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Abstract

This thesis is devoted to the study of a new class of numerical semigroups, which we

call generalized repunit numerical semigroups. Firstly, we describe minimal systems of

binomial generators for the defining ideals of all corresponding monomial curves (over a

fixed field). Then, we describe the Apéry sets, relative to the multiplicity, and solve other

classical problems of Numerical Semigroup Theory like the Frobenius problem or the

computation of the genus, by means of closed formulas for the entire class. Generalized

repunit numerical semigroups are Wilf and have other interesting properties such as

being homogeneous and having Cohen-Macaulay tangent cone. Furthermore, from the

structure of the toric ideal of a generalized repunit numerical semigroup, the complete

Betti sequence of its coordinate ring is derived. Finally, we explicitly describe a minimal

graded free resolution of this ring, for the grading given by the semigroup.

Keywords: Numerical semigroup; Frobenius problem; Monomial curve; Determi-

nantal ideal; Minimal free resolution.
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Resumo

Semigrupos numéricos repunit generalizados

Esta tese é dedicada ao estudo de uma nova classe de semigrupos, que designamos por

semigrupos numéricos repunit generalizados. Em primeiro lugar, descrevemos sistemas

minimais de geradores binomiais para os ideais definidores de todas as correspondentes

curvas monomiais (sobre um corpo fixado). Em seguida, calculamos os seus conjuntos

de Apéry, relativos à multiplicidade, e resolvemos outros problemas notáveis da Teoria

dos Semigrupos Numéricos, como o problema de Frobenius ou o cálculo do género, por

meio de fórmulas fechadas para a totalidade da classe. Os semigrupos numéricos re-

punit generalizados são Wilf e possuem outras propriedades interessantes, como serem

homogéneos e possuirem cone tangente de Cohen-Macaulay. Além disso, a partir da

estrutura do ideal tórico de um semigrupo numérico repunit generalizado, a sequência

completa de Betti do seu anel de semigrupo é retirada. Finalmente, descrevemos ex-

plicitamente uma resolução livre minimal graduada deste anel, para a graduação dada

pelo semigrupo.

Palavras-chave: Semigrupo numérico; Problema de Frobenius; Curva monomial;

Ideal determinantal; Resolução livre minimal.
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Introduction

Let N be the set of nonnegative integers. A numerical semigroup S is a subset of N

containing zero such that S is closed under addition and N \S is finite. The cardinality

of N \ S is called the genus of S, here denoted g(S), and the greatest integer not in S

is the Frobenius number of S, denoted F(S).

Given an element s ∈ S\{0}, the Apéry set of S, relative to s, denoted Ap(S, s),

so named after [2], is the subset {w1, . . . , ws} of S, w1 = 0 < · · · < ws, such that,

for 1 < i ≤ s, wi is the least integer in S having s-residue distinct from those in

{w1, . . . , wi−1}. The set Ap(S, s) is thus a complete system of residues modulo s and,

by adding the element s to it, we get a system of generators of S. Therefore, numerical

semigroups are finitely generated (commutative) monoids. Furthermore, for a given

numerical semigroup S, there exists a unique set {a1, . . . , an} ⊂ N such that S =

Na1 + · · · + Nan and no proper subset of {a1, . . . , an} generates S. In this case, the

set {a1, . . . , an} is the minimal system of generators of S, its cardinality is called the

embedding dimension of S and min{a1, . . . , an} is called the multiplicity of S. The

finiteness of the genus implies that gcd(a1, . . . , an) = 1. In fact, one has that the

necessary and sufficient condition for a subset A of N to generate a numerical semigroup

is gcd(A) = 1.

The set Ap(S, s) retains much of the combinatorics of S, giving more information

than an arbitrary system of generators of S. It can be used, for instance, to solve

the membership problem in S, or to compute the Frobenius number and the genus of

S, by means of the so called Selmer’s formulas. The computation of other numerical

invariants of S, like the pseudo-Frobenius numbers of S, introduced by Fröberg et al.

in [21], or the number of these elements, called the type of S, rely on the combinatorics

of Ap(S, s).
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2 INTRODUCTION

Let A = {a1, . . . , an} be a subset of N minimally generating a numerical semigroup.

The Frobenius number and the genus of the numerical semigroup S = Na1 + · · ·+Nan
have natural interpretations in the study of nonnegative integer solutions of Diophantine

equations of the form a1x1 + · · · + anxn = b, where b ∈ N. Concretely, the Frobenius

number of S is exactly the last integer b for which there are no nonnegative integer

solutions of the equation and the cardinality of the set of those b for which no such

solutions exist is the genus. In fact, since any nontrivial submonoid of N is isomorphic

to a numerical semigroup, one has that the study of numerical semigroups is equiv-

alent to the study of nonnegative integer solutions of non homogeneous Diophantine

equations with positive coefficients and one can find in the early literature concerning

numerical semigroups many examples where this classical problem is treated (see for

example [7], [8], [17], [18] and [29]).

Frobenius proposed in his lectures the problem of finding a formula for F (S) in terms

of its minimal system {a1, . . . , an} of S, a problem that is in the origins of numerical

semigroup theory and that is since then known as the Frobenius problem. The formu-

las for the Frobenius number and genus of a numerical semigroup minimally generated

by {a1, a2} go back to the 19th century, (see for instance [46]), given by two certain

(linear related) quadratic symmetric polynomials in the indeterminates a1, a2. In [16],

F. Curtis proved that for numerical semigroups of embedding dimension 3 we cannot

expect formulas for the Frobenius number of a certain type; particularly no polynomials

formulas in terms of {a1, a2, a3} exist. Despiste the complexity of the Frobenius prob-

lem, it has been solved for certain classes of numerical semigroups, by means of closed

formulas for the entire class.

In 1965, Rédei proved, in [39], that finitely generated commutative monoids are

finitely presented, that is, a finitely generated commutative monoid S can be given by

a set A = {a1, . . . ,an} of generators of S together with a finite set of relations among

these generators, encoded by a set ρ ⊂ Nn × Nn, referred to as a presentation of S by

A, which is a generating set for the congruence given by A. For numerical semigroups,

or more generally for finitely generated submonoids of Nd, d a positive integer, which

are the monoids of special interest in this thesis, here called positive affine semigroups,
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one has also that any two minimal presentations, with respect to set inclusion, have the

same cardinality.

Computing a minimal presentation of S fromA is not easy in general. The interested

reader may refer to [42, Section 8.3] or [11] for a detailed development of this topic.

Let k be a field. It is well known that the computation of presentations of a finitely

generated submonoid S of Zd, d a positive integer, can be achieved through the general

theory of toric rings. Particularly, if S is the numerical semigroup generated by A =

{a1, . . . , an} and k[S] = k[ta1 , . . . , tan ] ⊂ k[t] is its numerical semigroup ring then, the

kernel of the k−algebra surjective homomorphism

k[x1, . . . , xn] → k[S]; xi 7→ tai , i = 1, . . . , n,

denoted IA, is an homogeneous ideal for the grading given in k[x1, . . . , xn] byA. One has

that IA is a prime binomial ideal of the polynomial ring k[x1, . . . , xn], and (minimal)

presentations of S translate into (minimal) systems of binomial generators of IA, by

a correspondence which is known as the Herzog correspondence after the celebrated

paper [26]. In particular, the existence of a finite presentation of S may also be seen as

a consequence of Hilbert’s basis theorem.

If S is the numerical semigroup generated by A = {a1, . . . , an}, then the toric ideal

IA is the defining ideal of the affine curve parametrized by t 7→ (ta1 , . . . , tan), t ∈ k,

which is called a monomial curve, and k[S] is (up to isomorphism) its coordinate ring.

The theory of (non-trivial) numerical semigroups is essentially the theory of these (non-

normal and hence singular) irreducible curves and common invariants of a numerical

semigroup S, like the embedding dimension, multiplicity, genus (also called the degree

of singularity in this setting) or the conductor are so named due to this bridge from

Commutative Algebra and Algebraic Geometry to Numerical Semigroup Theory. It is

also known that the Cohen-Macaulay type of k[S], that is, the rank of the last module

in a minimal free resolution of this ring, coincides with the type of S, in the sense of

Fröberg et al.

Several methods have been developed for computing minimal systems of binomial

generators of IA (see, for instance, [6] and [36]). We note that, for monomials curves

in 4-dimensional affine space, we have the remarkable phenomena that the so-called
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arithmetic binomial ranks (see [30]) can be arbitrary large, firstly provided by the

examples of Bresinsky and Hoa. In fact, this is true for embedding dimensions larger

than three, as proved by Bresinsky in [9].

The study of the defining ideal of monomials curves is a long-established research

topic since J. Herzog, in [26], characterized the minimal systems of binomial generators

of (all) the monomial curves in affine three-dimensional space. The elegance of Herzog’s

result for the three-dimensional case contrasts with the fact that no explicit description

is known for the general case. Particular advances are just known for low-dimensional

cases (see, e.g., [10] or more recently in [31] and the references therein) or for special

families of monomial curves like the one corresponding to the numerical semigroups

that will be presented in this thesis; due to its proximity to our work, we highlight the

article by D.P. Patil [37].

A positive affine semigroup S, not even a numerical semigroup, need not have a

unique minimal presentation. If S has a unique minimal presentation then, S is said

uniquely presented (see for instance [22], where the uniqueness of the minimal presen-

tation is discussed from the semigroup point of view).

Despite not being the aim of this thesis, we emphasize that the study of the defining

ideal of monomials curves have its own interest for applications to other areas such as

linear programming (see, e.g., [48]), coding theory (see, e.g., [33] or algebraic statistics,

where the minimal systems of binomial generators are called Markov bases and the

uniqueness property has special consideration (see [1]).

The study of free resolutions of numerical semigroup rings has also gained a con-

siderable interesest for researchers since the classification of monomial curves in affine

three-dimensional space was achieved by Herzog. In this embedding dimension, the

structure of the minimal resolution is clear: for symmetric numerical semigroups the

structure is Koszul and non-symmetric numerical semigroups have determinantal struc-

ture. For embedding dimension n > 3, we have that the type of monomials curves

is unbounded, a result firstly provided by Backelin for n = 4. For some particular

classes of numerical semigroup rings of embedding dimension 4, the whole resolution
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has been constructed (see, for instance, [44]). Results with no restriction on the em-

bedding dimension also exist, P. Gimenez at al explicitly construct the graded minimal

free resolutions for monomial curves defined by arithmetic sequences (see [24]).

The reader interested in delving deeper into Numerical Semigroups can consult [42]

or [3], for Ideals and Gröbner Bases in general [15], and for Binomial Ideals and Semi-

group Algebras [35, Chapter 7] or [13, Chapter 6].

This thesis is organized as follows: the first chapter of this thesis provides the

preliminaries on numerical semigroups and their semigroup algebras, needed for a full

comprehension of the subsequent chapters 2, 3 and 4, where the detailed results on the

family of generalized repunit numerical semigroups are given.

A repunit number is an integer whose representation in a base b consists of copies

of the single digit 1. Throughout this thesis, we will write rb(ℓ) for the ℓ−th repunit

number in base b, that is,

rb(ℓ) =
ℓ−1∑

j=0

bj

and, for completeness, we set rb(0) = 0.

Given two positive integers n > 1 and a, consider the submonoid of generated by

{a1, a2, . . .}, where

ai = rb(n) + arb(i− 1), for every i ≥ 1.

Clearly, the condition gcd(a1, a) = 1 is necessary and sufficient for such a monoid to be

a numerical semigroup (see Chapter 3 of this thesis for a detailed proof of this fact).

In this case, it is called a generalized repunit numerical semigroup as it generalizes the

repunit numerical semigroups introduced by D. Torrão et al. (see [40, 41]) and it is

denoted Sa(b, n). Furthermore, as proved in Chapter 3, Sa(b, n) is minimally generated

by {a1, . . . , an}, so it is of embedding dimension n.

In what follows, A = {a1, . . . , an} denotes the minimal system of the generalized

repunit numerical semigroup Sa(b, n).
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In Chapter 2, by using Gröbner basis techniques, we prove that IA is minimally

generated by the 2× 2 minors of the matrix

X :=


 xb1 . . . xbn−1 xbn

x2 . . . xn xa+1
1


 .

This is one of the main results of this chapter. As an immediate consequence, we have

that generalized numerical semigroups are homogeneous in the sense of [27]. In fact, as

we point out in Chapter 4, they are of homogeneous type.

In Chapter 2, we also obtain that the 2× 2−minors of X form a minimal Gröbner

basis with respect to a family of A-graded reverse lexicographical term orders on

k[x1, . . . , xn] and conclude that for n > 3, the ideal IA has a unique minimal system of

generators if and only if a < b− 1.

We note that the over-mentioned results are also valid for b = 1. In this case,

ai = n + (i − 1) a, i ≥ 1, is an arithmetic sequence that generates a MED semigroup,

provided that gcd(n, a) = 1.

From a classical point of view, where much investigation on numerical semigroups

is centered on characterizing families of semigroups via the properties they fulfill, we

can say that generalized repunit numerical semigroups, in which we also include the

case b = 1, can be characterized as those semigroups having determinantal toric ideals

according to the above description. In fact, as we will see in further results, much of the

properties of this class of numerical semigroups rely on that structure. Following this

line, see [47], where the relation of IA having determinantal structure and the behavior

of Pseudo-Frobenius numbers of S is analyzed.

In Chapter 3, by using the minimal system of binomial generators of IA described in

Chapter 2 and partially thanks to a result of Gastinger, pointed out in [23], we explicitly

compute the Apéry set of Sa(b, n), that is, the Apéry set of Sa(b, n) with respect to the

multiplicity a1, a result that highlighs the internal structure of generalized repunit

numerical semigroups as the Apéry set of Sa(b, i) can be obtained from the Apéry set

of Sa(b, i− 1), for every i ≥ 3, for instance.
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Then, we solve the Frobenius Problem and compute the genus of a generalized

repunit numerical semigroup, by means of closed formulas in terms of n, b and a. These

formulas are the main results of this chapter.

Finally, in Chapter 3, we compute the whole set of pseudo-Frobenius numbers of

Sa(b, n) obtaining that its cardinality is n − 1. As an immediate consequence of this

result we have that generalized repunit numerical semigroups gives another family of

numerical semigroups satisfying Wilf conjecture, one of most notable open problems of

Numerical Semigroup Theory, enunciated in [49], declaring the (multiplicative) inverse

of the embedding dimension of a numerical semigroup S as the greatest lower bound for

the probability of finding an element of S up to F(S). Although there are some families

of numerical semigroups for which this conjecture is known to be true, the general case

remains unsolved. A very good source for the state of the art of this problem is [19].

Denote simply by S the generalized repunit numerical semigroup Sa(b, n). In Chap-

ter 4, the ring k[S] is referred to as a generalized repunit k-algebra.

Since IA is a determinantal ideal, the generalized repunit k−algebra k[S] can be

(minimally) resolved by the Eagon-Northcott complex introduced in [20]. The main

result of Chapter 4 is the explicit description of a minimal S−graded free of resolution

of k[S], basically in terms of A.



CHAPTER 1

Preliminaries and theoretical overview

In this chapter, we will present some basic definitions and known results that are

necessary for a better understanding of the meaning and coherence of the articles com-

piled in this thesis. Some more specific definitions and known results will be presented

in the body of this thesis.

The proofs of the results in the first section can be consulted in [42]. In the section

2 we mainly used [34], while in the section 3 we followed the preliminary section of [28].

1. Numerical semigroups and their most notable elements

From now on and, along the whole thesis, Z denotes the set of integers and N the

set of nonnegative integers.

A binary operation on a non-empty set S is a map + : S × S → S. The image of

(x, y) ∈ S×S is usually denoted by x+y. A semigroup is a non-empty set, S, equipped

with a binary operation that verifies the associative law, that is, (x+y)+z = x+(y+z),

for all x, y, z ∈ S. Usually we also omit the binary operation + when referring to a

semigroup and write S as (S,+) instead. A monoid is a semigroup with an neutral

element, that is, there exists an element e ∈ S satisfying x + e = e + x = x for all

x ∈ S. The neutral element, if it exists, is unique.

A submonoid of a monoid (S,+) is a subset of S that is a monoid for the binary

operation +. Equivalently, a submonoid of a monoid (S,+) is a subset of S that contains

the neutral element and is closed under the binary operation +. It is clear that S and

{e} are submonoids of S, called the trivial submonoids of S. Moreover, one can easily

see that the intersection of any family of submonoids of S is also a submonoid of S.

Given a subset A of a monoid S, the monoid generated by A, denoted by ⟨A⟩, is
the least (with respect to set inclusion) submonoid of S containing A, which turns out

to be the intersection of all submonoids of S containing A. Note that, by definition, if

8
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A = ∅ then ⟨A⟩ = {e}, the proper trivial submonoid of S. If A is a non-empty set, we

say that A is a system of generators of S if ⟨A⟩ = S . In this case, we also say that S is

generated by A. Furthermore, we have that A is a minimal system of generators

of S if no proper subset of A generates S. A monoid S is a finitely generated monoid

if there exists a system of generators of S with finitely many elements.

Given two monoids (S1,+1) and (S2,+2), a map f : S1 → S2 is a monoid homo-

morphism if f(x+1 y) = f(x) +2 f(y) for all x, y ∈ S1 and f(e1) = e2, where ei is the

neutral element of Si, i = 1, 2. We say that f is a monoid isomorphism if it is bijective.

A commutative monoid is a monoid (S,+) such that the binary operation +

verifies the commutative law, that is, x+y = y+x, for all x, y ∈ S. Given a non-empty

subset A of a commutative monoid S, it is clear that

⟨A⟩ =
{

n∑

i=1

ui ai | n ∈ N \ {0} , ai ∈ A, ui ∈ N and i ∈ {1, . . . , n}
}
,

where, for each a ∈ S and u ∈ N, we define 0a = e and ua = (u− 1)a+ a.

A finitely generated commutative monoid (S,+) is cancellative if x + z = y + z

implies x = y, for every x, y and z ∈ S; equivalently, if it is isomorphic to a submonoid

of a finitely generated commutative group. Moreover, if the group is torsion-free, then

S is said to be torsion-free, too.

All the monoids considered in this thesis are finitely generated submonoids of Zd, for

some integer d ≥ 1. Therefore, they are finitely generated, commutative, cancellative

and torsion free. A monoid that is isomorphic to a finitely generated submonoid of Zd,

for some integer d ≥ 1, is usually called an affine semigroup.

Our main objects of study are numerical semigroups.

Definition 1. A numerical semigroup S is a submonoid of N, with usual sum

of natural numbers, such that N \ S is finite.

A numerical semigroup other than N is called a non-trivial numerical semigroup.

An alternative way to define a numerical semigroup is given by the following result.

Proposition 2. Let S be a submonoid of (N,+). Then S is numerical semigroup

if and only if gcd(S) = 1.
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Proof. See, e.g., [42, Lema 2.1]. □

Numerical semigroups classify the infinite submonoids of N.

Proposition 3. Every non-trivial submonoid of (N,+) is isomorphic to a numerical

semigroup.

Proof. See, e.g., [42, Proposition 2.2]. □

Given two subsets A and B of commutative monoid S, we write A+B for the subset

{x+ y | x ∈ A, y ∈ B} of S. Given a submonoid S of Nd and S∗ = S \{0} we have that

the set S∗ + S∗ is the subset of S of those elements which are the sum of two non-zero

elements in S.

Lemma 4. Let S is a submonoid of Nd, with the coordinate-wise sum. Then S∗ \
(S∗ + S∗) is system of generators of S. Furthermore, every system of generators of S

contains S∗ \ (S∗ + S∗).

Proof. See [42, Lemma 2.3] and the comment below it. □

Note that, by lemma 4, we have that every submonoid S of (Nd,+) has a unique

minimal system of generators, denoted msg(S). That is,

msg(S) = S∗ \ (S∗ + S∗).

Let us see that if d = 1, then msg(S) is finite. But first, we introduce what is probably

the most versatile tool in numerical semigroup theory.

Definition 5. Let S be a numerical semigroup. TheApéry set of S with respect

to an element s ∈ S∗ (so named in honor of [2]) is

Ap(S, s) := {w ∈ S | w − s ̸∈ S}.

Apéry sets can be computed efficiently, as shown for example in [32] (see also Propo-

sition 23).

Lemma 6. Let S be a numerical semigroup and s ∈ S∗. Then Ap(S, s) is a complete

system of residues modulo a. Concretely, Ap(S, s) = {0 = w(0), w(1), . . . , w(s − 1)},
where w(i) is the least element in S∗ congruent with i modulo s, for all i ∈ {0, . . . , s− 1}.
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Proof. See, e.g., [42, Lemma 2.4]. □

Remark 7. Knowing the set Ap(S, s) allows us to solve the membership problem

in S. From the previous result, an integer n belongs to S if and only if n ≥ w(n mod s),

where n mod s stands for the least nonnegative residue of n, modulo s.

The next result follows directly from the characterization of an Apéry set given in

Lemma 6.

Lemma 8. Let S be a numerical semigroup and s ∈ S∗. Then for each n ∈ S there

exists a unique (k,w) ∈ N×Ap(S, s) such that n = ks+ w.

Proof. See, e.g., [42, Lemma 2.6]. □

By Lemma 8 we conclude that S = ⟨Ap(S, s)∪ {s}⟩. So together with Lemma 4 we

have the following result.

Theorem 9. Every numerical semigroup admits a unique minimal system of gen-

erators. Moreover, this minimal system of generators is finite.

The cardinality of the unique minimal system of generators of a numerical semigroup

S,msg(S), is called the embedding dimension of S, denoted by e(S).

Obviously, the (unique) minimal system of generators of a finitely generated sub-

monoid of Zd is finite. So, for affine semigroups, the term embedding dimension also

applies analogously.

Remark 10. The finiteness of the cardinality of the minimal system of generators

of a numerical semigroup cannot be extended to the submonoids of Zd. For example,

the submonoid of N2 ⊂ Z2 (minimally) generated by {(1, n) | n ∈ N} ∪ {(n, 1) | n ∈ N}
is not finitely generated.

Despite the above, using Proposition 3 and Theorem 9, we get the next result.

Corollary 11. Every submonoid of (N,+) has a unique minimal system of gen-

erators, which in addition is finite.
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Let us now introduce some other notable elements of the theory of numerical semi-

groups.

Let S be a numerical semigroup. The smallest element of S∗ is called the multi-

plicity of S and is denoted by m(S). It is clear that m(S) is not in S∗ + S∗.

Remark 12. Let S be a numerical semigroup and denote by Ap(S) the Apéry set of

S, relative to its multiplicity m(S). Clearly, msg(S)\{m(S)} is a subset of Ap(S)\{0},
and since Ap(S) has cardinality m(S), we have that m(S) is an upper bound for the

embedding dimension of S, that is, e(S) ≤ m(S).

Considering Proposition 2, it makes sense to talk about the largest element not in

S. This element is usually known as the Frobenius number of S and is denoted here

by F(S). The Frobenius problem is the search for closed formulas for the Frobenius

number of a numerical semigroup in terms of its minimal system of generators (see [38]

for more details).

The elements in N\S are called the gaps of S, and the cardinality of the set of gaps

of S is called the genus of S, denoted by g(S), which is sometimes referred to as the

gender or degree of singularity of S.

Example 13. Let n > 1 be an integer. Consider the subsemigroup of (N,+) given

by S(n) = {m ∈ N | m ≥ n}. We have that S = S(n) ∪ {0} is a numerical semigroup.

Clearly, m(S) = n, g(S) = n− 1 and F(S) = n− 1 = m(S)− 1.

The numerical semigroups shown in the example above are classical. In the literature

they are commonly called half-line semigroups (or superficial numerical semigroups).

A maximal embedding numerical semigroup or MED numerical semigroup for

short, is a numerical semigroup S such that e(S) = m(S) (see remark 12). The half-line

S = S(n) ∪ {0} is MED, since msg(S) = {n, . . . , 2n− 1}. More generally, we have,

Example 14. Let n > 1 be an integer and a a positive integer relatively prime with

n. The submonoid of N (minimally) generated by A = {a1, . . . , an}, where (ai) is the

arithmetic sequence given by ai = n+ (i− 1)a, i ≥ 1, is MED.

Selmer’s formulas ([45]), summarized in the next result, relate Apéry sets to the

Frobenius number and the genus of S.
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Theorem 15. Let S be a numerical semigroup and let s ∈ S∗. Then:

(1) F(S) = max (Ap(S, s))− s;

(2) g(S) = 1
s

(∑
w∈Ap(S,s)w

)
− s−1

2 .

Proof. See, e.g. [42, Proposition 2.12]. □

Let S be a numerical semigroup. Following the terminology introduced in [43], we

say that the an integer x is a pseudo-Frobenius number of S if x ∈ Z \ S and

x+ s ∈ S for all s ∈ S∗. We denote by PF(S) the set of pseudo-Frobenius numbers of

S and its cardinality is the type of S, denoted by t(S). Clearly, F(S) ∈ PF(S).

The next result gives us a characterization of the set of pseudo-Frobenius numbers

in terms of the Apéry sets.

Proposition 16. Let S be a numerical semigroup and let x be an element in S∗.

Then

PF(S) = {w − x | w ∈ maximals≤S (Ap (S, x))} ,

where ≤S is the partial order on Z such that a ≤S b if and only if b− a ∈ S.

Proof. See, e.g. [42, Proposition 2.20]. □

The partial order shown in the result above is explored again in Proposition 25,

with a little more generality.

From Proposition 16 and by an argument much similar to the one made in remark

12, we obtain an upper bound for the type of a numerical semigroup, we have that

t(S) ≤ m(S) − 1. Notice MED numerical semigroups have maximal type, that is, if

S is MED then, m(S) = t(S) + 1, since, in this case, Ap(S) \ {0} consist of m(S) − 1

incomparable elements with respect to ≤S . In fact, the condition m(S) = t(S) + 1,

caracterizes MED semigroups (see, for instance, Proposition 11 in [3]).

The element c(S) = F(S) + 1, called the conductor of S, is the smallest element

c ∈ S with the property that x ≥ c ⇒ x ∈ S, for x any nonnegative integer. A

non-gap of S is an element of S in {x ∈ N | 0 ≤ x ≤ F(S)}, that is, an element of

{s ∈ S | s < F(S)}. The cardinality of the set of non-gaps is denoted n(S). It is clear

that n(S)+g(S) = c(S). In particular, c(S) is an upper bound for both the cardinalities

of g(S) and n(S).
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In [49] Wilf conjectured that c(S) ≤ e(S) n(S), for any numerical semigroup S . This

question is still largely open and is one of the most important problems in numerical

semigroup theory. The numerical semigroups that satisfy Wilf’s condition are said to

be Wilf. By [21, Theorem 20], a numerical semigroup S satisfying t(S) ≤ e(S) − 1 is

Wilf. Although the Wilf conjecture is known to be true for some families of numerical

semigroups, the general case remains unsolved. A very good source for the state of the

art of this problem is [19].

2. Presentations and minimal systems of binomial generators

Definition 17. Let S be a commutative monoid. A congruence ∼ on S is an

equivalence relation on S that is additively closed, that is, a ∼ b ⇒ a + c ∼ b + c for

a,b and c ∈ S.

Let ϕ : S → S′ be a monoid homomorphism. The kernel of ϕ is defined as

ker(ϕ) :=
{
(a,b) ∈ S × S | ϕ(a) = ϕ(b)

}
.

In this case, the relation on S determined by ker(ϕ) ⊂ S × S is a congruence.

If S is the commutative monoid finitely generated by A = {a1, . . . ,an}, then the

monoid homomorphism determined by A

(1) degA : Nn −→ S; ei 7−→ ai, i = 1, . . . , n,

where ei denotes the element in Nn whose i−th coordinate is 1 with all other coordinates

0, is surjective and gives a presentation of S, namely,

S = Nn/∼A,

where ∼A= ker(degA). In the literature, this degA is called the factorization map

associated to A and accordingly, the fiber deg−1
A (a) is called the set of factorizations

of a ∈ S with respect to A.

Let k be a field. Given a commutative and finitely generated monoid S, the semi-

group algebra of S is the direct sum

k[S] :=
⊕

a∈S
Spank{χa}
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with multiplication χa · χb = χa+b. If A = {a1, . . . ,an} is a generating set of S, then

the factorization map degA induces a map of semigroup algebras

(2) d̂egA : k[x1, . . . , xn] → k[S] ; xu 7→ χdeg(u).

Observe that k[x1, . . . , xn] = k[Nn].

Theorem 18. With the above notation, if

(3) IA := ⟨xu − xv | degA(u) = degA(v)⟩ ⊆ k[x1, . . . , xn],

then ker(d̂egA) = IA, so that k[S] ∼= k[x1, . . . , xn]/IA. Moreover, IA is spanned as a

k−vector space by {xu − xv | degA(u) = degA(v)}.

Proof. See, e.g. [34, Theorem 13]. □

As a consequence of the above theorem and the noetherianity of k[x1, . . . , xn], it

follows that every finitely generated commutative monoid is finitely presented (see e.g.

[34, Theorem 11] for more details).

A minimal presentation of a commutative and finitely generated monoid S is a

presentation of S which is minimal for the inclusion relation, that is, a presentation of

S that does not properly contain a presentation of S. Observe that, by Theorem 18,

minimal presentations of S are in one-to-one correspondence with minimal systems of

binomial generators of IA, for given A.

In general, S does not have unique presentation (uniquely presented finitely gen-

erated commutative monoids are studied in [22]). Despite of this fact, we have the

following result.

In the next section we will delve into finitely generated positive commutative monoids.

Proposition 19. Let S be a finitely generated submonoid of Zd. If S is positive,

i.e., S ∩ (−S) = {0}, then all minimal presentations of S have the same cardinality.

Proof. See, e.g. [42, Corollary 8.13] or [11, Section 1]. □

From now on, S denotes a finitely generated submonoid of Zd. LetA = {a1, . . . ,an} ⊂
Zd be the minimal system of generators of S, that is, A = msg(S). In this case, degA
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is naturally extended to a group homomorphism

Zn −→ Zd; ei 7−→ ai, i = 1, . . . , n,

so that, ker(degA) can be seen as a subgroup (sublattice) of Zn. Therefore, the dimen-

sion of S, denoted dim(S), is well-defined as n− rank(ker(degA)).

Proposition 20. With the above notation, the dimension of S is equal to the Krull

dimension of k[S].

Proof. See, e.g., [35, Proposition 7.5]. □

Observe that numerical semigroups are (isomorphic to) the submonoids of N of

dimension one (Proposition 3). In fact, in this case, k[S] is the coordinate ring of a

monomial curve in the affine space An
k , where n is the cardinality of the minimal system

of generators of S.

Computing a minimal presentation of S fromA is not easy in general. The interested

reader may refer to [42, Section 8.3] or [11] for a detailed development of this topic.

In this section, we only briefly detail the methods used in the following chapter which

essentially consist of determining whether a given subset of relations of ker(degA))

(equivalently, a subset of binomials of IA) generates the entire presentation (equivalently,

generates IA).

Given u = (u1, . . . , un) ∈ Zn, we write u+ for the element of Zn whose i−th

coordinate is ui if ui ≥ 0 and 0 otherwise, and we write u− for u+−u. Also, for a given

vetor u = (u1, . . . , un) ∈ Nn, the monomial xu1
1 . . . xun

n ∈ k[x1, . . . , xn] is denoted xu.

Proposition 21. Let B be a system of generators of ker(degA) ⊆ Zn, let IB be the

ideal of k[x1, . . . , xn] generated by {xu+ − xu− | u ∈ B} and let J be a subideal of IA

containing IB. Then, J = IA if and only if xi is a non-zerodivisor of k[x1, . . . , xn]/J ,

for every i ∈ {1, . . . , n}.

Proof. See, e.g., [34, Proposition 38]. □

Recall that, for an arbitrary ideal I of k[x1, . . . , xn] and f ∈ k[x1, . . . , xn], the

quotient of I by f is defined as

(I : f∞) := {g ∈ k[x1, . . . , xn] | gfs ∈ I, for some s ∈ N}.
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Observe that f is a non-zerodivisor in k[x1, . . . , xn]/I if and only if (I : f∞) = I. There-

fore, by the following theorem due to Bigatti et al. ([6]), given an ideal J containing IB

one can indeed check the criterion given by Proposition 21.

Let ≺i be the term order on k[x1, . . . , xn] defined by the following matrix

M :=




a1 . . . ai ai+1 ai+2 . . . an

0 −1 0 0 . . . 0

. .
. ...

...
...

−1 0 0 0 . . . 0

0 . . . 0 0 0 −1
...

...
... . .

.

0 0 0 −1 0




.

We observe that ≺i is the A−graded reverse lexicographical term order on k[x1, . . . , xn]

induced by xi ≺i xi−1 ≺i . . . ≺i x1 ≺i xn ≺i . . . ≺i xi+1; in particular, xi is the smallest

variable for ≺i.

Theorem 22. Let J be a subideal of IA. If {xα1
i f1, . . . , x

αr
i fr} is the Gröbner basis

of J with respect to ≺i, then {f1, . . . , fr} is the Gröbner basis of (J : x∞i ) with respect

to ≺i.

Proof. See [6, Theorem 3.1]. □

Alternatively, if S is a numerical semigroup, the following result has as a consequence

another effective way to implement Proposition 21 originally due to Gastinger ([23]).

Proposition 23. With the above notation, the map

{xu ∈ k[x1, . . . , xn] | xu ̸∈ in≺i (IA + ⟨xi⟩)} −→ Ap(S, ai); xu 7−→ degA(u),

is a bijection for every i ∈ {1, . . . , n}.

Proof. See, e.g. [28, Proposition 3.1]. □

Now, since the {xu ∈ k[x1, . . . , xn] | xu ̸∈ in≺i (J + ⟨xi⟩)} is basis of k[x1, . . . , xn]/(J+
⟨xi⟩) as k−vector space, the next result is an immediate consequence of Proposition 23,
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Corollary 24 (Gastinger, 1990). Let J ⊆ IA be a subideal. The necessary and

sufficient condition for J = IA is that dimk(k[x1, . . . , xn]/(J+ ⟨xi⟩) = ai for some (any,

in fact) i ∈ {1, . . . , n}.

3. Minimal free resolutions of semigroup algebras

Let S be the submonoid of Zd generated by A = {a1, . . . ,an}. By Theorem 18, we

have that IA = ker(d̂egA) is spanned as a k−vector space by the set of binomials

(4) {xu − xv | u,v ∈ Nn with degA(u) = degA(v)}.

Observe that k[x1, . . . , xn] is S−graded via deg(xi) = ai, i = 1, . . . , n. This grad-

ing is known as the A−grading on k[x1, . . . , xn]. The semigroup algebra k[S] =

⊕a∈S Spank{χa} also has a natural S−grading. Under these gradings, the map of semi-

group algebras d̂egA is a graded map. Hence, the ideal IA = ker(d̂egA) is S−homogeneous.

The following result is [34, Proposition 29].

Proposition 25. With the above notation, if a1, . . . ,an are non-zero, then following

are equivalent:

(1) The fibers of map degA(−) are finite.

(2) deg−1
A (0) = {(0, . . . , 0)}.

(3) S ∩ (−S) = {0}, that is to say, a ∈ S and −a ∈ S ⇒ a = 0.

(4) The relation a′ ⪯ a ⇐⇒ a′ − a ∈ S is a partial order on S.

As mentioned in remark [34, Remark 30], if the conditions of Proposition 25 hold,

the monoid S generated by A is said to be positive. When S is positive, m =

⟨x1, . . . , xn⟩ is the only S−homogeneous maximal ideal in k[x1, . . . , xn]. Recall that

a graded ideal m in a graded ring R is a graded maximal ideal or ∗maximal ideal

if the only graded ideal properly containing m is R itself. Graded rings with a unique

graded maximal ideal are known as graded local rings or ∗local rings. Many re-

sults valid for local rings are also valid for graded local rings, starting with Nakayama’s

Lemma. In particular, the S−graded minimal free resolution of any finitely generated

k[x1, . . . , xn]−-module is well defined as explained below (see also [13, Section 1.5] and

[12]).
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In what follows, S is a finitely generated submonoid of Zd such that S∩(−S) = {0},
called a positive affine semigroup. Let A = {a1, . . . ,an} be the minimal generating set

of S, that is, A = msg(S). Without loss of generality, we assume d = dim(S).

The ring k[x1, . . . , xn] has a natural S−graded structure given by assigning degree

ai to xi, i = 1, . . . , n; indeed,

k[x1, . . . , xn] =
⊕

a∈S
k[x1, . . . , xn]a,

where k[x1, . . . , xn]a denotes the k−vector space generated by the monomials xu :=

xu1
1 · · ·xun

n such that
∑e

i=1 uiai = a, and k[x1, . . . , xn]a·k[x1, . . . , xn]a′ = k[x1, . . . , xn]a+a′ .

The surjective S−graded ring homomorphism

d̂egA : k[x1, . . . , xn] −→ k[S];xi 7→ tai

endows k[S] with a structure of S−graded k[x1, . . . , xn]−module. For simplicity, in

what follows, we write φ0 = d̂egA.

By Theorem 18, the kernel of φ0, denoted IA, is a binomial ideal, the toric ideal

of S; such that k[S] ∼= k[x1, . . . , xn]/IA. Thus, minimal generating systems of IA gives

rise to minimal representations of k[S] as k[x1, . . . , xn]−module. Indeed, if MA :=

{f1, . . . , fβ1} is a minimal system of generators of IA, then

k[x1, . . . , xn]β1
φ1−→ k[x1, . . . , xn]

φ0−→ k[S] → 0

is an exact sequence, where φ1 is the homomorphism of k[x1, . . . , xn]−modules whose

matrix with respect to the corresponding standard bases is (f1, . . . , fβ1). Since IA is

S−homogeneous (equivalently, a binomial ideal, see e.g. [34, Theorem 1]), then φ1 is

also S−graded, that is, homogeneous of degree 0 after an appropriate degree shifting.

Now, if kerφ1 ̸= 0, we can consider a minimal system of S−graded generators of

kerφ1, proceed as above defining a S−graded homomorphism of k[x]−modules φ2 and

so on. By the Hilbert Syzygy Theorem, this process cannot continue indefinitely, giving

rise to the S−graded minimal free resolution of k[S]:

0 → k[x1, . . . , xn]βp
φp−→ · · · φ2−→ k[x1, . . . , xn]β1

φ1−→ k[x1, . . . , xn]
φ0−→ k[S] → 0.



20 1. PRELIMINARIES AND THEORETICAL OVERVIEW

For b ∈ S, we write βi,b for the number of minimal generators of kerφi of S−degree b.

Of course, βi,b may be 0. Here it is convenient to recall that

βi,b = dimkTor
k[x1,...,xn]
i (k, k[S])b

(see, e.g. [35, Lemma 1.32]) is an invariant of k[S] for every i > 0 and b ∈ S. The

integer number βi,b is called the i−th Betti number of k[S] in degree b and βi =
∑

b∈S βi,b is called the i−th (total) Betti number of k[S]. Clearly, k[x1, . . . , xn]βi =
⊕

b∈S k[x1, . . . , xn]βi,b and

φi :
⊕

b∈S
(k[x1, . . . , xn](−b))βi,b −→

⊕

b∈S
(k[x1, . . . , xn](−b))βi−1,b

is homogeneous of degree 0, for every i = 1, . . . , p.

Notice that there are finitely many non-zero Betti numbers. The elements b ∈ S
such that β1,b ̸= 0 are called in literature Betti elements and the set of Betti elements

of S is usually denoted by Betti(S) (see, [22] for more details).

The maximum i such that βi ̸= 0 is called the projective dimension of k[S],
denoted pdk[x](k[S]). By the Auslander–Buchsbaum formula (see, e.g. [13, Theorem

1.3.3]), one has

(5) depth(k[S]) = n− pdk[x](k[S]).

Recall that when depth(k[S]) = d (equivalently, pdk[x](k[S]) = codim(k[S]) = n − d),

then k[S] is Cohen-Macaulay (much more information can be found at [13]). We extend

this terminology to S, by saying that S is Cohen-Macaulay when k[S] is. In this case,

if p = pdk[x](k[S]), then βp is called the type of k[S].

Proposition 26. If S is a numerical semigroup and p = pdk[x](k[S]), then

PF(S) = {b−
n∑

i=1

ai | βp,b ̸= 0}.

Moreover, if βp,b ̸= 0, then βp,b = 1; in particular, the type of S is equal to the type of

k[S]

Proof. See, e.g. [32, Corollary 17]. □



CHAPTER 2

Minimal systems of binomial generators for the ideals of

certain monomial curves

In number theory, a repunit is a number whose representation in a base b consists

of copies of the single digit 1. In binary, these are known as Mersenne numbers. The

term repunit, which stands for repeated unit, was coined by Albert H. Beiler in [5].

Given ℓ ∈ N\ {0}, we set rb(ℓ) for the repunit number of length ℓ in base b, that is

rb(ℓ) =
∑ℓ−1

j=0 b
j , with the convention rb(0) = 0.

Let n and a be two positive integers, with n > 1, and consider the sequence defined

by

ai := rb(n) + a rb(i− 1), i ≥ 1.

The main result of this chapter is the explicit determination of a minimal system of

binomial generators of the defining ideal of the monomial curve associated to

A = {a1, . . . , an},

provided that gcd(A) = gcd(a1, a) = 1. Concretely, we prove that IA is minimally

generated by the 2× 2 minors of the matrix

X :=


 xb1 . . . xbn−1 xbn

x2 . . . xn xa+1
1


 .

It is worth to say that the submonoids of N generated by A, with gcd(A) = 1, are

studied in detail in Chapter 3. These numerical semigroups, which are in fact minimally

generated by A, are called generalized repunit numerical semigroups by us, as they

generalize the numerical semigroups introduced by D. Torrão et al. (obtained in case

a = bn). Therefore, the above result gives in particular minimal presentations of repunit

numerical semigroups, an original result not considered by Torrão’s et al, when studying

these semigroups.

21
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In this chapter, we also characterize the uniquely presented generalized repunit

numerical semigroups. The cases n = 2 or n = 3 are well known; clearly, IA is generic

in these cases. For n > 3, we prove that the ideal IA has a unique minimal system of

generators if and only if and a < b − 1. In particular, for n > 3, repunit numerical

semigroups are never uniquely presented. Finally, notice that our results applies in case

b = 1, that is, for MED arithmetic numerical semigroups.
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1. Introduction

Let k be a field and let A = {a1, . . . , an} be a set of positive integers. It is well known
that the kernel of the k−algebra homomorphism

ϕA : k[x1, . . . , xn]→ k[ta1 , . . . , tan ]; xi 7→ tai , i = 1, . . . , n, (1)

where x1, . . . , xn and t are indeterminates, is a binomial ideal (see [1], or [2] for a more
recent reference). Clearly, ker(ϕA) is the defining ideal of a monomial curve.

Let b be a positive integer and set rb(`) for the `−th repunit number in base b, that is,

rb(`) =
`−1

∑
j=0

bj.

By convention, rb(0) = 0.
The main result in this paper is the explicit determination of a minimal system of

binomial generators of I := ker ϕA for

A = {ai := rb(n) + a rb(i− 1) | i = 1, . . . , n},

where a and n > 1 are positive integers. We prove that I is minimally generated by the
2× 2 minors of the matrix

X :=

(
xb

1 . . . xb
n−1 xb

n

x2 . . . xn xa+1
1

)
, (2)

provided that gcd(a1, . . . , an) = gcd(a, rb(n)) is equal to 1. In this case, as an immediate
consequence, we have that the so-called binomial arithmetical rank of I (see, e.g., [3]) is
equal to (n

2).
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Furthermore, we obtain that the 2× 2−minors of X form a minimal Gröbner basis
with respect to a family of A-graded reverse lexicographical term orders on k[x1, . . . , xn]
(Theorem 1) and, applying ([4], Corollary 14), we conclude that for n > 3, the ideal I has a
unique minimal system of generators if and only if and a < b− 1 (Corollary 2).

The submonoids of N generated by A are studied in detail in [5] as a generalization
of the numerical semigroups introduced by D. Torrão et al. (see [6,7]); in this context,
Corollary 2 provides a minimal presentation of the submonoid of N generated by a1, . . . , an,
providing an original result not considered in Torrão’s PhD thesis.

To achieve our main result (Theorem 1), we first compute the ideal J of the projective
monomial curve defined by the kernel of the k−algebra homomorphism

k[x1, . . . , xn]→ k[trb(0) s, . . . , trb(n−1) s]; xi 7→ trb(i−1) s, i = 1, . . . , n, (3)

where s is also an indeterminate. This intermediate result (Proposition 1) has its own
interest, as it exhibits another family of semigroup ideals that are determinantal and have
unique minimal system of binomial generators (Corollary 1).

Throughout the paper, we keep the notation established in this introduction. Moreover,
as the case n = 2 is trivial and the case n = 3 is well known for any a1, a2 and a3 (see [1]),
we suppose that n > 3 whenever necessary.

The explicit description of minimal systems of binomial generators of monomial
curves, and in a broader context of toric ideals, is a long-established research topic since
J. Herzog, in his celebrated paper [1], characterized the minimal systems of binomial
generators of (all) the monomial curves in affine three-dimensional space. The elegance
of Herzog’s result for the three-dimensional case contrasts with the fact that no explicit
description is known for the general case. Particular advances are just known for low-
dimensional cases (see, e.g., [8] or more recently in [9] and the references therein) or for
special families of monomial curves as presented in this paper; due to its proximity to the
present work, we highlight the article by D.P. Patil [10] as one among many others.

We finally emphasize that, despite of not being the aim this paper, the study of the
defining ideal of monomials curves have its own interest for applications to other areas
such as linear programming (see, e.g., [11]), coding theory (see, e.g., [12] or algebraic
statistics, where the minimal systems of bionomial generators are called Markov bases and
the uniqueness property has special consideration (see [13]).

2. Preliminaries

Let a, b and n be three positive integers such that n > 3. Consider the sequence of
positive integers (ai)i≥1 such that

ai := rb(n) + a rb(i− 1),

for every i ≥ 1.
In this section, we present several lemmas that reflect the arithmetic structure of

the sequence (ai)i≥1. In addition, we present the family of term orders that will be used
throughout the paper.

Lemma 1. The following equality holds: an+k = ak + a bk−1 a1, for all k ≥ 1. In particular,
an+1 = (1 + a) rb(n).

Proof. It suffices to observe that rb(n + k− 1) = rb(k− 1) + bk−1 rb(n), for all k ≥ 1, and,
consequently, that an+k = rb(n) + +a rb(n + k− 1) = a1 + a rb(n + k− 1) = a1 + a (rb(k−
1) + bk−1rb(n)) = ak + a bk−1 a1, for all k ≥ 1. Finally, as a1 = rb(n), the last statement is
straightforward

Notice that, by Lemma 1, the set A = {a1, . . . , an} is a system of generators of the
submonoid of N generated by the sequence (ai)i≥1.
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Lemma 2. For each pair of positive integers j and k, it holds that

b aj + aj+k = b aj+k−1 + aj+1.

Proof. As aj+k = a1 + a rb(j + k− 1) = a1 + a (rb(j− 1) + bj−1 rb(k)) = aj + a bj−1 rb(k),
we conclude that

b aj + aj+k = b aj + aj + a bj−1 rb(k) =

= b aj + aj + a bj−1 (b rb(k− 1) + 1) =

= b (aj + a bj−1 rb(k− 1)) + aj + a bj−1 =

= b aj+k−1 + (a1 + a rb(j− 1)) + a bj−1 =

= b aj+k−1 + aj+1,

as claimed.

Let ≺i be the term order on k[x1, . . . , xn] defined by the following matrix

M :=




a1 . . . ai ai+1 ai+2 . . . an
0 −1 0 0 . . . 0

. . . ...
...

...
−1 0 0 0 . . . 0
0 . . . 0 0 0 −1
...

...
... . . .

0 0 0 −1 0




.

We observe that ≺i is the A-graded reverse lexicographical term order on k[x1, . . . , xn]
induced by xi ≺i xi−1 ≺i . . . ≺i x1 ≺i xn ≺i . . . ≺i xi+1; in particular, xi is the smallest
variable for ≺i.

Lemma 3. If j ∈ {1, . . . , n− 2} and k ∈ {j + 1, . . . , n− 1}, then

xb
j xk+1 ≺i xj+1xb

k

if and only if i ≤ j or k + 1 ≤ i.

Proof. By Lemma 2, b aj + ak+1 = aj+1 + b ak, so we just need to decide what the variable
xj, xj+1, xk or xk+1 is cheapest for the order defined by the last n − 1 rows of M. As
j < j + 1 ≤ k < k + 1, according to the definition of ≺i, the variable xk+1 is cheaper than
the other three when j ≤ i or k + 1 ≤ i; thus, xb

j xk+1 ≺i xj+1xb
k in these cases. Conversely, if

j + 1 ≤ i ≤ k, then either xk or xj+1 is cheaper than the others if k = i or k 6= i, respectively.
Therefore xb

j xk+1 �i xj+1xb
k when j + 1 ≤ i ≤ k, and we are done.

3. Gröbner Bases and Minimal Generators for J

We keep the notation of the Introduction and Section 2.
Let I2(Y) be the ideal of k[x1, . . . , xn] generated by the 2× 2−minors of

Y :=

(
xb

1 xb
2 . . . xb

n−1

x2 x3 . . . xn

)
.

Let G(i)1 ,G(i)2 and G(i)3 be defined as follows:

G(i)1 =
{

xj+1xb
k − xb

j xk+1 | j ∈ {i, . . . , n− 2}, k ∈ {j + 1, . . . , n− 1}
}

,
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G(i)2 =
{

xj+1xb
k − xb

j xk+1 | j ∈ {1, . . . , i− 2}, k ∈ {j + 1, . . . , i− 1}
}

,

G(i)3 =
{

xb
j xk+1 − xj+1xb

k | j ∈ {1, . . . , i− 1}, k ∈ {i, . . . , n− 1}
}

and let G(i)Y be equal to G(i)1 ∪ G
(i)
2 ∪ G

(i)
3 .

Notice that, by Lemma 3, the underlined monomials are the leading terms with respect
to ≺i of the corresponding binomials.

Proposition 1. With the above notation, the set G(i)Y is the reduced Gröbner basis of I2(Y) with

respect to ≺i. In particular, the cardinality of G(i)Y is (n−1
2 ).

Proof. First, let us see that G(i)Y is a Gröbner basis. By the Buchberger’s Criterion (see,

e.g., [14], Theorem 3.3), it suffices to verify that each S-pair of elements in G(i)Y can be reduced

to zero by G(i)Y using the division algorithm. To do this, we distinguish several cases:

• Let f ∈ G(i)1 , that is to say, f = xj+1xb
k − xb

j xk+1, for some j ∈ {i, . . . , n − 2} and
k ∈ {j + 1, . . . , n− 1}.
◦ Let g = xl+1xb

m− xb
l xm+1 ∈ G(i)1 . If gcd(xj+1xb

k , xl+1xb
m) = 1, then S( f , g) reduces

to zero with respect to { f , g} ⊂ G(i)Y . Otherwise, j = l, j + 1 = m, k = l + 1 or k =

m. If j = l then S( f , g) = xb
m(−xb

j xk+1)− xb
k(−xb

j xm+1) = xb
j (xb

k xm+1− xb
mxk+1)

reduces to zero with respect to G(i)Y . If j + 1 = m , then

S( f , g) = xl+1xb−1
j+1 (−xb

j xk+1)− xb
k(−xb

l xj+2).

Now, as i ≤ j < j + 1 ≤ k < k + 1 and i ≤ l < l + 1 ≤ m = j + 1 <
j + 2, the leading term of S( f , g) with respect to ≺i is xb

k xb
l xj+2. Then S( f , g) =

xb
l (xb

k xj+2 − xb
j+1xk+1) + xb−1

j+1 xk+1(xb
l xj+1 − xl+1xb

j ) reduces to zero with respect

to G(i)Y . By symmetry, the case k = l + 1 is completely similar to the latter

one. Finally, if k = m , then S( f , g) = −xl+1(−xb
j xk+1) − xj+1(−xb

l xk+1) =

xk+1(xb
j xl+1 − xj+1xb

l ) reduces to zero with respect to G(i)Y .

◦ Let g = xl+1xb
m− xb

l xm+1 ∈ G(i)2 . If gcd(xj+1xb
k , xl+1xb

m) = 1, then S( f , g) reduces

to zero with respect to { f , g} ⊂ G(i)Y . Otherwise, j = l, j + 1 = m, k = l + 1
or k = m. First, we observe that the cases j = l and k = m produce the same
S-polynomial as in the corresponding case for g ∈ G(i)1 ; so, we just focus on the
cases j + 1 = m and k = l + 1. If j + 1 = m , then i ≤ j < j + 1 ≤ k < k + 1
and l < l + 1 ≤ m = j + 1 < j + 2 = m− 1 ≤ i, therefore i < j + 1 = m < i,
a contradiction. Finally, if k = l + 1 , then i ≤ j < j + 1 ≤ k < k + 1 and
l < l + 1 = k ≤ m < m + 1 ≤ i, so i < k = l + 1 < i, a contradiction again.

◦ Let g = xb
l xm+1− xl+1xb

m ∈ G(i)3 . If gcd(xj+1xb
k , xb

l xm+1) = 1, then S( f , g) reduces

to zero with respect to { f , g} ⊂ G(i)Y . Otherwise, j + 1 = l, j = m, k = l or k =

m + 1. If j + 1 = l , then i ≤ j < j + 1 = l ≤ k < k + 1 and l ≤ i− 1; so i < j +

1 = l ≤ i− 1, a contradiction. If j = m (or k = l , respectively) then S( f , g) =

xb
m(xb

k xl+1 − xb
l xk+1) (or S( f , g) = xk+1(xj+1xb

m − xb
j xm+1), respectively) reduces

to zero with respect to G(i)Y . Finally, if k = m + 1 , then

S( f , g) = xb
l (−xb

j xm+2)− xj+1xb−1
m+1(−xl+1xb

m).
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Now, as i ≤ j < j + 1 ≤ k = m + 1 < k + 1, l ≤ i − 1 and i ≤ m, then
xl+1 or xm−1 is cheaper than the others for the order induced by the last n− 1
rows of the matrix M, therefore leading term of S( f , g) is xb

l xb
j xk+1 and thus,

S( f , g) = −xb
j (xb

l xm+2 − xl+1xb
m+1) − xl+1xb−1

m+1(xb
j xm+1 − xj+1xb

m) reduces to

zero with respect to G(i)Y .

• Let f ∈ G(i)2 , that is to say, f = xj+1xb
k − xb

j xk+1, for some j ∈ {1, . . . , i − 2} and
k ∈ {j + 1, . . . , i− 1}.
◦ Let g = xl+1xb

m− xb
l xm+1 ∈ G(i)2 . If gcd(xj+1xb

k , xl+1xb
m) = 1, then S( f , g) reduces

to zero with respect to { f , g} ⊂ G(i)Y . Otherwise, j = l, j + 1 = m, k = l + 1 or
k = m. If j = l (or k = m , respectively), then S( f , g) = xb

j (xb
k xm+1 − xk+1xb

m)

(or S( f , g) = xk+1(xl+1xb
j − xb

l xj+1), respectively) reduces to zero with respect to

G(i)Y . If j + 1 = m , then

S( f , g) = xl+1xb−1
m (−xb

m−1xk+1)− xb
k(−xb

l xm+1)

and, as l + 1 ≤ m = j + 1 ≤ k ≤ i − 1, the leading term of S( f , g) is equal to
xl+1xb−1

m xb
m−1xk+1. Thus, S( f , g) = −xb−1

m xk+1(xl+1xb
m−1− xb

l xm)+ xb
l (xb

k xm+1−
xb

mxk+1) reduces to zero with respect to G(i)Y ; observe that l < l + 1 ≤ m implies
that the leading term of xl+1xb

m−1 − xb
l xm is actually xl+1xb

m−1. Finally, by sym-

metry, the case k = l + 1 is completely similar to the latter one.

◦ Let g = xb
l xm+1− xl+1xb

m ∈ G(i)3 . If gcd(xj+1xb
k , xb

l xm+1) = 1, then S( f , g) reduces

to zero with respect to { f , g} ⊂ G(i)Y . Otherwise, j + 1 = l, j = m, k = l or
k = m + 1. If j + 1 = l , then

S( f , g) = xb−1
l xm+1(−xb

l−1xk+1)− xb
k(−xl+1xb

m).

Furthermore, as l = j + 1 ≤ k ≤ i− 1 and l ≤ i− 1 < i ≤ m < m + 1, we have
that the leading term is xb−1

l xm+1xb
l−1xk+1 if k = l and xb

k xl+1xb
m otherwise. In

ther first case, S( f , g) = xm+1xb
k−1 + xkxb

m reduces to zero with respecto to G(i)Y .
In the second case, S( f , g) = xb

m(xb
k xl+1 − xk+1xb

l ) + xb−1
l xk+1(xb

mxl − xm+1xb
l−1)

reduces to zero with respect to G(i)Y . If j = m (or k = l , respectively) then

S( f , g) = xb
m(xb

k xl+1 − xb
l xk+1) (or S( f , g) = xk+1(xj+1xb

m − xb
j xm+1), respec-

tively) reduces to zero with respect to G(i)Y . Finally, if k = m + 1 , then j + 1 ≤
k = m + 1 ≤ i− 1, l ≤ i− 1 and i ≤ m; so, m + 1 < i ≤ m, a contradiction.

• Let f ∈ G(i)3 , that is to say, f = xb
j xk+1 − xj+1xb

k , for some j ∈ {1, . . . , i − 1} and
k ∈ {i, . . . , n− 1}.
◦ Let g = xb

l xm+1 − xl+1xb
m ∈ G(i)3 . If gcd(xb

j xk+1, xb
l xm+1) = 1, then S( f , g) re-

duces to zero with respect to { f , g} ⊂ G(i)Y . Otherwise, j = l, j = m + 1, k + 1 = l
or k = m. As j ≤ i − 1 < i ≤ k and l ≤ i − 1 < i ≤ m, the cases j = m + 1

and k + 1 = m cannot occur. If j = l (or k = m , respectively), then S( f , g) =

xl+1(xk+1xb
m − xm+1xb

k) (or S( f , g) = xb
m(xb

l xj+1 − xb
j xl+1), respectively) reduces

to zero with respect G(i)Y .
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Once we know that G(i)Y is Gröbner basis, it is immediate to see that it is reduced since

the leading term of f ∈ G(i)Y does not divide any other monomial that appears in a binomial

of G(i)Y \ { f }.
It remains to prove that G(i)Y generates I2(Y). Clearly, G(i)Y is contained in the set of

2× 2−minors of Y. Moreover, as the cardinality of G(i)1 ,G(i)2 and G(i)3 are

(
(n− 1)− i

)
+
(
(n− 1)− i− 1

)
+ . . . + 1 =

(
n− i

2

)
,

(
(i− 1)− 1

)
+
(
(i− 1)− 2

)
+ . . . + 1 =

(
i− 1

2

)

and
(i− 1)(n− i),

respectively, we have that the cardinality of G(i)Y is equal to (n−1
2 ) which is the number of

2× 2−minors of Y. Therefore, G(i)Y generates I2(Y) and we are done.

Example 1. We observe that the reduced Gröbner basis, G(i)Y , of I2(Y) with respect to ≺i is not an
universal Gröbner basis. For example, if n = b = 5 and ≺ is the term order defined by




a1 a2 a3 a4 a5
0 0 −1 0 0
0 0 0 0 −1
0 0 0 −1 0
0 −1 0 0 0




,

then one can check (using, for example, Singular [15]) that the reduced Gröbner basis of the ideal
I2(Y) with respect to ≺ has eight generators; however, G(i)Y contains (5−1

2 ) = 6 binomials only.

Alternatively, one can see that G(i)Y is not an universal Gröbner basis of I2(Y) by us-
ing ([16], Theorem 4.1).

We now consider the 2× n−integer matrix B whose j−th column is

aj :=
(

rb(j− 1)
1

)
, j = 1, . . . , n.

Remark 1. Observe that aj =
(
a, rb(n)

)
· aj, for every j = 1, . . . , n.

Notice that the semigroup ideal associated to {a1, . . . , an} is equal to J; indeed, J is
the kernel of (3).

Corollary 1. The ideal J is minimally generated by the 2× 2−minors of Y. Moreover, J has a
unique minimal system of binomial generators.

Proof. Let I2(Y) the ideal generated by the 2× 2−minors of Y. Since b aj + ak+1 = aj+1 +
b ak for every j and k, we have that I2(Y) ⊆ J.
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Conversely, let C be the (n− 2)× n−matrix



b −1 −b 1 0 . . . 0 0 0 0
0 b −1 −b 1 . . . 0 0 0 0
0 0 b −1 −b . . . 0 0 0 0
0 0 0 b −1 . . . 0 0 0 0
0 0 0 0 b . . . 0 0 0 0
...

...
...

...
...

. . .
...

...
...

...
0 0 0 0 0 . . . b −1 −b 1
0 0 0 0 0 . . . 0 b −(b + 1) 1




and let IC be the ideal of k[x1, . . . , xn] generated by

{xu+ − xu− | u is a row of C},

where u+ and u− denote the positive and negative parts of u, respectively. Clearly,
IC ⊆ I2(Y).

Now, as the determinant of the submatrix of C consisting in the last n− 2 columns
is 1, the rows of C generates a rank n− 2 subgroup GC of Zn such that Zn/GC is torsion
free. Moreover, as B C> = 0, we conclude that the rows of C generate kerZ(B). Therefore,
by ([14], Lemma 7.6),

J = IC :
(

∏
j

xj

)∞
⊆ I2(Y) :

(
∏

j
xj

)∞
.

By Proposition 1 and ([17], Theorem 3.1), we have that I2(Y) : x∞
i = I2(Y) for every

i = 1, . . . , n. So, I2(Y) : (∏j xj)
∞ = I2(Y) and, consequently, J ⊆ I2(Y) as desired.

Finally, by Proposition 1, we conclude that the 2× 2−minors of Y form a minimal
system generators of J and, ([4], Corollary 14), we conclude that J has a unique minimal
system of binomial generators.

We recall that semigroup ideals minimally generated by a Graver basis have unique
minimal system of binomials generators (see ([4], Corollary 16)). As Graver bases are in
particular universal Gröbner bases (see [18], Proposition 4.11), by Example 1, we can assure
the minimal system of binomial generators of J is not a Graver basis.

4. Gröbner Basis and Minimal Generators for I

We maintain the notation of the Introduction and the previous Sections, and we set
G(i)4 to be equal to

{
xa+1

1 xb
l − xl+1xb

n | l = 1, . . . , i− 1
}⋃{

xl+1xb
n − xa+1

1 xb
l | l = i, . . . , n− 1

}
,

where the underlined monomials again highlight the leading terms with respect to ≺i of
the corresponding binomials.

Let I2(X) be the ideal of k[x1, . . . , xn] generated by the 2× 2−minors of the matrix X
defined in (2).

Theorem 1. The set G(i) = G(i)Y ∪ G
(i)
4 is a minimal Gröbner basis of I2(X) with respect to ≺i. In

particular, the cardinality of G(i) is (n
2).

Proof. Proceeding as in the proof of Proposition 1, we first need to prove that S( f , g)
reduces to zero with respect to G(i), for every f , g ∈ G(i). However, as, by Proposition 1,
G(i)Y is already a Gröbner basis with respect to ≺i and the leading terms with respect to ≺i
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of the binomials in G(i)4 are relatively prime, it suffices to prove that S( f , g) reduces to zero

with respect to G(i), for every f ∈ G(i)Y and g ∈ G(i)4 . To do this we distinguish three cases:

• f ∈ G(i)1 =
{

xj+1xb
k − xb

j xk+1 | j ∈ {i, . . . , n− 2}, k ∈ {j + 1, . . . , n− 1}
}

. If j 6= l and
k 6= l + 1, then the leading terms of f and g are relatively prime and there is nothing
to prove. Therefore, it suffices to consider the cases j = l or k = l + 1.

◦ If j = l, then l ≥ i; otherwise, the leading terms of f and g are relatively prime,
and S( f , g) = xb

n(−xb
l xk+1)− xb

k(−xa+1
1 xb

l ) = −xb
l (xk+1xn − xa+1

1 xb
l ) reduces to

zero with respect to G(i)4 .
◦ If k = l + 1 then n− 2 ≥ k − 1 = l ≥ j ≥ i, otherwise the leading terms of f

and g are relatively prime, and S( f , g) = xb
n(−xb

j xl+2)− xj+1xb−1
l+1 (−xa+1

1 xb
l ) =

−xb
j xb

nxl+2 + xa+1
1 xj+1xb−1

l+1 xb
l . Observe that the leading term of S( f , g) is divisible

by the leading term of h := xb
nxl+2 − xa+1

1 xb
l+1 ∈ G

(i)
4 . Therefore, S( f , g) =

xb
j h − xb

j xa+1
1 xb

l+1 + xa+1
1 xj+1xb−1

l+1 xb
l = xb

j h − xa+1
1 xb−1

l+1 (xb
j xl+1 − xj+1xb

l ). Now,

as xb
j xl+1 − xj+1xb

l ∈ G
(i)
Y , we are done.

• f ∈ G(i)2 =
{

xj+1xb
k − xb

j xk+1 | j ∈ {1, . . . , i− 2}, k ∈ {j + 1, . . . , i− 1}
}

. If j + 1 6= l
and k 6= l, then the leading terms of f and g are relatively prime and there is nothing
to prove. So, it suffices to consider the cases j = l − 1 or k = l.

◦ If j + 1 = l, then 1 ≤ j = l − 1 < k ≤ i − 1, otherwise the leading terms of f
and g are relatively prime, and S( f , g) = xa+1

1 xb−1
l (−xb

l−1xk+1)− xb
k(−xl+1xb

n) =

xb
k xl+1xb

n − xa+1
1 xb

l−1xb−1
l xk+1. If l = k, then the S-polynomial S( f , g) = xb

k xk+1xb
n

−xa+1
1 xb

k−1xb−1
k xk+1 = −xb−1

k xk+1(xa+1
1 xb

k−1− xkxb
n) reduces to zero with respect

to G(i)4 ; otherwise, the leading term of S( f , g) is xb
k xl+1xb

n which is divisible by

the leading term of h := xb
k xl+1 − xk+1xb

l ∈ G
(i)
4 . So, S( f , g) = xb

nh + xb
nxk+1xb

l −
xa+1

1 xb
l−1xb−1

l xk+1 = xb
nh − xb−1

l xk+1(xa+1
1 xb

l−1 − xb
nxl). Now, since xa+1

1 xb
l−1 −

xb
nxl ∈ G(i)4 , we are done.

◦ If k = l, then 1 ≤ j < k = l ≤ i − 1, otherwise the leading terms of f
and g are relatively prime, and S( f , g) = xa+1

1 (−xb
j xl+1) − xj+1(−xl+1xb

n) =

−xl+1(xa+1
1 xb

j − xj+1xb
n). Now, since xa+1

1 xb
j − xj+1xb

n ∈ G(i)4 , we are done.

• f ∈ G(i)3 =
{

xb
j xk+1 − xj+1xb

k | j ∈ {1, . . . , i− 1}, k ∈ {i, . . . , n− 1}
}

. If j 6= 1, j 6=
l, k 6= l and k 6= n− 1, then the leading terms of f and g are relatively prime and there
is nothing to prove. Therefore, is suffices so consider the cases j = 1, j = l, k = l or
k = n− 1.

◦ If j = 1, then, in particular, l < i, otherwise the leading terms of f and g are rel-
atively prime. Now, if a + 1 ≥ b, then S( f , g) = xa+1−b

1 xb
l (−x2xb

k)− xk+1xl+1xb
n

and its leading term is divisible by the leading term of h := xb
l x2− xl+1xb

1 ∈ G
(i)
2 ∪

G(i)3 ; then S( f , g) = xa+1−b
1 xb

kh− xa+1−b
1 xb

k(−xl+1xb
1)− xk+1xl+1xb

n = xa+1−b
1 xb

kh

−xl+1(xk+1xb
n − xa+1

1 xb
k) which reduces to zero with respect to G(i)2 ∪ G

(i)
3 ∪ G

(i)
4 .

Otherwise, if a+ 1 < b, then S( f , g) = xb
l (−x2xb

k)− xb−a−1
1 xk+1(−xl+1xb

n) and its

leading term is divisible by the leading term of h := xb
l x2 − xl+1xb

1 ∈ G
(i)
2 ∪ G

(i)
3 ;

then S( f , g) = xb
kh −xb

k(−xl+1xb
1) − xb−a−1

1 xk+1(−xl+1xb
n) = xb

kh − xb−a−1
1 xl+1

(xk+1xb
n − xa+1

1 xb
k) which reduces to zero with respect to G(i)2 ∪ G

(i)
3 ∪ G

(i)
4 , too.

◦ If j = l, then 1 ≤ l ≤ i − 1; otherwise, the leading terms of f and g are rela-
tively prime, and S( f , g) = xa+1

1 (−xl+1xb
k)− xk+1(−xl+1xb

n) = −xl+1(xk+1xb
n −

xa+1
1 xb

k) which reduces to zero with respect to G(i)4 .
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◦ If k = l, then i ≤ l ≤ n− 1; otherwise, the leading terms of f and g are relatively
prime, and S( f , g) = xb

n(−xj+1xb
l )− xb

j (−xa+1
1 xb

l ) = xb
l (xa+1

1 xb
j − xj+1xb

n) which

reduces to zero with respect to G(i)4 .
◦ If k = n− 1, then 1 ≤ j < i ≤ l < n, otherwise the leading terms of f and g are

relatively prime. In this case, S( f , g) = xl+1xb−1
n (−xj+1xb

n−1)−xb
j (−xa+1

1 xb
l ) and,

since the leading term of S( f , g) is divisible by the leading term of h := xa+1
1 xb

j −
xj+1xb

n ∈ G(i)4 , we have that S( f , g) = xb
l h− xb

l (−xj+1xb
n) + xl+1xb−1

n (−xj+1xb
n−1)

= xb
l h− xj+1xb−1

n (xl+1xb
n−1 − xb

l xn), and as xl+1xb
n−1 − xb

l xn belongs to G(i)1 , we
are done.

Now, as S( f , g) reduces to zero with respect to G(i) in all the three cases we conclude
that G(i) forms a Gröbner basis.

Once we know that G(i) is a Gröbner basis, we observe that the leading terms of the
binomials in G(i) are not divisible by the leading term of any other binomial in G(i) other
than itself. That is to say, the Gröbner basis G(i) is minimal.

Clearly, G(i) is a subset of 2× 2−minors of X. Moreover, its cardinality is equal to
the cardinality of G(i)Y , that is (n−1

2 ), plus the cardinality, n− 1, of G(i)4 . Therefore, G(i) has
cardinality equal to (n−1

2 ) + (n − 1) = (n
2) which is the number of 2× 2−minors of X.

Hence we conclude that G(i) generates I2(X) and we are done.

Example 2. The minimal Gröbner basis, G(i), of I2(X) with respect to ≺i is not reduced in
general. For example, if n = 4, a = 3 and b = 3, then one can see (using, e.g., Singular [15])
that the binomial x4

4 − x1x4
2x2

3 belongs to the Gröbner basis of I2(X) with respect to ≺2; however,
x4

4 − x1x4
2x2

3 is not a minor of X.

Corollary 2. If gcd(a, rb(n)) = 1, then the ideal I is minimally generated by the 2× 2−minors
of X. In this case, if n > 3, then I has a unique minimal system of generators if and only if and
a < b− 1.

Proof. By Theorem 1, to prove the first part of the statement it suffices to see that I = I2(X).
By Lemma 2, we have that ϕA( f ) = 0, for every f ∈ G(i), where ϕA is the k−algebra

homomorphism define in (1). Therefore I2(X) ⊆ I. Conversely, let L be the (n − 1) ×
n−matrix




b −(b + 1) 1 0 . . . 0 0 0
0 b −(b + 1) 1 . . . 0 0 0
...

...
...

...
...

...
...

0 0 0 0 . . . b −(b + 1) 1
(a + 1) 0 0 0 . . . 0 b −(b + 1)




and let IL be the ideal of k[x1, . . . , xn] generated by

{xu+ − xu− | u is a row of L}.

Clearly, IL ⊆ I2(X).
On the one hand, a direct computation shows that the set of (n− 1)× (n− 1)−minors

of L is equal (up to sign of its elements) to {a1, . . . , an} and therefore, by ([18] [Lemma
12.2),

IL :
( n

∏
i=1

xi
)∞

= I
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if and only if gcd(a1, . . . , an) = gcd(a, rb(n)) = 1. On the other hand, by Theorem 1
and ([17], Theorem 3.1), we have that I2(X) :

(
x∞

i
)
= I2(X) for every i = 1, . . . , n, that is to

say, I2(X) :
(

∏n
i=1 xi

)∞
= I2(X). Putting this together we conclude that

I2(X) = I2(X) :
( n

∏
i=1

xi
)∞ ⊇ IL :

( n

∏
i=1

xi
)∞

= I,

and thus I = I2(X) as claimed.
To prove the second part of the statement, we observe that, for every i 6= n, the

non-leading term, xa+1
1 xb

l , of the binomial xl+1xb
n − xa+1

1 xb
l ∈ G

(i)
4 is divisible by the leading

term of xb
1xl − x2xb

l−1 ∈ G
(i)
3 , provided that l ≥ 3 (otherwise, no such binomial in G(i)3

exists), if and only a + 1 ≥ b. Now, as these are the only divisibility relationships between
the monomials of the binomials in G(i), and l ≥ 3 implicitly requires n > 3 , we obtain that
for n > 3, G(i) is reduced for every ≺i if and only a < b− 1, and, by ([4], Corollary 14), we
conclude that for n > 3, I has a unique minimal system of binomial generators if and only
if and a < b− 1.

Notice that the condition gcd(a, rb(n)) = 1 cannot be avoided.

Example 3. Let n = 4, a = 3 and b = 2. In this case, a1 = rb(4) = 15, a2 = 18, a3 = 24
and a4 = 36. Clearly, gcd(a1, a2, a3, a4) = gcd(a, rb(4)) = 3. By direct computation, one can
check that I is minimally generated by four binomials whereas I2(X) is minimally generated by six
binomials. In particular, I 6= I2(X); in fact, one has that I is a minimal prime of I2(X).

The following example shows the minimal system of generators of I for n = 4.

Example 4. If n = 4, then the ideal I ⊂ k[x1, x2, x3, x4] is minimally generated by

xb+1
2 − xb

1x3, xb
1x4 − x2xb

3, xb+1
3 − xb

2x4

and
xa+b+1

1 − x2xb
4, xa+1

1 xb
2 − x3xb

4, xb+1
4 − xa+1

1 xb
3

(recall that the first three binomials generates J). In [9], a complete classification of the monomial
curves in A4(k) having a unique minimal system of generators is given. By ([9], Theorem 3.11),
one has that I has a unique minimal system of generators if and only if xa+1

1 xb
3 is not divisible by

xb
1x3; equivalently a < b− 1 as we already knew by Corollary 2. Observe that the result on the

uniqueness of the system of generators of I can be deduced from [19], too.

We end this paper by observing that, since both J and I are determinantal ideals by
Corollaries 1 and 2, respectively, one can conveniently adapt ([20], Section 2.1) to compute
the minimal free resolution of I and J using the Eagon–Northcott complex. In particular,
one can prove that the k−algebras k[x1, . . . , xn]/J and k[x1, . . . , xn]/I are Cohen–Macaulay
of type n − 2 and n − 1, respectively (see ([20], Section 2.1 for further details)). The
explicit computation of the minimal free resolution of k[x1, . . . , xn]/J and k[x1, . . . , xn]/I is
a future work.
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CHAPTER 3

The Frobenius problem for generalized repunit numerical

semigroups

In this chapter, we delve into the combinatorics of generalized repunit numerical

semigroups. Let b > 1 be a integer. We recall that (rb(ℓ))ℓ∈N is the sequence such that

rb(0) = 0, defined by the recurrence relation rb(ℓ) = brb(ℓ− 1) + 1, ℓ > 0.

Given two positive integers n > 1 and a, we firstly consider the the submonoid of N

generated by {a1, a2, . . .}, such that

ai = rb(n) + arb(i− 1), for every i ≥ 1.

We prove that the condition gcd(a1, a) = 1 is necessary and sufficient for such a monoid

to be a numerical semigroup. In this case, it is called a generalized repunit numerical

semigroup by us, or a grepunit semigroup for short, denoted Sa(b, n), and we prove that

Sa(b, n) is minimally generated by A = {a1, . . . , an}.
All Sa(b, n) share a particular combinatorial invariant, a certain subposet of Nn−1,

ordered by the standard product order, firstly introduced in the study of repunit numer-

ical semigroups, denoted R(b, n) as a set, from which we explicitly describe the Apéry

set of Sa(b, n), relative to its multiplicity a1 = rb(n), denoted Ap(Sa(b, n)). Notice that,

by Proposition 22 given in Section 2 of Chapter 1, the set R(b, n) can be read on the

minimal system of IA, for each a.

Then, we get closed formulas for the Frobenius number and genus of grepunit semi-

groups as functions of a, b and n, which are the main results of these chapter. Fur-

thermore, we prove that the maximals of R(b, n) corresponds in a one-to-one manner

to the maximals of Ap(Sa(b, n)), ordered by the partial order given by Sa(b, n), by the

restriction of the factorization map degA to {0}×R(b, n). In particular, we obtain that

the type of Sa(b, n) is n − 1 and, thus, since Sa(b, n) has embedding dimension n, we

have that grepunit semigroups are Wilf.

34



3. THE FROBENIUS PROBLEM FOR GENERALIZED REPUNIT NUMERICAL SEMIGROUPS 35

Notice we describe the whole set of Pseudo-Frobenius numbers of Sa(b, n) as the

set of terms of the arithmetic sequence starting with ban − a1 and whose step is the

common diference bai − ai+1. As point out in [47], this step can be read on the matrix

X, defined in Chapter 2, which gives the minors of the minimal system of IA. Also,

notice the type of Sa(b, n) is already clear from the determinantal structure of IA, as

explained in the next and final chapter of this thesis.

The forthcoming paper is published in [Branco, M.B., Colaço, I. & Ojeda, I. The

Frobenius Problem for Generalized Repunit Numerical Semigroups. Mediterr. J. Math.

20, 16 (2023)] https://doi.org/10.1007/s00009-022-02233-w. This is an open ac-

cess article distributed under the terms of the Creative Commons CC BY license, which

permits unrestricted use, distribution, and reproduction in any medium, provided the

original work is properly cited.

https://doi.org/10.1007/s00009-022-02233-w
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The Frobenius Problem for Generalized
Repunit Numerical Semigroups

Manuel B. Branco, Isabel Colaço and Ignacio Ojeda

Abstract. In this paper, we introduce and study the numerical semi-
groups generated by {a1, a2, . . .} ⊂ N such that a1 is the repunit number
in base b > 1 of length n > 1 and ai − ai−1 = a bi−2, for every i ≥ 2,
where a is a positive integer relatively prime with a1. These numerical
semigroups generalize the repunit numerical semigroups among many
others. We show that they have interesting properties such as being ho-
mogeneous and Wilf. Moreover, we solve the Frobenius problem for this
family, by giving a closed formula for the Frobenius number in terms of
a, b and n, and compute other usual invariants such as the Apéry sets,
the genus or the type.
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1. Introduction

Let N be the set of nonnegative integers. A numerical semigroup S is a subset
of N containing zero which is closed under addition of natural numbers and
such that N\S is finite. The cardinality of N\S is called the genus of S,
denoted g(S).

Numerical semigroups have a unique finite minimal system of genera-
tors, that is, given a numerical semigroup S there exists a unique set {a1, . . . ,
ae} ⊂ N such that

S = Na1 + · · · + Nae

and no proper subset of {a1, . . . , ae} generates S (see [10, Theorem 2.7]).
In this case, the set {a1, . . . , ae} is the minimal system of generators of S,
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de Extremadura (Spain)/FEDER funds.
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its cardinality is called the embedding dimension of S, denoted e(S), and
min{a1, . . . , ae} is called the multiplicity of S, denoted m(S). Notice that
the finiteness of the genus implies that gcd(a1, . . . , ae) = 1. In fact, one has
that the necessary and sufficient condition for a subset A of N to generate a
numerical semigroup is gcd(A) = 1 (see, e.g., [10, Lemma 2.1]).

Let S be a numerical semigroup. Since N\S is finite, there exists the
greatest integer not in S which is called the Frobenius number of S, denoted
F(S). The so-called Frobenius problem deals with finding a closed formula
for F(S) in terms of the minimal systems of generators of S, if possible (see,
e.g., [9]).

Let b be a positive integer greater than 1. Set a1 =
∑n−1

j=0 bj and consider

the sequence (ai)i≥1 defined by the recurrence relation

ai − ai−1 = a bi−2, for every i ≥ 2,

where a and n are positive integers. In this paper, we study the numerical
semigroups, Sa(b, n), generated by {a1, a2, . . .}, provided that gcd(a1, a) = 1.
This last condition is necessary and sufficient for Sa(b, n) to be a numerical
semigroup (see Proposition 4). In this case, we say that Sa(b, n) is a gener-
alized repunit numerical semigroup as it generalizes the repunit numerical
semigroups studied in [11] (see Example 7).

Clearly, the generalized repunit numerical semigroup Sa(b, n) has mul-
tiplicity a1. Moreover, by Theorem 6, we have that Sa(b, n) is minimally gen-
erated by {a1, . . . , an}; in particular, the embedding dimension of Sa(b, n) is
n.

The main results in this paper are Theorem 22, which provides the
following formula for the Frobenius number of Sa(b, n):

F(Sa(b, n)) =

⎧
⎨
⎩

(n − 1) (bn − 1 − a) + a
(∑n−1

j=0 bj
)

if a < bn − 1;

bn − 1 − a + a
(∑n−1

j=0 bj
)

if a > bn − 1,

and Corollary 26, which gives the following formula for the genus of Sa(b, n):

g(Sa(b, n)) =
(n − 1) bn + a

(∑n−1
j=1 bj

)

2
.

To achieve these results, we take advantage of Selmer’s formulas, summarized
in Proposition 20. These formulas depend on the Apéry sets of Sa(b, n). We
explicitly compute the Apéry set of Sa(b, n) with respect to a1 (Theorem
15). This is a result that may seem technical; however, it reflects the inter-
nal structure of generalized repunit numerical semigroups. For instance, the
Apéry set of Sa(b, i) can be obtained from the Apéry set of Sa(b, i − 1), for
every i ≥ 3. This is Corollary 19 whose statement is a stronger version of [8,
Theorem 3.3] partially thanks to the fact that generalized repunit numerical
semigroups are homogeneous in the sense of [5] (Proposition 17).

The last section of the paper is devoted to the computation of the
pseudo-Frobenius numbers of Sa(b, n). Concretely, using our results in Sect. 3,
we explicitly compute the whole set of pseudo-Frobenius numbers of Sa(b, n)
and we obtain that its cardinality is n−1 (Proposition 29). So, we prove that
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the type of Sa(b, n) is equal to n − 1 which implies that Sa(b, n) is Wilf (see
Sect. 5 for further details).

Generalized repunit numerical semigroups have other interesting prop-
erties. Without going further, using Gröbner basis techniques, in [1] it is
proved that the toric ideal associated to Sa(b, n) is determinantal and that
the cardinal of any minimal presentation of Sa(b, n) is

(
n
2

)
. Moreover, follow-

ing [7], we proved that, for n > 3, generalized repunit numerical semigroups
are uniquely presented, in the sense of [4], if and only if a < b − 1.

Finally, we note that our results are also valid for the case b = 1. In this
case, ai = n + (i − 1) a, i ≥ 1, is an arithmetic sequence that generates a
MED semigroup, provided that gcd(n, a) = 1. These semigroups are widely
known (see, e.g., [10, Section 3]); for this reason and for the sake of simplicity,
we consider b > 1; so that a1 is properly a repunit number.

2. Generalized Repunit Numerical Semigroups

Let b > 1 be a positive integer.

Definition 1. A repunit number in base b is an integer whose representation
in base b contains only the digit 1.

We write rb(�) for the repunit number in base b of length �, that is,

rb(�) =

�−1∑

j=0

bj =
b� − 1

b − 1
.

By convention, we assume rb(0) = 0.

Example 2. The first six repunit numbers in base 2 are 1, 3, 7, 15, 31, 63 . . .,
whereas the first six repunit numbers in base 3, are 1, 4, 13, 40, 121, 364 . . ..
Observe that repunit numbers in base 2 are the Mersenne numbers.

Here and in what follows, a and n denote two positive integers.

Notation 3. Set ai := rb(n) + a rb(i − 1), i ≥ 1. Observe that a1 = rb(n) and
ai − ai−1 = a bi−2, for every i ≥ 2. We write Sa(b, n) for the submonoid of N
generated by ai, i≥1.

If n = 1, then a1 = 1 and therefore Sa(b, n) = N. So, in the following
we assume that n > 1.

Proposition 4. Sa(b, n) is a numerical semigroup if and only if gcd(rb(n), a)=1.

Proof. Let d = gcd(rb(n), a). By definition, Sa(b, n) ⊆ d N. Now, if Sa(b, n)
is a numerical semigroup, then N\d N ⊂ N\Sa(b, n) has finitely many ele-
ments, and hence d = 1. Conversely, if gcd(rb(n), a) = 1, then gcd(a1, a2) =
gcd(rb(n), rb(n) + a) = gcd(rb(n), a) = 1. So, a1N + a2N is a numerical semi-
group containing Sa(b, n). Therefore, N\Sa(b, n) ⊆ N\(a1N+a2N) has finitely
many elements, that is to say, Sa(b, n) is a numerical semigroup. �
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Let us prove that if gcd(rb(n), a) = 1, then {a1, . . . , an} is the minimal
generating set of Sa(b, n). We begin with a useful lemma.

Lemma 5. The following equality holds: an+i = ai + a bi−1 a1, for all i ≥ 1.

Proof. It suffices to observe that rb(n + i − 1) = rb(i − 1) + bi−1 rb(n), for all
i ≥ 1, and, consequently, that an+i = a1 + a rb(n + i − 1) = a1 + a (rb(i −
1) + bi−1rb(n)) = ai + a bi−1 a1, for all i ≥ 1. �

Observe that the previous lemma already implies that {a1, . . . , an} gen-
erates Sa(b, n). So, it remains to see that {a1, . . . , an} is minimal for the in-
clusion. In this case, by [10, Theorem 2.7], {a1, . . . , an} will be the (unique)
minimal system of generators of Sa(b, n).

Theorem 6. If Sa(b, n) is a numerical semigroup, then {a1, . . . , an} is the
minimal system of generators of Sa(b, n). In particular, the embedding di-
mension of Sa(b, n) is n.

Proof. By Lemma 5, we have that {a1, . . . , an} is a system of generators of
Sb(a, n). Now, since a1 < · · · < an, to see the minimality property, it suffices
to prove that ai �∈ 〈a1, . . . , ai−1〉 for every i ∈ {2, . . . , n}. By the condition
gcd(a1, a2) = gcd(a1, a) = 1 this is true for i = 2. Also when a = 1, we have

that ai − ak = rb(i − 1) − rb(k − 1) =
∑i−2

j=k−1 bj < a1, for every k ≤ i, and

consequently, ai �∈ 〈a1, . . . , ai−1〉.
So, from now on we assume a > 1 and i ∈ {3, . . . , n}. If ai ∈ 〈a1, . . . , ai−1〉,

then there exist u1, . . . , ui−1 ∈ N such that ai =
∑i−1

j=1 ujaj . Therefore,

ai = a1 + a rb(i − 1) is equal
( ∑i−1

j=1 uj

)
a1 + a

∑i−1
j=1 ujrb(j − 1) and thus

⎛
⎝

i−1∑

j=1

uj

⎞
⎠ a1 ≡ a1 (mod a).

Now, since Sa(b, n) is a numerical semigroup, by Proposition 4, we have

gcd(a1, a) = gcd(rb(n), a) = 1, and we conclude that
∑i−1

j=1 uj ≡ 1 (mod a).

If
∑i−1

j=1 uj = 1, then there exists k ∈ {1, . . . , i − 1} such that uk = 1 and
uj = 0 for every j �= k, that is to say, ai = ak which is not possible because

k < i. Thus, there exists a positive integer N such that
∑i−1

j=1 uj = 1 + N a.

Therefore, ai = (1 + N a) a1 ≥ (1 + a) a1 = an+1, where the last equal-
ity follows from Lemma 5. However, this inequality implies i ≥ n + 1, in
contradiction to our assumption. �

We emphasize that the hypothesis Sa(b, n) is a numerical semigroup
(equivalently, gcd(a1, . . . , an) = 1) cannot be avoided for the minimality
property of {a1, . . . , an}; for example, if b = 2, a = 5 and n = 4, we have
that a1 = 15, a2 = 20, a3 = 30 and a4 = 50; clearly, a1 and a2 suffice to
generate Sa(b, n), in this case.

Here and throughout this section, we suppose gcd(rb(n), a) = 1 so that
Sa(b, n) is a numerical semigroup with multiplicity a1 and, by Theorem 6,
of embedding dimension n. We call these semigroups generalized repunit nu-
merical semigroups or grepunit semigroups for short.
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Example 7.

(i) If a = 2n, a1 = 2n − 1 and b = 2, then Sa(b, n) is a Mersenne numerical
semigroup (see [12]).

(ii) If a = bn, then Sa(b, n) is a repunit numerical semigroup (see [11]).

The numerical semigroups in Example 7 are part of the larger family of
those numerical semigroups which are closed respect to the action of affine
maps. A numerical semigroup S is said to be closed respect to the action of
an affine map if there exists α ∈ N\{0} and β ∈ Z such that αs + β ∈ S, for
every s ∈ S\{0}.

Corollary 8. Sa(b, n) is closed by the action of the affine map x �→ b x + a −
(bn − 1).

Proof. We first, observe that

b aj + a − (bn − 1) = b aj + a − (b − 1)rb(n)

= b rb(n) − (b − 1) rb(n) + a b rb(j − 1) + a

= rb(n) + a b rb(j − 1) + a = rb(n) + a rb(j)

= aj+1,

for every j ≥ 1.
Now, since {a1, a2, . . . , an} generates Sa(b, n), given s ∈ S\{0}, there

exist ui ∈ N, i = 1, . . . , n, with uj �= 0 for some j, such that s =
∑n

i=1 uiai.
Therefore,

b s + a − (bn − 1) =

n∑

i=1

(uib) ai + a − (bn − 1)

=
n∑

i=1
i�=j

(uib) ai + (ujb) aj + a − (bn − 1)

=
n∑

i=1
i�=j

(uib) ai +
(
(uj − 1)b

)
aj + b aj + a − (bn − 1)

=
n∑

i=1
i�=j

(uib) ai +
(
(uj − 1)b

)
aj + aj+1 ∈ S,

as claimed. �

In [13], numerical semigroups which are closed respect to the action
of the affine maps x �→ αx + β, with α ∈ N\{0} and β ∈ N, are studied.
Therefore, by Corollary 8, the grepunit semigroup Sa(b, n) belongs to the
family studied in [13] if and only if a − (bn − 1) > 0; equivalently, a > bn − 1.

Remark 9. Grepunit semigroups could be seen also as shifted numerical
monoids in the sense of [8]; since, by Theorem 6, Sa(b, n) is minimally gen-
erated by

{a1, a1 + a rb(1), . . . , a1 + a rb(n − 1)}.
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Nevertheless, the hypothesis rb(n) = a1 > a2 rb(n − 1)2 required in [8] only
holds for grepunit semigroups when n = 2 and a2 < b + 1. Indeed, rb(n) >
a2 rb(n − 1)2 if and only if

a2 <
rb(n)

rb(n − 1)2
=

1 + b rb(n − 1)

rb(n − 1)2
=

1

rb(n − 1)2
+

b

rb(n − 1)
.

Now, as the right hand side is either 1+ b, if n = 2, or less than (1+2b)/(1+
b)2 < 1, otherwise, we are done.

To finish this section, we make explicit a set of relations which charac-
terizes Sa(b, n).

Lemma 10. For each pair of integers i ≥ 1 and j ≥ 1, it holds that b ai +
ai+j = b ai+j−1 + ai+1.

Proof. Since ai+j = a1 + a rb(i + j − 1) = a1 + a (rb(i − 1) + bi−1 rb(j)) =
ai + a bi−1 rb(j), for every j, we have that

b ai + ai+j = b ai + ai + a bi−1 rb(j)

= b ai + ai + a bi−1 (b rb(j − 1) + 1)

= b (ai + a bi−1 rb(j − 1)) + ai + a bi−1

= b ai+j−1 + (a1 + a rb(i − 1)) + a bi−1

= b ai+j−1 + ai+1,

as claimed. �

Let us delve into what it is said in Lemma 10. Consider the subgroup
L of Zn generated by the rows of the (n − 1) × n−matrix

A =

⎛
⎜⎜⎜⎜⎜⎝

b −(b + 1) 1 0 . . . 0 0 0
0 b −(b + 1) 1 . . . 0 0 0
...

...
...

...
...

...
...

0 0 0 0 . . . b −(b + 1) 1
(a + 1) 0 0 0 . . . 0 b −(b + 1)

⎞
⎟⎟⎟⎟⎟⎠

.

We first observe that, by Lemma 5, all the equalities in Lemma 10 can be
written in the form

v A

⎛
⎜⎝

a1

...
an

⎞
⎟⎠ = 0

for some v ∈ Zn−1. Moreover, taking into account that, by Lemma 5 again,
an+1 = (a + 1) a1, a direct computation shows that the maximal minors of
A are equal to −a1, a2,−a3, . . . , (−1)nan. So, Zn/L is a group of rank n − 1
which is torsion free if and only if gcd(a1, . . . , an) = 1; equivalently, Sa(b, n)
is a numerical semigroup by Proposition 4. Thus, in this case, we have that
the semigroup homomorphism

Sa(b, n) −→ Nn/L; s =

n∑

i=1

uiai �−→ (u1, . . . , un) + L,
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is an isomorphism; that is to say, Sa(b, n) is the finitely generated commuta-
tive monoid corresponding to the congruence ∼ on Nn defined by u ∼ v ⇐⇒
u − v ∈ L.

Now, as a straightforward consequence of the results in [6, Section 7.1]
we conclude the following.

Corollary 11. Let � be a field. The semigroup ideal of �[x1, . . . , xn] associated
to Sa(b, n) is equal to the ideal IL generated by

{xu1
1 · · · xun

n − xv1
1 · · · xvn

n | ui − vi ∈ L, i = 1, . . . , n}. (1)

Observe that accordingly to the definition of L the binomials in IL not
involving x1 are homogeneous.

3. Apéry Sets of Grepunit Semigroups

The main aim of this section is to determine the Apéry set of a grepunit
semigroup with respect to its multiplicity. Let us start by recalling what
Apéry sets of a numerical semigroup are.

Definition 12. Let S be a numerical semigroup. The Apéry set of S with
respect to s ∈ S, denoted Ap(S, s), is defined as

Ap(S, s) = {ω ∈ S | ω − s �∈ S}.

For the sake of simplicity, we write Ap(S) for the Apéry set of S with respect
to its multiplicity, that is, Ap(S) = Ap(S,m(S)).

Let a, b and n be three positive integers such that b > 1, n > 1 and
gcd(rb(n), a) = 1. As mentioned above, the main objective of this section is
to compute Ap(Sa(b, n)). To this end, we first introduce the sets R(b, i).

Definition 13. Let i ≥ 2 be an integer and define R(b, i) to be the subset of
Ni−1 whose elements (u2, . . . , ui) satisfy

(a) 0 ≤ uj ≤ b, for every j = 2, . . . , i;
(b) if uj = b, then uk = 0 for every k < j.

Observe that

R(b, i) = (R(b, i − 1) × {0, . . . , b − 1}) ∪ {(0, . . . , 0, b)} ⊂ Ni−1, (2)

for every i ≥ 3.

Lemma 14. The cardinality of R(b, i) is equal to rb(i), for every i ≥ 2.

Proof. We proceed by induction on i. If i = 2, then R(b, i) = {0, 1, . . . , b} and
rb(i) = b + 1. Suppose that i > 2 and that the result is true for i − 1. By (2),
the cardinality of R(b, i) is equal to b times the cardinality of R(b, i − 1) plus
one. Since, by induction hypothesis, the cardinality of R(b, i − 1) is equal to
rb(i − 1) and rb(i) = b rb(i − 1) + 1, we are done. �
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Recall that, by Proposition 4, we have that Sa(b, n) is a grepunit semi-
group if and only if gcd(rb(n), a) = 1. In this case, Sa(b, n) is minimally
generated by

a1 := rb(n), a2 := rb(n) + a rb(1), . . . , an := rb(n) + a rb(n − 1),

by Theorem 6.

Theorem 15. With the above notation, we have that

Ap(Sa(b, n)) =

{
n∑

i=2

uiai | (u2, . . . , un) ∈ R(b, n)

}
.

Proof. For the sake of simplicity of notation, we write S for Sa(b, n).
As Ap(S) ⊂ N, its elements are naturally ordered: 0 = ω1 < . . . < ωa1

.
So, we can proceed by induction on the index j of ωj . If j = 1, then ωj = 0;
so, by taking (0, . . . , 0) ∈ R(b, n) we are done. Suppose now that j > 1 and
that the result is true for every j′ < j. Let k be the smallest index such that
ωj −ak ∈ S. Clearly, (ωj −ak)−a1 �∈ S; otherwise ωj −a1 =

(
(ωj −ak)−a1

)
+

ak ∈ S, in contradiction with the fact that ωj ∈ Ap(S). Therefore ωj − ak ∈
Ap(S) and, by induction hypothesis, there exists (u2, . . . , un) ∈ R(b, n) such
that ωj − ak =

∑n
i=2 uiai. Thus,

ωj =

k−1∑

i=2

uiai + (uk + 1)ak +

n∑

i=k+1

uiai = (uk + 1)ak +

n∑

i=l+1

uiai,

where the second equality follows from the minimality of k. Let us see that
(0, . . . , 0, uk + 1, uk+1, . . . , un) lies in R(b, n). If uk + 1 ≤ b and ui < b, i ∈
{k + 1, . . . , n}, we are done. So, we distinguish two cases:

• If uk +1 > b, then uk +1 = b+1. In this case, (uk +1)ak = (b+1) ak =
b ak + ak = b ak−1 + ak+1, where the last equality follows from Lemma
10.

• If ui = b, for some i ∈ {k + 1, . . . , n}, then uk = 0 and so (uk + 1)ak +
uiai = ak + bai = b ak−1 + ai+1, where the last equality follows from
Lemma 10 again.

In both cases, we obtain that ωj −ak−1 ∈ S which contradicts the minimality
of k. Hence, none of these two cases can occur. �

In [5], the notion of homogeneous numerical semigroups is introduced.
Recall that if S is a numerical semigroup minimally generated by {a1, . . . , an},
then the set of lengths of s ∈ S is defined as

LS(s) :=

⎧
⎨
⎩

n∑

j=1

uj | s =

n∑

j=1

uj aj , uj ≥ 0

⎫
⎬
⎭ .

Definition 16. A numerical semigroup is said to be homogeneous if LS(s) is
a singleton for each s ∈ Ap(S).

Proposition 17. The numerical semigroup Sa(b, n) is homogeneous.
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Proof. By [5, Proposition 3.9] and Corollary 11, it suffices to observe that
one of the terms of each non-homogeneous element in (1) for the standard
grading on �[x1, . . . , xn] is divisible by x1. �

Let us see now that, for i ∈ {3, . . . , n}, the Apéry set Ap(Sa(b, i)) can
be constructed from the set R(b, i − 1). But, first we need a further piece of
notation.

Recall that, by Proposition 4, we have that Sa(b, i) is a grepunit semi-
group if and only if gcd(rb(i), a) = 1. In this case, Sa(b, i) is minimally gen-
erated by

a
(i)
1 := rb(i), a

(i)
2 := a

(i)
1 + a rb(1), . . . , a

(i)
i := a

(i)
1 + a rb(i − 1),

by Theorem 6.

Corollary 18. Let i ∈ {3, . . . , n}. If gcd(rb(i), a) = 1, then ω ∈ Ap(Sa(b, i))

if and only if ω = b a
(i)
i or there exist (u2, . . . ui−1) ∈ R(b, i − 1) and ui ∈

{0, . . . , b − 1} such that

ω =

i−1∑

j=2

uja
(i−1)
j + bi−1

⎛
⎝

i−1∑

j=2

uj

⎞
⎠ + ui a

(i)
i . (3)

Proof. We observe that a
(i)
j = a

(i−1)
j + rb(i) − rb(i − 1) = a

(i−1)
j + bi−1, j =

0, . . . , i − 1. So, (3) becomes

ω =
i−1∑

j=1

uja
(i)
j + ui a

(i)
i

and, taking into account (2), our claim readily follows from Theorem 15. �

Notice that, by Theorem 15, an immediate consequence of Corollary 18
is that Ap(Sa(b, i)) can be constructed from Ap(Sa(b, i − 1)) provided that
both Sa(b, i) and Sa(b, i − 1) are numerical semigroups; indeed, the first and
second summands in the right hand side of (3) correspond to the elements of
Ap(Sa(b, i − 1)) and their lengths, respectively. Recall that, by Proposition
17, all elements in Ap(Sa(b, i − 1)) have the same length.

If S is a homogeneous numerical semigroup, we write mS(s) for the
length of s ∈ Ap(S). The notation mS(s) is usually reserved for the minimal
length s ∈ S; clearly, no ambiguity occurs in our case.

The following result is a straightforward consequence of Corollary 18.

Corollary 19. Let i ∈ {3, . . . , n}. If gcd(rb(i), a) = gcd(rb(i − 1), a) = 1, then

ω ∈ Ap(Sa(b, i)) if and only if ω = b a
(i)
i or there exist ω′ ∈ Ap(Sa(b, i − 1))

and ui ∈ {0, . . . , b − 1} such that

ω = ω′ + bi−1 mSa(b,i−1)(ω
′) + ui a

(i)
i . (4)

Corollary 19 maintains a great similarity with [8, Theorem 3.3]; however,
the techniques used are very different and, more importantly, we do not
require the hypothesis rb(n) > a2 rb(n − 1)2 (see Remark 9).
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4. The Frobenius Problem

Let a, b and n be three positive integers such that b>1, n>1 and gcd(rb(n), a)
= 1.

In this section, we address the Frobenius problem for Sa(b, n). More
precisely, we will give a formula for F(Sa(b, n)) in terms of a, b and n. To do
this, we take advantage of the following result due to Selmer (see, e.g., [10,
Proposition 2.21]).

Proposition 20. Let S be a numerical semigroup and let s ∈ S\{0}. Then,

(a) F(S) = max Ap(S, s) − s;

(b) g(S) = 1
s

(∑
ω∈Ap(S,s) ω

)
− s−1

2 .

Before giving our formula for the Frobenius number, we show an inter-
esting result which will be used below and later in the last section. As in the
previous section, we write Ap(S) for Ap(S,m(S)).

Lemma 21. If αi := ai +
∑n

j=i(b − 1) aj , i = 2, . . . , n, then the following
holds:

(a) αi ∈ Ap(Sa(b, n)), for every i = 2, . . . , n
(b) If a < bn −1, then α2 > . . . > αn, and if a > bn −1, then α2 < . . . < αn.
(c) For each ω ∈ Ap(Sa(b, n)), there exists i ∈ {2, . . . , n} such that ω ≤ αi.

Proof. Part (a) is nothing but a particular case of Theorem 15. To prove (b),
it suffices to observe that

αi − αi+1 = b ai − ai+1 = bn − 1 − a, i = 2, . . . , n − 1,

and note that bn − 1 �= a because gcd(rb(n), a) = 1 by hypothesis. Finally, to
prove (c) we can take advantage of Theorem 15 which state that for each ω ∈
Ap(Sa(b, n)), there exist (u2, . . . , un) ∈ R(b, n) such that ω =

∑n
j=2 uj aj .

Clearly, by the definition of R(b, n), if ui is the leftmost nonzero entry in
(u2, . . . , un) ∈ R(b, n), then

n∑

j=2

uj aj ≤ ai +

n∑

j=i

(b − 1) aj = αi

and we are done. �

Theorem 22. The Frobenius number of Sa(b, n) is equal to

(a) (n − 1) (bn − 1 − a) + a a1, if a < bn − 1;
(b) bn − 1 − a + a a1, if a > bn − 1.

Proof. By Lemma 21, we have that max Ap(Sa(b, n)) is equal to either a2 +∑n
j=2(b − 1) aj , if a < bn − 1, or b an, if a > bn − 1. So, we distinguish two

cases:
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(a) If a < bn − 1, then max Ap(Sa(b, n)) = α2. So, by Selmer’s formula
(Proposition 20), we obtain that

F(Sa(b, n)) =

⎛
⎝a2 +

n∑

j=2

(b − 1) aj

⎞
⎠ − a1 =

n∑

j=2

(b − 1) aj + a

=

n∑

j=2

(b − 1)

(
a1 + a

j−2∑

k=0

bj

)
+ a

= (n − 1)(b − 1)a1 + a

n∑

j=2

(bj−1 − 1) + a

= (n − 1)(b − 1)a1 + a a1 − (n − 1)a

= (n − 1) (bn − 1 − a) + a a1.

(b) If a > bn − 1, then max Ap(Sa(b, n)) = αn. So, by Selmer’s formula we
conclude that

F(Sa(b, n)) = b an − a1 = b (a1 + a rb(n − 1)) − a1

= (b − 1)a1 + a b, rb(n − 1) = bn − 1 + a (a1 − 1)

= bn − 1 − a + a a1.

�

Observe that condition a > bn − 1 corresponds to the case considered
in [13] (see the comment after Corollary 8).

5. The Genus of Grepunit Semigroups

In this section, we use Selmer’s formulas (Proposition 20) to compute the
genus of grepunit semigroups in terms of a, b and n.

The following results state some useful properties of the sets R(b, i).

Lemma 23. Let b > 1 be an integer. For each i ≥ 2, the following holds:

∑

(u2,...ui)∈R(b,i)

⎛
⎝

i∑

j=2

uj

⎞
⎠ =

i∑

j=2

bi + bi−(j−1)

2
.

Proof. We proceed by induction on i. If i = 2, then R(b, i) = {0, 1, . . . , b}
and our claim readily follows. Suppose that i > 2 and that the result is true
for i − 1. Now, since by Lemma 14 the cardinality of R(b, i − 1) is equal to
rb(i − 1), by (2), we have that

∑

(u2,...ui)∈R(b,i)

⎛
⎝

i∑

j=2

uj

⎞
⎠

=
∑

(u2,...ui−1)∈R(b,i−1)

b

⎛
⎝

i−1∑

j=2

uj

⎞
⎠ + rb(i − 1)

(
b−1∑

k=0

k

)
+ b.



   16 Page 12 of 18 M. B. Branco et al. MJOM

So, by induction hypothesis, we obtain that

∑

(u2,...ui)∈R(b,i)

⎛
⎝

i∑

j=2

uj

⎞
⎠ = b

i−1∑

j=2

bi−1 + b(i−1)−(j−1)

2
+ rb(i − 1)

(
b−1∑

k=0

k

)
+ b

=

i−1∑

j=2

bi + bi−(j−1)

2
+

bi−1 − 1

b − 1

b(b − 1)

2
+ b

=
i−1∑

j=2

bi + bi−(j−1)

2
+

bi + b

2
=

i∑

j=2

bi + bi−(j−1)

2
,

as claimed. �

As in previous sections, let a, b and n be three positive integers such
that b > 1 and n > 1. Given i ∈ {2, . . . , n}, we write

a
(i)
1 := rb(i), a

(i)
2 := a

(i)
1 + a rb(1), . . . , a

(i)
i := a

(i)
1 + a rb(i − 1).

Proposition 24. Let i ∈ {2, . . . , n}. Then,

∑

(u2,...ui)∈R(b,i)

⎛
⎝

i∑

j=2

uja
(i)
j

⎞
⎠ =

i∑

j=2

bi + bi−(j−1)

2
a
(i)
j .

Proof. We proceed by induction on i. If i = 2, then R(b, i) = {0, . . . , b} and

∑

u2∈{0,...,b}

(
u2 a

(2)
2

)
=

⎛
⎝ ∑

u2∈{0,...,b}
u2

⎞
⎠ a

(2)
2 =

b (b + 1)

2
a
(2)
2 .

Suppose now i > 2 and that the result is true for i − 1. Since a
(i)
j = a

(i−1)
j +

bi−1, j = 1, . . . , i − 1, by (2), we have that

∑

(u2,...ui)∈R(b,i)

⎛
⎝

i∑

j=2

uja
(i)
j

⎞
⎠ =

∑

(u2,...,ui−1)∈R(b,i−1)

b

⎛
⎝

i−1∑

j=2

uja
(i−1)
j

⎞
⎠ +

+ bi−1

⎛
⎝ ∑

(u2,...,ui−1)∈R(b,i−1)

⎛
⎝

i−1∑

j=2

uj

⎞
⎠

⎞
⎠ +

+ rb(i − 1)

b−1∑

k=0

k a
(i)
i + b a

(i)
i .

By induction hypothesis, the first summand of the right hand side is equal
to

b

⎛
⎝

i−1∑

j=2

bi−1 + bi−1−(j−1)

2
a
(i−1)
j

⎞
⎠ =

i−1∑

j=2

bi + bi−(j−1)

2
a
(i−1)
j ,
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and, by Lemma 23, the second summand of the right hand side is equal to

bi−1

⎛
⎝

i−1∑

j=2

bi + bi−(j−1)

2

⎞
⎠ =

i−1∑

j=2

bi + bi−(j−1)

2
bi−1

=

i−1∑

j=2

bi + bi−(j−1)

2

(
a
(i)
j − a

(i−1)
j

)
.

Therefore,

∑

(u2,...ui)∈R(b,i)

⎛
⎝

i∑

j=2

uja
(i)
j

⎞
⎠

=
i−1∑

j=2

bi + bi−(j−1)

2
a
(i)
j + +rb(i − 1)

b−1∑

k=0

k a
(i)
i + b a

(i)
i

=

i−1∑

j=2

bi + bi−(j−1)

2
a
(i)
j +

(
i−2∑

k=0

bk

)
(b − 1)b

2
a
(i)
i + b a

(i)
i

=

i−1∑

j=2

bi + bi−(j−1)

2
a
(i)
j +

bi + b

2
a
(i)
i =

i∑

j=2

bi + bi−(j−1)

2
a
(i)
j ,

as claimed. �

The next result follows immediately from Theorem 15 and Proposition
24.

Corollary 25. Let i ∈ {2, . . . , n}. Then

∑

ω∈Ap(Sa(b,i))

ω =

i∑

j=2

bi + bi−(j−1)

2
a
(i)
j .

Now, as a direct consequence of Corollary 25 and Selmer’s formula
(Proposition 20), we obtain the following formula for the genus of Sa(b, n),
provided that gcd((rb(n), a) = 1.

g(Sa(b, n)) =

∑n
j=2

bn + bn−(j−1)

2
aj

a1
− a1 − 1

2

=
1

a1

n∑

j=2

bn + bn−(j−1)

2
aj − a1 − 1

2

(5)

where aj = a
(n)
j , j = 1, . . . , n, as usual.

Corollary 26. The genus of Sa(b, n) is equal to

g(Sa(b, n)) =
(n − 1) bn + (a1 − 1) a

2
.
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Proof. Since aj = a1 + a rb(j − 1), by Eq. (5), we have that

g(Sa(b, n)) =
1

2 a1

n∑

j=2

(bn + bn−(j−1)) (a1 + a rb(j − 1)) − a1 − 1

2

=
1

2

n∑

j=2

(bn + bn−(j−1)) +
a

2a1

n∑

j=2

(bn + bn−(j−1)) rb(j − 1) − a1 − 1

2

=
(n − 1) bn

2
+

a1 − 1

2
+

a

2a1

n∑

j=2

(bn + bn−(j−1)) rb(j − 1) − a1 − 1

2

=
(n − 1) bn

2
+

a

2a1

n∑

j=2

(bn + bn−(j−1)) rb(j − 1).

Now, taking into account that rb(j − 1) = bj−1−1
b−1 , we obtain that

g(Sa(b, n)) =
(n − 1) bn

2
+

a

2a1(b − 1)

n∑

j=2

(bn + bn−(j−1)) (bj−1 − 1)

=
(n − 1) bn

2
+

a

2a1(b − 1)

n−1∑

j=1

(bn+j − bn−j)

=
(n − 1) bn

2
+

a

2a1(b − 1)

(
(bn − 1)

n−1∑

j=1

bj
)

=
(n − 1) bn + (a1 − 1) a

2
,

as claimed. �

Example 27. If a = b = 3 and n = 4, then the grepunit semigroup S =
Sa(b, n) is minimally generated by a1 = 40, a2 = 43, a3 = 52 and a4 = 79. By
Corollary 25, we have that

∑
ω∈Ap(S) ω = 54 a2 + 45 a3 + 42 a4 = 7980. So,

by (5), we conclude that

g(S) =
7980

40
− 39

2
= 180.

Note that, by Corollary 26, we can get g(S) without computing
∑

ω∈Ap(S) ω.

6. The Type of Grepunit Semigroups. Wilf ’s Conjecture

Let S be a numerical semigroup and let n(S) be the cardinality of {s ∈ S |
s < F(S)}. Clearly, g(s) + n(S) = F(S) + 1. In [14], H.S. Wilf conjectured
that

F(S) ≤ e(S) n(S) − 1, (6)

where e(S) denotes the embedding dimension of S.
Although there are many families of numerical semigroups for which

this conjecture is known to be true, the general case remains unsolved. The
numerical semigroups that satisfy Wilf’s conjecture are said to be Wilf (see
for example the survey [2]).
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In this section, we will prove that the grepunit semigroups are Wilf.
Since n(S) = F(S) − g(s) + 1, we can take advantage of our explicit formulas
for the Frobenius number (Theorem 22) and for the genus (Corollary 26) to
check that (6) holds. However, we will follow a different approach: we will
prove that the grepunit semigroups are Wilf as an immediate consequence of
the computation of their pseudo-Frobenius numbers.

Recall that an integer x is a pseudo-Frobenius number of a numerical
semigroup S, if x �∈ S and x + S ∈ S, for all s ∈ S\{0}. We denote by PF(S)
the set of pseudo-Frobenius numbers of S. The cardinality of PF(S) is called
the type of S and it is denoted t(S).

Given a numerical semigroup S, we write �S for the partial order on Z
such that y �S x if and only if x − y ∈ S.

The following result is [10, Proposition 2.20].

Proposition 28. Let S be a numerical semigroup. If s is a nonzero element
of S, then

PF(S) =
{
ω − s | ω ∈ Maximals�S Ap

(
S, s

)}
.

As in the previous sections, let a, b and n be three positive integers such
that b > 1, n > 1 and gcd(rb(n), a) = 1.

Proposition 29. The set of maximal elements of Ap
(
Sa(b, n)

)
with respect to

�Sa(b,n) is equal to
⎧
⎨
⎩ai + (b − 1)

n∑

j=i

aj | i = 2, . . . , n

⎫
⎬
⎭ .

Proof. Set S := Sa(b, n) and αi := ai +
∑n

j=i(b − 1) aj , i = 2, . . . , n. From

the proof of Lemma 21(c), we have that, for each ω ∈ Ap(S), there exists αi

such that αi − ω ∈ S. Therefore, Maximals�S Ap(S) ⊆ {α2, . . . , αn}. Now,
since by Lemma 21, α2 > . . . > αn, if a < bn − 1, and α2 < . . . < αn, if
a > bn − 1; in order to prove the reverse inclusion, we distinguish two cases:

• If a < bn−1, then αj−αi = (i−j)(bn−(a+1)) = αn−(i−j)−αn, for every
i > j. Now, if there exist i > j such that αi �S αj , then αn−(i−j)−αn ∈
S. So, αn−(i−j) = αn +

∑n
l=2 ulal for some ul ∈ N, l = 2, . . . , n, not all

zero. If k ∈ {2, . . . , n} is such that uk �= 0, then αn−(i−j) = αn + ak + s,

where s =
∑n

l=2 ulal − ak ∈ S. Thus, since αn = ban and ban + ak =
bak−1+(a+1)a1, we conclude that αn−(i−j)−a1 = bak−1+a a1+s ∈ S,
which is not possible because αn−(i−j) ∈ Ap(S).

• If a > bn−1, then αj −αi = (j−i)((a+1)−bn) = αj−i+2−α2, for every
i < j. Now, if there exist i > j such that αi �S αj , then αj−i+2−α2 ∈ S.
So, αj−i+2 = α2 +

∑n
l=2 ulal = a2 +

∑n
l=2(ul + b − 1)al, for some

ul ∈ N, l = 1, . . . , n, not all zero. If k ∈ {2, . . . , n} is such that uk �= 0,
then αn−(i−j) = a2 + b ak + s, where s =

∑n
l=2(ul + b − 1)al − b ak ∈ S.

Thus, since a2+b ak = ba1+ak+1, if k < n, and a2+b ak = (b+a+1) a1,
if k = n, we conclude that αj−i+2 − a1 ∈ S, a contradiction again.
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Finally, since we have shown that αi−αj �∈ Sa(b, n), for every i, j ∈ {2, . . . , n},
we conclude that αi ∈ Maximals�S(Ap(S)), for every i = 2, . . . , n, as desired.

�

Corollary 30. The set of pseudo-Frobenius numbers of Sa(b, n) is equal to

{(n − i + 1) (bn − 1 − a) + a a1 | i = 2, . . . , n} .

Consequently, the type of Sa(b, n) is n − 1.

Proof. By Propositions 28 and 29, PF(Sa(b, n) = {ai +(b−1)
∑n

j=i aj −a1 |
i = 2, . . . , n}. Now, taking into account that

ai + (b − 1)

n∑

j=i

aj − a1 = a rb(i − 1) + (b − 1)(n − i + 1)a1

+ (b − 1) a

n∑

j=i

rb(j − 1)

= a rb(i − 1) + (n − i + 1)(bn − 1) + a
n∑

j=i

(bj−1 − 1)

= a rb(i − 1) + (n − i + 1)(bn − 1 − a)

+ a (a1 − rb(i − 1))

= (n − i + 1)(bn − 1 − a) + a a1,

for every i ∈ {2, . . . , n}, and we are done. �

Finally, since, by [3, Theorem 20], F(S) ≤ (t(S)+1) n(S)− 1, for every
numerical semigroup S, and, by Corollary 30, t(Sa(b, n)) + 1 = e(Sa(b, n)),
we conclude that generalized repunit numerical semigroups are Wilf.
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CHAPTER 4

Minimal free resolutions of generalized repunit algebras

In this chapter, the generalized repunit numerical semigroup Sa(b, n) will be simply

denoted by S, so A = {a1, . . . , an} is the minimal system of generators of S, where

ai = rb(n)+arb(i−1), for i = 1, . . . , n, and the positive integer a satisfies gcd(a1, a) = 1.

Let k be a field. The k-algebra k[S] is referred to be a generalized repunit algebra

in this chapter.

As proved in Chapter 2, we have,

IA = I2


 xb1 . . . xbn−1 xbn

x2 . . . xn xa+1
1


 ,

where I2(X) stands for the ideal generated by the 2× 2 minors of the matrix X.

Since IA is a determinantal ideal, the generalized repunit algebra k[S] can be re-

solved by the Eagon-Northcott complex of the matrix X. As an immediate consequence

of this result, we have that generalized repunit numerical semigroups of a same embed-

ding dimension n have the same Betti numbers, which are β0 = 1 and βj = j
(

n
j+1

)
,

for 0 < j ≤ n − 1. Moreover, since S is homogeneous and its tangent cone is Cohen-

Macaulay, we have that S is of homogeneous type, that is, the Betti sequences of S and

of its tangent cone coincide. The main result is the explicit description of a minimal

S−graded free of resolution of k[S], in terms of A. Notice all these results are also valid

in case b = 1, as proved by P. Gimenez at al. in [25].

The following paper is a preprint available at https://arxiv.org/abs/2312.06013

distributed under CC BY 4.0: Creative Commons Attribution. It is published in

[Colaço, I., & Ojeda, I. (2024). Minimal free resolution of generalized repunit alge-

bras. Communications in Algebra, 1–8)] https://doi.org/10.1080/00927872.2024.

2394968.
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MINIMAL FREE RESOLUTION OF GENERALIZED REPUNIT
ALGEBRAS

ISABEL COLAÇO AND IGNACIO OJEDA

Abstract. Let k be an arbitrary field and let b > 1, n > 1 and a be three positive
integers. In this paper we explicitly describe a minimal S−graded free resolution of
the semigroup algebra k[S] when S is a generalized repunit numerical semigroup, that

is, when S is the submonoid of N generated by {a1, a2, . . . , an} where a1 =
∑n−1

j=0 bj

and ai − ai−1 = a bi−2, i = 2, . . . , n, with gcd(a, a1) = 1.

1. Introduction

Let k[x] = k[x1, . . . , xn] be the polynomial ring in n indeterminates over an ar-
bitrary field k, let S be the numerical semigroup with minimal system of genera-
tors A = {a1, . . . , an} ⊂ N (see [13] for details on numerical semigroups) and let
k[S] :=

⊕
a∈S kχa be the semigroup k−algebra of S.

Considering the ring k[x] graded by S via deg(xi) = ai, i = 1, . . . , n, we have that
the kernel of the k−algebra homomorphism

ϕA : k[x] −→ k[S], xi 7→ χai

determines a presentation of k[S] as S−graded k[x]−module. Indeed, the so-called
toric ideal IA := ker(ϕA) is known (see, e.g. [15, Lemma 4.1]) to be generated by

{
xu − xv |

n∑

i=1

uiai =
n∑

i=1

viai, u = (u1, . . . , un),v = (v1, . . . , vn) ∈ Nn

}
,

where xu := xu1
1 · · ·xun

n . In particular, it is homogeneous for the grading determined by
S.

So, if {fi := xui − xvi | i = 1, . . . , β1} is a minimal generating system of IA and ϕ0

denotes the corresponding canonical projection, then

k[x]β1
ϕ1:=(f1,...,fβ1

)−→ k[x]
ϕ0−→ k[x]/IA ∼= k[S] → 0

2020 Mathematics Subject Classification. Primary: 16W50, 13D02 secondary: 20M14.
Key words and phrases. Graded rings and modules; syzygies, resolutions, complexes and commuta-

tive rings; commutative semigroups.
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Junta de Extremadura (Spain)/FEDER funds.
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2 ISABEL COLAÇO AND IGNACIO OJEDA

is exact and S−graded by suitable degree shiftings of the leftmost free module. Now,
one can compute a minimal system of generators of the kernel of ϕ1, say {f12, . . . , fβ22} ⊂
k[x]β1 , so that the sequence

k[x]β2
ϕ2:=(f12|...|fβ22)−→ k[x]β1

ϕ1−→ k[x]
ϕ0−→ k[x]/IA ∼= k[S] → 0

is exact and, after the appropriate degree shifts, S−graded. So, by repeating this
process as many times as necessary until reaching kerϕp = 0, which is guaranteed by
the Hilbert syzygy theorem (see, e.g., [5, Theorem 1.13]), we obtain a minimal S−graded
free resolution of k[S]. The minimal free resolution is unique up to isomorphism (see
[5, Section 20.1]). The βi, i = 1, . . . , p, are called Betti numbers of k[S] (see Remark 5
for more details).

Computing a minimal free resolution of k[S] is possible using Groebner bases tech-
niques. Other related tasks are to characterize the minimal free resolution S−graded in
terms of the combinatorics within S (see, for example, [3, 12]) or, for special cases of S,
to describe explicitly a minimal S−graded free resolution of S in terms of S basically
(see e.g. [9]). This article is about the latter.

Let b and n be two integers greater than one and let S be the submonoid of N
generated by {a1, a2, . . .} ⊂ N, where

a1 =
n−1∑

j=0

bj and ai − ai−1 = a bi−2, i ≥ 2,

for a ∈ Z+ relatively prime with a1. In [2], it is proved that S is a numerical semigroup
whose minimal generating system is A := {a1, . . . , an}. These numerical semigroups
are called generalized repunit numerical semigroups (see [1, 2]) as they generalize the
repunit numerical semigroups introduced in [14].

The aim of this paper is to explicitly describe a minimal S−graded free of resolution of
k[S] when S is a generalized repunit numerical semigroup. In what follows, we consider
S to be a generalized repunit numerical semigroup and refer k[S] as a generalized
repunit k−algebra.

We notice that if b = 1, then S is generated by an arithmetic sequence. In this case,
the S−graded free of resolution of k[S] is fully described by P. Gimenez et al. in [9].
The minimal free resolution of numerical semigroups generated by arithmetic sequences
has its own interest as, for instance, the Betti numbers of k[S] and the coordinate ring of
its tangent cone ring coincide. We emphasize that, by [1, Corollary 2] and [7, Theorem
3.12], generalized repunit k−algebras also have this property.

Finally, we emphasize that in [6, 16] similar techniques are applied to families closely
related to ours. In particular, in [6, Section 4] the authors use Eagon-Northcott com-
plexes to compute the Pseudo-Frobenius numbers of numerical semigroups associated
to certain determinantal ideals. These ideas are brilliantly generalized in [16, Section
2.1].
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2. The minimal free resolution

Let b > 1, n > 1 and a > 1 be three fixed integer numbers such that a and a1 =∑n−1
j=0 b

j are relatively prime. With the same notation as in the introduction, let S be

the generalized repunit numerical semigroup generated by A = {a1, . . . , an}.
In [1] it is proved that IA is minimally generated by 2 × 2−minors of the matrix

(1) X := (xij) =

(
xb

1 · · · xb
n−1 xb

n

x2 · · · xn xa+1
1

)
.

Therefore, since IA is a determinantal ideal, the generalized repunit k−algebra k[S] can
be resolved by the Eagon-Northcott complex introduced in [4] and described below.

Let y1, y2 be two indeterminates and let Mj be the k[x]−submodule of k[x][y1, y2]
generated by the monomials in y1 and y2 of degree j. Define

k[x]Xj :=

j+1∧
k[x]n ⊗k[x] Mj−1, j = 1, . . . , n − 1,

where
∧j+1 k[x]n is the degree j + 1 component of the exterior algebra of the free

k[x]−module k[x]n. Thus, if {e1, . . . , en} is the usual basis of k[x]n; that is, the basis
of k[x]n such that ei has a one in place i and zeros elsewhere, for each i ∈ {1, . . . , n},

then the k[x]−module
∧j+1 k[x]n is generated by ei1 ∧ · · · ∧ eij+1

, for each 1 ≤ i1 <
· · · < ij+1 ≤ n, for each j ∈ {1, . . . , n − 1}.

Now, since the codimension of IA is n−1, because IA defines an irreducible monomial
curve in the n−dimensional affine space over k, by [4, Theorem 2], we conclude that

0 → k[x]Xn−1

dn−1−→ k[x]Xn−2

dn−2−→ · · · d2−→ k[x]X1
d1−→ k[x] −→ k[x]/IA ∼= k[S] → 0

is a minimal free resolution of k[S], with

(2) d1(ei ∧ ej ⊗ 1) =

∣∣∣∣
x1i x1j

x2i x2j

∣∣∣∣ , for every 1 ≤ i < j ≤ n,

and

(3) dj(ei1 ∧· · ·∧eij+1
⊗yu1

1 yu2
2 ) =

2∑

k
∗
=1

j+1∑

l=1

(−1)l+1xkilei1 ∧· · ·∧êil ∧· · ·∧eij+1
⊗yu1

1 yu2
2 y−1

k ,

for every 1 ≤ i1 < · · · < ij+1 ≤ n, u1, u2 ∈ N such that u1 + u2 = j − 1 and
j ∈ {2, . . . , n − 1}, where the asterisk means that we only sum over those k for which
uk > 0 and êil means omitting eil .

Lemma 1. For each j ∈ {1, . . . , n − 1}, the k[x]−module k[x]Xj is isomorphic to

k[x]j(
n

j+1).

Proof. Since
∧j+1 k[x]n and Mj−1 are isomorphic as k[x]−modules to k[x](

n
j+1) and

k[x]j , respectively, for each j ∈ {1, . . . , n − 1}, we have that

k[x]Xj =

j+1∧
k[x]n ⊗k[x] Mj−1

∼= k[x](
n

j+1) ⊗k[x] k[x]j ∼= k[x]j(
n

j+1),

for each j = 1, . . . , n − 1. �
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So, applying the previous lemma, we have the following.

Proposition 2. Let φ0 be the identity map of k[x] and, for each j ∈ {1, . . . , n − 1},
fix a k[x]−module isomorphism φj : k[x]Xj → k[x]j(

n
j+1). If βj = j

(
n

j+1

)
and δj =

φj−1 ◦ dj ◦ φ−1
j , j = 1, . . . , n − 1, then

(4) 0 → k[x]βn−1
δn−1−→ k[x]βn−2

δn−2−→ · · · δ2−→ k[x]β1
δ1−→ k[x] −→ k[x]/IA ∼= k[S] → 0

is a minimal free resolution of k[S].

For a clearer understanding of Proposition 2, we provide, as an illustrative example,
the well-known minimal free resolution of k[S] for n = 3 (see, for example, [11, Theorem
2.3] or, in broader generality, the Hilbert-Burch theorem [5, Theorem 20.15]).

Example 3. Let S be the numerical semigroup generated by a1 = 1 + b + b2, a2 =
1 + b + b2 + a and a3 = 1 + b + b2 + a(1 + b). In this case, a minimal free resolution of
k[S] is equal to

0 → k[x]2
δ2−→ k[x]3

δ1−→ k[x] −→ k[S] → 0

where δ2 and δ1 are the k[x]−module homomorphisms whose matrices with respect to
the corresponding usual bases are

A2 =



xb

1 x2

xb
2 x3

xb
3 xa+1

1


 and A1 =

(
xb

2x
a+1
1 − xb+1

3 −xa+b+1
1 + x2x

b
3 xb

1x3 − xb+1
2

)
,

respectively. Clearly, in this case, β1 = 3 and β2 = 2.

3. The minimal S−graded free resolution

The minimal free resolution (4), given in the previous section by using Eagon-
Northcott, is not S−graded in general. The reason for this is that the maps δi, i =
1, . . . , n − 1, described in Proposition 2, are not necessarily S−homogeneous of degree
0.

To achieve a minimal free resolution S−graded of k[S], we must appropriately shift
the free k[x]−modules that appear in k[x]βj , j = 1, . . . , n, in such a way the maps
δj, j = 1, . . . , n, defined in Proposition 2 become S-homogeneous of degree 0. More
precisely, we need to find positive integers sj,k, k = 1, . . . , βj , j = 1, . . . , n − 1, such
that the maps in the minimal free resolution

0 →
βn−1⊕

k=1

k[x](−sn−1,k)
δn−1−→

βn−2⊕

k=1

k[x](−sn−2,k)
δn−2−→ · · ·

· · · δ2−→
β1⊕

k=1

k[x](−s1,k)
δ1−→ k[x] −→ k[x]/IA ∼= k[S] → 0

are S−homogeneous of degree 0. Recall that k[x](−s) means that the basis elements
of k[x](−s) as k[x]−module, say 1, have degree s. Thus, for example, x1 ∈ k[x](−s)
has S−degree a1 + s.
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Example 4. By considering the degree-shift isomorphisms

k[x]2 ∼= k[x](−b a1 − (b + 1)a3)
⊕

k[x](−a2 − (b + 1)a3)

and
k[x]3 ∼= k[x](−(b + 1)a3)

⊕
k[x](−a2 − b a3)

⊕
k[x](−(b + 1)a2)

in Example 3, we obtain a minimal S−graded free resolution of k[S] because these
shifts make δ2 and δ1 S−homogeneous of degree 0.

Remark 5. Given j ∈ {1, . . . , n − 1}, we have that Tor
k[x]
j (k, k[S])s 6= 0 if and only if

s = sj,k for some 1 ≤ k ≤ βj (see, e.g. [10, Lemma 1.32]); in fact, the number of sj,k’s

that are equal to a given s ∈ S is dim(Tor
k[x]
j (k, k[S])s). Summarizing, the integers sj,k

are uniquely determined by k[S].

Our goal is to compute the integers si,k. To start, we introduce additional notation.
From now on we will write an+1 = (a + 1)a1 and c = bn − 1 − a.

Lemma 6. With the notation above, b ai = c + ai+1, i = 1, . . . , n.

Proof. Clearly, b a1 = b
(∑n−1

j=0 b
j
)

= bn − 1 + a1 = bn − 1 − a + a2 = c + a2. Now, if

i ∈ {2, . . . , n}, then

b ai = b a1 + b a

(
i−2∑

j=0

bj

)
= c + a2 + a

(
i−1∑

j=1

bj

)

= c + a1 + a + a

(
i−1∑

j=1

bj

)
= c + a1 + a

(
i−1∑

j=0

bj

)
= c + ai+1,

and we are done. �
Proposition 7. The maps in the exact sequence

n−1⊕

i=1

(
i−1⊕

j=0

k[x](−an−i+1 − b an−j)

)
δ1−→ k[x] −→ k[x]/IA ∼= k[S] → 0

are S−homogeneous of degree 0. In particular, the set
{
s1,k | k = 1, . . . , β1 =

(
n
2

)}
is

equal to {c + ai1 + ai2 | 1 < i1 < i2 ≤ n + 1} .
Proof. In [1] it is proved that IA is minimally generated by 2× 2−minors of the matrix
X defined in (1). Then first part follows straightforward from the definition of d1 (see
(2)). Now, the second part is an immediate consequence of Lemma 6. �

Recall that x ∈ N \ S is said to be a pseudo-Frobenius element of S if x + s ∈ S for
every s ∈ S \ {0}. This set is known to be finite and is denoted by PS(S) (see [13,
Section 2.4] for more details).

Lemma 8. The set {sn−1,k | k = 1, . . . , βn−1 = n − 1} is equal to
{
k c +

n+1∑

i=2

ai | k ∈ {1, . . . , βn−1 = n − 1}
}
.
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Proof. By [8, Corollary 17], we have that

PF(S) =

{
s −

n∑

i=1

ai | s ∈ {sn−1,1, . . . , sn−1,n−1}
}
.

Now since, by [2, Corollary 30], PF(S) = {k c + a a1 | k = 1, . . . , n − 1}, our claim
follows. �
Proposition 9. The maps in the exact sequence

0 →
n−1⊕

k=1

k[x](−sn−1,k)
δn−1−→

n−1⊕

k=2

(
n⊕

j=1

k[x](b aj − sn−1,k)

)

are S−homogeneous of degree 0. Moreover, the set {sn−2,k | k = 1, . . . , βn−2 = (n − 2)n}
is equal to 



k c +

n+1∑

i=2
i 6=j+1

ai | k ∈ {1, . . . , n − 2} and j ∈ {1, . . . , n}





.

Proof. For the first part, it suffices to observe the matrix of the map dn−1 defined in
(3) with respect to the usual bases is




xb
1 x2 0 . . . 0 0
...

...
...

...
...

xb
n−1 xn 0 . . . 0 0
xb
n xa+1

1 0 . . . 0 0
0 xb

1 x2 . . . 0 0
...

...
...

...
...

0 xb
n−1 xn . . . 0 0

0 xb
n xa+1

1 . . . 0 0
...

...
...

...
...

0 0 0 . . . xb
1 x2

...
...

...
...

...
0 0 0 . . . xb

n−1 xn

0 0 0 . . . xb
n xa+1

1




.

For the second part, we first observe that, by Lemma 8, we can suppose sn−1,k =

k c +
∑n+1

i=2 ai, k = 2, . . . , n − 1. Therefore, by Lemma 6, we have that

sn−1,k − b aj = k c +

n+1∑

i=2

ai − b aj = k c +

n+1∑

i=2

ai − c − aj+1

= (k − 1)c +

n+1∑

i=2

ai − aj+1 = (k − 1)c +

n+1∑

i=2
i 6=j+1

ai,

for every j ∈ {1, . . . , n} and k ∈ {2, . . . , n − 1}. �
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Now, we can finally state and prove the main theorem about the minimal S−graded
free resolution of the generalized repunit k−algebra k[S].

Theorem 10. The set Bj := {sj,k | k = 1, . . . , βj = j
(

n
j+1

)
} is equal to

B′
j :=

{
k c + ai1 + · · · + aij+1

| k ∈ {1, . . . , j} and 1 < i1 < · · · < ij+1 ≤ n + 1
}
,

for every j ∈ {1, . . . , n − 1}.
Proof. First, we note that, by Propositions 7 and 9, we already know that the result is
true for j = 1 and j = n − 1, respectively.

Let j ∈ {2, . . . , n − 2}. If we fix a bijection σj : Bj → B′
j , then we have the

isomorphism of free k[x]−modules

βj⊕

k=1

k[x](−sj,k) −→ Fj :=
⊕

1<i1<···<ij+1≤n+1

(
j⊕

k=1

k[x](−k c − ai1 − · · · − aij+1
)

)

such that the element in the usual basis of left-hand module which has a 1 at place
k[x](−sj,k) and zeros elsewhere is sent to the element in the usual basis of Fj which
has a 1 at place k[x](−σ(sj,k)) and zeros elsewhere . So, if we prove that, for each
j ∈ {2, . . . , n − 2}, there exist k[x]−module isomorphisms φj : k[x]Xj → Fj and φj−1 :

k[x]Xj−1 → Fj−1 such that

δj := φj−1 ◦ dj ◦ φ−1
j : Fj → Fj−1

is S−homogeneous of degree 0, where dj : k[x]Xj → k[x]Xj−1 is the k[x]−module ho-
momorphism defined in Section 2, we are done since the sj,k are uniquely defined (see
Remark 5).

Let j ∈ {2, . . . , n−2} and let us define the k[x]−module isomorphism φj : k[x]Xj → Fj

such that φj(ei1∧· · ·∧eij+1
⊗yu1

1 yu2
2 ) is equal to the element that has a 1 in the coordinate

corresponding to the direct summand k[x](−(u1 +1) c− ai1+1 −· · ·− aij+1+1) and zeros
elsewhere (recall that u1, u2 ∈ N verifies u1+u2 = j−1). Since, given j ∈ {2, . . . , n−2}
and l ∈ {1, . . . , j}, the S−degree of the k ij−th entry of the matrix X defined in (1) is

{
b ail if k = 1;
ail+1 if k = 2,

we have that the S−degree of φj−1(xkilei1 ∧ · · · ∧ êil ∧ · · · ∧ eij+1
⊗ yu1

1 yu2
2 y−1

k ) is
{

b ail + u1 c + ai1+1 + · · · + aij+1+1 − ail+1 if k = 1;
ail+1 + (u1 + 1) c + ai1+1 + · · · + aij+1+1 − ail+1 if k = 2,

In the first case, by Lemma 6, we have that

b ail + u1 c + ai1+1 + · · · + aij+1+1 − ail+1 =

c + ail+1 + u1c + ai1+1 + · · · + aij+1+1 − ail+1 =

(u1 + 1)c + ai1+1 + · · · + aij+1+1.

and, in the second case, we have that

ail+1 + (u1 + 1)c + ai1+1 + · · · + aij+1+1 − ail+1 =
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(u1 + 1)c + ai1+1 + · · · + aij+1+1.

So, the S−degree φj−1(xkilei1 ∧· · ·∧êil ∧· · ·∧eij+1
⊗yu1

1 yu2
2 y−1

k ) is equal to the S−degree
of ei1 ∧ · · · ∧ eij+1

⊗ yu1
1 yu2

2 , for every j ∈ {2, . . . , n − 2} and l ∈ {1, . . . , j}. Therefore,
since

dj(ei1 ∧ · · · ∧ eij+1
⊗ yu1

1 yu2
2 ) =

2∑

k
∗
=1

j+1∑

l=1

(−1)l+1xkilei1 ∧ · · · ∧ êil ∧ · · · ∧ eij+1
⊗ yu1

1 yu2
2 y−1

k ,

for every j ∈ {2, . . . , n − 1}, we conclude that, for our choice of the isomorphisms
φj, j = 2, . . . , n − 2, the maps δj = φj−1 ◦ dj ◦ φj are S−homogeneous of degree zero,
for every j = 2, . . . , n − 2. �
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Departamento de Matemáticas, Universidad de Extremadura, 06071 Badajoz, Spain
Email address : ojedamc@unex.es



Bibliography

[1] Aoki, S., Hara, H., Takemura, A., Markov Bases in Algebraic Statistics; Springer Series in Statistics;

Springer; New York, 2012, ISBN 978-1461437192.
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[39] Rédei, L., The Theory of Finitely Generated Commutative Semigroups, Pergamon, Oxford, 1965,

ISBN 978-1483123523.

[40] Rosales, J. C., Branco, M. B., Torrão, D., The Frobenius Problem for Repunit Numerical Semi-

groups, The Ramanujan Journal, 40 (2016), 2, pp. 323-334, DOI 10.1007/s11139-015-9719-3

[41] Rosales, J. C., Branco, M. B., Torrão, D., The Frobenius Problem for Mersenne Numerical Semi-

groups, Mathematische Zeitschrift, 286 (2017), 1, pp. 741-749, DOI 10.1007/s00209-016-1781-z
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