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Abstract

This study investigates the asymmetric effects applying heat transfer as a diagnostic tool in
dendritic networks with symmetrical branching, characterized by the geometric property
of self-similarity. Using a Computational Fluid Dynamics (CFD) model, we analyze five
structural isomers of a three-level dichotomous branching network to evaluate the rela-
tionship between fluid dynamics, heat transfer, and geometric configuration. The main
constraints are geometrical; that is, the volume at each branching level remains constant,
and homothetic relationships respect the Hess–Murray law both for diameters and angles
between sister tubes. The model considers an incompressible and stationary Newtonian
fluid flow with Reynolds numbers ranging from 10 to 2000 and heat transfer in the range
1 to 1000 W/m2. Our results show that significant asymmetries in flow distribution and
temperature profiles emerge in these symmetric structures, primarily due to the successive
alignment of tubes between different branching levels. We found that the isomer with
the lowest pressure drop is not the same as the one providing the most uniform flow
distribution. Crucially, thermal analysis proves to be more sensitive than fluid dynamic
analysis for detecting flow asymmetries, particularly at low Reynolds numbers less than 50
and q′′ = 1000 W/m2. While heat transfer does not significantly alter the fluid dynamic
asymmetry, its application as a diagnostic tool for identifying flow asymmetries is effective
and crucial for such purposes.

Keywords: flow networks; self-similarity; branching scales; heat transfer; Newtonian fluid;
constructal design

1. Introduction
Tree-shaped transport networks are fundamental systems found in both natural and

engineered systems, from biological circulatory systems to the cooling of microelectronic
devices [1,2]. The development of complex flow systems aids in designing various engi-
neering systems, including thermal devices, aerospace devices [3–7], metamaterials [8], and
medical devices such as lab-on-a-chip devices [9,10].
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In natural and biological systems, real structures that are branched in complex ways
are usually asymmetric. This tree design also applies to artificial systems manufactured
and designed for the same purpose [11–16].

In the dichotomous bifurcation of the respiratory tree, geometric asymmetry through
systematic reductions in size provides better system functioning. The geometric asymmetry
ensures a uniform supply to the terminal units (i.e., the acinar units) in the highest branching
levels [16].

The performance of complex tree-shaped flow networks is highly dependent on the
scale and geometric characteristics, such as the svelteness of the network, the ratio between
diameters and lengths and, mainly, the alignment of the pipes at different bifurcation
levels [11].

The proposition of structural isomers was applied in the evaluation of the asymmetric
influence on the distribution of fluid flow inside symmetrical tree-shaped structures, con-
sidering the topology of the structure, increase in branching levels and the influence of the
computational model [12].

The comparison between the flow of Newtonian and Non-Newtonian fluids through a
complex self-similar dendritic structure demonstrated that the asymmetric effects depend
on the rheological parameters as well as on the scale of the branched structure, where more
svelte structures tend to obtain a better distribution symmetry. Also, the asymmetric effects
are more significant for Non-Newtonian fluids compared to Newtonian fluids [13].

The design of these complex networks often aims for symmetry to achieve uniform
distribution. The self-similar property in the dendritic pattern is scale-independent [11].
However, studies have shown that even in perfectly symmetric branching geometries,
asymmetric flow patterns can emerge [14,15], a phenomenon attributed primarily to the
fluid dynamics associated with consecutive alignments of tubes at different branching
levels [14,15].

Self-similar asymmetric structures are also found in the respiratory tree of mammals
such as humans, dogs, rats and rabbits, where the asymmetric nature of the branches
determines the distribution of diameter ratios related to functional optimization and lung
design [16].

Thus, an asymmetric division occurs and is characterized both by the distinct mass
flow at each outlet and by differences in flow resistance [11–13]. Applying the principle of
structural isomers to the design of dendritic networks with symmetrical branching, studies
with Newtonian fluid flow support that asymmetric effects are primarily caused by the
cascade of successive alignments [12,14,15].

In branched structures, flow asymmetry due to inertial effects is compensated by
structural asymmetry, as exemplified by the geometric structure of the tracheobronchial
tree, which is highly asymmetric. Thus, the shortest paths toward the periphery of the
lung benefit from reduced flow resistance (i.e., ensuring correct physiological functioning),
something that would not occur if the pulmonary tree were completely symmetrical [14].

Flow asymmetry evaluated only with fluid dynamics lists three important character-
istics attributed to asymmetric flow in symmetric structures in the plane and out of the
plane: flow inertia, path curvatures and flow division at bifurcations, which contribute
substantially to flow non-uniformity [15].

While the impact of these alignments on isothermal fluid flow has been explored, the
role of heat transfer in influencing or revealing these asymmetries is not well understood.

In artificial systems such as heat transfer devices applied in electronics, the challenges
posed by the miniaturization of microelectronic devices remain current, such as minimiz-
ing the pressure drop in the complex channels that transport the cooling fluid and the
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temperature non-uniformity on the heat sink surface [17–19]. This offers a wide range of
applications for the study of tree-shaped flow networks with heat transfer.

In the development of complex flow networks applied to heat transport, two physical
laws stand out in the quest to maximize the dual objectives of low pumping energy con-
sumption and high heat transfer load. The Hess–Murray law guides allomeric relationships
to achieve the lowest pumping work [20–22] and the constructal law generally applies to
the branching design [23,24]. The constructal law proposes that for fluid transport between
point-to-area or volume and vice versa, the complex tree-shaped structure best fulfills
this purpose.

The Hess–Murray law [20,21] applies only to vessels with rigid, impermeable walls
and laminar flow of Newtonian fluid. In Hagen–Poiseuille flow, minimum work is achieved
when the volumetric flow is proportional to the cube of the diameter in an optimized vessel.
Thus, complex flow networks that follow this law require that the cube of the diameter of a
parent vessel be equal to the sum of the cubes of the diameters of the daughter vessels.

The constructal law is a natural law that inherently allows for the evolution and
adaptation of design over time, ensuring the system’s persistence and fulfilling its intended
purpose in the best possible way [1,24]. In flow systems, the constructal law for pipe design
is derived from the need to move the fluid as easily as possible, to achieve greater access to
the flow through the generation of a specific design (i.e., configuration). Thus, the way to
connect large and small pipes requires a ratio between the diameters of the daughter and
parent vessels of 2−1/3 (i.e., Hess–Murray law) for laminar flow and 2−3/7 for turbulent
flows [24].

This work advances the investigation of asymmetric effects by incorporating heat
transfer into the fluid flow in symmetrical dendritic networks [11–13]. The use of heat trans-
fer as a diagnostic tool for revealing geometrically induced, steady-state flow asymmetry is
a novel approach that is well-supported by our methods and results.

Thermal engineering applications have ranges of interest. In this study, we applied a
generic investigation range between 1 to 1000 W/m2, serving as an energy source for iden-
tifying flow asymmetries through thermal markers. However, this research can contribute
to the development of applications that use similar ranges. For example, 1 to 20 W/m2

in determining the dynamic thermal properties of building materials applied to building
envelopes [25,26], for 50 to 100 W/m2 in underfloor heating or cooling applications [27],
for 100 to 500 W/m2 in a spiral-shaped solar collector applied to water heating [28], and
for 500 to 2200 W/m2 in hydrothermal fins applied to cooling electronic devices [29].

This study aims to investigate the asymmetry effects applying heat transfer as a
diagnostic tool in dendritic networks with symmetrical branching, characterized by the
geometric property of self-similarity (i.e., through structural isomers), and identify the
potential asymmetric effects on the flow of a Newtonian fluid limited to flows with Reynolds
number 10 to 2000 and heat transfer of 1 to 1000 W/m2. Evaluate the effects of successive
alignments [11–15] between tubes at different branching levels in a network designed
according to the Hess–Murray law [20,21] are also addressed.

The determination of the average or local Nusselt number, the scale evaluation of flow
networks with heat transfer, the evaluation of non-Newtonian fluids, turbulent flow and
asymmetric networks are excluded from the objectives of this scientific dissemination.

This work aims to address the following questions:

(1) Do flow asymmetries in branched structures with heat transfer differ from those
without it?

(2) Can heat transfer amplify or mitigate these asymmetric effects?
(3) Are thermal performance markers effective for identifying fluid dynamic asymmetries?
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To answer these questions, a numerical experiment study was conducted using 3D
computational fluid dynamics (CFD) [30] to simulate Newtonian fluid flow through a
dichotomous dendritic network of tubes with three levels of branching that has heat
transfer along the tube walls.

Advancing the understanding of the effects in complex networks aids in designing
various networks that transport fluids, heat, and species, both artificially (e.g., in industries)
and naturally (e.g., in respiratory and circulatory systems, watershed formation with river
maintenance, lava transport, etc.).

2. Methods
2.1. Geometrical Modeling

Figure 1 shows a tree-shaped flow network made of cylindrical tubes with three levels
of dichotomous branching, in which all tubes are on the same plane. This figure presents
the basic variables to model the system and the structures for this study.

Figure 1. Planar self-similar fluidic structure with three symmetric branching levels and circular
sections to transport Newtonian fluids with heat transfer in the wall (i.e., isomer I).

Figure 2 shows four other symmetrical geometries that are investigated. These four
configurations help to test the hypothesis of successive alignments between tubes of differ-
ent branching levels, in addition to the tree-shaped geometry that develops in the plane.

For all cases studied, the symmetry is not altered, since the angles between tubes of
the same level, diameters and lengths remain identical in size for each flow plane. Note
that to avoid successive alignments, the tubes of the upper levels have been rotated by
90 degrees with respect to the tubes of the lower levels, without any dimensional change.

The choice of the five geometries is not a simple random choice, it was designed
to test the hypothesis of successive alignments that occur between the different levels
of branching.

Isomer I is a commonly studied planar tree-like structure, this is the easiest to con-
struct. [12,14,15]. Isomer III is an alternative to isomer I, since, for the restriction of equal
volume between the branching levels, a geometric condition applied in the respiratory
system, from diameter ratios lower than 0.7 suffers from overlaps between the tubes of the
third branching level [11]. Isomer V is the most difficult to construct. This structure has
been previously studied, but the effects that occur between an in-plane and out-of-plane
structure still left gaps to be answered [12,15]. Thus, isomers II and IV complement a family
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of self-similar structures, aiming to progressively eliminate the successive alignments that
occur between tubes of different branching levels [12].

 

(a) (b) 

  

(c) (d) 

Figure 2. Isomer self-similar fluidic structure with three symmetric branching levels: (a) isomer II,
(b) isomer III, (c) isomer IV and (d) isomer V.

Figure 3 shows criterion of alignments between tubes of different branching levels
with identical dimensions different designs [12]. The five are structurally isomer networks.

The isomer IV has the singular characteristic of being structurally asymmetric about
tube 0A. Note that the paths to outlets 3A, 3B, 3C, and 3D have no alignment between the
tubes, and the paths to outlets 3E, 3F, 3G and 3H are aligned from level 1 to level 3, similarly
to isomer II. For all other structures isomer I, II, III and V are symmetrical to tube 0A.

Understanding the fluid’s behavior when the tube network in the form of a tree loses
its symmetry and becomes asymmetric in realistic designs, allows us to design fluid flow
systems better. The study of isomeric structures is an important advance towards the global
understanding of asymmetric effects in symmetric structures. Note that in Figures 1 and 2,
the plane in which the branching tubes are located differs, but the daughter tubes remain
symmetrical (i.e., identical in size but with different configurations).
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Figure 3. Alignment criterion between pipes of different branching levels in self-similar fluidic
structure, isomer I to V.

According to the principles of constructal design [23], it is essential to clearly es-
tablish the system’s constraints, degrees of freedom, and design objectives. One of the
constraints adopted in this study is the fixed total volume of tubes at each branching level
Vi = 1.767 × 10−5 m3 which remains constant throughout the analysis. Additionally, the
angle between the daughter branches is maintained at 75◦, a configuration known to reduce
pressure losses in bifurcated laminar flow systems [22]. The ratio between the length and
diameter of the tube at the initial level is also fixed at 6.77, based on observed values
ranging from 6.3 to 7.0 in natural systems [2]. The system’s degree of freedom is defined
by the ratio between the diameters of the daughter and parent ducts (aD). Based on these
parameters, the dendritic fluidic structures [12] are constructed using Equations (1)–(4) [11].

Vi =
π

4
2i
(

Di
2Li

)
(1)
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VT =
3

∑
i=0

Vi = 4V (2)

aD = Di+1/Di (3)

θ = 75
◦
, L0/D0 = 6.77 (4)

where Vi represents the volume at each branching level, θ denotes the angle between
daughter branches, D and L refer to the diameter and length of the tubes, respectively,
and aD defines the ratio between the diameters of parent and daughter ducts. The indices
i and i + 1 correspond to the parent and daughter levels. The index i may range from 0
to 3, with lower values indicating initial branching levels, characterized by fewer tubes
and outlets, and proximity to the inlet. While the volume at each level remains constant,
the length ratio varies, introducing a degree of freedom into the system. Table 1 shows
the values for geometric parameters used to determine the computational domain. In the
Appendices A–C there is additional information about the dimensions of the geometry.

Table 1. Values for geometric parameters and boundary condition.

Geometric Parameters Boundary Condition

Vi 1.767 m3 ṁ 0.000118 to 0.023633 kg/s
θi 750 Tin 300 K
aDi 2−1/3 q′′ 1 to 1000 W/m2

L0 0.100 m uwall 0 m/s
D0 0.015 m Pout 0 Pa

2.2. Mathematical and Numerical Modeling

The governing equations for mass, momentum and energy conservation are expressed
in Equations (5)–(7) [31,32]. Consider a 3D laminar flow regime (ReD < 2100) through a
network of tubes. Navier–Stokes equations for a steady of isothermal and incompressible
Newtonian fluid are expressed in Cartesian coordinates as

∇·u = 0 (5)

ρ(u·∇)u = −∇p +∇·τ (6)

ρcp(u·∇T) = k∇2T (7)

where u is the velocity vector field, ρ is the fluid density, µ is the dynamic viscosity, p is the
pressure, T is the temperature, cp is de specific heat of the fluid at constant pressure and k
is the thermal conductivity.

The modeling assumptions are laminar, steady-state, three-dimensional flow of isother-
mal and incompressible Newtonian fluids with constant properties, no buoyancy, imper-
meable and no-slipping walls.

The energy and Navier–Stokes equations were solved using the Computational Fluid
Dynamics (CFD) code ANSYS® FLUENT 2025-R1. The coupled solution, the pressure-
based formulation applied to low-velocity incompressible fluid flows, the laminar viscosity
model, and the energy model were chosen as solution parameterizations. The viscosity
model is independent of the thermal model; this choice is justified because, within the
operating range, the fluid dynamic and thermal properties can be considered constant.

The pressure-velocity coupling used the SIMPLEC method. The sub-relaxation pa-
rameters were 0.3 for pressure, 1.0 for density, 1.0 for forces, 0.7 for momentum, and 1 for
energy. The least square cell-based method was used for the gradients, the second-order
scheme was used for the pressure discretization, and the second-order upwind scheme was
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used for the advective term and energy term in the spatial discretization of the transport
equations. The residual criteria for the continuity, momentum and energy equations were
set to 10−6.

The boundary conditions for the tree flow structure are as follows: the mass flow
rate is prescribed (ṁ) and temperature prescribed (Tin = 300 K) at the inlet tube; the
atmosphere pressure was specified for tubes outlet (i.e., p = 0); a uniform heat transfer
(q′′ ̸= 0) is assumed at external walls of the tubes and the no-slip and no-penetration (i.e.,
impermeable wall) boundary conditions are applied on the walls within the tubes. Table 1
shows the values for boundary conditions used to parameterize the computational model.

The inlet boundary condition is justified by the possibility of specifying the mass
flow rate, a desirable characteristic for studying tree-flow structures that represent natural
systems. This boundary condition allows the total pressure to vary in response to the
solution. The outlet boundary condition is justified to model the output based on the static
pressure of the flow. The velocity values are calculated from within the domain with the
gradients of the quantities fixed at zero.

The fluid chosen for this study is water (ρ = 998 kg/m3, µ = 0.001003 Pa·s,
k = 0.6 W/m·K and cp = 4182 J/kg·K) and tube material is the tantalum (ρ = 16,600 kg/m3,
k = 57.6 W/m·K and cp = 140 J/kg·K). The choice of tantalum is associated with its thermal
properties: it is widely used in the aerospace, nuclear, electronics, and automotive industries.

To verify the mesh, uncertainty analysis was performed considering the Grid Con-
vergence Index (GCI) method [33,34]. The dimensionless pressure head loss (i.e., Euler
number) was selected as a convergence marker in the application of the technique due to its
significant relevance to fluid flow problems. Table 2 shows the grid study for a Newtonian
fluid for ReD = 2000 and q′′ = 1000 W/m2. Where r is the mesh ratio, ε is the relative error
and de indices 1, 2, and 3 indicate the element size, and N represents the number of cells;
the lower the index, the more refined the mesh and ext the value of the analysis variable
according to a Richardson extrapolation.

Table 2. Grid convergence index at, aD = 0.8, ReD = 2000.

Isomer
I II III IV V

EuN1 677.64 684.78 677.33 688.12 694.36
EuN2 675.53 683.52 674.96 686.09 692.30
EuN3 540.57 569.31 570.98 562.01 544.00
N1 1,808,908 2,186,438 1,752,743 2,050,358 2,037,221
N2 240,490 291,860 235,690 275,100 273,337
N3 35,208 40,098 32,344 38,592 38,792
r21 1.959 1.952 1.957 1.953 1.953
r32 1.897 1.939 1.938 1.925 1.917

Eu ext 21 677.67 684.79 677.38 688.11 694.39
Eu ext 32 677.67 684.79 677.38 690.07 694.39

ε21 0.31% 0.18% 0.35 0.14% 0.30%
ε32 19.98% 16.71% 15.41 18.44% 21.42%

GCI21 0.50% 0.24% 0.97% 0.54% 0.43%
GCI32 39.59% 23.21% 44.57% 36.99% 36.56%

The CGI method recommends a mesh ratio greater than 1.3 and as close as possible to
r21 and r32 [33,34]. The application of the prismatic layer on the wall, necessary to capture
phenomena in this region, influences a mesh ratio of ~1.9, used in this study.

In complex flow structures that apply homothetic relations, where the diameter of
the tubes at the highest branching levels decreases, it is necessary to ensure a sufficient
number of elements in these tubes. The number of elements in the prismatic layer near
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the wall increases as the element size decreases, which contributes to a mesh ratio greater
than 1.3. Thus, coarse meshes exhibit significant divergence compared to finer meshes,
especially for flows with higher Reynolds numbers (i.e., close to 2000, in laminar flow).
This fact is explained by an insufficient number of elements in the discretization of the
smaller-diameter tubes at the largest branching levels.

Finding the ideal balance between cells at the wall and at the center of the tube is not
a trivial task in problems involving flow in complex networks.

For GCI method applied a fluid flow, a maximum value of 5% is considered to be ac-
ceptable [33] when the choice convergence marker reaches the asymptotic region according
to a Richardson extrapolation.

The element size parameterization is equal to 0.005 m for all isomeric structures, with
which we obtain a GCI of 0.24% to 0.97% for the highest Reynolds number and the highest
heat transfer studied.

The fluid domain was discretized with hexahedral elements throughout the geometry,
except in the near-wall regions, where there is a refinement of ten prismatic layers (i.e., the
layers needed to create an accurate computational domain). The computational domains
have a total of 1.7 × 106 to 2.1 × 106 hexahedral cells.

The numerical and mathematical models were validated by comparison with a similar
CFD study on branched flow structures, with two levels of branching (i.e., four outputs) [35].
Without modifying the numerical model parameterization or mesh element size used in this
study, a geometric adjustment with the suppression of one branching level was required for
validation. Table 3 shows the parameters used for validation as well as the relative error,
with their respective performance markers, 5.4% [35].

Table 3. Comparison of geometric relationships for validation of the computational model.

Flow Structure

Zhang et al. (2002) [35]
Present Numerical Model

Adapted with Two
Branching Level

 

Number of branching
levels 2 2

L0 0.0107 m 0.0107 m
L1 0.0090 m 0.0090 m
L2 0.0076 m 0.0076 m
D0 0.0035 m 0.0035 m
D1 0.0028 m 0.0028 m
D2 0.0023 m 0.0023 m

L0/D0 3.01 3.01
L1/D1 3.21 3.21
L1/D1 3.30 3.30

aD 0.78 0.78
θ 70◦ 70◦

∆P* = ∆P·ρ·u2 19.41 20.47

ε =
∣∣∣∆P∗

ref−∆P∗
present

∆P∗
ref

∣∣∣ ----- 0.054

The fluid dynamic characteristics are used to compare results, there are differences
in the discretization method and computational model configurations. The application of
118,000 elements with irregular tetrahedral mesh, residues 10−4, sub-relaxation parame-
ters 0.5 for momentum and 0.8 for pressure, and SIMPLE method for pressure-velocity
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coupling [35]. Here, a regular mesh with 165,000 hexahedral elements, residues 10−6,
sub-relaxation parameters 0.7 for momentum and 0.3 for pressure and SIMPLEC method
for pressure-velocity coupling, choices that favor the stability and solution convergence.

The validity and robustness of the proposed model are verified by the same order
of magnitude.

2.3. Network Thermo-Fluid Dynamic Performance

To evaluate the thermo-fluid dynamic effects and the asymmetric effects in dendritic
flow networks with structural isomerism, dimensionless quantities are defined allowing
the understanding and comparison of the results. The Euler number [13] is used to express
the dimensionless pressure head loss according to:

Eu = ρ A2
tube∆p/

.
m2 (8)

where Eu is the Euler number, ∆p is the pressure drop, ṁ is the mass flow rate and Atube is
the cross-sectional area of the inlet tube. In a flow where there are localized pressure losses
(i.e., due to junctions, restrictions and changes in cross-section), the Euler number can be
thought of as a measure of the ratio of pressure forces to inertial forces (i.e., a dimensionless
measure of pressure head loss).

To investigate the asymmetry associated with fluid flow (i.e., fluid dynamic phenom-
ena) and quantify the possible differences in the distribution of mass flow in the outlet
tubes of the dendritic network the following parameter [15] is defined:

FRP =
.

mtube,m/
.

min (9)

where FRP is the flow partitioning ratio, which means the fraction of the mass flow rate
flowing through each tube relative to the system supply mass flow rate, ṁtube,n is the mass
flow rate at the outlet of tubes in a specific branching level m, and ṁin is the mass flow rate
at the inlet of the network.

The thermal effects provided by heat transfer through the walls are quantified by the
dimensionless temperature according to:

T∗ = Tmx/Tinlet (10)

where T* is the dimensionless temperature, Tmáx is the maximum temperature in a given
region of interest of the computational domain and Tinlet is the fluid inlet temperature
parameter (i.e., 300 K).

The thermo-hydraulic performance factors [36–38] combining Q and R can be quanti-
fied according to:

α =
Q

R1/3 (11)

where α are thermo-fluid dynamic efficiency, Q is heat transfer rate and R is the flow
resistance, defined as R = ∆p/ṁ.

The Nusselt number [32] represents the ratio of convective heat transfer to conduction
heat transfer. It can be quantified according to:

Nu =
h D0

k
(12)

where Nu is the overall Nusselt number, h is the heat transfer coefficient, D0 is the charac-
teristic length and k is thermal conductivity.
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3. Results and Discussion
Velocity, pressure and temperature fields were obtained by CFD numerical simula-

tions to determine characteristics of heat transfer and fluid flow across the symmetrical
dendritic network.

Our study uses the diameter ratio aD according to Hess–Murray’s law, which charac-
terizes the optimal performance geometry or reduced flow resistance. The diameter ratio
aD used here is 2−1/3. Our investigation is carried out in a flow laminar regime, the range
is 10 ≤ ReD ≤ 2000. The heat transfer range is 1 ≤ q′′ ≤ 1000 W/m2. The laminar viscosity
model is decoupled from the thermal model, as the property is practically constant over
the study interval. The computational model was validated by comparison with similar
computational models. The numerical results consider residuals equal to 10−6.

Pressure Drop Characteristics

Figure 4 shows the static pressure distribution along the through self-similar symmetric
branched. The names of the isomers are used to distinguish the self-similar structures,
where the criteria for successive alignments are shown in Figure 3.

To better compare the static pressure fields for the same Reynolds numbers, equal
scales were adopted with the criterion of the maximum pressure that occurs at the inlet
surface of the model.

The static pressure profile is highly dependent on the Reynolds number and decreases
as it approaches the outlet as branch levels increase. Also, it is observed that the flow
resistance depends on the geometrical structure and the successive alignments between
tubes at different branching levels.

Figure 4. Cont.
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Figure 4. Contours of static pressure for a network designed for aD = 0.80.

Comparing the influence of successive alignments on the variation in the pressure
drop, isomer I presents the lowest pressure, while isomer V presents the highest for the
same Reynolds number. The calculated behavior is a ratio of 1.001 to 1.024 times between
similar cases.

This increase in the pressure drop of out-of-plane isomers is attributed to the change
in direction of the axis where the flow develops. In addition to the natural change due to
bifurcation, there is also a change in plane, adding this component to localized losses. Also,
since inertia forces are more significant at the first branching levels, isomer V is the most
impacted when compared to the other isomers investigated.

Figure 5 shows Euler number versus Reynolds Number, that the Euler number de-
creases as the Reynolds number increases, this relationship holds true regardless of the
heat transfer rates applied in the study. Considering the physical definition of the Reynolds
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number and the Euler number, this relationship indicates an increase in the inertial forces
over the viscous forces and over the pressure forces. Assuming increased inertial forces,
there is a better distribution of pressure gradients along the branched structure, which is
identified in the static pressure fields in Figure 4.

Figure 5. Euler number (Equation (8)) versus Reynolds number.

Figure 6 shows Euler number in the different self-similar symmetric branched struc-
tures. The effect of tube alignment between levels and the Reynolds number on the Euler
number in different self-similar symmetric branched structures is shown for Reynolds
numbers 100 and 2000 for all heat transfer rates applied in the study.

Figure 6. Euler number (Equation (8)) versus self-similar structures (geometrical isomer).

A clear trend emerges where the Euler number, which represents dimensionless
pressure drop, tends to increase as the alignment between branching levels is removed.
This study shows that the planar Isomer I has the lowest pressure drop, while the out-
of-plane Isomer V has the highest. This difference is explained by the nature of localized
pressure losses, which occur at features like junctions and bifurcations in addition to
frictional losses. These localized losses are caused by the generation of energy-dissipating
secondary flows. Isomer I is entirely planar, requiring the fluid to change direction only
within a 2D plane. In contrast, out-of-plane isomers like Isomer V force the fluid to execute
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more complex, three-dimensional turns. Each change in plane introduces more intense
secondary flows, leading to greater energy dissipation and a higher overall pressure drop.

Figure 7 illustrates the dimensionless mass flow rate through each outlet tube of the
self-similar networks. This plot shows the occurrence of the asymmetric flow rate that
characterizes each isomer configurations with the effects of successive alignments between
tubes of different branching levels.

Figure 7. Dimensionless flow partitioning ratio (Equation (9)) versus Reynolds number for out-
let tubes.
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The simple rule of successive alignments and the trends in the flow partition ratio
along the tubes of self-similar flow structures proposed in Table 4 explains and justifies the
findings of other research [11,12,14,15].

Table 4. Isomer and tube alignment.

Isomer Level 1 Level 2 Level 3

I FRP1A = FRP1B
FRP2A < FRP2B
FRP2C > FRP2D

FRP3A < FRP3B
FRP3C > FRP3D
FRP3E < FRP3F
FRP3G > FRP3H

II FRP1A = FRP1B
FRP2A = FRP2B
FRP2C = FRP2D

FRP3A < FRP3B
FRP3C > FRP3D
FRP3E < FRP3F
FRP3G > FRP3H

III FRP1A = FRP1B
FRP2A < FRP2B
FRP2C > FRP2D

FRP3A < FRP3B
FRP3C > FRP3D
FRP3E < FRP3F
FRP3G > FRP3H

IV FRP1A = FRP1B
FRP2A = FRP2B
FRP2C = FRP2D

FRP3A > FRP3B
FRP3C > FRP3D
FRP3E < FRP3F
FRP3G > FRP3H

V FRP1A = FRP1B
FRP2A = FRP2B
FRP2C = FRP2D

FRP3A > FRP3B
FRP3C > FRP3D
FRP3E < FRP3F
FRP3G < FRP3H

Other effects and rules can be highlighted with the results in Figure 6 and Table 4. The
effects of isomer III, “a tube at level j aligned with a tube at level j − 2 causes asymmetric
effects at j + 1, even if j + 1 is not aligned with j − 1.” In isomer IV, “paths that have
alignments between tubes at different branch levels present worse flow distribution than
paths that do not have alignment between tubes at different branch levels.” With isomer
V, “successive misalignments contribute to better fluid distribution in the flow,” but this
parameter alone is insufficient to equality in the distribution of fluid transport [12].

No less important is that the increase in inertia forces directly impacts the increase
in asymmetries, since for ReD equal to 100 the FRP distribution tries to achieve equal-
ity of flow at each of the outlets, while for ReD equal to 1000 and 2000 there is a dis-
organization of the flow distribution, being greater for higher Reynolds numbers, thus
FRP100 < FRP1000 < FRP2000.

A central finding of this study is that perfectly symmetric branching geometries pro-
duce asymmetric flow patterns, as shown in Figure 7. The primary physical mechanism
driving this phenomenon is fluid inertia. Upon reaching a bifurcation, the fluid’s momen-
tum prevents it from dividing perfectly between the two daughter branches, causing it to
preferentially follow the path of least directional change. This creates a non-uniform veloc-
ity profile downstream of the split. This initial asymmetry is then propagated and amplified
through subsequent branching levels in a cascade effect, where the successive alignments
of tubes ensure that the asymmetries compound, leading to significant variations in the
mass flow rate at the final outlets. The Reynolds number also has a critical impact on this
asymmetry. At low ReD (e.g., 100), dominant viscous forces tend to dampen instabilities
and promote a more even flow distribution. As ReD increases (e.g., to 2000), inertial forces
become dominant, amplifying the effects at bifurcations and causing the fluid to deviate
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more significantly from an even split. This interplay of flow inertia, path curvature, and
flow division at each bifurcation is the primary cause of the observed non-uniformity.

The following results incorporate heat transfer to further investigate these fluid dy-
namic effects. Figure 8 shows the temperature distribution along the through self-similar
symmetric branched following the criteria for successive alignments shown in Figure 3.

Figure 8. Temperature field for a network designed for aD = 0.80.

All self-similar structures have similar temperature distribution characteristics along
the branching levels. The higher branching levels have a higher wall temperature than the
lower levels. As the flow divides, the velocity decreases and, consequently, the convection
coefficient decreases. Another notable feature is branching level 3, where sister tubes
supplied by the same parent tube have walls with distinct temperature gradients. Thus,
there is a thermal asymmetry.

Table 5 shows the maximum dimensionless wall temperature with the variation in the
Reynolds number in the different self-similar symmetric branched structures. Note that the
maximum dimensionless wall temperature decreases as the Reynolds number increases and
the thermal effect on the wall is imperceptible between the different self-similar structures.

Table 5. Maximum dimensionless wall temperature (Equation (10)) for Reynolds number (10 to 2000)
and q′′ = 1000 W/m2).

q′′ ReD
Isomer

I II III IV V

1000 W/m2
10 1.1905 1.1900 1.1903 1.1899 1.1899
50 1.0535 1.0507 1.0513 1.0509 1.0502

100 1.0370 1.0350 1.0347 1.0352 1.0345
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Table 5. Cont.

q′′ ReD
Isomer

I II III IV V

1000 W/m2

200 1.0216 1.0250 1.0227 1.0250 1.0243
300 1.0193 1.0195 1.0186 1.0195 1.0189
400 1.0171 1.0167 1.0166 1.0167 1.0168
500 1.0160 1.0162 1.0161 1.0161 1.0162
750 1.0150 1.0152 1.0150 1.0152 1.0152

1000 1.0136 1.0129 1.0137 1.0129 1.0129
1500 1.0101 1.0093 1.0102 1.0092 1.0092
2000 1.0033 1.0032 1.0032 1.0032 1.0032

For Reynolds numbers greater than 500, the variation in maximum wall temperature
is negligible as the Reynolds number increases. Therefore, the investment in increasing
pumping power is not justified by better thermal performance.

The reduction in thermal performance as the Reynolds number increases is associated
with an increase in flow velocity, which contributes to a reduction in the thermal boundary
layer and fluid dynamics boundary layer [39,40]. This, in turn, leads to an increase in
frictional forces (i.e., an increase pressure drop) and a reduction in the contact time between
the fluid and the heat exchange surface. Therefore, if self-similar structures are to be
applied to heat exchangers, increasing the heat exchange area is mandatory to increase
thermo-hydraulic performance.

The asymmetric effects measured through FRP were already known [11,12,14,15], but
this work expands and advances the knowledge by identifying whether asymmetric effects
in symmetric structures are significant for thermal properties. Responses regarding the
maximum wall temperature were obtained; however, the temperature of the fluid outlet in
each of the tubes of the branched structure remains to be determined.

Figure 9 shows the dimensionless temperature at each of the outlets with the variation
in the Reynolds number and heat transfer in the wall in the self-similar symmetric branched
structures, in isomers I and V. These structures were selected for their distinct characteristics.
Isomer I, which is easy to construct and has all its tubes contained in a single plane, is widely
used in studies investigating flow in branched networks, such as rivers and the respiratory
and circulatory systems. Isomer V, to the best of our knowledge, is the symmetric structure
that best distributes the asymmetries associated with fluid flow.

The dimensionless outlet temperature curves are more similar to each other than the
FRP curves, as the Reynolds number varies. In isomer I, this characteristic is highlighted, as
successive alignments influence the FRP, while in isomer V, these alignments are reduced
at the cost of increased pressure drop.

The outlet dimensionless temperature (T*) decreases when the dimensionless flow
partitioning ratio (FRP) increases and the Reynolds number (ReD) increases. Thus, the
paths that carry more fluid tend to have the lowest temperatures at the outlet. The outlet
dimensionless temperature (T*) increases with increasing heat transfer (q′′), but this is a
relationship widely known through Newton’s law of cooling.

Tubes located in the peripheral path have a greater pressure drop compared to tubes
in the central path [11]. As the peripheral path has a greater pressure drop, the fluid
remains longer between the system’s inlet and outlet paths [40], favoring heat exchange
between the fluid and the exchange surface, and this response is identified by a higher
outlet dimensionless temperature.
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(a) 

(b) 

Figure 9. Outlet dimensionless temperature (Equation (10)) versus dimensionless flow partitioning
ratio (Equation (9)) for (a) isomer I and (b) isomer V.

Figure 10 shows the central plane of the self-similar structure, on the colorimetric scale,
the minimum and maximum values exactly represent the respective values found in the
temperature and velocity fields. For the lowest Reynolds number, no thermal asymmetries
are observed, but for ReD ≥ 50, differences are identified between the sister tubes at the
second and third branching levels.

It is also possible to identify regions of high temperature immediately after the bifur-
cations; these are associated with recirculation regions characterized by regions of very low
velocity near the wall.

With increasing inertia forces, the diffusive and convective effects become more ev-
ident and tend toward homogeneity of the system, but not in its entirety, as observed at
ReD = 2000.

Observing the temperature field for ReD ≥ 100, the influence of the uneven distri-
bution of flow along the branched structure becomes evident, now expressed through a
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thermal property. Tubes located in the peripheral path are different from the tubes in the
central path.

While all observations for the temperature field can be compared to the velocity field,
the use of thermal properties to identify fluid dynamic asymmetries is a more effective
strategy. This is particularly true at higher branching levels where low velocities make it
difficult to visualize asymmetries directly from the velocity field, a challenge that becomes
most apparent for ReD > 500. The reason for this effectiveness lies in the direct link between
heat transfer and fluid residence time. The amount of heat transferred to the fluid is a
function of both the heat transfer coefficient and the time the fluid spends in contact with
the heated surface. Paths that receive a lower mass flow rate (lower FRP) are characterized
by lower average fluid velocities. This longer residence time allows the fluid in these
paths to absorb more heat, resulting in a higher outlet temperature. Conversely, high-flow
paths have shorter residence times and thus lower outlet temperatures. This relationship
means that the outlet temperature distribution serves as a sensitive, thermally amplified
map of the underlying mass flow distribution. Furthermore, the high-temperature regions
observed immediately after bifurcations are physically significant, as they identify areas of
very low velocity and flow recirculation where heat accumulates.

(a) 

Figure 10. Cont.
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(b) 

Figure 10. (a) Temperature and (b) velocity field in the central plane for isomer I with q′′ = 1000 W/m2

and designed according to aD = 0.80.

Having established how thermal distribution reflects flow performance, the overall
thermo-fluid dynamic efficiency of the system is studied. Figure 11 shows the thermo-fluid
dynamic efficiency, for q′′ = 1000 W/m2. The thermo-fluid dynamic efficiency, calculated
according to Equation (11), peaks at ReD~500. Note that the performance peaks near the
Reynolds number 500. In the range 10 ≤ ReD ≤ 500, the curve slopes upward, and in
the range 500 ≤ ReD ≤ 2000, it slopes downward. For fluid heating or cooling applica-
tions in tree-shaped structures, the choice of Reynolds number is crucial for maximizing
performance. A notable thermal shift is observed in the system: for ReD ≤ 100 the wall
temperature is generally higher than the fluid outlet temperature, while for ReD ≥ 100 this
relationship can reverse, a trend valid for all structures in the studied heat transfer range.

As mentioned, Figure 11 reveals a performance peak near ReD~500. This indicates that
simply increasing pumping power for higher Reynolds numbers becomes energetically
unfeasible, with a ReD of 500 representing the limit for good energy utilization. This peak is
the result of a fundamental trade-off between heat transfer enhancement and the required
pumping power. The efficiency α balances this thermal benefit against the fluid dynamic
cost. At low Reynolds numbers (ReD < 500), increasing the flow rate provides a significant
benefit because it enhances the convective heat transfer coefficient, and the thermal gain
outweighs the pumping cost. Conversely, at high Reynolds numbers (ReD > 500), further
increasing the flow rate yields diminishing returns for heat transfer, as the fluid’s short
residence time limits the amount of heat it can absorb. At this point, the pumping power
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penalty starts to dominate any marginal thermal benefit, causing the overall efficiency to
decline. This peak, therefore, represents the optimal operating point where the system
provides the most heat transfer for the least amount of pumping energy expended.

Figure 11. Thermo-fluid dynamic efficiency (Equation (11)) versus Reynolds number for
q′′ = 1000 W/m2.

Figure 12 shows the overall Nusselt number versus Reynolds number. The fluid flow
network has constant heat transfer along the walls. The curve slopes upward according
the Reynolds number increases. Thus, the Nusselt number increases with increasing
Reynolds number, indicating better heat transfer by convection compared to heat transfer
by conduction. This increase is due to the fact that increasing the Reynolds number reduces
the hydrodynamic boundary layer, intensifying fluid mixing and heat transfer between the
tube surfaces.

Figure 12. Nusselt number (Equation (12)) versus Reynolds number for q′′ = 1 to 1000 W/m2.

For creeping flow ReD~10 viscous forces are significantly greater than inertia forces,
with diffusive effects outweighing convective effects. Thus, for Nu~1, this means that
convective heat transfer plays a minor role in overall heat exchange. The opposite occurs for
ReD~2000, where inertia forces are significantly greater than viscous forces, and convective
effects outweigh diffusive effects. Thus, for Nu~50, this means that convective heat transfer
plays a greater role in overall heat exchange.

4. Conclusions
This study is about the flow of Newtonian fluids in self-similar dendritic networks with

heat transfer. The main constraint is geometrical, that the volume at each branching level
remains constant. It analyzes explicitly how fluid dynamics, heat transfer, and successive
alignments between tubes at different branching levels affect the performance of the flow
network. The key findings of this study are stated below.
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In a complex structure designed according to the principle of structural isomers that
have a constant volume restriction at each branching level, performance must be evaluated
from different perspectives:

• The structure that has the lowest pressure drop (i.e., isomer I) does not correspond to
the structure that best distributes the flow symmetrically (i.e., isomer V). This result is
obtained with and without heat transfer on the walls.

• Changing the planes that contain the branching levels is not sufficient to correct
asymmetries in symmetrical structures.

• Heat transfer from the wall to the fluid generates insignificant effects on the flow
asymmetry; that is, it does not amplify or attenuate asymmetric effects.

• For the assessment of asymmetry in complex structures, thermal effects directly corre-
late with fluid dynamic effects. The use of heat transfer as a diagnostic tool is effective
for identifying fluid dynamic asymmetries.

• The response of thermal effects is more sensitive than that of fluid dynamic effects for
low Reynolds numbers.

• The trade-off between the pressure drop that increases pumping work and the positive
effects on heat transfer was more significant in the range 200 ≤ ReD ≤ 500.

• According to constructal law, the symmetrical structure that best achieves the objective
is the isomer V.

Our results indicate that the design of complex flow networks, as designed using the
Hess–Murray law and constructal law, is a good starting point for studies on self-similar
flow networks. The use of heat transfer is recommended for investigations seeking to
identify asymmetries at low Reynolds numbers.

Upcoming Studies

We are working hard to identify and advance studies of asymmetric effects associated
with flows in complex structures. Our next steps are to

• Explore and evaluate tree-shaped networks with more than three levels of branching;
• Examine how homothetic relationships affect structures with asymmetrical bifurca-

tions and their requirements for symmetric flows;
• Explore the asymmetry of dimensional scales for applications with extremely high

heat transfer density;
• Explore engineering metrics like global and local Nusselt Number and pumping

power per heat removed.
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Appendix A. Geometric Parameters

Table A1. Branch level volume.

V0 (m3) V1 (m3) V2 (m3) V3 (m3)

0.0000176714586764426 0.0000176714586764426 0.0000176714586764426 0.0000176714586764426

Table A2. Lengths and diameters.

aDi L0 (m) L1 (m) L2 (m) L3 (m) D0 (m) D1 (m) D2 (m) D3 (m)

0.8 0.10000 0.07813 0.06104 0.04768 0.01500 0.01200 0.00960 0.00768

Appendix B. Svelteness Factor or Svelteness Number

Table A3. Area occupied and total volume.

aDi A (m2) VT (m3) Sv

0.8 0.0746311108520472 0.0000706858347057704 6.6

Sv =
A1/2

VT
1/3 (A1)

A =
[
L0 + L1cos

(
α
2
)
+ L2 + L3cos

(
α
2
)]

·2
[
L1sin

(
α
2
)
+ L2cos(90 − α) + L3cos

(
α
2
)
cos(90 − α)

] (A2)

VT =
π

4

(
D0

2L0 + 2D1
2L1 + 4D2

2L2 + 8D3
2L3

)
(A3)

Appendix C. Mesh Characteristics

Figure A1. Detailing of the prismatic layer in tube 0A.
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