Constrained ALE-based discrete fracture in shells with quasi-brittle and ductile materials

P.Areias^{*}, N.Van Goethem, E.B. Pires (UEvora, Fac. Ciências U.L. and IST, respectively)

CFRAC 2011, 6-8 June, Barcelona, Spain

Tuesday, January 24, 2012

in memory of JAC Martins

Goals, methodologies and tools

Goals:

•To produce a definite computational tool allowing a systematic reproduction of results for quasi-brittle and ductile fracture in finite strains⁺.

•Create a underlying framework where each physical law (Cauchy equilibrium, Maxwell's equations, heat transfer, etc) is automatically used with time-tested (and published) discretization technologies. •Allow the testing and validation of new constitutive laws, thermal coupling, electro-magnetic coupling. •Allow an automated incorporation of technical requirements such as:

- ▶ Plane stress condition.
 - ► Non-local state variables.
- •Introduce and test general heuristics and solution control.
- •Incorporate new technologies in shell and beam elements prone to fracture.

Methodologies and tools:

- •Consistently linearize all equations and perform preliminary tests (isoerror maps, convergence radius, etc). •Use Chen-Mangasarian replacement functions for complementarity conditions (elasto-plasticity, contact and friction, cohesive laws).
- •Make extensive use of the ACEGEN add-on to Mathematica.
- •Use of a in-house sparse library along with a graph database (also in-house).
- •Continue to develop SIMPLAS wrapped in a C++ graph database.
- •Use ALE and geometric elements.
- •Avoid enrichment or "enhancement" techniques

^{*}We find that ductile fracture is the most complex problem that can be dealt with Newton's method, hence the motivation

Global perspective of our approach All components of a discrete "engineering" system are either additive (e.g. elements or cliques) or multiplicative (e.g.

boundary conditions or multiple-point constraints). Components may introduce non-smoothness to the system.

Fracture problems in finite strains

Ingredients:

- •Element technology:
 - Plane stress with thickness field (<u>Comp. Mech</u>).
 - Plane strain and 3D with pressure unknowns (inf-sup verified) (<u>CMAME and IJNME</u>).
 - Fully finite strain exact shell (6 Dofs with physical drilling) (<u>Comp. Mech</u>).
- •Geometrical element:
 - ▶ 2D (<u>Comp. Mech</u>).
 - Shell (to be submitted).
 - ▶ 3D (not yet implemented).
- •Constitutive modeling:
 - Correct multiplicative plasticity with Chen-Mangasarian replacements (IJNME and to be submitted).
- Multiple-surface approach for ductile damage (to be submitted).
- •Solution control and multiple-point constraints.
 - Clique processor and sparse library

Base technology

i) Tip segment appending

iii-a) Node splitting with subsequent element

ii) New elements relative position

iii-b) Node splitting without subsequent element

$$\boldsymbol{F}_o^e = \boldsymbol{F}^e + \frac{1}{2A_e} \sum_{L=1}^3$$

<u>Any hyperelastic law along with any plasticity model.</u>

$\mu \dot{\gamma}_i$	 $\langle \mu \dot{\gamma}_i$

-

Yield criterion	Number of yield surfaces	Equivalent stresses	
von-Mises	1	$\sigma_{\rm eq_1} = \sqrt{I_1^2 - 3I_2}$	
Tresca	6	$\sigma_{\mathrm{eq}_k} = \widetilde{\tau}_i - \widetilde{\tau}_j, i \neq j$	
Ductile damage	2	$\sigma_{eq_1} = \frac{\sqrt{I_1^2 - 3I_2} - fc_1 I_1}{1 - f}$	
		$\sigma_{eq_2} = \frac{\sqrt{I_1^2 - 3I_2}}{1 - f}$	
$I_1 = \operatorname{tr} \boldsymbol{\tau}, I_2 = \frac{1}{2} \left[(\operatorname{tr} \boldsymbol{\tau})^2 - \operatorname{tr} \boldsymbol{\tau}^2 \right], I_3 = \det \boldsymbol{\tau}$			

$$d\varepsilon_{p_{n+1}}^{i} = \frac{\boldsymbol{n}_{i}:\boldsymbol{\tau}}{\sigma_{eq_{i}}} d\Delta\gamma_{i} + \left[\frac{\Delta\gamma_{i}}{\sigma_{eq_{i}}}\left(\boldsymbol{\tau}:\frac{\mathrm{d}\boldsymbol{n}_{i}}{\mathrm{d}\boldsymbol{\tau}}+\boldsymbol{n}_{i}\right) - \frac{\boldsymbol{n}_{i}:\boldsymbol{\tau}}{\sigma_{eq}}\right]:\frac{\partial\boldsymbol{\tau}}{\partial\boldsymbol{b}_{e}}:\mathrm{d}\boldsymbol{b}_{e}$$

$$4\boldsymbol{d}_{pV} = -\boldsymbol{A}\overset{\star}{\boldsymbol{b}}_{eV}$$

2.857e+08

However?? much tougher than quasi-brittle is *ductile* fracture

Finite strain plasticity <u>as we see it</u>

$$oldsymbol{r} = 2 rac{\mathrm{d}\psi_b}{\mathrm{d}oldsymbol{b}_e} oldsymbol{b}_e = 2oldsymbol{b}_e rac{\mathrm{d}\psi_b}{\mathrm{d}oldsymbol{b}_e}$$

 $rac{\mathrm{d}oldsymbol{b}_{ij}}{\mathrm{d}oldsymbol{f}_{ij}} = \delta_{im} \left[oldsymbol{F}
ight]_{jl} + \delta_{jm} \left[oldsymbol{F}
ight]_{in}$

$$egin{array}{lll} \dot{m{b}}_{eV} &= -4\sum_{i=1}^{\infty}\dot{\gamma}_im{A}^{-1}m{n}_i \ \dot{m{v}} &= -\sum_{i=1}^{n_s}\dot{\gamma}_im{arphi}_i \ m{ au} &= -\sum_{i=1}^{n_s}\dot{\gamma}_im{arphi}_i \ m{ au} &= 2rac{\mathrm{d}\psi_b}{\mathrm{d}m{b}_e}m{b}_e \ + \phi_iig
angle &= 0 \end{array}$$

What the books <u>do not describe</u>

No requirement for active set strategies, and no "return-mapping" and much better accuracy than classical methods, including Simo's...

von-Mises plane strain, $ERR_{\det {m C}_p}{}^{-1}$

Tresca plane strain, $ERR_{\det C_n^{-1}}$

von-Mises plane stress, $ERR_{\rm thickness}$

Tresca plane stress, $ERR_{ au}$

Tresca plane stress, $ERR_{thickness}$

Tresca (ε =0.01, $\Delta \gamma_i$ =0)

Tuesday, January 24, 2012

Simo 1988 (*) and 1992 (**)

Multiple-point constraints (control, ALE repositioning, ...)

Very hard to implement efficiently - a combination of clique and sparse data structures

Degree-of-freedom:list of masters

Mixed elements

Given $t \in \mathbb{R}_0^+$ $t \in [L^2(\Gamma_{0t}^N)]^2$ and $b \in [L^2(\Omega_{0t})]^2$, find $u \in [H^1(\Omega_{0t})]^2$ (with non-homogeneous boundary conditions on Γ_{0t}^{D} and $p \in L^{2}(\Omega_{0t})$ such that $\forall \tilde{\boldsymbol{u}} \in [H^{1}(\Omega_{0t})]^{2}$ (with homogeneous boundary conditions on Γ_{0t}^D) and $\forall \tilde{\theta} \in L^2(\Omega_{0t})$:

$$\int_{\Omega_{0t}} \left\{ \mathscr{P} : \boldsymbol{\tau}_c \left[\boldsymbol{F}(\boldsymbol{u}), t \right] + p \boldsymbol{I} \right\} : \nabla \widetilde{\boldsymbol{u}} \, \mathrm{d}\Omega_{0t} = \int_{\Gamma_{0t}^N} \boldsymbol{t} \cdot \widetilde{\boldsymbol{u}} \, \mathrm{d}\Gamma_{0t} + \int_{\Omega_{0t}} \boldsymbol{b} \cdot \widetilde{\boldsymbol{u}} \, \mathrm{d}\Omega_{0t}$$
$$\int_{\Omega_{0t}} \left\{ \frac{1}{3} \boldsymbol{\tau}_c : \boldsymbol{I} - p \right\} \widetilde{\boldsymbol{\theta}} \, \mathrm{d}\Omega_{0t} = 0$$

$$\int_{\Omega_{0t}} \left\{ (\mathscr{P} : \dot{\boldsymbol{\tau}}_c) : \nabla \widetilde{\boldsymbol{u}} - (\mathscr{P} : \boldsymbol{\tau}_c + p\boldsymbol{I}) : (\nabla \widetilde{\boldsymbol{u}} \nabla \dot{\boldsymbol{u}}) \right\} d\Omega_{0t} + \int_{\Omega_{0t}} \dot{p}\boldsymbol{I} : \nabla \widetilde{\boldsymbol{u}} \, \mathrm{d}\Omega_{0t} = \delta \dot{W}_{ut}$$
$$\int_{\Omega_{0t}} \left[\frac{1}{3}\boldsymbol{I} : \left(\mathscr{C} : \nabla \dot{\boldsymbol{u}} + \boldsymbol{\tau}_c \nabla \dot{\boldsymbol{u}}^T + \nabla \dot{\boldsymbol{u}} \boldsymbol{\tau}_c \right) - \dot{p} \right] \widetilde{\theta} \mathrm{d}\Omega_{0t} = \delta \dot{W}_{pt}$$

$$egin{aligned} & \hat{\mathbf{u}}_{c} : \nabla \widetilde{\boldsymbol{u}} - (\mathscr{P}: oldsymbol{ au}_{c} + p oldsymbol{I}) : (\nabla \widetilde{\boldsymbol{u}} \nabla \dot{oldsymbol{u}}) \} d\Omega_{0t} + \int_{\Omega_{0t}} \dot{p} oldsymbol{I} : \nabla \widetilde{oldsymbol{u}} \, \mathrm{d}\Omega_{0t} &= \delta \dot{W}_{ut} \ & \int_{\Omega_{0t}} \left[rac{1}{3} oldsymbol{I} : \left(\mathscr{C}: \nabla \dot{oldsymbol{u}} + oldsymbol{ au}_{c} \nabla \dot{oldsymbol{u}}^{T} + \nabla \dot{oldsymbol{u}} oldsymbol{ au}_{c}
ight) - \dot{p}
ight] \widetilde{ heta} \mathrm{d}\Omega_{0t} = \delta \dot{W}_{pt} \end{aligned}$$

Technology: bubble displacement linear pressure

Exceptionally accurate results with thickness variation

Experimentally observed elasto-plastic flange buckling

Numerically obtained elasto-plastic flange buckling (thickness extrusion was performed)

Much larger deformations than what was reported previously in the literature

And plate fracture

However, for shells the strategy must be updated due to:Non-coplanarity of nodesUnknown shape of may surfaces

III-shaped elements naturally occur when the crack advances:

Ill-shaped elements

Our solution to shell fracture

Hard to code but also very effective

Geometrical operations are all performed in level D

The cylinder movies

With our new ALE approach

Pristine

With our new ALE approach

In detail, the effect of geometrical elements combined with structural elements

With our new ALE approach

Conclusions

- We have alternative approaches to model fracture in a large variety of situations which is based on simple ideas carefully implemented and tested. No enrichment or enhancement approaches are adopted.
- Return mapping techniques are avoided for elasto-plasticity integration.
- Our shell element has been the best we tested in 14 years of research.
- A simple Godunov-based ALE approach results very effective in all tests we performed so far.
- The geometrical elements ensure the mesh has a good quality, regardless of the number of cracks.
- For fully 3D problems with multiple cracks our tests indicate that a FULL remeshing may be less error prone than tip remeshing.
- With software like ACEGEN, the developer can concentrate on ideas instead of lengthy calculations

P. Areias is grateful to J. Korelc for his offer of the software ACEGEN

We acknowledge the funding from PTDC/EME-PME/108751 and COMPETE FCOMP-01-0124-FEDER-010267