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Abstract

A coupled elastic and electro-magnetic analysis is proposed including finite strains and damage-
based fracture. Piezo-electric terms are considered and resulting partial differential equations include
a non-classical wave equation due to the specific constitutive law. The resulting wave equation is
constrained and, in contrast with the traditional solutions of the decoupled classical electro-magnetic
wave equations, the constraint is directly included in the analysis. The absence of free current
density allows the explicitation of the magnetic field rate as a function of the electric field and
therefore removal of the magnetic field from the list of unknowns. A Lagrange multiplier field is
introduced to exactly enforce the divergence constraint, forming a three-field variational formulation.
No vector-potential is required or mentioned, eliminating the need for gauges. The classical boundary
conditions of electromagnetism are specialized and a new general boundary condition involving the
electric field is obtained. A specific boundary finite element is introduced to deal with this boundary
condition. The spatial discretization makes use of mixed bubble-based (MINI-like) finite elements
with displacement, electric field and Lagrange multiplier degrees-of-freedom. Two verification
examples are presented with very good qualitative conclusions and mesh-independence.

KEYWORDS: Electro-magnetism, Maxwell’s equations, elasticity, piezo-electricity

∗Corresponding Author. ISI search: areias p*; email: pmaa@uevora.pt, pareias@civil.ist.utl.pt, Ph.: +351 96 3496307,
URL: http://evunix.uevora.pt/˜pmaa/

1



1 Introduction

Fundamental theoretical contributions for the analysis of continuum elastic dielectrics are Lax and
Nelson [16] and Maugin [20]. The latter text contains many contributions with a detail beyond what
is intended with this work. The purpose of it is to inaugurate our approach to electro-magnetic and
elasticity coupling implemented with mixed finite elements to deal with fracture (in finite strains).
Piezo-electricity is also included, but mainly as a constitutive ingredient. Recent discussions on this
topic, also with a continuum approach, are the works of Ericksen (cf. [8, 9]) and Dorfmann and Ogden
[7] albeit limited to strict dielectrics (without the magnetic field). Numerical calculations are sparse and
mainly limited to magnetostatics (see, for example [6]) and piezo-electricity. M. Kuna [15] performed a
theoretical and experimental review of piezo-electricity with classical fracture mechanics. In [14], the
same author used a electromechanical contour integral to calculate energy release rates.

We perform finite strain simulations of electro-magnetic fields including piezo-electricity. The total
stress contains the Cauchy stress, the Maxwell stress, the piezo-electric stress and the polarization
stress. The piezoelectric effect is characterized as a coupling between the electric polarization of a
given material and the (mechanical) stress field. It is crucial in sensors, actuators, smart materials
among others. There is a significant variety of piezoelectric materials: crystals, e.g. quartz; ceramics,
e.g. lead zirconate titanate (PZT); polymers, e.g. polyvinylidene fluoride (PVDF).

Taking into account that materials are subjected to frequent mechanical actions it is of fundamental
importance the study of fracture, in order to estimate their reliability to device applications. For
that reason, many works have been focused on this topic, for a recent review the reader is referred to
[15]. Interestingly, the majority of them only consider the electrostatic limit where the coupling of the
electric and magnetic fields (present in Maxwell’s equations) can be neglected and the analysis can be
restricted to the electrical field. Obviously, this constitutes an overall simplification to the problem
since in this case the electric field (vector), e, can be calculated from the divergence of the electrical
potential (scalar), φ, reducing a n-dimensional problem (2 or 3, typically) to a one-dimensional one.

The remaining of this paper is composed of four sections. Section 2 contains the basic premises of
our work, as well as original derivations for the weak form and boundary conditions. Section 3 briefly
summarizes the discretization proposal, the mixed finite element and a special boundary finite element
to enforce the newly derived boundary condition in terms of the electric field. Section 4 presents
two numerical applications where the new technique is very successfully tested and in section 5 some
conclusions are drawn.

2 Governing equations

2.1 Maxwell and equilibrium equations

We consider a linear elastic material with a damage evolution law, equilibrium with moderately large
strains (ensuring the validity of Hooke’s law) and the classical electrodynamics of continua (cf. [16, 20]).

The considered governing equations consist of:

• Cauchy equations of motion using the electromagnetic force as the only volume force.
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Figure 1: Relevant ingredients for the coupled equilibrium/electromagnetic problem (current configura-
tion). The electric field’s equation holds in the interior and in the exterior of Ω with matching of the
external and internal values on every portion of the boundary where qs = 0.

• Mass conservation.

• Maxwell’s equations in S.I. units for dielectrics, in the absence of free charges and currents.

• Linear constitutive equations of electromagnetism, stress-strain relations and piezoelectricity.

Figure 1 shows the idealization of the typical problem to be solved and the three types of boundary
conditions (essential for the displacement unknown and electric field and natural boundary conditions).

The mass conservation principle for an impermeable continuum (open set Ω) is concisely given by:

∂(Jρ)
∂t

= 0 in Ω (1)

where ρ is the spatial mass density and J = detF where F is the deformation gradient (cf. [22]).
The Cauchy equation of motion and Cauchy Lemma read:

∇ · σT + f = ρü in Ω (2)

σn = t in Γt (3)

where σ is the Cauchy stress tensor, u is the displacement vector and t ∈ [0, T ] is the time variable (not

3



to be mistaken with t, the prescribed stress vector) and the term f is the body-force field. This is of
course standard (e.g. [22, 19]) and shown here for completeness. A useful notion in elastic dielectricity
is the one of total stress, here denoted as σ? which allows the rewriting of (2) as:

∇ · σ?T = ρü (4)

In particular, we consider ρü = 0 in remaining of this work. Note that, according to our notation, σij
is the Cauchy stress component at facet j with the direction i. Maxwell’s equations in classical form1

in a domain Ω (cf. [10, 12, 9, 21]) are concisely written as:

∇× e+ ḃ = 0 in Ω (5)

∇ · b = 0 in Ω (6)

∇× h− ḋ = Jf in Ω (7)

∇ · d = qf in Ω (8)

where e is the electrical field, b is the magnetic field, h is the magnetic field strength and d is the
electric displacement current (see, e.g. [10]). The terms in the right-hand sides of (7) and (8) are the
free external current and charge, respectively, as related by the continuity equation: q̇f +∇ · Jf = 0.

It is noticeable that the validity of (5-8) for a continuum described in the spatial configuration is
shown by Lax and Nelson [16]. Here, the following notation is adopted (see also [16]):

•̇ = ∂•
∂t

(9)

The inclusion of piezo-electricity in the system (5-8) can made by means of the polarization vector
or directly by introduction in a constitutive law for d. The latter is used here. As a matter of fact,
for piezo-electric materials under consideration, we introduce a linear relation between the electric
displacement, the electric field and the strain ε2:

d = ε (e−I : ε) (10)

where ε is the electrical permitivity3 of a given material and I is the piezo-electric third-order tensor.

1S.I. units are adopted and lower-case is used for spatial quantities.
2We purposely leave “strain” undefined for now.
3As a first approach we assume a scalar permitivity for simplicity.
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Note that this definition agrees with the interpretation of Dorfmann and Ogden ([7]). that “the
difference d− εe [...] is a material-dependent property that has to be given by a constitutive equation.”
Another paper with the same interpretation is Ponte Castañeda and Siboni [23]. It is also noticeable
that the approach of M. Kuna in [14] can be re-cast in this form.

For homogeneous linear isotropic continua, for which Lorentz aether relations hold4, we can write
(7) and (8) as:

∇× b = µJf + µε (ė−I : ε̇) in Ω (11)

ε∇ · (e−I : ε) = qf in Ω (12)

where µ is the magnetic permeability. Both ε and µ can be related to the corresponding vacuum
constants. A direct manipulation results in the following second-order system5:

∇× (∇× e) + µJ̇f + µε (ë− p̈) = 0 (13)

∇ · (e− p) = qf
ε

(14)

with p = I : ε (do not confuse p with the polarization field). It is clear that ∇ · b = 0 is trivially
satisfied in [0, T ] provided (∇ · b) (0) = 0 is satisfied. Moreover, the reader can verify that, contrary to
traditional derivations in electromagnetic wave propagation, no Laplacian of e emerges in (13) since
the classical condition ∇ · e = 0 does not hold, due to the piezoelectric term in (14).

After direct specialization of the general boundary conditions (cf. [16]), a final set of boundary
conditions for piezoelectricity and electromagnetic coupling is obtained:

[[ 1
µ
b− u̇× d]]× n = Js (15)

[[e+ u̇× b]]× n = 0 (16)

[[ε (e− p)]] · n = qs (17)

[[b]] · n = 0 (18)

We use the notation [[•]] for the “jump” of •: the difference between the external and internal
values of • (see figure 1). The following boundary conditions for (13-14) are adopted for the whole Γ in
the case of null external fields (cf. [21, 18]):

n · (p− e) = qs
ε

in Γ (19)

e× n = −(u̇× b)× n (20)

4If spatial coordinates are used, as sharply recalled by Ericksen [8].
5It can be shown that ∇ · b = 0 is trivially satisfied if b0 = 0, i.e. the initial value of b is identically zero.
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It can be proven that the condition [[b]] · n = 0 is satisfied as a consequence of (20). Contrary
to the charge surface density, qs, the surface current density Js is not directly imposed in this frame-
work (see also the recent paper by Linder et al. [18]). A simple adaptation is possible but it will not
be pursued here. A trivial combination of (19) and (20) reads

e =
[
(p+ u̇× b) · n− qs

ε

]
n− u̇× b in Γ (21)

To the best knowledge of the authors, this condition for e in Γ has not been presented before in
the specialized literature. Note that the complete e is specified at Γ, in contrast with what occurs in
piezo-electric reports. Typically (see [18]) the unknown field is d and not e since the magnetic field
is seldom included in numerical simulations. For dielectrics (considered in this work) it follows that
Jf = 0 and qf = 0 (see, for example, the book of Maugin [20] page 157). As a strain tensor we adopt
(see Ogden [22] eq. 2.2.82 page 118 with m = 2) the following Eulerian tensor:

ε = 1
2
(
V 2 − I

)
(22)

with V being the left stretch tensor, ensures that third derivatives of strain with respect to V are zero
(advantage of this will be taken later in the linearization stage). The constitutive law for the total
stress is given as6:

σ? = (1− f)C : ε︸ ︷︷ ︸
σe

+ 1
µ
b⊗ b+ εe⊗ e− 1

2

(
ε‖e‖2 + 1

µ
‖b‖2

)
I︸ ︷︷ ︸

σM

+ εe ·I︸ ︷︷ ︸
σP E

−εp⊗ e︸ ︷︷ ︸
σS

(23)

where σe is the elastic stress, σM is the Maxwell stress, σPE is the piezo-electric stress and σS is the
polarization stress (see also [20], where Gaussian units are adopted). Note that the electric field already
accounts for the piezo-electric effect in the global PDE in (13) and hence the reciprocal piezo-electric
law is enforced at the global level. The term σS of course results from the product d⊗ e (see [25]).
Note that the transfer of body forces to the total stress has been an implicit practice in Physics
literature (the book by Maugin [20] is particularly diffuse in this topic since only the non-symmetric
part of the Cauchy stress is left as a body force term) and is explicit, for example, in the paper by Vu,
Steinmann and Possart (cf. [25] equations (12) and (13)). In (23), the elastic stress contains the term
(1− f) where f is the void fraction, a constitutive variable accounting for material softening. We use a
phenomenological model (see also [17]) which is sufficient for this work’s purpose. Also included in
(23) is the third order piezo-electric tensor I . Damage modeling includes a loading function and the
loading/unloading conditions. The corresponding void fraction loading function is:

ϕ(ε) = (1− f)ε1 − εmax (24)

6In contrast with Chapter 4 of [20], we do not include electro-magnetic terms in the body forces.
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where ε1 is the maximum principal strain and εmax is the maximum principal strain attained during
the loading history at a given point. The following loading/unloading conditions are used for this
Rankine-type model:

ϕ(ε) ≤ 0 (25)

ḟϕ(ε) = 0 (26)

ḟ ≥ 0 (27)

The final equations to integrate are therefore dependent on σ:

c2 [∇× (∇× e)] + (ë− p̈) = 0 in Ω (28)

∇ · σ?T = 0 in Ω (29)

∇ · (e− p) = 0 in Ω (30)

e =
[
(p+ u̇× b) · n− qs

ε

]
n− u̇× b in Γ (31)

σn = t in Γt (32)

u = u in Γu (33)

with c2 = 1/(µε) being the square of the light velocity in the continuum. Note that no body forces
are employed since the electro-magnetic field effect on the forces is completely included in σ? (in
equation (23)) and the Cauchy lemma retains its original form (in equation 32). The weak form of
the above equations is obtained by using a Lagrange multiplier field, λ ≡ λ(x) and performing the
customary projections and use of Green’s theorem. We introduce the spaces for the test functions
Vu = {δui ∈ H1(Ω)|δu = 0 in Γu}, Vd = {δdi ∈ H1(Ω)|δd = 0 in Γ} and P = {δλ ∈
L2(Ω)|δλ = 0 in Γ} and the sets for the trial functions Du = {ui ∈ H1(Ω)|ui = ui in Γu},
Dd = {ei ∈ H1(Ω)|e = ei in Γ} and P (the Lagrange multiplier space for test functions and set for
trial functions coincide). The problem statement in weak form reads: find u ∈ Du, e ∈ De, and λ ∈P
such that the following holds (see [11] for this nomenclature and symbols):
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ˆ
Ω
c2(∇× e) · (∇× δd)dΩ +

ˆ
Γ
c2 [(∇× e)× δd] · n︸ ︷︷ ︸

−[(∇×e)×n]·δd=0

dΓ +
ˆ

Ω
(ë− p̈) · δddΩ

+
ˆ

Ω
σ : ∇sδudΩ−

ˆ
Γt

t · δudΓt

+
ˆ

Ω
λδ [∇ · (e− p)] dΩ

ˆ
Ω
δλ [∇ · (e− p)] dΩ = 0 (34)

∀δd ∈ Vd, ∀δu ∈ Vu, ∀δλ ∈P.
The test functions δd, δu and δλ in (34) can be seen as variations of d, u and λ, respectively. The
δ−variation of ∇(•), where • is a generic spatial tensor and ∇ is a spatial gradient is given as:

δ∇ (•) = ∇δ (•)−∇ (•)∇δu (35)

This quantity is also used in the linearization process, required for the application of Newton’s
method of solution. We make use of the Acegen add-on [13] to the Mathematica software [24] to
accomplish the derivation of the discretized equilibrium equations and corresponding linearization. The
explicit expressions are omitted in this report. It is also noticeable that, in (34), the symmetric spatial

gradient of δu is adopted: ∇sδu =
[
∇δu+ (∇δu)T

]
/2.

Initial conditions for (34) exist both for u and e. In the present both initial values and corresponding
time-derivatives are zero.

2.2 Piezo-electric matrix and orientation of axes

As a coupling between mechanical and electrical fields dependent on the orientation of a crystal. The
invariance of the scalar d · (I : ε) (the reader can verify that this expression has units of energy) allows
the writing of the following transformation of the piezo-electric matrix as a third-order tensor:

[I ]lmn = [T ]il [T ]mj [T ]nk
[
Ĩ
]
ijk

(36)

where the elements of T are obtained from two orthonormal basis ej and ẽi:

[T ]ij = ẽi · ej = cosαij (37)

where αij are the internal angles between the basis vectors. It is obvious that minor-symmetry in the
last two indices of [I ] allows some computational savings in (36). It is here assumed that the tabulated

piezo-electric properties correspond to the tensor components
[
Ĩ
]

and αij are problem-dependent.
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Figure 2: Use of MINI element ([5]) for the mixed u− e− λ problem.

3 Discretization and time integration

We use a variant of the MINI element by D. Arnold (cf. [5]) which was previously used for the Stokes
equations to deal with the mixed problem (unknowns u − e − λ). We also used it before for finite
strain plasticity. Figure 2 shows the element degrees-of-freedom and the corresponding shape functions.

Time integration follows the backward-Euler method for first-order time integration applied both
to degrees-of-freedom and their time-derivatives. If two consecutive time-steps are considered (n and
n+ 1), the following expression results for än+1:

än+1 = an+1 − an
∆t2 − ȧn∆t (38)

where a contains degrees-of-freedom of all types (u, e and λ). The velocity is obviously approximated
as ȧn+1 = (an+1 − an)/∆t. The magnetic field at step n+ 1 can therefore be obtained as:

bn+1 = bn −∆t∇× en+1 (39)

The magnetic field (39) is of course necessary for the boundary conditions and constitutive law
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and must be stored as an history variable. If the previous value is known, then we can use the shape
functions (and corresponding derivatives) to write the integrated boundary condition.

The relevant interpolated fields (with h as the mesh characteristic length) in each element are
obtained simply as:

uh =
3∑

K=1
NK(ξ)uK (40)

eh =
4∑

K=1
NK(ξ)eK (41)

λh =
3∑

K=1
NK(ξ)λK (42)

where NK(ξ) are the shape functions represented in figure 2. After time integration, these are the only
degrees-of-freedom required to solve the coupled problem since b is written as a function of e. We keep
track of the previous step (an and ȧn) which is sufficient to calculate än at the element level. The
actual finite element implementation is too complex to be correctly and efficiently hand-coded and we
resort to the Acegen software by J. Korelc ([13]) to accomplish this undertaking.

Boundary condition (31) requires a specific boundary finite element which makes use of strain
to obtain p and the underlying continuum element to calculate b. Boundary Lagrange multipliers
(identified by the symbol χ) are adopted to exactly enforce the condition. Figure (31) shows the
adopted boundary element.

4 Numerical examples

4.1 Electric field pulling test: electromagnetic waves

Surface electric charges (qs in the above equations) cause electro-magnetic waves and, of course, stress
waves (this is due to both the Maxwell stress term and the piezo-electric effect). Note that stress waves
occur even without the inertial effect. With the purpose of obtaining a wave, we apply a time-constant
electric charge at the surface of a straight bar and analyze the produced effect (in terms. Figure 4
shows the relevant quantities for this problem. A Lead Zirconate Titanate (PZT) material is considered,
with properties shown in the same figure. Artificially large deformations are considered, with the goal
of testing the robustness of implementation. Two meshes are tested: one containing 9390 elements
and another with 14692 elements. The displacement at point (A) is shown in figure 5 for the two
meshes. “Damping” is caused by the total stress law and electric field dispersion (boundaries allow
normal electric flux). The contour plots of interested are shown in figure 6 for the finer mesh. The real
deformed geometry is shown.
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Quadrature points
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e1, χ1
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Figure 3: Boundary condition (31) for e: use of a boundary element with Lagrange multipliers (χ1 and
χ2).
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Dc = +∞
εm = +∞
qs = 3 Cm−2

∆t = 1× 10−9 s
α11 = 0

ρ = 7500 Kg/m3
I111 = 15.08 Cm−2

µ = 1.256× 10−6 Hm−1

ǫ = 6× 10−9 Fm−1

E = 69.59× 109 N/m2

ν = 0.357

[[e]] = 0

A

4
m
m

u

10 mm

uy = 0

qs

e = 0

Figure 4: PZT specimen with relevant properties and dimensions. The (artificially coarse) mesh is
shown for illustrative purposes only.
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Figure 5: Displacement/time results for point A for two mesh densities.
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Figure 6: Electric (e), magnetic (h) and Lagrange multiplier (λ) fields for t = 3.0 × 10−8 s (not
magnified).
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α11 = 0

E = 69.59× 109 N/m2

ν = 0.357

ǫ = 6× 10−9 Fm−1
µ = 1.256× 10−6 Hm−1
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Figure 7: Corner crack: relevant data.

4.2 Corner crack evolution

The following problem is considered: a reentrant corner with a pre-existing 5 mm diagonal crack has
two edges clamped and is subject to a constant velocity applied in a corner point. Figure 7 shows the
relevant data of this problem. Again, a PZT material is considered with typical properties (except
εm and Dc which are introduced here for verification purposes, a fact not affecting the conclusions).
Three uniform-sized meshes are used to assert the sufficient independence of the results: 5268, 11824
and 26620 mixed triangular elements. The same time step of ∆t = 2× 10−10 s is used for all meshes.
Besides the mechanical boundary conditions depicted in figure 7 the electric field is constrained with
qs = 0 Cm−2. Now classical fracture algorithms (created by the first Author cf. [2, 4, 3]) are employed
in this example with a insulating crack (see also [15]).

The reaction at the point of imposed displacement is monitored for the three meshes and the results
are shown in figure 8. Close agreement occurs for the two finer meshes and very acceptable agreement
is obtained in general. A comparison between the three crack paths is shown in figure 9 where excellent
agreement can be observed. In addition, contour plots of relevant quantities for the finer mesh are
shown in figure 10.

To inspect the effect of α11 in the crack path, we repeat the test for several values of α11 (0, π/6,
π/4, π/3 and π/2) in figure 11. We can conclude, from the inspection of that figure, that, since the
only source of anisotropy in our model is the piezoelectric law, it affects the crack path. There is a
slightly crack path offset for α11 = π/3.
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Figure 9: Crack path comparison between the three meshes
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Figure 11: Effect of the piezoelectric angle α11 in the crack path.
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5 Conclusions

Specialized derivations both in the strong and weak forms of electro-magnetic coupling of dielectrics
including piezo-electricity were presented. New finite element formulations in both the continuum
element (with a variant of the MINI element) and the boundary condition element were shown and two
very successful numerical tests were presented. Compared with recent works on the same theme (e.g.
[21]) the inclusion of the magnetic field, the derivation of novel electro-magnetic wave equations and the
generalization of the boundary conditions were the major contributions. Further improvements in the
number of ingredients and depth of numerical tests are being performed. The quality of implementation
and corresponding results holds great promises for further generalization.
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