊆ F . Then K ∈ CF(F ) if 
and only if there is a context-free language L such that K ⊆ L ⊆ Kπ−1.
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We will also make use of the following lemma, which is a simple exercise:

Lemma 2.9. Let L ∈ RatA∗ and let u, v ∈ A∗. Then the languages
⋃︂
n≥0

unLvn, 
⋃︂

0≤m≤n

umLvn and
⋃︂

0≤m≤n

unLvm

are all context-free.

2.2. Virtually free groups

A group G is said to be virtually free if it has a free subgroup F of finite index. Since 
subgroups of free groups are free and every finite index subgroup contains a finite index 
normal subgroup, we can assume that F ⊴f.i. G. We will usually write

G = Fb1 ∪ · · · ∪ Fbn,

where all cosets Fbi are disjoint.
Algebraic and context-free subsets of virtually free groups are studied in [5]. In par

ticular, it is proved in [5, Theorem 4.3] that, if G is a finitely generated virtually free 
group and H ≤f.g. G, then

CF(H) = {K ⊆ H | K ∈ CF(G)}. (1)

Also, combining [17, Proposition 4.1] and Propositions 3.6 and 3.7 of [5] we have 
that Rec(G) (resp. Rat(G), Alg(G), CF(G)) consists of sets of the form Libi, where 
Li ∈ Rec(F ) (resp. Rat(F ), Alg(F ), CF(F )).

A word u = u1 . . . uk is said to be cyclically reduced if u1 ̸= u−1
k . Every reduced word 

u can be decomposed as u = w−1˜︁uw, where ˜︁u is cyclically reduced. We refer to ˜︁u as the 
cyclically reduced core of u.

3. Conjugates of elements in a rational subset

In this section, we will prove that, in a free group, the set of conjugates of elements in 
a rational subset K with a conjugator in a rational subset L, α(K,L), is context-free and 
that a context-free grammar representing it can be effectively computed. As a corollary, 
we have a language-theoretical proof that the doubly generalized conjugacy problem with 
respect to rational subsets with rational constraints is decidable on a free group F . This 
result also follows from the very strong theorem by Diekert, Gutiérrez and Hagenah [8] 
stating that the existential theory of equations with rational constraints in free groups 
is PSPACE-complete.

We will then consider the case of virtually free groups. We start by proving a general
ization of Benois’s theorem: a subset of a virtually free group is rational if and only if the 
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language of geodesic words representing its elements is rational. Then, we show that the 
language of geodesic words representing a conjugate of an element in a rational subset K
is context-free (and computable), obtaining a language-theoretical proof for the doubly 
generalized conjugacy problem. This problem was already known to be decidable, as its 
decidability follows from the solution of equations with rational constraints for virtually 
free groups [6].

3.1. Free groups

Given K,L ⊆ FA, we say that the product KL is reduced if K L ⊆ ˜︁A∗. The purpose 
of this subsection is to prove that, given K,L ∈ RatFA, then α(K,L) is a context-free 
subset of FA. We start by solving the particular cases where L and K satisfy some 
reducibility conditions.

Lemma 3.1. Let K,L ∈ Rat ˜︁A∗. Then 
⋃︁

u∈L u−1Ku ⊆ ˜︁A∗ is a context-free language.

Proof. Let 𝒢 = (V, P, S) be the context-free grammar on the alphabet ˜︁A ∪ {$} defined 
by V = ˜︁A ∪ {$, S} and P = {(S, aSa−1) | a ∈ ˜︁A} ∪ {(S, $)}. It is immediate that 
L(𝒢) = {u−1$u | u ∈ ˜︁A∗}. Since context-free languages are closed under intersection 
with regular languages, it follows that

{u−1$u | u ∈ L} = {u−1$u | u ∈ ˜︁A∗} ∩ L−1$L

is context-free. Since context-free languages are closed under substitution, we can replace 
the letter $ by the rational (hence context-free) language K and remain context-free. 
Therefore 

⋃︁
u∈L u−1Ku is a context-free language. □

Lemma 3.2. Let K,L ∈ RatFA with both L−1 K and KL reduced. Then α(K,L) is a 
context-free subset of FA.

Proof. By Lemma 2.7, it suffices to show that α(K,L) is a context-free language. This 
same argument will be used in the next proofs without further reference.

Now α(K,L) = {u−1Ku | u ∈ L} and it follows from Benois’ Theorem that K and L
are both rational languages. By Lemma 3.1, α(K,L) is a context-free language. □
Lemma 3.3. Let K,L ∈ RatFA with KL reduced. Then α(K,L) is a context-free subset 
of FA.

Proof. We may assume that K and L are both nonempty. Let C denote the set of all 
cyclically reduced elements of FA, which is clearly a rational subset. Then K ∩ C and 
K \C are both rational subsets of FA. Since L−1(K \C) and (K \C)L are both reduced, 
it follows from Lemma 3.2 that α(K \C,L) is a context-free subset of FA. Thus it suffices 
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to show that α(K ∩C,L) is a context-free subset of FA. Therefore we may assume that 
K ⊆ C, and we may also assume that 1 / ∈ K.

Let 𝒜 = (Q, q0, T, E) and 𝒜′ = (Q′, q′0, T
′, E′) denote respectively the minimal au

tomata of L and K. For all I, J ⊆ Q, let LIJ = L(Q, I, J, E). For all I ′, J ′ ⊆ Q′, let 
L′
I′J ′ = L(Q′, I ′, J ′, E′). Let

X =
|Q|−1⋃︂
m=0 

Q2m+1 ×Q′.

We show that

α(K,L) = {w−1v2v1w | ∃ (p1, q1, . . . , pm, qm, pm+1, q
′) ∈ X, v1 ∈ L′

q′0q
′ ∩ (

⋂︁m
i=0 Lqipi+1),

v2 ∈ L′
q′T ′ ∩ (

⋂︁m
i=1 Lpiqi), w ∈ Lpm+1T } ∩ ˜︁A∗.

(2)
Indeed, let w−1v2v1w belong to the right hand side of (2) for some (p1, q1, . . . , pm, qm, 

pm+1, q
′) ∈ X. Then we have a path q′0

v1 −→ q′
v2 −→ t′ ∈ T ′ in 𝒜′ and a path

q0
v1 −→ p1

v2 −→ q1
v1 −→ . . .

v2 −→ qm−1
v1 −→ pm

v2 −→ qm
v1 −→ pm+1

w −→ t ∈ T

in 𝒜. Hence v1v2 ∈ L(𝒜′) = K and (v1v2)mv1w ∈ L(𝒜) = L. It follows that

w−1v2v1w = w−1v−1
1 (v−1

2 v−1
1 )mv1v2(v1v2)mv1w ∈ α(K,L).

Since w−1v2v1w is a reduced word by hypothesis, we get w−1v2v1w ∈ α(K,L).
Conversely, assume that u ∈ L and v ∈ K. We consider the longest prefix of u which 

is a prefix of some power of v. More precisely, write u = vmv1w such that m ≥ 0 and 
v = v1v2 with v2 ̸= 1. Then

u−1vu = w−1v−1
1 v−mvvmv1w = w−1v2v1w.

Note that every path of the form p vm −−→ q in 𝒜 with m ≥ |Q| must contain some loop 
labelled by vs with 1 ≤ s ≤ |Q|, hence we may replace u = vmv1w by u′ = vm−sv1w

without changing the final outcome w−1v2v1w. Thus we assume that m < |Q|. We must 
have a path

q0
v1 −→ p1

v2 −→ q1
v1 −→ . . .

v2 −→ qm−1
v1 −→ pm

v2 −→ qm
v1 −→ pm+1

w −→ t ∈ T

in 𝒜 and a path q′0
v1 −→ q′

v2 −→ t′ ∈ T ′ in 𝒜′. It follows that (p1, q1, . . . , pm, qm, pm+1, q
′) ∈

X, v1 ∈ L′
q′0q

′ ∩ (
⋂︁m

i=0 Lqipi+1), v2 ∈ L′
q′T ′ ∩ (

⋂︁m
i=1 Lpiqi) and w ∈ Lpm+1T . It remains to 

show that w−1v2v1w is reduced.
Indeed, v2v1w labels a path in a trim automaton recognizing a reduced language, 

hence must be a reduced word itself. Suppose that w−1v2 is not reduced. Then v2 and 
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w2 share the same first letter, say a. Then vmv1a is a prefix of u which is a prefix of vm+1, 
contradicting the maximality of vmv1. Hence w−1v2 is reduced. Since v2v1w is reduced 
and v2 ̸= 1, then w−1v2v1w is itself reduced and so (2) holds. Now, applying Lemma 3.1
|X| times to the rational languages featuring the right hand side of (2), and taking into 
account that context-free languages are closed under intersection with rational languages 
and union, we conclude that α(K,L) is a context-free language as intended. □
Lemma 3.4. Let K,L ∈ RatFA with L−1K reduced. Then α(K,L) is a context-free subset 
of FA.

Proof. We may assume that K and L are both nonempty. Since K rational implies 
K−1 rational and L−1K reduced implies K−1L reduced, it follows from the proof of 
Lemma 3.3 that α(K−1, L) is a context-free language. Now

α(K,L) =
⋃︂
u∈L

u−1Ku = (
⋃︂
u∈L

u−1K−1u)−1 = (α(K−1, L))−1.

Since context-free languages are closed under reversal and homomorphism, it follows 
easily that (α(K−1, L))−1 is a context-free language. Thus α(K,L) is a context-free 
language and we are done. □

Now, we can prove the main result of this subsection.

Theorem 3.5. Let K,L ∈ RatFA. Then α(K,L) is a context-free subset of FA.

Proof. We may assume that K and L are both nonempty. Since α(1, L) = 1, we may 
assume that 1 / ∈ K.

Let 𝒜 = (Q, q0, T, E) and 𝒜′ = (Q′, q′0, T
′, E′) denote respectively the minimal au

tomata of L and K. We keep the notation introduced in the proof of Lemma 3.3. We 
define

X = {(q, p′, q′) ∈ Q×Q′ ×Q′ | Lq0q ∩ L′
q′0p

′ ∩ (L′
q′T ′)−1, L′

p′q′ \ {1} ̸= ∅}.

For every a ∈ ˜︁A, we define the possibly empty subsets of FA

Ya = {w−1v2w | ∃ (q, p′, q′) ∈ X, v2 ∈ L′
p′q′ ∩ ˜︁A∗a, w ∈ LqT \ a−1 ˜︁A∗},

Za = {w−1v2w | ∃ (q, p′, q′) ∈ X, v2 ∈ L′
p′q′ ∩ a ˜︁A∗, w ∈ LqT \ a ˜︁A∗}.

We show that

α(K,L) =
⋃︂
a∈ ˜︁A

(Ya ∪ Za). (3)
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Let y ∈ Ya. Then there exist (q, p′, q′) ∈ X, v2 ∈ L′
p′q′ ∩ ˜︁A∗a and w ∈ LqT \ a−1 ˜︁A∗ such 

that y = w−1v2w. Since (q, p′, q′) ∈ X, there exists some v1 ∈ Lq0q ∩ L′
q′0p

′ ∩ (L′
q′T ′)−1. 

Then we have a path q0
v1 −→ q

w −→ t ∈ T in 𝒜 and a path

q′0
v1 −→ p′

v2 −→ q′
v−1
1  −−→ t′ ∈ T ′

in 𝒜′. Hence v1v2v
−1
1 ∈ L(𝒜′) = K and v1w ∈ L(𝒜) = L. It follows that

y = w−1v2w = w−1v−1
1 (v1v2v

−1
1 )v1w ∈ α(K,L).

Thus Ya ⊆ α(K,L). The inclusion Za ⊆ α(K,L) is proved similarly.
Conversely, assume that u ∈ L and v ∈ K. We may write v = bcb−1 with c cyclically 

reduced. Since 1 / ∈ K, we have c ̸= 1. Let v1 denote the longest common prefix of u and 
b (which may be the empty word). Write u = v1w and v = v1v2v

−1
1 . We must have a 

path

q′0
v1 −→ p′

v2 −→ q′
v−1
1  −−→ t′ ∈ T ′

in 𝒜′ and a path q0
v1 −→ q

w −→ t ∈ T in 𝒜. It follows that v1 ∈ Lq0q ∩ L′
q′0p

′ ∩
(L′

q′T ′)−1, v2 ∈ L′
p′q′ \ {1} and w ∈ LqT , hence (q, p′, q′) ∈ X. Moreover, u−1vu =

w−1v−1
1 (v1v2v

−1
1 )v1w = w−1v2w.

Now it follows from the maximality of v1 that at least one of the products w−1v2, v2w

must be reduced (if v1 = b, this follows from v2 = c being cyclically reduced). If w−1v2
is reduced, then u−1vu ∈ Za when a denotes the first letter of v2. If v2w is reduced, then 
u−1vu ∈ Ya when a denotes the last letter of v2. Therefore (3) holds.

Since

Ya =
⋃︂

(q,p′,q′)∈X

α(L′
p′q′ ∩ ˜︁A∗a, LqT \ a−1 ˜︁A∗)

and (L′
p′q′ ∩ ˜︁A∗a)(LqT \ a−1 ˜︁A∗) is reduced, it follows from Lemma 3.3 that Ya is a 

context-free subset of FA.
Since

Za =
⋃︂

(q,p′,q′)∈X

α(L′
p′q′ ∩ a ˜︁A∗, LqT \ a ˜︁A∗)

and (LqT \ a ˜︁A∗)−1(L′
p′q′ ∩ a ˜︁A∗) is reduced, it follows from Lemma 3.4 that Za is a 

context-free subset of FA.
Now it follows from (3) that α(K,L) is itself a context-free subset of FA. □
The following corollary follows as an immediate application of the previous theorem 

and will be useful in the next subsection to deal with the case of virtually free groups.
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Corollary 3.6. Let K ∈ RatFA and u ∈ FA. Then 
⋃︁

n∈N u−nKun is a context-free subset 
of FA.

Proof. Since u∗ ∈ RatFA, the claim follows immediately from Theorem 3.5. □
Since context-free languages are closed under intersection with regular languages and 

emptiness of a context-free language can be decided, we can decide the doubly generalized 
conjugacy problem with rational constraints with respect to rational subsets of a finitely 
generated free groups. As mentioned in the introduction, this result follows from the 
fact that the existential theory of equations with rational constraints in free groups is 
PSPACE-complete, which was proved by Diekert, Gutiérrez and Hagenah in [8]. However, 
we provide an alternative language-theoretic proof.

Corollary 3.7. The doubly generalized conjugacy problem with rational constraints is de
cidable with respect to rational subsets of a finitely generated free groups.

Proof. Let π : ˜︁A∗ → FA be the canonical surjective homomorphism and K0,K1,K2 ∈
Rat(FA) be our input (by this we mean that we get three finite state automata rec
ognizing languages L0, L1, L2 ⊆ ˜︁A∗ such that Liπ = Ki, for i = 0, 1, 2. We want to 
decide if there are some u ∈ K0, x1 ∈ K1 x2 ∈ K2 such that x1 = u−1x2u, i.e., if 
K1 ∩ α(K2,K0) = ∅. In view of Theorem 3.5, we can compute a context-free grammar 
𝒢 such that L(𝒢) = (α(K2,K0))π−1. Then L1 ∩ L(𝒢) is an effectively constructible 
context-free language and K1 ∩ α(K2,K0) = ∅ if and only if L1 ∩ L(𝒢) = ∅, which can 
be decided. □
3.2. Virtually free groups

Now we turn our attention to the case of virtually free groups. Our goal is to prove 
that, if K is a rational subset of a finitely generated virtually free group, then Geo(α(K))
is a context-free language, which yields as a corollary that the doubly generalized con
jugacy problem is decidable with respect to rational subsets. We will write G to denote 
a finitely generated virtually free group and put

G = Fb1 ∪ · · · ∪ Fbm,

where F = FA is a free normal subgroup of G of finite index m. We will also put 
B = A∪{b1, . . . , bm}. Unless stated otherwise, B will be our standard generating set for 
G.

For a subset K ⊆ G and a generating set X of G, let GeoX(K) ⊆ ˜︁X∗ denote the set 
of all geodesics with respect to X representing elements in K. In a hyperbolic group, the 
language of all geodesics, GeoX(G), is rational for every generating set X (see [3]). We 
say that a word u ∈ ˜︁B∗ is in normal form if it is of the form vbi, for some freely reduced 
word v ∈ ˜︁A∗ and i ∈ [m]. Clearly, for every u ∈ ˜︁B∗, there is a unique u ∈ ˜︁B∗ in normal 
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form such that uπ = uπ. Notice that, when the word u belongs to ˜︁A∗ this corresponds 
to free reduction.

Given two words u, v ∈ ˜︁X∗ we write u ≡ v to emphasize that u and v are equal as 
words, while uπ = vπ will be written to mean that they represent the same group element. 
We write u

. = u1 . . . un if u ≡ u1 . . . un with u1, . . . , un ∈ ˜︁X. For all 1 ≤ i ≤ j ≤ n, we 
write then u[i,j] = uiui+1 . . . uj and u[j] = u[1,j]. Given a language L, we denote by 
Cyc(L) the language of all cyclic permutations of words in L. If L is rational (resp. 
context-free), then Cyc(L) is also rational (resp. context-free [13, Exercise 6.4 c)]).

In [11, Proposition 3.1], it is proved that if u and v are words in a δ-hyperbolic 
group with uπ = vπ, u is geodesic and v is (λ, ε)-quasigeodesic, then u and v boundedly 
asynchronously K-fellow travel for some constant K and some asynchronicity bound M , 
where K and M depend only on λ, ε and δ. With our notation, it follows from their 
proof that, given λ, ε, there exists a K such that for all geodesic words u and all (λ, ε)
quasigeodesic v such that uπ = vπ, there is a (not necessarily strictly) increasing function 
h : {0, . . . , |v|} → {0, . . . , |u|} such that h(0) = 0, h(|v|) = |u| and

d(v[i]π, u[h(i)]π) ≤ K and |h(i) − h(i− 1)| ≤ 2K + 1 (4)

for i ∈ [|v|]. We will denote the boundedly asynchronously fellow travel constant by 
K(λ, ε, δ) throughout the paper. In particular, (λ, ε)-quasigeodesics and geodesics rep
resenting the same elements are at Hausdorff distance at most K(λ, ε, δ).

For a finite alphabet A, we say that 𝔗 = (Q, q0, F, δ, λ) is a finite state A-transducer 
if Q is a finite set of states, q0 ∈ Q is the initial state, F ⊆ Q is a set of final states, 
δ : Q× A → Q and λ : Q× A → A∗ are mappings. We will write x

c|d −−→ y to mean that 
(x, c)δ = y and (x, c)λ = d. Given L ⊆ A∗, we write

𝔗(L) = {w1 . . . wn | ∃ a path q0
a1|w1 −−−−→ q1

a2|w2 −−−−→ · · · an|wn −−−−→ qn ∈ T with a1 . . . an ∈ L}.

Theorem 3.8. Let G be a finitely generated hyperbolic group, X be a generating set and 
L be a rational language of (λ, ε)-quasigeodesic words over X̃, for some (fixed) values λ
and ε. Then GeoX(Lπ) is an (effectively computable) rational language.

Proof. Let K be the constant from (4) and Q be the set of all geodesic words over 
X̃ of length at most K. Consider the finite transducer 𝔗 with set of vertices Q, edges 
w

c|u −−→ v for c ∈ X̃, u ∈ X̃∗ a geodesic word of length at most 2K + 1, and v a 
geodesic word representing (u−1wc)π, and with the empty word being the initial and 
(unique) final state. We claim that (𝔗(L))π ⊆ Lπ and that GeoX(Lπ) ⊆ 𝔗(L), and so 
GeoX(Lπ) = GeoX(G) ∩ 𝔗(L) is a rational language.

Let u ∈ 𝔗(L). There must be some v
. = v1 . . . vn ∈ L and a path of the form

ε = p0
v1|u1 −−−→ p1

v2|u2 −−−→ p2 · · ·
vn−1|un−1 −−−−−−−→ pn−1

vn|un −−−−→ pn = ε
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in 𝔗 with u ≡ u1 · · ·un. But then (u−1
i pi−1vi) = pi for i ∈ [n] and it follows easily 

by induction that 1 = pnπ = (u−1
n · · ·u−1

1 v1 · · · vn)π, i.e., uπ = vπ ∈ Lπ. Therefore 
(𝔗(L))π ⊆ Lπ. So, we have proved that a word in 𝔗(L) must represent an element of 
Lπ. We will now show that 𝔗(L) contains all geodesic words representing elements of 
Lπ. It might also contain non-geodesic words representing elements of Lπ, but that is 
not a problem, as we then will have that GeoX(Lπ) = GeoX(G) ∩ 𝔗(L) is a rational 
language.

Now, let u . = u1 . . . uk ∈ GeoX(Lπ). Then uπ = vπ for some quasigeodesic v
. =

v1 . . . vn ∈ L. Let h : [n] → [k] be the function from (4). For i = 0, . . . , n, let wi ∈
GeoX(((u[h(i)])−1v[i])π). We claim that there is a path in 𝔗 of the form

ε = w0
v1|u[h(1)] −−−−−−→ w1

v2|u[h(1)+1,h(2)] −−−−−−−−−−→ · · · vn|u[h(n−1)+1,h(n)] −−−−−−−−−−−−→ wn = ε.

Indeed, it follows from (4) that wi ∈ Q and |u[h(i−1)+1,h(i)]| ≤ 2K + 1 for i ∈ [n]. The 
edges are well defined since

((u[h(i−1)+1,h(i)])−1wi−1vi)π = ((u[h(i−1)+1,h(i)])−1(u[h(i−1)])−1v[i−1]vi)π

= ((u[h(i)])−1v[i])π = wiπ

holds for i ∈ [n].
Hence

u = u1 . . . uk = u1 . . . uh(n) ∈ 𝔗(v1 . . . vn) = 𝔗(v) ⊆ 𝔗(L)

and so GeoX(Lπ) ⊆ 𝔗(L). Therefore GeoX(Lπ) = GeoX(G) ∩ 𝔗(L) is a rational lan
guage. □
Remark 3.9. The theorem above is stated in terms of rational languages but works in 
the exact same way for any class of languages preserved by rational transduction, such 
as the class of context-free languages.

We will now prove that, in a finitely generated virtually free group, the language of 
normal forms of words consists of quasigeodesics. For i ∈ [m] we will denote by φi the 
automorphism of F defined by uφi = biub

−1
i .

Lemma 3.10. Let w ∈ ˜︁B∗, M = max{|aφi|A | a ∈ A, i ∈ [m]}, N = max{|u|A : ∃i, j, k ∈
[m] : bibj = ubk} and C = max{M,N}. Then, |w| ≤ C|w|.

Proof. Let w ∈ ˜︁B∗. We proceed by induction on |w|. If |w| = 0, then w = w and so 
|w| = |w|. Now assume that the result holds for all words of length up to some n and 
let w ∈ ˜︁B∗ be such that |w| = n + 1. Then w = ux for some x ∈ ˜︁B and we may write 
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u = vbj . From the induction hypothesis, it follows that |vbj| ≤ C|u|. If x ∈ ˜︁A, we have 
that wπ = (ux)π = (vbjx)π = (vπ)(xπφj)bj , hence w = v(xφj)bj and

|w| ≤ |v| + |xφj | + 1 = |vbj | + M ≤ C|u| + C = C(|u| + 1) = C|w|.

If x ∈ ˜︂{b1, . . . bm}, say x = br, then bjx = ybs for some s ∈ [m] and y ∈ F such that 
|y| ≤ N . Hence wπ = (ux)π = (vbjx)π = (vybs)π, yielding w = vybs and

|w| ≤ |v| + |y| + 1 ≤ |vbj | + N ≤ C|u| + C = C(|u| + 1) = C|w|. □
Corollary 3.11. Every word in normal form is a (C, 0)-quasigeodesic for C defined as in 
the preceding lemma.

Proof. Let w ∈ ˜︁B∗ be a word in normal form. We have to show that any subword of w
of length k has geodesic length at least k

C . Since any subword of w is a word in normal 
form, we only need to prove that a word u in normal formal has geodesic length of at 
least |u|

C . This follows from Lemma 3.10, since, for a word u in normal form, letting v
be a geodesic word such that vπ = uπ, we have that v = u, and so |u| ≤ C|v|, i.e. 
|v| ≥ |u|

C . □
Lemma 3.12. Let G be a hyperbolic group, X,Y be two generating sets and πX : X̃ →
G and πY : Ỹ → G be the natural surjective homomorphisms and put NX,Y =
max{dY (1, x) | x ∈ X}. If u . = x1 · · ·xn is a geodesic word in ΓX(G), then a word 
of the form v = v1 · · · vn, where vi is a geodesic word in ΓY (G) representing xiπ, is a 
(N2

X,Y , 2N3
X,Y )-quasigeodesic in ΓY (G).

Proof. We have to prove that, for all 1 ≤ i ≤ j ≤ |v|,

j − i ≤ N2
X,Y dY (v[i]πY , v

[j]πY ) + 2N3
X,Y .

1 · · · uπX

u1

v1

u2

v2

un

vn

Let 1 ≤ i ≤ j ≤ |v|. Define ki to be the largest integer such that v1 · · · vki
is a prefix of 

v[i] and kj to be the smallest integer such that v[j] is a prefix of v1 · · · vkj
. Notice that, 

for all i, |vi| ≤ NX,Y . Then, we have that:

j − i ≤ |vki+1 · · · vkj
|

≤ |ki − kj |NX,Y

= NX,Y dX((v1 · · · vki
)πY , (v1 · · · vkj

)πY )

≤ N2
X,Y dY ((v1 · · · vki

)πY , (v1 · · · vkj
)πY )
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≤ N2
X,Y

(︂
dY ((v1 · · · vki

)πY , v
[i]πY ) + dY (v[i]πY , v

[j]πY )

+dY (v[j]πY , (v1 · · · vkj
)πY )

)︂

≤ N2
X,Y

(︂
NX,Y + dY (v[i]πY , v

[j]πY ) + NX,Y )
)︂

= N2
X,Y dY (v[i]πY , v

[j]πY ) + 2N3
X,Y . □

We can now combine the previous results to prove a generalization of Benois’s Theorem 
for virtually free groups.

Corollary 3.13. Let G be a finitely generated virtually free group and K ⊆ G. The fol
lowing are equivalent:

1. K ∈ Rat(G).
2. GeoX(K) is a rational language for some finite generating set X.
3. GeoX(K) is a rational language for every finite generating set X.

Moreover, the constructions are effective.

Proof. It is clear from the definitions that 3 =⇒ 2 =⇒ 1. We will prove that 1 =⇒ 2
and that 2 =⇒ 3.

Compute the (rational) language L of normal forms of K: this can be done by com
puting rational subsets Li of F such that K =

⋃︁
i∈[m] Libi (see [17, Proposition 4.1]) and 

then using Benois’s theorem to compute the language of reduced words Li representing 
elements in Li. We then obtain that

L =
⋃︂

i∈[m]

Libi.

In view of Corollary 3.11, the language L of normal forms representing elements in K is a 
language of (C, 0)-quasigeodesics over B̃ such that Lπ = K. By Theorem 3.8, GeoB(K)
is rational, so we have that 1 =⇒ 2.

Now, using Lemma 3.12, we have that, given two finite generating sets X,Y and re
placing every edge of an automaton representing GeoX(K) by a path labelling a geodesic 
word over Ỹ representing the letter from X labelling the edge, the language recognized 
by the new automaton will be a language L of (N2

X,Y , 2N3
X,Y )-quasigeodesic words over 

Ỹ such that LπY = K. Hence, GeoY (K) is rational by Theorem 3.8. □
Remark 3.14. Similarly to what happens in Remark 3.9, the equivalence between 2 and 
3 holds for any class of languages closed under rational transductions. Since rationality 
(resp. context-freeness) of the language of geodesics representing a given subset is inde
pendent of the generating set we will usually say that, for a subset K, Geo(K) is rational 
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(resp. context-free) to mean that GeoX(K) is rational (resp. context-free) for some (and 
so, for every) finite generating set X.

We define w to be a fully (λ, ε)-quasireduced word if w and all of its cyclic conjugates 
are (λ, ε)-quasigeodesic words.

We now present three results from [12] and [4]:

Lemma 3.15. [12, Lemma 16] If u and v are fully (λ, ε)-quasireduced words representing 
conjugate elements of a δ-hyperbolic group, then either max(|u|, |v|) ≤ λ(8δ+2K+ε+1)
or there exist cyclic conjugates u′ and v′ of u and v and a word α with (αu′α−1)π = v′π

and |α| ≤ 2(δ+K), where K is the boundedly asynchronous fellow travel constant satisfied 
by (λ, ε)-quasigeodesics with respect to geodesics (see (4)).

Proposition 3.16. [12, Proposition 18] Let u be a geodesic word in a δ-hyperbolic group 
G with δ ≥ 1. Then we have that u ≡ u1u2u3, where (u3u1)π = απ for some word α
with |α| ≤ δ, and u2α is fully (1, 3δ + 1)-quasireduced.

In other words, the word u′ ≡ u1u2αα
−1u3 obtained by insertion of αα−1 into u can 

be split as u′
1u

′
2u

′
3 such that (u′

3u
′
1)π = 1 and u′

2 = u2α is fully (1, 3δ + 1)-quasireduced.

Let G be a hyperbolic group with generating set A. Given g, h, p ∈ G, we define the 
Gromov product of g and h taking p as basepoint by

(g|h)Ap = 1
2(dA(p, g) + dA(p, h) − dA(g, h)).

We will often write (g|h)p to denote (g|h)Ap , when the generating set is clear from context.

Lemma 3.17. [4, Lemma 4.1] Let H be a hyperbolic group, u, v ∈ H and p ∈ N. Then 
the following are equivalent:

(i) (u|v)1 ≤ p

(ii) for any geodesics α and β from 1 to u−1 and v, respectively, we have that the 
concatenation

1 α
u−1 β

u−1v

is a (1, 2p)-quasi-geodesic
(iii) there are geodesics α and β from 1 to u−1 and v, respectively, such that the con

catenation

1 α
u−1 β

u−1v

is a (1, 2p)-quasi-geodesic
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Lemma 3.18. Let G be a δ-hyperbolic group and g ∈ G be an element having a fully 
(1, ε)-quasireduced representative word v. Then, all geodesic words w such that wπ = g

are fully (1, ε + 2K(1, ε, δ) + 2)-quasireduced words.

Proof. Put K = K(1, ε, δ). Any geodesic w is clearly a (1, ε + 2K + 2)-quasigeodesic. 
Now let w = w1w2 and consider the cyclic permutation w′ = w2w1 of w. We have to 
prove that w′ is a (1, ε+2K+2)-quasigeodesic. Consider the bigon with sides w = w1w2
(top side) and v (bottom side). Since v and w are at Hausdorff distance at most K, then 
there is a vertex on the bottom side at a distance at most K+1 from the vertex reached 
after reading w1 on the top side (the +1 comes from the possibility that the closest point 
of the bottom side to the vertex on the top side might not be a vertex itself) and so 
there is a geodesic word α of length at most K + 1 and words v1, v2 such that v ≡ v1v2, 
v1π = (w1α)π and v2π = (α−1w2)π.

w1π

1φ v1π gφ

w2

α

v1

w1

v2

We have that (w2w1)π = (αv2v1α
−1)π and so

d(1, (v2v1)π) = d(1, (α−1w2w1α)π)

≤ 2|α| + d(1, (w2w1)π)

≤ d(w−1
2 π,w1π) + 2(K + 1). (5)

Hence, using (5) and the facts that w ≡ w1w2 is geodesic, v ≡ v1v2 is a (1, ε)
quasigeodesic (and so |v| ≤ d(1, (v1v2)π) + ε), and that v2v1 is a (1, ε)-quasigeodesic 
(and so |v2v1| ≤ d(1, (v2v1)π) + ε), we have that

(w−1
2 π|w1π)1 = 1

2(d(1, w−1
2 π) + d(1, w1π) − d(w−1

2 π,w1π))

= 1
2(|w2| + |w1| − d(w−1

2 π,w1π))

≤ 1
2(|w| − d(1, (v2v1)π) + 2(K + 1))

≤ 1
2(|v| − d(1, (v2v1)π) + 2(K + 1))

= 1
2(|v2v1| − d(1, (v2v1)π) + 2(K + 1))

≤ ε 
2 + (K + 1)
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From Lemma 3.17, it follows that w2w1 is a (1, ε + 2K(1, ε, δ) + 2)-quasigeodesic. □
For convenience, we will denote K(1, 3δ + 1, δ) by R: this should cause no confusion, 

as the group, and so δ, will be fixed. Recall that, for a subset K ⊆ G, we denote the set 
of all conjugates of elements of K by α(K).

Proposition 3.19. Let G be a virtually free group and K ∈ Rat(G). There is an effectively 
constructible rational language LK such that LKπ ⊆ α(K) and, for every element g ∈ K, 
there is at least one fully (1, 3δ+2R+3)-quasireduced word in LK representing a conjugate 
of g.

Proof. Since K is necessarily contained in some finitely generated subgroup of G, we may 
assume that G is finitely generated. By Corollary 3.13, we can construct a finite state 
automaton recognizing GeoB(K), where B is our standard generating set for G. Let δ
be a hyperbolicity constant for G, LK = GeoB(Cyc(GeoB(K))π) and S = {α1, . . . , αn}
be the set of all words in B̃∗ of length at most δ. We claim that LK has the desired 
properties.

The language GeoB(K) is rational in view of Corollary 3.13, and so Cyc(GeoB(K))
is rational. Hence, Cyc(GeoB(K))π is a rational subset and GeoB(Cyc(GeoB(K))π) is 
rational by Corollary 3.13, which also implies that the construction is effective. Also, 
LKπ ⊆ α(K), since, for every word v ∈ LK , there is a word u ∈ Cyc(GeoB(K)) such 
that vπ = uπ and every word in Cyc(GeoB(K)) represents a conjugate of an element in 
K.

Now, let g ∈ K and u ∈ GeoB(K) be a geodesic such that uπ = g. Then, by 
Proposition 3.16, there is some i ∈ [n] such that u ≡ u1u2u3, where (u3u1)π = αiπ, 
and u2αi is fully (1, 3δ + 1)-quasireduced. But, (u2αi)π = (u2u3u1)π and u2u3u1 ∈
Cyc(GeoB(K)). Now, any geodesic word representing (u2αi)π = (u2u3u1)π belongs to 
GeoB(Cyc(GeoB(K))π) and, by Lemma 3.18, it is a fully (1, 3δ + 2R + 3)-quasireduced 
word. □
Theorem 3.20. Let G be a finitely generated virtually free group and K ∈ Rat(G). There 
exists a context-free language L′ such that L′π ⊆ α(K) and L′ contains all the fully 
(1, 3δ + 2R + 3)-quasireduced words representing elements in α(K).

Proof. Let LK be the language from Proposition 3.19,

S = {g ∈ G | dB(1, g) ≤ 2δ + 2K(1, 3δ + 2R + 3, δ)}

(notice that S is finite), and L = Cyc(LK). Since LKπ ⊆ α(K), then Lπ ⊆ α(K).
By brute force, we build the set Q of all fully (1, 3δ + 2R + 3)-quasireduced words of 

length at most 11δ + 2K(1, 3δ + 2R+ 3, δ) + 2R+ 4 representing an element of α(K): it 
can be checked whether a word is a quasigeodesic, and so it can be checked whether a 
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word is fully quasireduced or not and, in case it is, we check if it belongs to α(K) using 
the main result from [14].

Fix some β ∈ S. Since Lπ ∈ Rat(G), then Lπ ∈ CF(G) (see [10, Lemma 4.2]) and

Sβ := β(Lπ)β−1 = Lπλβ ∈ CF(G),

which follows from Lemma 2.6 by taking M = M ′ = G, τ = λ−1
β and T = Lπ and the 

fact that context-free languages are closed under inverse morphism.
Put Lβ = Sβπ

−1. All words from Lβ represent a conjugate (by β) of an element in 
Lπ, and so all words in Lβ represent an element conjugate to an element in K, i.e., 
Lβπ ⊆ α(K).

We claim that the language

L′ =
⋃︂
β∈S

Cyc(Lβ) ∪Q

has the desired properties. Clearly, it is context-free and L′π ⊆ α(K). We claim that 
it contains all the fully (1, 3δ + 2R + 3)-quasireduced words representing an element in 
α(K).

Let v be a fully (1, 3δ + 2R+ 3)-quasireduced word representing an element in α(K). 
We know that there is at least one fully (1, 3δ+2R+3)-quasireduced word u ∈ LK such 
that uπ ∼ vπ by Proposition 3.19.

From Lemma 3.15, it follows that either max(|u|, |v|) ≤ 11δ + 2K(1, 3δ + 2R+ 3, δ) +
2R+4 or there exist cyclic conjugates u′ and v′ of u and v and a word β with (βu′β−1)π =
v′π and |β| ≤ 2δ + 2K(1, 3δ + 2R + 3, δ). In the first case, we have that v ∈ Q, and so, 
v ∈ L′. So, assume that |v| > 11δ + 2K(1, 3δ + 2R + 3, δ) + 2R + 4 and that there exist 
some β ∈ S and cyclic permutations u′ and v′ of u and v with β(u′π)β−1 = v′π. In this 
case u′ ∈ L and β(u′π)β ∈ Sβ , thus v′ ∈ Lβ and v ∈ Cyc(Lβ). □
Theorem 3.21. Let G be a finitely generated virtually free group and K ∈ Rat(G). Then 
Geo(α(K)) is context-free.

Proof. We will show that GeoB(α(K)) is context-free. Let δ be the maximum between 1
and the hyperbolicity constant of G (so G is δ-hyperbolic and δ ≥ 1). It suffices to prove 
that there exists a context-free language L such that Lπ ⊆ α(K) and GeoB(α(K)) ⊆ L, 
since, in that case GeoB(α(K)) = L ∩ GeoB(G) and context-free languages are closed 
under intersection with rational languages.

Let L′ be the language given by Theorem 3.20. For every β ∈ ˜︁A∗, the language 
L′ ∩ ˜︁B∗β is context-free and then, so is the language L′′

β obtained by removing β from 

the end of every word in L′ ∩ ˜︁B∗β. By the Muller-Schupp Theorem, {1} ∈ CF(G), and 
so {βπ} ∈ CF(G), by Lemma 2.4. Hence, the language βππ−1 ⊆ ˜︁B∗ is context-free and 
so is the language βππ−1# ⊆ ( ˜︁B ∪ #)∗. Moreover,
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L2 = {u1#u3 | u3u1 ∈ βππ−1} = Cyc(βππ−1#) ⊆ ( ˜︁B ∪ #)∗

is context-free. Since context-free languages are closed under substitution, the language

Lβ = {u1u2u3 | u2 ∈ L′′
β , (u3u1)π = βπ}

obtained by replacing the symbol # by L′′
β in L2 is context-free. We claim that the 

language

L =
⋃︂

|β|≤δ

Lβ

is context-free and that Lπ ⊆ α(K) and GeoB(α(K)) ⊆ L. It is obvious that L is 
context-free. Let u2 ∈ L′′

β and u1, u3 be such that (u3u1)π = βπ for some β with |β| ≤ δ. 
Then (u1π)−1(u1u2u3)π(u1π) = (u2β)π, and so (u1u2u3)π ∼ (u2β)π. Since u2 ∈ L′′

β , 
then u2β ∈ L′ and L′π ⊆ α(K). Thus, (u1u2u3)π ∈ α(K). Since u1u2u3 is an arbitrary 
element of L, we have that Lπ ⊆ α(K). It remains to show that GeoB(α(K)) ⊆ L. 
Let w ∈ GeoB(α(K)). Then, by Proposition 3.16, we have that w ≡ u1u2u3, where 
(u3u1)π = βπ for some word β such that |β| ≤ δ and u2β is fully (1, 3δ+1)-quasireduced. 
It suffices to check that u2 ∈ L′′

β , i.e., that u2β ∈ L′. This follows from Theorem 3.20, as 
every fully (1, 3δ + 1)-quasireduced word is also fully (1, 3δ + 2R + 3)-quasireduced and 
(u2α)π = (u2u3u1)π ∼ wπ ∈ α(K). □

As mentioned in the introduction, Dahmani and Guirardel prove in [6] that equations 
with rational constraints are solvable in virtually free groups, and so, the doubly gener
alized conjugacy problem with rational constraints is decidable for virtually free groups. 
Using the previous theorem, we provide a language-theoretic proof of the problem with
out constraints.

Corollary 3.22. Let G be a virtually free group. Then the doubly generalized conjugacy 
problem in G is decidable.

Proof. It amounts to deciding, on input S, T ∈ Rat(G), whether GeoB(α(S)) ∩
GeoB(T ) = ∅, which can be done since GeoB(α(S)) is context-free by Theorem 3.21
and GeoB(T ) is rational by Corollary 3.13. □

Currently, we are not aware of the existence of a language-theoretic proof for the 
constrained version of the problem.

Question 3.23. Is there a language-theoretic proof of the doubly generalized conjugacy 
problem with rational constraints for finitely generated virtually free groups?

Remark 3.24. We remark that, in general, hyperbolic groups have undecidable (sub
group) membership problem, and so undecidable GCP and DGCP. Most of the tools 
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in our proof work for hyperbolic groups. In fact, the only obstruction is Corollary 3.13, 
which can be easily seen not to hold in hyperbolic groups without the Howson property.

This last result raises two natural questions involving a finite index subgroup H of a 
group G:

• if H has decidable DGCP, does G have decidable DGCP?
• if G has decidable DGCP, does H have decidable DGCP?

Since both implications fail for the CP, we conjecture that the same happens for the 
DGCP. However, we are so far unable to produce counterexamples (the counterexamples 
we know for the CP are not useful for this purpose).

But we can get something in particular cases. Recall that a retract of G is a subgroup 
H such that there exists a homomorphism φ : G → H fixing the elements of H. The 
second question has an affirmative answer if H is a retract of G (of finite or infinite 
index):

Proposition 3.25. Let H be a retract of a group G. If G has decidable DGCP, then H
also has decidable DGCP.

Proof. Let φ : G → H be a homomorphism fixing the elements of H and let K,L ∈
RatH ⊆ RatG. It suffices to show that

∃x ∈ K ∃y ∈ L ∃h ∈ H : y = hxh−1 ⇔ ∃x ∈ K ∃y ∈ L ∃g ∈ G : y = gxg−1.

The direct implication holds trivially and the converse follows from

y = gxg−1 ⇒ yφ = (gxg−1)φ ⇒ y = (gφ)x(gφ)−1. □
We consider now a strengthening of the DGCP, which we call the doubly generalized 

twisted conjugacy problem (DGTCP) for a group G: given K,L ∈ RatG and φ ∈ AutG, 
we must decide whether there are some x ∈ K, y ∈ L and g ∈ G such that y = g−1x(gφ).

Proposition 3.26. Let H be a finite index normal subgroup of a group G. If H has decid
able DGTCP, then G has decidable DGCP.

Proof. Since [G : H] < ∞, there exist b0, . . . , bm ∈ G such that G = Hb0 ∪̇ . . . ∪̇Hbm
and b0 = 1. Since H⊴G, then φi : H → H defined by hφi = bihb

−1
i is an automorphism 

of H for i = 0, . . . ,m.
Let K,L ∈ RatG. By [17, Proposition 4.1], there exist K0, . . . ,Km, L0 . . . , Lm ∈

RatH such that K = K0b0 ∪̇ . . . ∪̇Kmbm and L = L0b0 ∪̇ . . . ∪̇Lmbm. Since G =
Hb0∪̇ . . . ∪̇Hbm, it suffices to show that, for all i, j, k ∈ {0, . . . ,m}, we can decide whether 
there exists some (x, y, z) ∈ Li ×Kj ×H such that (zbk)−1(xbi)(zbk) = ybj . Now
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(zbk)−1(xbi)(zbk) = ybj ⇔ b−1
k z−1xbizbk = ybj ⇔ z−1xbiz = bkybjb

−1
k

⇔ z−1x(zφi) = (yφk)bkbjb−1
k b−1

i ,

hence bkbjb
−1
k b−1

i ∈ H is an obvious necessary condition. Assuming that this holds, 
then since rational subsets are closed under homomorphism, we get that K ′

j =
{(yφk)bkbjb−1

k b−1
i : y ∈ Kj} ∈ RatH. Since H has decidable DGTCP, then we can 

decide whether or not there are some x ∈ Li, y ∈ K ′
j and z ∈ H such that y = z−1x(zφ). 

Therefore G has decidable DGCP. □
A group is virtually abelian if it has an abelian subgroup of finite index. We can now 

prove the following result:

Theorem 3.27. Every finitely generated virtually abelian group has decidable DGCP.

Proof. A finite index subgroup of a finitely generated group is itself finitely generated. 
Hence, by Proposition 3.26, it is enough to show that every finitely generated abelian 
group has decidable DGTCP.

Let G be an abelian group generated by the finite set A, let K,L ∈ RatG and 
φ ∈ AutG. Let M = {u−1(uφ) : u ∈ G}. Since G is abelian, we have

(uv)−1(uv)φ = v−1u−1(uφ)(vφ) = (v−1(vφ))(u−1(uφ))

for all u, v ∈ G, hence M = ⟨a−1(aφ) : a ∈ A⟩ ∈ RatG. Since y = g−1x(gφ) for 
some g ∈ G if and only if y = xg−1(gφ) for some g ∈ G if and only if x−1y ∈ M , 
then deciding whether or not there exist some x ∈ K, y ∈ L and g ∈ G such that 
y = g−1x(gφ) is equivalent to deciding whether or not K−1L∩M ̸= ∅, which is equivalent 
to 1 ∈ K−1LM−1. Since K,L,M ∈ RatG, also K−1, M−1 and K−1LM−1 are rational, 
so the result follows from finitely generated abelian groups having decidable membership 
problem for rational subsets [9]. □
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