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Abstract. Pfaffian equations are part of a classic area well-established in

Differential Geometry. From a more analytical viewpoint, it has been tra-

ditionally treated in textbooks dealing with Differential Equations focusing
on analytical techniques to understand and, eventually, find solutions. The

success of those methods are however limited to explicit situations where com-

putations can be carried out to the end. There are some general existence
and uniqueness results as well. Yet the numerical approximation of such so-

lutions has not been, to the best of our knowledge, treated. By means of a

variational approach based on a true vector variational problem, we propose
a mechanism to examine and numerically approximate such solutions, explore

its remarkable properties, and test its practical performance in a number of
explicit examples. The method can be implemented in situations where the

underlying field defining the Pfaffian equation is not known exactly, but may

be part of a broader approximation scheme.

1. Introduction

The field of Pfaffian differential equations, though a very classical area, is, to
a good extent, somewhat unknown these days, at least in Analysis. It is however
something well established in Differential Geometry or Algebra. Although formally
formulated by Pfaff ([26]), the problem was already known to Euler ([12]). It has
been treated in classic texts of differential equations ([15], [21], [25], [27]) at the
conceptual level, and its significance and relationship to PDEs is known too. Yet its
competition with standard differential systems (ODEs), or even PDEs, has always
been in favor of the latter, since in most of those texts, once its meaning and the
basic techniques to find solutions in well-prepared exercises is explored, the focus
turns to standard ODEs and/or PDEs.

The relevance of Pfaffian equations in Differential Geometry and Algebra looks,
on the other hand, very well-known and very solidly studied in a number of sources:
[2], [7], [8], [17]. The more recent survey [11] is a good summary of the most
important facts. Some of this literature is only available in Russian or French.
From the point of view of Analysis, there are also some interesting and very classical
papers as well as some more recent ones: in addition to those already mentioned,
[10], [14], [20], [23]. There is even a specialized contribution to the history of this
kind of differential equations [18]. Since it is not part of the program in standard
courses in Analysis or Geometry at the undergraduate level, some times it serves
as a nice subject for projects for interested students [1].
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A Pfaffian differential equation is an expression of the form

(1.1) ω ≡
N∑
i=1

ui(x) dxi = 0, x = (x1, x2, . . . , xN ),

for N functions ui(x). In vector notation, we also write

(1.2) ω = u(x) · dx, u = (u1, u2, . . . , uN ), dx = (dx1, dx2, . . . , dxN ).

A C1-manifold M of dimension k ≥ 1 is called an integral manifold of (1.1) if the
differential 1-form ω identically vanishes on M. The Pfaffian equation (1.1) is said
to be completely integrable if there is a unique integral manifold of the highest
possible dimension N−1 through each point x0 ∈ RN . All of these concepts can be
considered in a N -dimensional ambient manifold instead of in the euclidean space
RN .

We see that the emphasis is placed on the solution manifold M of co-dimension
one, solution of (1.1) through each point x0 ∈ RN . From a more practical viewpoint,
such manifold, at least locally, is sought through some unknown parametrization

x(t) : Q ⊂ RN−1 → RN , 0 ∈ Q,x(0) = x0, t = (t1, t2, . . . , tN−1),

in such a way that

(1.3) u(x) · ∂x
∂ti

= 0, i = 1, 2, . . . , N − 1, x(0) = x0.

In this way, (1.3) can be regarded as a very special system of first-order PDEs.
However, there is, from the outset, a tremendous lack of uniqueness of solutions as
a given manifold admits infinitely many such parameterizations. This is again a
way to stress that the true solution of the Pfaff equation (1.1) is the manifold M
itself through x0.

Possibly, the most general existence theorem for solutions of (1.3) is the one in
[3] where both existence and uniqueness of solutions is shown under continuity and
Lipschitzianity, respectively, of the functions involved. Traditionally, smoothness
was required, and this general hypothesis of smoothness is taken for granted here.
In addition, a more general integrability condition than (1.6) below is proposed in
[3], and a numerical method of resolution based on the polygonal line of Euler is
proposed. There are more recent works by these same authors refining these results,
but unfortunately they are available only in russian ([4], [5]).

Though analytically, some fundamental facts are known about this kind of prob-
lems as we have just stated, as far as we can tell there is no attempt in the literature
to approximate numerically the manifold-solutions of (1.1). This was our main mo-
tivation. Our proposal is variational in nature, as we focus on minimizing an error
functional of the form

E(x) =

∫
Q

1

2

∑
i

(
u(x) · ∂x

∂ti

)2

dt

under the constraint x(0) = x0, for a given point x0 ∈ RN . For definiteness, we
will focus on the first situation of interest N = 3, so that we can be more explicit
about main ingredients of the problem

x(t) : Q ⊂ R2 → R3, x = (x1, x2, x3), t = (t1, t2);
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Q is taken to be the unit disk in the plane, and for a fixed point x0 where our
vector field u does not vanish, we seek to minimize the error functional

(1.4) E(x) =

∫
Q

1

2
|u(x(t))∇x(t)|2 dt,

under x(0) = x0. Note that the functional E(x) can be given in an intrinsic form

E(x) =
1

2

∫
x(Q)

|ΠTX
(u(X))|2 dX,

where X is a generic point in the parametrized, embedded manifold x(Q), TX is the
tangent plane at X, and ΠTX

is the orthogonal projection onto TX . The form given
in (1.4) is however better suited for calculations and numerical approximation.

Even though, our goal is to explore an approximation procedure of solutions, the
underlying variational problem as described is quite appealing for various reasons:

• it is an explicit example of a vector variational problem for vector functions
x between euclidean spaces where the dimension of the target space is
strictly greater than the dimension of the starting space, and there are not
many of these in the literature;

• that the point-constraint x(0) be preassigned is also peculiar, and have not
been considered before;

• the integrand

(1.5) W (x,X) =
1

2
|u(x)X|2, x ∈ R3,X ∈ R3×2,

for our functional enjoys the fundamental property of convexity with respect
to the gradient variable X, but it is non-convex in joint pairs (x,X), and
non-coercive in X;

• a fundamental danger to avoid is that the two tangent vectors ∂x/∂ti be
dependent somewhere, i.e. the rank of ∇x be one.

Despite these important difficulties, the nature of our error functional E(x) leads
to a very clear certificate of convergence: a good approximation of a true solution
of maximal dimension of the Pfaffian equation (1.1) is found whenever E(x) is
sufficiently small, and the rank of ∇x is two everywhere. This is elementary to
realize, but important from a practical viewpoint.

In addition to exploring the one-dimensional case in arbitrary dimension (solu-
tions of co-dimension one for N = 2, and of no maximal dimension for N > 2), we
focus on the case N = 3 and look for pieces of surfaces as local solutions of (1.1)
around a point x0 ∈ R3 where u(x0) ̸= 0. The difficulties described above keep
us from showing existence of minimizers for (1.4), but we establish two important
results with a clear significance for the numerical approximation.

For the first, we examine the variational problem associated with the perturbed
functional

Eϵ(x) =

∫
Q

(
1

2
|u(x(t))∇x(t)|2 + ϵ

2
|∇x(t)|2 + ϵ

2
|x(t)|2

)
dt, ϵ > 0,

under the same constraint x(0) = x0, and show that there are minimizers xϵ, for
which the family {xϵ} is a minimizing sequence for the unperturbed functional
E ≡ E0. The main trouble here is to discard the possibility that a family of
minimizers {xϵ} for Eϵ should converge to the trivial solution x ≡ x0. We will
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avoid this difficulty by enforcing a unilateral boundary condition of place, although
we have not observed this singular behavior in our numerical experiments.

The second one is even more surprising: under the well-known integrability
condition

(1.6) u · (∇∧ u) = 0

(see next section), equilibrium solution x for E in (1.4) are necessarily solutions
of (1.1) with E(x) = 0. Said differently, in spite of lack of joint convexity on
pairs (x,X) of the integrand (1.5), the only critical solutions for E are global
minimizers with E(x) = 0. This unexpected fact ensures that typical numerical
procedures (steepest descent, conjugate gradient, Newton-Raphson) to minimize E
can only converge, when they do, to regular solutions of (1.1). This is exactly what
we have found in our numerical experiments (see the final section below). If the
above integrability condition does not hold, our suspicion is that an approximation
minimizing procedure will also furnish E(x) = 0 but the underlying surface is
singular: the rank of ∇x is one in a non-negligible subset. We have confirmed this
in practice with some examples.

After reviewing some basic material concerning this kind of equations, we focus
on the one-dimensional case looking for solutions of (1.1) of dimension one. This
one-dimensional feature makes the analysis much easier and complete. The case
of two-dimensional manifolds in R3 is, however, much more involved, as it requires
a fundamental integrability condition (1.6) to ensure existence of local solutions
around points x0 ∈ R3 where the vector field u(x0) ̸= 0 does not vanish. Finally,
we work the numerical approximation for a number of selected examples. We use
a typical conjugate gradient method to iteratively approximate minimizers (mini-
mizing sequence) of (1.4). As indicated earlier, there is a principal practical danger
to be avoided as the trivial solution x ≡ x0 is definitely a minimizer for functional
E. Our experiments never led to such singular solution, and confirm the apparent
non-existence of local minima. See more details below.

2. Some preliminaries

Typically, (1.1) is considered for N ≥ 3, since the case N = 2 corresponds to a
standard differential equation in the plane

u1(x1, x2) dx1 + u2(x1, x2) dx2 = 0,

written usually as

(2.1) P (x, y) dx+Q(x, y) dy = 0.

This system is equivalent (except for a common factor that does not change integral
curves) to

(2.2) x′(t) = −Q(x, y), y′(t) = P (x, y),

and in this way, it is clear that solutions to Pfaffian equation (2.1) are the same as
the ones for the differential ODE system (2.2).

The case N = 3 is, for this reason, studied explicitly most of the time as it
amounts to exploring situations other than standard ODE systems. It reads in
explicit form

(2.3) P (x, y, z) dx+Q(x, y, z) dy +R(x, y, z) dz = 0.
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A 2-dimensional manifold embedded in R3 is an integral solution of this equation
if the normal to the tangent plane to it in every point is given by the vector field
(P,Q,R). Yet note that (1.1) may accept one-dimensional solutions of the form

(2.4) x(t) : J → RN , u(x(t)) · x′(t) = 0 in J,

and higher-dimensional solutions may be searched for by assembling in a suitable
way a whole continuum of such one-dimensional solutions. This is a typical method
of solving first-order PDEs (method of characteristic, Lagrange-Charpit method,
etc). Those higher-dimensional solutions are not the ones we are concerned about
here.

We know that the existence of (local) solutions for (2.4) does not require any
particular restrictive condition on the field u. However, two dimensional solutions
z = z(x, y) of (2.3) does ask for the integrability constraint

(2.5) u · (∇∧ u) = 0.

This was known from the very beginning. Even Euler knew about this condition.
Note how this differential constraint is somewhat complementary to

u ∧ (∇∧ u) = 0.

This last condition determines the so-called Beltrami fields that play a relevant
role in fluid dynamics ([22]). Differential restriction (2.5) on the field u essentially
amounts to the fact that equation (2.3) admits an integrating factor, so that a
suitable (non-constant) multiple of u = (P,Q,R) becomes the gradient of a scalar
function f(x, y, z) whose level sets

f(x, y, z) = f(x0, y0, z0), x0 = (x0, y0, z0),

are precisely the solutions of (2.3). If condition (2.5) does not hold, then there are
no regular, 2-dimensional solutions.

Though Pfaffian equations are not part of the contents of most popular books on
differential equations, it has been examined at the conceptual level in various classic
textbooks as indicated in the Introduction. The treatment reduces, as with first-
order equations or systems, to some understanding of potential analytical methods
of finding solutions that can only be worked out in selected, well-prepared examples.
Nothing about the numerical approximation is never intended or pursued.

In the Differential Geometry arena, by contrast, Pfaffian equations are more
fully understood in connection with symplectic and contact structures. Possibly,
the most recent, complete and accessible account is [11] where the relevance and
significance of these equations is explored in a number of physical systems.

The following is a typical (local) existence result for the particular case of two-
dimensional manifolds in R3 ([3]).

Proposition 2.1. Let

u(x) : Ω ⊂ R3 → R3

be a smooth, non-vanishing vector field. For every x0 ∈ Ω, there is a local, regular,
parametrized, two-dimensional manifold M solution of (2.3) through x0 if and only
if u verifies the integrability condition (2.5).

Our goal is to look at (2.3) from a purely variational perspective, and, in partic-
ular, provide a mechanism to numerically approximate the local solutions implied
by this proposition.
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3. The one-dimensional case

Suppose a smooth vector field u : RN → RN is given. Instead of looking for
integral curves solutions of the differential system

x′(t) = u(x(t)), t ∈ R,

as it is the main concern for ODEs, we are instead interested about the orthogonal
families of curves

(3.1) x′(t) · u(x(t)) = 0 in R.

It is obvious that the way to deal with this last differential condition is by looking
at the orthogonal differential system

(3.2) x′(t) = u⊥(x(t)),

being aware that a reparametrization and a possible change of orientation may be
involved. Since this procedure, or we should rather say, because this procedure of
passing from a vector field u(x) : RN → RN to one which is orthogonal in dimension
higher than two is not cannonical or unique in any way, we will rather stick to the
form (3.1), and see to what extent we can enforce such a condition for full families
of curves in RN . Notice that equation (3.1) is independent of the size of the vector
field u(x).

As far as we can tell, there is no standard method to tackle solution curves x(t) :
R → RN of (3.1) other than passing to (3.2). Since we are not willing to resort to
the orthogonal vector field u⊥ to setup a differential system since, as indicated, this
process is not canonical in higher-dimension, we will adopt a variational approach.
This does not mean that we would like to avoid orthogonal fields u⊥ for other
purposes as necessary or convenient. We will explore the optimization problem

(3.3) Minimize in x(t) : E(x) =

∫ 1

−1

1

2
(x′(t) · u(x(t))2 dt

among all curves x(t) ∈ H1(−1, 1;RN ) such that x(0) = x0, and x0 ∈ RN is a
fixed vector. The trivial, constant solution x ≡ x0 is definitely a minimizer, but we
are interested in finding non-trivial minimizers. To this end, consider the family of
perturbed variational problems

(3.4) Minimize in x(t) : Eϵ(x) =

∫ 1

−1

[
1

2ϵ
(x′(t)·u(x(t)))2+ 1

2
|x′(t)−u⊥(x0)|2] dt

for ϵ > 0, under the same conditions as before, namely,

x(t) ∈ H1(−1, 1;RN ), x(0) = x0.

The constant vector u⊥(x0) can be taken to be in any way as long as it is orthogonal
to u(x0). It can be chosen of unit length for normalization. It is clear that there is a
unique minimizer xϵ for such a problem, for each fixed, positive ϵ. This is standard.
Since the end-point values at {−1, 1} are not restricted in any way, such minimizer
should comply with the transversality condition at both end-points. Because of
the strict convexity of the integrand, this optimality condition at both end-points
can be formulated by saying that x′

ϵ(a), a = ±1, is the unique optimal solution
U = x′

ϵ(a) of the mathematical program

(3.5) Minimize in U ∈ R2 :
1

2ϵ
(U · u(xϵ(a)))

2 +
1

2
|U− u⊥(x0)|2
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In fact, this mathematical program plays an important role in our analysis in this
section.

Lemma 3.1. Let

wϵ,w0 ̸= 0,v ∈ RN , wϵ → w0 as ϵ → 0,

and consider the two mathematical programs

Minimize in u ∈ RN :
1

2
|u− v|2 + 1

2ϵ
(u ·wϵ)

2,

Minimize in u ∈ RN :
1

2
|u− v|2 under u ·w0 = 0.

Let uϵ, for each fixed ϵ > 0, be the unique minimizer of the first, and u0, the unique
minimizer of the second. Then uϵ → u0 as ϵ → 0.

Proof. It is evident that

1

2
|uϵ − v|2 + 1

2ϵ
(uϵ ·wϵ)

2 ≤ 1

2
|v|2

because uϵ is the minimizer of the corresponding problem. This inequality implies,
on the one hand, that uϵ → ũ0, possibly along a certain sequence of values of ϵ which
we do not care to relabel, and some ũ0 ∈ RN . On the other hand, uϵ · wϵ → 0,
for otherwise the previous upper bound could not hold as ϵ → 0. In particular,
ũ0 ·w0 = 0. We claim that in fact, ũ0 = u0.

Let u be feasible for the second problem, i.e. u ·w0 = 0, and take ũϵ such that

ũϵ ·wϵ = 0, ũϵ → u.

This is always possible provided w0 is not the null vector. Then

1

2
|uϵ − v|2 ≤ 1

2
|uϵ − v|2 + 1

2ϵ
(uϵ ·wϵ)

2 ≤ 1

2
|ũϵ − v|2

again because of the fact that uϵ is the minimizer for the first problem in the
statement. As ϵ → 0, we see that

1

2
|ũ0 − v|2 ≤ 1

2
|u− v|2.

The arbitrariness of u implies that ũ0 is the minimizer of the second mathematical
program in the statement, and by the uniqueness of such a minimizer, we conclude
that

uϵ → ũ0 = u0.

□

Our existence result for the one-dimensional case is the following.

Proposition 3.2. Suppose u is a smooth vector field with u(x0) not null. Take
any non-null, orthogonal vector u⊥(x0) to it. Then problem (3.3) admits non-trivial
minimizers x ∈ H1(−1, 1;RN ) such that

x′(t) · u(x(t)) = 0 for a.e. t ∈ (−1, 1), x(0) = x0,x
′(0) = u⊥(x0).

Proof. Recall that xϵ is the unique minimizer for Eϵ according to our above discus-
sion. By considering the trivial feasible path yϵ ≡ x0, we see that

(3.6)

∫ 1

−1

[
1

2ϵ
(x′

ϵ(t) · u(xϵ(t)))
2 +

1

2
|x′

ϵ(t)− u⊥(x0)|2] dt = Eϵ(xϵ) ≤ Eϵ(yϵ) = 1,
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for all positive ϵ. Recall that we have taken

|u⊥(x0)| = 1.

Since the two terms in the functional Eϵ are non-negative, this uniform upper bound
implies that

∥x′
ϵ∥L2(−1,1;R2)

is bounded, and

x′
ϵ · u(xϵ) → 0 in L2(−1, 1).

In particular, there is a feasible weak limit x,

xϵ ⇀ x in H1(−1, 1;R2), x(0) = x0,

and, since the convergence of xϵ to x is strong in L2(−1, 1;R2), we can conclude
that x′(t) ·u(x(t)) = 0 for a.e. t ∈ (−1, 1). We would like to discard the possibility
that this limit x be the trivial solution x ≡ x0.

We go back to (3.6), to conclude that, because of the non-negativeness of the
first term, and developing the square,∫ 1

−1

1

2
|x′

ϵ(t)|2 dt− (xϵ(1)− xϵ(−1)) · u⊥(x0) ≤ 0,

or

∥x′
ϵ∥2L2(−1,1;R2) ≤ 2|xϵ(1)− xϵ(−1)|.

If the sequence of non-negative numbers on the left-hand side is uniformly away
from zero, we can discard that the limit x be the constant, trivial path, because
the limit of the right-hand side is 2|x(1)− x(−1)|.

Suppose, then, that in fact

(3.7) ∥x′
ϵ∥2L2(−1,1;R2) → 0, xϵ → x0 in L∞(−1, 1;R2).

and hence

x′
ϵ → 0 in L2(−1, 1;R2).

According to our above discussion concerning transversality, x′
ϵ(a) is the unique

solution of the mathematical program (3.5), and, after Lemma 3.1, it converges to
the unique solution of

Minimize in U ∈ R2 :
1

2
|U− u⊥(x0)|2 subject to U · u(x(a)) = 0,

which is given through the equation

U− u⊥(x0) + λu(x(a)) = 0, λ =
u⊥(x0) · u(x(a))

|u(x(a))|2
.

If we assume that x(a) = x0 for some a different from zero, then λ = 0, and

x′
ϵ(a) → U, U− u⊥(x0) = 0.

By taking into account that we can redo everything in the interval (−a, a) with
0 < a < 1 arbitrary, we reach a contradiction with (3.7) since u⊥(x0) is not the
null vector. □

There is another remarkable fact concerning the functional in (3.3).
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Proposition 3.3. Equilibria for (3.3), and not just minimizers, not passing through
a singularity of u and such that

x(0) = x0, x′(0) · u(x0) = 0,

are always solutions of (3.1).

Proof. Once we know that there are minimizers x for (3.3), it is legitimate to
investigate the form of optimality conditions. This is so for minimizers x not going
through a singularity of u, because otherwise u is assumed to be smooth, and x is
absolutely continuous.

For the sake of notation, put

γ(t) = x′(t) · u(x(t))

for such a equilibria x(t). Optimality conditions read

−[γu(x)]′ + γx′∇u(x) = 0 in (0, 1), γ(0) = 0.

Since u(x) is differentiable, the previous equations ensure that so is γ, and then

γ′u(x) + γ[∇u(x)x′ − x′∇u(x)] = 0 in (0, 1), γ(0) = 0.

This is a collection of linear problems for γ having the trivial solution as the unique
solution, i.e.

x′(t) · u(x(t)) ≡ 0 in (0, 1),

as desired. □

4. The two-dimensional case in R3

As usual, some ingredients for the passage to higher dimension may be just a
generalization of the techniques in the previous section while others may require
new ideas. In our situation, the most fundamental change is that we have to deal
with surfaces and these are objects that depend on two independent variables. We
have to deal with partial derivatives and ordinary differential equations become
partial differential equations of some sort.

Surfaces are parametrized by vector mappings

x(t) : Q ⊂ R2 → R3, t = (t1, t2),x = (x1, x2, x3),

where Q is the unit square or the unit disk. The differential ∇x(t) is a 3×2-matrix
at every t. We are also given a smooth vector field u(x) : R3 → R3 with an isolated
set of equilibria, in such a way that we may assume, if convenient, that it is a
unitary vector field except in an isolated set of points where it is not defined. We
also put

u⊥(x) : R3 → R3×2, uu⊥ = 0 ∈ R2, rank(u⊥(x)) = 2,

so that {u(x),u⊥(x)} is a orthonormal basis of R3, except in those points where u
is not defined. Fix a point x0 ∈ R3 where u does not vanish u(x0) ̸= 0.

Problem 4.1. Find non-singular maps x(t), for which the rank of the matrix
∇x(t) is 2 for a.e. t ∈ Q, such that

(4.1) u(x(t))∇x(t) = 0 in Q, x(0) = x0.
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Note that if we put

x = (x, y, z), u(x) = (P (x, y, z), Q(x, y, z), R(x, y, z))

then (4.1) becomes exactly the Pfaff equation (2.3).
To understand better the structure of such equations or systems, we become

interested in the variational problem

(4.2) Minimize in x(t) : E(x) =

∫
Q

1

2
|u(x(t))∇x(t)|2 dt

where maps x(t) ∈ H1(Q;R3) and

x(0) = x0 ∈ R3, ∇x(0) = u⊥(x0).

Intuitively, we suspect that this situation is much more delicate that its two-
dimensional counterparts. Indeed, we can explicitly indicate the following fun-
damental differences, possibly among others:

(1) As far as we can tell, the main point in the one-dimensional situation to
escape from the trivial, singular solution x ≡ x0 cannot be valid in this case.
Note that transversality conditions at end-points {−1, 1} played a crucial
role in that endeavor. This cannot be generalized to the higher-dimensional
framework because natural boundary conditions now involve the vanishing
of the normal derivative, but, in principle, not the full derivative. This is a
main trouble.

(2) Another issue was coercivity. The role of the second term in (3.4) was to
overcome this difficulty. Something similar will have to be implemented in
the higher dimensional case.

(3) As we have seen in the preceding section, and indicated in the Introduction,
there is no structural condition to be demanded on the field u for the one-
dimensional case. However, this is not the case in the higher-dimensional
situation. The differential constraint (2.5)

u · (∇∧ u) = 0

must play a crucial role in showing the existence of a solution for Problem
4.1.

(4) There is also the issue of orientation. We well know that orientation is also
a fundamental feature to bear in mind when dealing with surfaces in R3,
just as the orientation preserving condition is fundamental in non-linear
hyperelasticity ([6], [9]). In this scenario, one could specify the constraint

det

∣∣∣∣u(x)∇x

∣∣∣∣ > 0 in Q,

to be held by competing mappings. Since we know from hyperelasticity
and geometry that this is a rather delicate property to deal with, we will
overlook it here.

Our proposal ought to incorporate a way to get around all of these difficulties,
at least the first three. As stated, we will ignore the fourth one mainly because our
computations did not show any particular difficulty with it.

For the first issue, to discard the constant trivial solution, we adopt a unilateral
boundary condition of place ([9]) of the form

(4.3) Ψ(x) ≤ 0 on ∂Q, Ψ(x) = R2 − |x|2
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for some fixed R > 0, to be suitably chosen. Note that the trivial, constant map
x ≡ x0 violates such a condition, and so it is banished from our consideration from
the very beginning. The planar mapping

X0(t) = x0 + u(x0)
⊥t,

where u(x0)
⊥ is a selected basis of the plane passing through x0, as indicated

earlier, and with normal vector u(x0), will also be important. As a matter of fact,
R in (4.3) is chosen in such a way that X0 is feasible, i.e.

Ψ(X0) ≤ 0 on ∂Q.

This is always possible.
To enforce coercivity, we will add to the functional in (4.2) the standard quadratic

term ∫
Q

ϵ

2
(|∇x(t)|2 + |x(t)|2) dt

as a small perturbation to it.
Concerning the central third point, we will examine the relevance of the differen-

tial integrability condition (2.5) when looking at optimality. If this condition holds,
then we will check that every equilibrium solution x will be a solution of Problem
4.1, thus excluding the possibility that in approximating minimizers in (4.2) iter-
ates may get stuck in local minima. This is a major advantage for our numerical
treatment of solutions.

We will then focus on the perturbed functional

(4.4) Eϵ(x) =

∫
Q

(
1

2
|u(x(t))∇x(t)|2 + ϵ

2
|∇x(t)|2 + ϵ

2
|x(t)|2

)
dt, ϵ ≥ 0,

and look for minimizers xϵ ∈ H1(Q;R3) under the conditions

(4.5) x(0) = x0, Ψ(x) ≤ 0 on a fixed neighborhood of ∂Q.

As noticed above, the plane map X0 is feasible, and so this variational problem is
well-posed. We will simply say, for the sake of simplicity, that Ψ(x) ≤ 0 on ∂Q,
but we actually mean (4.5).

Proposition 4.2. Let

u(x) : Br(x0) ⊂ R3 → R3, r > R,

be a smooth, non-vanishing vector field.

(1) For each ϵ > 0, there is a minimizer xϵ ∈ H1(Q;R3) for (4.4).
(2) The family {xϵ} is minimizing for the unperturbed functional E0.

Proof. For each ϵ > 0, the integrand of Eϵ is coercive and convex (in ∇x) and so
(1) holds. Note that if {xϵ,j} is a minimizing sequence such that

xϵ,j ⇀ xϵ in H1(Q;R3), Ψ(xϵ,j) ≤ 0 on ∂Q

then xϵ,j → xϵ in L2(Q), and so

Ψ(xϵ) ≤ 0 on ∂Q.

To prove (2), let {xϵ} be a minimizer of the functional Eϵ(x), for each ϵ > 0 and
put

E0(x) = Eϵ(x)|ϵ=0(= E(x)).
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From

Eϵ(xϵ) ≤ Eϵ(x) = E0(x) +

∫
Q

( ϵ

2
|∇x(t)|2 + ϵ

2
|x(t)|2

)
dt

for all admissible x and ϵ > 0; and

E0(xϵ) ≤ E0(xϵ) +

∫
Q

( ϵ

2
|∇xϵ(t)|2 +

ϵ

2
|xϵ(t)|2

)
dt = Eϵ(xϵ),

it then follows

lim inf
ϵ→0

E0(xϵ) ≤ E0(x),

which, from the arbitrariness of admissible x, completes the proof. □

In general, there cannot be a way to show that this family of minimizers {xϵ}
may admit a sequence converging to anything in H1(Q;R3), since we know that
this is impossible unless we have the integrability condition (2.5). As we know, if
such condition u · (∇∧ u) = 0 does hold, then

u(x) = λ(x)∇U(x), U : Br(x0) ⊂ R3 → R,

for some scalar, smooth, non-vanishing functions λ(x) and U(x). It is then elemen-
tary to argue that feasible maps x with U(x) = U(x0) will be minimizers of E0. By
the way, note that in the two-dimensional situation there is always (al least locally)
an integrating factor λ(x) for every field u(x) transforming it into a gradient field.
Alternatively, one can invoke the local existence theorem in [3] under the same
integrability condition.

5. Optimality conditions

We would like to explore optimality conditions for the Pfaffian functional E0 ≡ E
given explicitly by

(5.1) E(x) =
1

2

∫
Q

(
u(x(t)) · xt1(t)

2 + u(x(t)) · xt2(t)
2
)
dt

where xti means differentiation of x with respect to the variable ti, i = 1, 2, and
defined for the same class of embedded surfaces as before. The integrand is given
explicitly by

F (y, z) =
1

2
(u(y) · z1)2 +

1

2
(u(y) · z2)2, z =

(
z1
z2

)
.

It is easy to find the optimality system for E, and to derive some interesting con-
sequences.

Proposition 5.1. Let the mapping x be a smooth, critical map for the Pfaffian
functional (5.1).

(1) If the condition

u · (∇∧ u) = 0

holds, then x(Q) is a non-singular, embedded, surface (with boundary)
which is a solution of the corresponding Pfaffian system

(5.2) u · dx = 0.
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(2) At any rate, we must always have

(u(x) · xt1)t1 + (u(x) · xt2)t2 = 0,

and then, for almost every x0 determining the critical map x(0) = x0,
either the Pfaffian functional E does not vanish, or else the surface x(Q)
is singular with the two tangent vectors xti being dependent.

Proof. For each i = 1, 2, the optimality system incorporates two terms of the form

−[u(x) · xti u(x)]ti + u(x) · xti xti∇u(x).

Taking into account the identity

v∇u−∇uv = v ∧ (∇∧ u)

valid for three-dimensional vectors, this sum can be rewritten as

−[u(x) · xti ]tiu(x) + u(x) · xti xti ∧ (∇∧ u(x)).

Note that ∇ ∧ u is the curl of the vector field u. Altogether, we find that the
Euler-Lagrange system can be cast in the form

−[(u(x) · xt1)t1 + (u(x) · xt2)t2 ]u(x)

+[(u(x) · xt1)xt1 + (u(x) · xt2)xt2 ] ∧ (∇∧ u(x)) = 0.

The vector field
Πu ≡ [(u(x) · xt1)xt1 + (u(x) · xt2)xt2 ]

belongs to the tangent space spanned by the two basic tangent vectors xt1 and xt2 .
It would be the orthogonal projection onto it, if {xt1 ,xt2} is a orthonormal basis.
We write the optimality system in the compact form

(5.3) −Div(u(x)∇x)u+Πu ∧ (∇∧ u) = 0,

where
Div(u(x)∇x) ≡ (u(x) · xt1)t1 + (u(x) · xt2)t2 .

It is instructive to realize that the inner product u · Πu is exactly, except for a
constant, the integrand of the Pfaffian functional E.

We claim that the function Div(u(x)∇x) ought to vanish identically always.
Otherwise, if it does not, assuming that u is never the null vector and multiplying
(5.3) by Πu and ∇∧ u, we would have that

u · (∇∧ u) = u ·Πu = 0,

and x would become a global minimizer of E in such a region, i.e. u(x)∇x ≡ 0.
But if this is so, then Div(u(x)∇x) identically vanishes as well.

Once we know that Div(u(x)∇x) identically vanishes, the optimality system
(5.3) then leads to Πu ∧ (∇∧ u) = 0, and

Πu = λ(∇∧ u), some scalar function λ.

If the integrability condition u · (∇ ∧ u) = 0 holds, then we deduce immediately
that Πu · u vanishes and the regular surface with parameterization x becomes a
solution of the associated Pfaffian equation. If, on the other hand, the integrability
condition does not hold, then either Πu ·u is not zero; or if it is, the scalar function
λ identically vanishes. In this last situation, Πu vanishes and so does Πu ·u, hence
the solution of the Pfaffian equation cannot be regular (having dimension two)
for almost every point x0 because that would imply the integrability condition
according to the equivalence in Proposition 2.1. □



14 L. BANDEIRA, P. PEDREGAL

It is not clear, in the situation where the integrability condition does not hold,
how the non-vanishing field u · (∇ ∧ u) determines the non-vanishing value of the
Pfaffian functional E.

The principal feature of our numerical method based on the minimization of the
Pfaffian functional is the following corollary.

Corollary 5.2. Let u : Ω ⊂ R3 → R3 be a no-where vanishing, smooth vector
field. If the integrability condition u · (∇ ∧ u) = 0 holds, then every stationary
map x : Q → R3 of the Pfaffian functional E in (5.1) is a solution of the Pfaffian
equation (5.2).

The significance of this fact implies that a numerical method to approximate
stationary maps for the functional E can never get stuck in local minima or other
kinds of equilibrium maps, if the integrability condition holds. The functional E is
systematically pushed to zero. This is a fundamental certificate of convergence of
our variational approach.

6. Approximation

6.1. Numerical approach. We explore numerically the approximating global min-
imizers of (4.2):

Minimize in x(t) : E(x) =

∫
Q

1

2
|u(x(t))∇x(t)|2 dt

where maps x(t) ∈ H1(Q;R3) and

x(0) = x0 ∈ R3, ∇x(0) = u⊥(x0),

furnishing approximated local solutions to Problem 4.1, through typical descent
methods. We would like to stress again the two fundamental features of our varia-
tional approach in action when utilized for approximation:

(1) There is no danger of local minima or other types of equilibrium solutions,
provided the given field u complies with the integrability condition u · (∇∧
u) = 0 (Corollary 5.2);

(2) the fact that functional E goes down to zero is taken as a certificate of
convergence to a true solution, since E = 0 means

u(x) · ∂x
∂t1

= u(x) · ∂x
∂t2

= 0, t = (t1, t2); and

(3) there has not been any need to implement the unilateral boundary condi-
tion of place (4.3) as our approximations have never gone to the singular
solution.

We applied a Conjugate Gradient (CG) type scheme with Fletcher and Reeves
update formula [13] (among several other different possibilities, see e.g. [16]) with a
simple, yet effective, line search which will be explained in detail below. Our numer-
ical experiments have been implemented using the free software FreeFem++ v4.11
(available at http://www.freefem.org/; see also [19]) and for the visualization of the
surfaces we have used Paraview 5.11.0 (available at https://www.kitware.com/open-
source/#paraview), which is also free. We have considered other numerical meth-
ods for the numerical approximation of the solution of the problem under analysis,
beside the CG scheme. We have also explored an Gradient Descent (GD) and also
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Newton-Rapshon (NR) algorithms, for the functional E above, in order to approx-
imate its optimal solutions. In our computations, CG performed better than GD,
both with the same type of line search. The main reasons why we have opted for
CG over NR was, on the one hand because the former performed quite well, while
on the other, we wanted to deliberately avoid the known sensitivity to initial con-
ditions of NR type schemes since we always use as initial condition a plane which
only has to comply with the only constraint of our problem, that is x(0) = x0.
The Conjugate Gradient is as follows: given x0 ∈ H1(Q,R3), α > 0 and c ∈ (0, 1),

• p0 := −∇E(x0)
• x1 := x0 + α0p0

until E(xk) < tol or ||∇E(xk)||∞
||xk||∞ < tol :

• ∇E(xk)

• βk :=
||∇E(xk)||2

L2

||∇E(xk−1)||2
L2

• pk := −∇E(xk) + βkpk−1

• xk+1 := xk + αkpk.

We set the tolerance tol = 1. × 10−6 for our computations. To calculate αk, in
each step, we do not perform an exact line search, mainly due to its computational
cost; instead, to determine the step size, we make a standard simple approximation,
which can be found in [24], that will give us a second order approximation of the
optimal value: for a fixed α > 0 given, we select

αk =
1

2

α2⟨∇E(xk),pk⟩H1

E(xk + αpk)− E(xk) + α⟨∇E(xk),pk⟩H1

,

if

E(xk + αpk)− E(xk) + c α⟨∇E(xk),pk⟩H1 > 0,

for a certain pre-chosen c ∈ (0, 1). Otherwise we simply select αk = α. To compute
∇E(x), we use the equality

δE(x,v) = ⟨∇E(x),v⟩H1 ,(6.1)

for every v ∈ H1(Q,R3)), where δE(x,v) is the Gateaux derivative

δE(x,v) =

∫
Q

u(x) · xt1 [(∇u(x)v) · xt1 + u(x) · vt1 ]

+ u(x) · xt2 [(∇u(x)v) · xt2 + u(x) · vt2 ] dt, t = (t1, t2).

And so, to get the desired gradient, we have to solve the linear, coupled PDE system
in (6.1). Our reference domain will be

Q = {(t1, t2) ∈ R2 : 0.0001 < t21 + t22 < 1}
and the mesh we use has 11365 vertices (with 3 of them on the inner boundary
in which we will impose v ≡ 0) and 22377 triangles, see Figure 1. We made this
choice instead of the more standard one

Q′ = {(t1, t2) ∈ R2 : t21 + t22 < 1}
because with Q we have a very simple and yet effective way of imposing the con-
dition x(0) = x0 in FreeFem++ to the whole family of approximate solutions. We
use P2-Lagrange finite element approximations for the solutions x, in order to have
sharp approximations. As mentioned before, we wanted a method which can be
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Figure 1. Mesh for the domain Q.

implemented in the more interesting situations, that is, the ones for which we don’t
have any clue about the solution of the Pfaffian equation; and so one important
aspect is to have a procedure for which a general, simple initialization like a plane
passing through x(0) = x0 and orthogonal to u(x0) will suffice. Note that the local
convergence character of the NR method would force us to select an initialization
sufficiently close to a solution, which in general will be not known a priori.
We have explored, numerically, different explicit examples, which will be detailed
in the following section.

6.2. Some examples.

Example 1. The case of spheres. In this case we have

u(x1, x2, x3) = (2x1, 2x2, 2x3), x(0) = (0, 0, 1)

and so we can use the plane x0 = (t1, t2, 1) as initialization. From the numerical
point of view, we observe that, for our simulations, the CG method is very quick,
since with 8 iterations we attain the value

E(x8) = 2.31923× 10−7.

The evolution of the log cost of E(xk) can be seen in Figure 2b, while the plot of
x8 can be seen in Figure 2a. The exact solution in this case is known a priori,
x ≡ x2

1 + x2
2 + x2

3 = 1, and so we can estimate the error in L2 norm over the
domain Q, which is

||x8 − x||L2 = 7.98085× 10−4.

In order to test the robustness of our approximations, we have also added some
small perturbation to the initial data

x0 = (t1 + 0.001(t21 + t22), t2 − 0.001(t21 + t22), 1 + 0.002(t21 + t22))

and then run the computations again. We attained the tolerance, again with 8
iterations, with the values

E(x8) = 1.46309× 10−7,

||x8 − x||L2 = 5.93937× 10−4



PFAFFIAN EQUATIONS 17

(a) Plot of x8 (b) Evolution of

log cost

Figure 2. Approximate solution for u(x1, x2, x3) =
(2x1, 2x2, 2x3), with x(0) = (0, 0, 1), using initialization
x0 = (t1, t2, 1).

(a) Plot of x8 (b) Evolution of

log cost

Figure 3. Approximate solution for u(x1, x2, x3) =
(2x1, 2x2, 2x3), with x(0) = (0, 0, 1), using the perturbed
data x0 = (t1+0.001(t21+ t22), t2−0.001(t21+ t22), 1+0.002(t21+ t22)).

Figures 3a and 3b complete the evidenced robustness to perturbation of initial
data.
One is not obliged to use the plane which is orthogonal to x(0) for initialization:
in fact, if we set x0 = (0.25t1, 0.75t2, 1) as the new initialization (notice that for
this plane we also have the value (0, 0, 1) for (t1, t2) = (0, 0), in order to comply
with the constraint x(0) = x0; it is straightforward to solve the system for another
initial point x0), we reach the tolerance with 6 iterations (see also Figure 4b):

E(x6) = 5.15129× 10−7,

this time with the error

||x6 − x||L2 = 2.29167× 10−4,

despite the fact that the graph (Figure 4a) could somehow mislead us is this case
since the solution is a different piece of the sphere.

Example 2. The case of hyperbolic paraboloids. We set

u(x1, x2, x3) = (2x1,−2x2, 1), x(0) = (0, 0, 1).
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(a) Plot of x6 (b) Evolution of

log cost

Figure 4. Approximate solution for u(x1, x2, x3) =
(2x1, 2x2, 2x3), with x(0) = (0, 0, 1), using initialization
x0 = (0.25t1, 0.75t2, 1).

(a) Plot of x6 (b) Evolution of

log cost

Figure 5. Approximate solution for u(x1, x2, x3) =
(2x1,−2x2, 1), with x(0) = (0, 0, 1), using initialization
x0 = (t1, t2, 1).

In this case we use again, as initialization, the plane x0 = (t1, t2, 1). With only 6
iterations we obtain

E(x6) = 1.71941× 10−7.

The exact solution is also known in this case: x ≡ x2
1 − x2

2 + x3 = 1, and so we can
estimate the error obtained by our approximation in L2 norm over the domain Q,
which is

||x6 − x||L2 = 5.32093× 10−5.

The plot of x6 can be seen in Figure 5a while the evolution of log cost of E(xk) can
be seen in Figure 5b.

Example 3. The case of a two sheets hyberboloid. With

u(x1, x2, x3) = (x2 + x3, x1 + x3, x1 + x2),x(0) = (1, 0, 0),

we use as initialization, the plane x0 = (t1 + 1, t2, 0). In this case we go below the
tolerance after 93 iterations:

E(x93) = 9.15743× 10−7.
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(a) Plot of x93 (b) Evolution of log cost

Figure 6. Approximate solution for u(x1, x2, x3) = (x2+x3, x1+
x3, x1 + x2), with x(0) = (1, 0, 0), using initialization x0 = (t1 +
1, t2, 0).

which is still quite reasonable. The exact solution in this case is x ≡ x1x2+x1x3+
x2x3 = 0, which enables us to estimate the error obtained by our approximation in
L2 norm over the domain Q, which is

||x93 − x||L2 = 7.46709× 10−4.

The plot of approximate solution and the evolution of log cost of E(xk) can be seen,
respectively, in Figures 6a and 6b.

Example 4. A non-integrable case. In this example, we put

u(x1, x2, x3) = (x2, x3, x1), x(0) = (1, 1, 0)

and use as initialization the plane x0 = (t2+1, t1+1,−t2). It is straightforward to
see that the integrability condition (2.5) is not satisfied, so there does not exists any
(even non-constant) multiple of u such that it becomes the gradient of some scalar
function f(x1, x2, x3). As condition (2.5) does not hold, if the system possesses
a solution, it cannot be a regular, 2-dimensional solution. In fact, we can see in
Figure 7a that the initial plane collapses into a curve in the space.
After 1100 iterations, we attain the fixed threshold, obtaining

E(x1100) = 9.999582067× 10−7.

From the graph of the evolution of log cost of E(xk) (Figure 7b) one can observe
that we only need less than 150 iterations (in fact, exactly 138 iterations are needed)
to go below 1.× 10−5.

Example 5. An integrable case where we don’t know a priori the solution. We set

u(x1, x2, x3) = (−x2, x1, x
2
1x3), x(0) = (0.8,−1, 0).

It is clear that this (nonlinear) vector function is not a gradient of some scalar
function f(x1, x2, x3) but, as it verifies the integrability condition (2.5), there must
exist some function λ(x1, x2, x3) such that λu is the gradient of such f .
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(a) Plot of x1100 (b) Evolution of log cost

Figure 7. Approximate solution for u(x1, x2, x3) = (x2, x3, x1),
with x(0) = (1, 1, 0), using initialization x0 = (t2 + 1, t1 + 1,−t2).

(a) Plot of x649 (b) Evolution of

log cost

Figure 8. Approximate solution for u(x1, x2, x3) =
(−x2, x1, x

2
1x3), with x(0) = (0.8,−1, 0), using initialization

x0 = (0.8(t1 + 1),−(t1 + 1), t2).

In this example we have used the plane x0 = (0.8(t1 + 1),−(t1 + 1), t2) as the
initialization. To achieve the desired tolerance, one needs now 649 iterations:

E(x649) = 9.99875× 10−7.

Similarly to the previous example, if we set the tolerance to be 1. × 10−5, one will
only need 137 iterations to go reach it.

One interesting feature is that with very few iterations the solution appears, from
a qualitative viewpoint, to be very close to the surface which is the solution of the
problem in each one of the above examples.
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