Constrained ALE-based discrete fracture in shells with quasi-brittle and ductile materials

P.Areias*, N.Van Goethem, E.B. Pires
(UEvora, Fac. Ciências U.L. and IST, respectively)

Goals, methodologies and tools

Goals:

- To produce a definite computational tool allowing a systematic reproduction of results for quasi-brittle and ductile fracture in finite strains ${ }^{+}$.
- Create a underlying framework where each physical law (Cauchy equilibrium, Maxwell's equations, heat transfer, etc) is automatically used with time-tested (and published) discretization technologies.
-Allow the testing and validation of new constitutive laws, thermal coupling, electro-magnetic coupling.
-Allow an automated incorporation of technical requirements such as:
-Plane stress condition.
- Non-local state variables.
- Introduce and test general heuristics and solution control.
- Incorporate new technologies in shell and beam elements prone to fracture.

Methodologies and tools:

- Consistently linearize all equations and perform preliminary tests (isoerror maps, convergence radius, etc).
- Use Chen-Mangasarian replacement functions for complementarity conditions (elasto-plasticity, contact and friction, cohesive laws).
- Make extensive use of the ACEGEN add-on to Mathematica.
- Use of a in-house sparse library along with a graph database (also in-house).
-Continue to develop SIMPLAS wrapped in a C++ graph database.
- Use ALE and geometric elements.
-Avoid enrichment or "enhancement"techniques

Global perspective of our approach

All components of a discrete "engineering" system are either additive (e.g. elements or cliques) or multiplicative (e.g. boundary conditions or multiple-point constraints).
Components may introduce non-smoothness to the system.

Classical beam tetrahedron and shell elements with cracks and internal nodes

MPCs (essential $B C$), mirror, rigid link, rigid body, shear band

Control equations

Geometric elements
ALE mesh replacement constraints

Fracture problems in finite strains

Ingredients:

-Element technology:

- Plane stress with thickness field (Comp. Mech).

Plane strain and 3D with pressure unknowns (inf-sup verified) (CMAME and IJNME).
Fully finite strain exact shell (6 Dofs with physical drilling) (Comp. Mech).

- Geometrical element:
-2D (Comp. Mech).
-Shell (to be submitted).
-3D (not yet implemented).
-Constitutive modeling:
Correct multiplicative plasticity with Chen-Mangasarian replacements (IJNME and to be submitted).
- Multiple-surface approach for ductile damage (to be submitted).
- Solution control and multiple-point constraints.

Fig. Relevant ingredients

- Clique processor and sparse library

Base technology

i) Tip segment appending

iii-a) Node splitting with subsequent element
iii-a) Node splitting with subsequent element

ii) New elements relative position

iii-b) Node splitting without subsequent element

$$
\boldsymbol{f}^{\alpha}=\frac{\partial \Pi_{\mathrm{angle}}}{\partial \boldsymbol{\chi}_{v}}
$$

Geometric element

Relevant quantities in Godunov scheme

$$
\boldsymbol{F}_{o}^{e}=\boldsymbol{F}^{e}+\frac{1}{2 A_{e}} \sum_{L=1}^{3}\left\{\left[l_{L} \boldsymbol{n}_{L} \cdot\left(\Delta \boldsymbol{x}_{\bar{L}_{3}}+\Delta \boldsymbol{x}_{\overline{L+1}_{3}}-\Delta \boldsymbol{\chi}_{\bar{L}_{3}}-\Delta \boldsymbol{\chi}_{\overline{L+1}_{3}}\right)\right]_{+}\left(\boldsymbol{F}^{e(L)}-\boldsymbol{F}^{e}\right)\right\}
$$

Advection steps

Base technology - results (quasi-brittle)

(a) Specimen \#1, vertical displacement

(b) Specimen \#1, CMOD

(b) Specimen \#2, CMOD

Many literature problems solved with success

Also with simultaneous crack growth

Any hyperelastic law along with any plasticity model.

Yield criterion	Number of yield surfaces	Equivalent stresses
von-Mises	1	$\sigma_{\mathrm{eq}_{1}}=\sqrt{I_{1}^{2}-3 I_{2}}$
Tresca	6	$\sigma_{\mathrm{eq}_{k}}=\widetilde{\tau}_{i}-\widetilde{\tau}_{j}, \quad i \neq j$
Ductile damage	$\sigma_{e q_{1}}=\frac{\sqrt{I_{1}^{2}-3 I_{2}}-f c_{1} I_{1}}{1-f}$	
	$\sigma_{e q_{2}}=\frac{\sqrt{I_{1}^{2}-3 I_{2}}}{1-f}$	
$I_{1}=\operatorname{tr} \boldsymbol{\tau}, \quad I_{2}=\frac{1}{2}\left[(\operatorname{tr} \boldsymbol{\tau})^{2}-\operatorname{tr} \boldsymbol{\tau}^{2}\right]$,	$I_{3}=\operatorname{det} \boldsymbol{\tau}$	

However... much tougher than quasi-brittle is ductile fracture Finite strain plasticity as we see it

$$
\begin{gathered}
\boldsymbol{\tau}=2 \frac{\mathrm{~d} \psi_{b}}{\mathrm{~d} \boldsymbol{b}_{e}} \boldsymbol{b}_{e}=2 \boldsymbol{b}_{e} \frac{\mathrm{~d} \psi_{b}}{\mathrm{~d} \boldsymbol{b}_{e}} \\
\frac{[\mathrm{~d} \boldsymbol{b}]_{i j}}{[\mathrm{~d} \boldsymbol{F}]_{m n}}=\delta_{i m}[\boldsymbol{F}]_{j l}+\delta_{j m}[\boldsymbol{F}]_{i n} \\
\dot{\boldsymbol{b}}_{e V}
\end{gathered}=-4 \sum_{i=1}^{n_{s}} \dot{\gamma}_{i} \boldsymbol{A}^{-1} \boldsymbol{n}_{i} .
$$

What the books do not describe

$$
\mathrm{d} \varepsilon_{p_{n+1}}^{i}=\frac{\boldsymbol{n}_{i}: \boldsymbol{\tau}}{\sigma_{e q_{i}}} \mathrm{~d} \Delta \gamma_{i}+\left[\frac{\Delta \gamma_{i}}{\sigma_{e q_{i}}}\left(\boldsymbol{\tau}: \frac{\mathrm{d} \boldsymbol{n}_{i}}{\mathrm{~d} \boldsymbol{\tau}}+\boldsymbol{n}_{i}\right)-\frac{\boldsymbol{n}_{i}: \boldsymbol{\tau}}{\sigma_{e q}}\right]: \frac{\partial \boldsymbol{\tau}}{\partial \boldsymbol{b}_{e}}: \mathrm{d} \boldsymbol{b}_{e}
$$

$$
4 \boldsymbol{d}_{p V}=-\boldsymbol{A} \stackrel{\star}{\boldsymbol{b}}_{e V}
$$

No requirement for active set strategies, and no "return-mapping" and much better accuracy
than classical methods, including Simo's...

Multiple-point constraints (control, ALE repositioning, ...)

$$
\begin{aligned}
\boldsymbol{T}_{\star}^{T}\left(\sum_{i=1}^{n_{e}} \boldsymbol{K}_{i}^{e}\right) \boldsymbol{T}_{\star}+\boldsymbol{T}_{\star}^{T}\left\{-\sum_{j=1}^{m}\left[\left(\sum_{k=1}^{n_{e}} \boldsymbol{f}_{k}^{e}\right)^{T}\left(\boldsymbol{c}_{j} \boldsymbol{g}_{j}^{\prime \prime}\right)\right]\right\} \boldsymbol{T}_{\star} \mathrm{d} \boldsymbol{a}_{r}= \\
-\boldsymbol{T}_{\star}^{T}\left(\sum_{j=1}^{n_{e}} \boldsymbol{f}_{j}^{e}\right)-\boldsymbol{T}_{\star}^{T}\left(\sum_{l=1}^{n_{e}} \boldsymbol{K}_{j}^{e}\right) \boldsymbol{b}_{\star}
\end{aligned}
$$

Very hard to implement efficiently - a combination of clique and sparse data structures

Acyclic test

Topological sort		
\downarrow	Unroll of nested DOFs	Collapse (and sum)
1:1	1:1	1:1
2:0	2:0	2:0
3:2	3:2,0	3:0
4:1,3	$4: 1, \mathbf{1} \mid 3, \mathbf{0}$	4:1,0
5:3,4,2	$5: 3, \mathbf{0}\|4, \mathbf{1}\| 4, \mathbf{0} \mid 2, \mathbf{0}$	5:0,1
6:2,1,5	$6: 2, \mathbf{0}\|1, \mathbf{1}\| 5, \mathbf{0}\|5, \mathbf{1}\| 5, \mathbf{0} \mid 5, \mathbf{0}$	6:0,1
7:6	$7: 6, \mathbf{0}\|6, \mathbf{1}\| 6, \mathbf{0}\|6, \mathbf{1}\| 6, \mathbf{0} \mid 6, \mathbf{0}$	7:0,1
8:8	8:8	8:8

Degree-of-freedom:list of masters

Mixed elements

Given $t \in \mathbb{R}_{0}^{+} \boldsymbol{t} \in\left[L^{2}\left(\Gamma_{0 t}^{N}\right)\right]^{2}$ and $\boldsymbol{b} \in\left[L^{2}\left(\Omega_{0 t}\right)\right]^{2}$, find $\boldsymbol{u} \in\left[H^{1}\left(\Omega_{0 t}\right)\right]^{2}$ (with non-homogeneous boundary conditions on $\Gamma_{0 t}^{D}$) and $p \in L^{2}\left(\Omega_{0 t}\right)$ such that $\forall \widetilde{\boldsymbol{u}} \in\left[H^{1}\left(\Omega_{0 t}\right)\right]^{2}$ (with homogeneous boundary conditions on $\left.\Gamma_{0 t}^{D}\right)$ and $\forall \widetilde{\theta} \in L^{2}\left(\Omega_{0 t}\right)$:

$$
\begin{gathered}
\int_{\Omega_{0 t}}\left\{\mathscr{P}: \boldsymbol{\tau}_{c}[\boldsymbol{F}(\boldsymbol{u}), t]+p \boldsymbol{I}\right\}: \nabla \widetilde{\boldsymbol{u}} \mathrm{d} \Omega_{0 t}=\int_{\Gamma_{0 t}^{N}} \boldsymbol{t} \cdot \widetilde{\boldsymbol{u}} \mathrm{~d} \Gamma_{0 t}+\int_{\Omega_{0 t}} \boldsymbol{b} \cdot \widetilde{\boldsymbol{u}} \mathrm{~d} \Omega_{0 t} \\
\int_{\Omega_{0 t}}\left\{\frac{1}{3} \boldsymbol{\tau}_{c}: \boldsymbol{I}-p\right\} \widetilde{\theta} \mathrm{d} \Omega_{0 t}=0 \\
\int_{\Omega_{0 t}}\left\{\left(\mathscr{P}: \dot{\boldsymbol{\tau}}_{c}\right): \nabla \widetilde{\boldsymbol{u}}-\left(\mathscr{P}: \boldsymbol{\tau}_{c}+p \boldsymbol{I}\right):(\nabla \widetilde{\boldsymbol{u}} \nabla \dot{\boldsymbol{u}})\right\} d \Omega_{0 t}+\int_{\Omega_{0 t}} \dot{p} \boldsymbol{I}: \nabla \widetilde{\boldsymbol{u}} \mathrm{d} \Omega_{0 t}=\delta \dot{W}_{u t} \\
\int_{\Omega_{0 t}}\left[\frac{1}{3} \boldsymbol{I}:\left(\mathscr{C}: \nabla \dot{\boldsymbol{u}}+\boldsymbol{\tau}_{c} \nabla \dot{\boldsymbol{u}}^{T}+\nabla \dot{\boldsymbol{u}} \boldsymbol{\tau}_{c}\right)-\dot{p}\right] \widetilde{\theta} \mathrm{d} \Omega_{0 t}=\delta \dot{W}_{p t}
\end{gathered}
$$

Technology: bubble displacement linear pressure

Complementarity smoothed and the compact tension test

Exceptionally accurate results with thickness variation

A new triangle with exact corotational kinematics for FeFp plasticity

Drilling freedoms

Frames

$\begin{array}{ll}\mathrm{R}=10 & \mathrm{E}=6.825 \\ \mathrm{~h}=0.04 & \nu=0.3\end{array}$

Benchmark results

Mesh: $4 \times 8 \times 400$ elements Asymmetric arrangement is adopted

Numerically obtained elasto-plastic flange buckling (thickness extrusion was performed)

Much larger deformations than what was reported previously in the literature

And plate fracture

However, for shells the strategy must be updated due to:

- Non-coplanarity of nodes
- Unknown shape of may surfaces

III-shaped elements naturally occur when the crack advances:

Our solution to shell fracture

Hard to code but also very effective

The cylinder movies
With our new ALE approach
Pristine

With our new ALE approach

In detail, the effect of geometrical elements combined with structural elements

With our new ALE approach

Conclusions

- We have alternative approaches to model fracture in a large variety of situations which is based on simple ideas carefully implemented and tested. No enrichment or enhancement approaches are adopted.
- Return mapping techniques are avoided for elasto-plasticity integration.
- Our shell element has been the best we tested in 14 years of research.
- A simple Godunov-based ALE approach results very effective in all tests we performed so far.
- The geometrical elements ensure the mesh has a good quality, regardless of the number of cracks.
- For fully 3D problems with multiple cracks our tests indicate that a FULL remeshing may be less error prone than tip remeshing.
- With software like ACEGEN, the developer can concentrate on ideas instead of lengthy calculations

P. Areias is grateful to J. Korelc for his offer of the software ACEGEN

We acknowledge the funding from PTDC/EME-PME/108751 and COMPETE FCOMP-01-0124-FEDER-010267

