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Abstract: This study explores the application of remote sensing-based land cover change
detection techniques to identify and map areas affected by three distinct wildfire events
that occurred in Mediterranean islands between 2019 and 2022, namely Sardinia (2019,
Italy), Thassos (2022, Greece), and Pantelleria (2022, Italy). Applying Rao’s Q Index-based
change detection approach to Sentinel-2 spectral data and derived indices, we evaluate their
effectiveness and accuracy in identifying and mapping burned areas affected by wildfires.
Our methodological approach implies the processing and analysis of pre- and post-fire
Sentinel-2 imagery to extract relevant indices such as the Normalized Burn Ratio (NBR),
Mid-infrared Burn Index (MIRBI), Normalized Difference Vegetation Index (NDVI), and
Burned area Index for Sentinel-2 (BAIS2) and then use (the classic approach) or combine
them (multidimensional approach) to detect and map burned areas by using a Rao’s Q
Index-based change detection technique. The Copernicus Emergency Management System
(CEMS) data were used to assess and validate all the results. The lowest overall accuracy
(OA) in the classical mode was 52%, using the BAIS2 index, while in the multidimensional
mode, it was 73%, combining NBR and NDVI. The highest result in the classical mode
reached 72% with the MIRBI index, and in the multidimensional mode, 96%, combining
MIRBI and NBR. The MIRBI and NBR combination consistently achieved the highest
accuracy across all study areas, demonstrating its effectiveness in improving classification
accuracy regardless of area characteristics.

Keywords: remote sensing; wildfire; burned areas; Sentinel-2; Rao’s Q index; vegetation indices

1. Introduction
Fire is an ecological process and the main ecosystem disturbance in most of the world’s

ecosystems [1,2], shaping species traits, vegetation communities, and landscapes [3–10].
Fires are driven by interactions between vegetation (fuel complexes), fire weather, and
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topography [11]. The variability in the relationships between these factors determines the
existence of different patterns in the spatial and temporal distribution of fire characteristics,
the relative importance of their drivers, and their impacts on ecological and socio-ecological
systems. This variability allows for the identification and characterization of distinct fire
regimes across the globe (e.g., [12–14]). However, fire regimes are dynamic and respond to
shifts in vegetation and climate patterns (e.g., as these environmental factors continue to evolve
due to climate change, fire activity is expected to intensify in the coming decades [15,16],
driven by increased fuel availability and more extreme weather conditions).

While there is a global decrease in the burned area [17], this does not invalidate the
existence of opposite trends in specific regions (e.g., [18]). However, an increase in the
frequency of extreme fires is currently being observed [19]. Records of catastrophic fire
seasons are thus becoming more common (e.g., [20,21]), with a high number of fatalities
(e.g., [22,23]) and extensive damage to properties and structures (e.g., [24,25]). These
extreme fires continue to challenge the resilience thresholds of affected ecosystems, even in
fire-prone regions where communities have evolved with fire and developed fire-related
traits, inducing significant changes in plant communities and the landscape [26].

Coastal areas and islands are particularly vulnerable to these extreme events. In
August 2023, a series of wind-driven fires spread on the island of Maui, Hawaii, intensified
by Hurricane Dora, killing more than 100 people and generating estimated losses of USD
5.5 billion [27]. Another catastrophic event occurred in July 2018 in the Attica region of
Greece, when the fire started on Mount Pentelli reached the east coast (Mati) driven by
katabatic winds, trapping hundreds of people, causing the deaths of more than 100, injuring
more than 150, and destroying about 1650 buildings [28,29]. In August 2007, a group of
12 firefighters died in a fire that occurred on Kornat Island in Croatia after being trapped
by a sudden change in the fire’s behavior [30]. This followed the deaths of three firefighters
in July of the same year in similar conditions during the fire of Doxaro on the island of
Crete in Greece [31]. Couto et al. [32] identified the patterns of atmospheric conditions and
orographic effects that drove a series of large fires on Madeira Island between 2010 and
2016, which expanded quickly and reached wildland–urban interfaces, threatening people
and destroying structures. In Italy, wildfire activity has been rising in recent years, with the
most significant contributions to this increase coming from fires on the islands of Sicily and
Sardinia, being particularly relevant to the larger fires in 2007, 2017, and 2021 [33,34].

Despite this susceptibility and vulnerability to fire, the evolution of its contemporary
regime on islands is not well understood, and this gap is highlighted by Badeau et al. [35]
and Molina-Terrén et al. [36], who analyzed the evolution of the fire regime in the western
Canary Islands (Macaronesia) and Corsica (Mediterranean), respectively. Despite the
different geographic contexts, the authors’ results were similar, emphasizing the pernicious
effects of fire suppression policies on regime shifts toward less frequent but larger and
more severe fires.

This shift contributed to the firefighting trap observed in other mainland fire-prone
regions [37–40] and required changes to fire and landscape management policies [41].
However, although the general principles for implementing sustainable fire management
systems may be the same everywhere [42–44], the effectiveness of implementing fire-smart
strategies at regional and local scales depends on each specific context and its adaptation to
the present and future fire regime [44–50]. Therefore, systematic monitoring and mapping
of burned areas are critical to achieving success, as pointed out by Roy et al. [27] following
the devastating wildfires on Maui Island (Hawaii). The periodic recording of burned areas
allows fire scientists and practitioners to increase their understanding of extreme events by
establishing a baseline for their spatiotemporal evolution [51]. Furthermore, since fire is
a self-regulating process [52], it is crucial to gather information for the tactical resources
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involved in fire suppression about new fire attack opportunities created by recent events,
which also allows fire planners to re-set fire prevention priorities.

The usefulness of remote sensing data for detecting and monitoring active fires, map-
ping burned areas, assessing fire severity, and monitoring post-fire vegetation response
is undeniable [53,54]. However, there are still several challenges to overcome and new
achievements to be considered despite the efforts of science and the countless techniques
developed to detect burned areas around the world [27,55]. Global burned area products
derived from coarse spatial resolution sensors (e.g., [56–63]) are an essential source of
information for the fire science community, allowing for the identification of different fire
regimes at global and continental scales (e.g., [12,64]), or as a baseline to compute spatiotem-
poral metrics of fire dynamics (e.g., [65]), which are particularly relevant to understanding
the drivers of infrequent but extreme events. Despite the usefulness of global burned area
products, the assessment of their accuracy (e.g., [66,67]) revealed commission and omission
errors exceeding those required for the fulfillment of some specific objectives, such as
climate modeling [68]. The higher omission error values are partly due to the failure to
detect small fires caused by low spatial resolution [69–71], an underestimation that can
be particularly significant in some pyro-regions not only in terms of the total amount of
burned area (e.g., [72]), but also in regard to the contribution of these small fires to the
maintenance a pyro-diverse mosaic in the landscape that limits the spread of large fires
(e.g., [73]), or their relevance in estimating global fire effects (e.g., global fire emissions
estimated by [74] increased by 11% compared to previous estimates [75] as a result of
improvements in the estimation of burned areas).

Using data from medium-resolution sensors makes it possible to overcome the afore-
mentioned limitations and map small fires, spatially scattered and showing complex
shapes. Landsat data have been used extensively to map burned areas with better accuracy
(e.g., [76–81]), particularly after the change in distribution policy in 2008 that allowed free
access to users [82], since they have better spatial resolution (30 m after the launch of the
Thematic Mapper (TM) Landsat sensor in 1982; [83,84]) and allow long-term time series
of burned areas relevant for detecting spatial and temporal trends and patterns [85–88]
However, the 16-day temporal resolution limits the accuracy of products derived from
these images, particularly in areas with high persistence of cloud cover and territories
where the burned area persistence time is short [72,89,90], such as grasslands and savannas
(e.g., [91,92]). Since the deployment of Sentinel-2A in 2015 and Sentinel-2B in 2017, their
imagery has seen growing use in mapping and analyzing areas affected by fires [33,72,93–99],
given their better spatial (10/20 m) and temporal (global mean and median average revisit
intervals of 3.8 and 3.7 days) resolution [100]

However, despite improvements in spatial, temporal, and spectral resolution, method-
ological challenges persist in detecting burned areas (e.g., [101]). There are still some
important sources of commission errors that result in overestimates of the burned area
(e.g., [102]), which arise from similarities in the spectral and/or temporal patterns with
the burned areas, such as particular land cover types (e.g., croplands), other disturbances
(e.g., logging), or the presence of shadows (e.g., from clouds or topography) (e.g., [77,103]).
Therefore, the choice of spectral indices to use to detect burned areas can have a significant
influence on the final result. The NBR index integrates the NIR and SWIR bands in its calcula-
tion and is one of the most widely used metrics in assessing fire severity (e.g., [104–106]) and
in mapping burned areas (e.g., [107–109]). For example, the MIRBI index was developed
for application in savannah ecosystems where the relevance of NIR wavelengths is lower
due to the senescent state of vegetation at the end of the fire season [110]. The NDVI has
limitations in low primary productivity landscapes and in fire severity estimation and
burned areas mapping in regions where the dry period and fires coincide (e.g., [111]), but
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it has shown high performance in other contexts, with greater water availability, such as
in burned patches in Madeira Island [112]. Thus, the selection of indices depends on the
context in which the fires spread, and possible synergies can be explored by integrating
various metrics in the analytical process of mapping burned areas.

Another important source of commission errors is the presence of unburned “islands”
within burned patches. In fact, the distribution of fire severity in vegetation is spatially
heterogeneous within a burned perimeter, and it is complex to distinguish low-severity
burned areas from unburned patches. Moreover, the impact of noise and weather conditions
induces variations in the spectral signature between temporal sequences of images, further
complicating the change detection task. To overcome these limitations, several authors
have proposed approaches based on Markov Random Fields (MRF) to detect changes
by considering the spatial–contextual information between neighboring pixels, thereby
increasing the accuracy of the final map [113–118]. However, in complex landscapes,
excessive smoothing in the results obtained through these approaches is a common problem
(e.g., [119]) since it is difficult to achieve the optimal balance between detail preservation
and noise reduction (e.g., [119]). Several authors have sought to mitigate this problem in
MRF approaches by incorporating external knowledge (e.g., [120,121]), integrating local
uncertainty parameters (e.g., [120]), and applying adaptive weight functions to the edges
(e.g., [115]).

In either case, incorporating spatial information from the neighborhood can lead
to a significant improvement in change detection. In this regard, Tassi et al. [122,123]
developed a tool that incorporates Rao’s Q-diversity index [124], a measure of spatial
heterogeneity, to detect land cover changes. It has been applied with good results in
detecting changes in different geographic contexts [122,123,125,126] but has never been
used to detect burnt areas.

Therefore, the general objective of this study was to test and assess the effectiveness
of various indices in detecting and mapping burned areas across different Mediterranean
insular regions, namely Sardinia, Thassos, and Pantelleria, using Rao’s Q Index-based
change detection approaches.

The selection of remote sensing indices used in this study was based on their es-
tablished effectiveness in detecting and mapping burned areas in various environmental
settings. The Normalized Burn Ratio (NBR) and the Mid-infrared Burn Index (MIRBI)
were chosen for their sensitivity to fire-induced changes in vegetation and soil reflectance,
particularly in the NIR and SWIR spectral regions. The NBR is one of the most used metrics
in assessing fire severity (e.g., [104–106]) and in mapping burned areas (e.g., [107–109]).
The Normalized Difference Vegetation Index (NDVI) was included for its ability to monitor
vegetation health and biomass changes, providing a complementary view of fire dam-
age [112]. Finally, the Burned area Index for Sentinel-2 (BAIS2) was incorporated for its
specific design to detect burned areas using Sentinel-2 imagery [127]. The integration
of these indices, either individually or in combination, aimed to leverage their specific
strengths to improve the accuracy and reliability of burned area detection, particularly in
the unique and heterogeneous landscapes of Mediterranean islands.

The process entailed comparing the detection capabilities of each index against estab-
lished boundaries provided by the Copernicus Emergency Management System (CEMS)
and identifying the most effective combinations for accurate burned areas detection and
mapping. This comparison explores the use of free and open-source data, such as Sentinel-2
imagery, alongside high-resolution datasets used by CEMS, highlighting the potential of
free accessible data sources in wildfire mapping and analysis.
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2. Materials and Methods
2.1. Study Areas

Our study was conducted in three Mediterranean insular regions (Figure 1): Sardinia,
Thassos, and Pantelleria.
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Sardinia, the second-largest island in the Mediterranean Sea (24.090 km2), exhibits
diverse landscapes ranging from mountainous terrain to coastal plains, influencing its
susceptibility to wildfires [128,129]. The island’s vegetation is dominated by Mediterranean
maquis, which includes shrubs, small trees, and herbaceous plants. These vegetation
types are highly flammable during the summer months due to prolonged dry conditions.
Sardinia’s terrain is diverse, with extensive hilly and mountainous areas interspersed with
plains, creating varied fire dynamics influenced by wind patterns and topography. The
combination of these factors (e.g., dense vegetation, steep slopes, and strong seasonal winds)
makes Sardinia particularly vulnerable to wildfires during the summer fire season [128,130].

Pantelleria, a volcanic island between Sicily and Tunisia with an area of 83 km2,
presents a rugged topography and arid climate, posing significant fire risks. The island
features a mix of Mediterranean shrubland, small agricultural fields, and terraced olive
groves. The volcanic soil provides fertile ground for vegetation, but the dry conditions,
combined with strong winds, make Pantelleria susceptible to wildfires. The vegetation
is dominated by drought-tolerant shrubs such as junipers and olives, which can ignite
and spread fires quickly. Pantelleria has a high biodiversity, hosting several endemic
species [131]. Its territory is divided into three bioclimatic belts: (i) inframediterranean
semiarid, dominated by maquis; (ii) thermomediterranean dry, with evergreen broadleaf
forests; and (iii) mesomediterranean sub-humid, characterized by pine forests [131,132].
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Thassos, an island located in the northern Aegean Sea with an area of 378 km2, is
renowned for its rich biodiversity and Mediterranean climate, contributing to its fire-prone
ecosystem [133]. Its climate is temperate, warm, and mild, with average temperatures
ranging from 5.4 ◦C (in January) to 26 ◦C (in July). Summer is characterized by low
relative humidity and precipitation. The dominant vegetation includes Aleppo pines and
evergreen shrubs, which are highly flammable and contribute to the rapid spread of fire.
Thassos’ steep slopes and rugged topography further exacerbate fire propagation, making
fire suppression efforts challenging [133,134].

Understanding these regions’ geographical and environmental context is essential for
comprehending the dynamics and impacts of wildfires in each area [135].

2.2. Copernicus Emergency Management Service (CEMS)

Upon an activation request, the CEMS (https://emergency.copernicus.eu/ (accessed
on 21 July 2024)) provides high-resolution wildfire maps derived from high-resolution
satellite data. These maps are utilized to delineate the perimeters of wildfires and to classify
the affected areas into four distinct levels of fire severity [112,127,136,137].

For our three study cases, CEMS employed Pléiades-1A and 1B imagery with a spatial
resolution of 0.5 m for Sardinia, PlanetScope imagery with a 3 m spatial resolution for
Thassos, and SPOT6 imagery with a 1.5 m resolution for the Pantelleria case study. The key
information about the events in the study areas and the CEMS activation is provided in
Table 1.

Table 1. Fire event information on the three study areas and the respective Copernicus Emergency
Management Service activation codes.

Study Area Start Date CEMS Activation CEMS CODE Source

Sardinia, Italy 13 July 2019 17 July 2019
EMSR371

(https://mapping.emergency.copernicus.eu/activations/EMSR371/
(accessed on 21 July 2024))

[138]

Thassos, Greece 10 August 2022 17 August 2022
EMSR624

https://mapping.emergency.copernicus.eu/activations/EMSR624/
(accessed on 21 July 2024)

[139]

Pantelleria, Italy 17 August 2022 19 August 2022
EMSR626

https://mapping.emergency.copernicus.eu/activations/EMSR626/
(accessed on 21 July 2024)

[140]

CEMS products were used as a reference. Previous studies have successfully used
CEMS data for validation [141]. These products may serve as a viable and reliable alterna-
tive to traditional validation measurements, which can require substantial financial, human,
and temporal resources. This comparison explores the use of free and open-source data,
such as Sentinel-2 imagery, alongside high-resolution datasets used by CEMS, highlighting
the potential of free accessible data sources in wildfire mapping and analysis.

Utilizing the outputs from CEMS that delineate the burned areas, an RGB composite
of Sentinel-2 images was produced for each study area to enhance the understanding of
the affected regions (Figure 2). This approach involves combining different spectral bands
(bands 2, 3, and 4 of Sentinel-2) into a single composite image, thereby providing a more
comprehensive visual representation of the burned areas.

By integrating the CEMS data with satellite imagery, the analysis not only improves
the accuracy of identifying the impacted zones but also enables a more detailed assessment
of the extent and severity of the damage. This method proves advantageous in post-event
analysis and aids in the efficient allocation of resources for recovery and mitigation efforts.

https://emergency.copernicus.eu/
https://mapping.emergency.copernicus.eu/activations/EMSR371/
https://mapping.emergency.copernicus.eu/activations/EMSR624/
https://mapping.emergency.copernicus.eu/activations/EMSR626/
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Figure 2. RGB composite image of burned areas based on CEMS outputs delimitation for each
study area. Pre-fire Sentinel-2 imagery for Pantelleria shows a slight visual distortion, likely caused
by thin cloud cover or minor atmospheric interference during image acquisition. While this can
occasionally occur despite atmospheric correction processes, it does not affect the reliability of the
subsequent analysis.

2.3. Methods Workflow

This study is primarily based on a Python code developed for an application of
Rao’s Q index for detecting agricultural land cover changes (available at https://github.
com/AndreaTassi23/spectralrao-monitoring, accessed on 1 May 2024) [122] and recently
adapted by [125] to identify and assess land use and land cover changes (LULCC) induced
by EU-funded conservation projects. Building on these codes, we aimed to retain their
basic structure while expanding and adapting their functionalities. Enhancements and new
features were introduced to address the emerging demands and needs of our investigation.

This research utilized Google Colab with GEE integration, employing Python 3.10
as the programming language in a stepwise way: (1) accessing the S2 satellite imagery
repository on the GEE catalog; (2) extracting the NIR, SWIR, and red bands of the imagery;

https://github.com/AndreaTassi23/spectralrao-monitoring
https://github.com/AndreaTassi23/spectralrao-monitoring
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(3) applying the Rao’s Q classic approach using different spectral indices (MIRBI, NDVI,
BAIS2, and NBR); (4) computing the Rao’s Q multidimensional using NBR, MIRBI, and
NDVI; (5) calculating the square root of the post-image minus the pre-image for each study
area; (6) determining the threshold; and (7) validating the results through statistical analysis
for each study area, supported by information from reports and historical high-resolution
images obtained from satellites and CEMS data (Figure 3).
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Table 2 provides detailed information on the Sentinel-2 imagery utilized in this study,
including acquisition dates, study areas, and processing levels. The imagery was sourced
from the ‘COPERNICUS/S2_SR_HARMONIZED’ (available at: https://developers.google.
com/earth-engine/datasets/catalog/COPERNICUS_S2_SR_HARMONIZED#description
(accessed on 21 July 2024)) collection available on Google Earth Engine, which provides
surface reflectance data that have undergone atmospheric correction and harmonization
across all Sentinel-2 sensors. This harmonization process ensures consistent radiometric
calibration and reduces striping artifacts, making the data suitable for multi-temporal
analyses and the calculation of spectral indices used in the methodology.

https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_SR_HARMONIZED#description
https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_SR_HARMONIZED#description
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Table 2. Sentinel-2 imagery acquisition dates for Rao’s Q processing in each study area.

Study Area Date of Event Pre-Image Post-Image Sensor

Sardinia 13 July 2019 3 July 2019 8 July 2019
Sentinel-2Thassos 10 August 2022 8 August 2022 28 August 2022

Pantelleria 17 August 2022 13 August 2022 2 September 2022

The calculation of spectral indices, including NBR, MIRBI, NDVI, and BAIS2, was
performed using standard formulas applied to the Sentinel-2 bands. For each index, both
pre-fire and post-fire values were computed, resulting in difference maps (∆-index) to
highlight changes caused by the wildfire.

The Rao’s Q Index was applied using these difference maps to quantify spatial het-
erogeneity. Rao’s Q calculation involved defining a 9 × 9 pixel moving window. This
approach enabled the identification of areas with significant spectral changes indicative of
fire impact.

For the multidimensional approach, combinations of spectral indices were used si-
multaneously in Rao’s Q framework. This required normalizing the indices to ensure
comparability across dimensions and calculating Rao’s Q Index within the same 9 × 9 pixel
window using a multidimensional distance metric. This enhanced method allowed the
analysis to incorporate complementary information from multiple indices, providing a
more nuanced representation of fire-induced changes.

The dissimilarity between pre- and post-event Rao’s Q maps was quantified through
pixel values representing change intensity. For each approach (classic and multidimensional
combinations), binary maps were created to classify areas as “change” or “no change”. The
threshold was determined using a histogram-based method, selecting the point of maxi-
mum perpendicular distance from the secant line between the histogram’s extremes. This
ensured the detection of significant changes while minimizing typical spectral variability.

The GEE platform was used to access Sentinel-2 imagery, while all data processing,
index calculations, and Rao’s Q analyses were performed in Google Colab using Python.
This workflow ensured reproducibility, scalability, and the integration of open-source tools
for the entire methodological process.

2.4. Spectral Indices

Following the analysis of Sentinel-2 images, the spectral indices MIRBI, NDVI, BAIS2,
and NBR were calculated using the reflectance data from the spectral bands, as specified in
Table 3. The reflectance properties of the objects directly impact these values and, therefore,
influence the reliability and effectiveness of the spectral indices [142].

Table 3. Spectral indices characterization. The BAIS 2 utilizes two distinct red edge bands (band 6
and band 7), enhancing its sensitivity to vegetation’s optical properties variations.

Spectral Index Equation Reference

MIRBI
(Mid-Infrared Bispectral Index) 10 ∗ SWIR 2 − 9.8 ∗ SWIR 1 + 2 [92]

NDVI
(Normalized Difference Vegetation Index)

NIR−Red
NIR+Red [143]

BAIS2
(Burned area Index for Sentinel-2) BAIS2 =

(
1 −

√
red edge ∗red edge∗NIR

red

)
∗
(

SWIR−NIR√
SWIR+NIR

+ 1
)

[33,127]

NBR
(Normalized Burn Ratio)

(NIR−SWIR)
(NIR+SWIR)

[144,145]

The MIRBI is a crucial remote sensing index designed to detect and assess burned
areas. It primarily utilizes spectral bands in the mid-infrared region, particularly the SWIR.
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By combining the reflectance values of these bands, the MIRBI provides a robust measure
for identifying and quantifying the extent and severity of fire-affected areas. This capability
makes it an invaluable tool for environmental monitoring, forest management, and post-fire
recovery assessments [72,110].

The NDVI [24] is a widely used index for assessing vegetation vigor and heterogeneity,
thereby aiding in identifying potential LULCC [146]. The NDVI is a metric that ranges
from −1 to +1. Values approaching +1 generally indicate areas with significant vegetative
vigor, while values close to −1 correspond to ice-covered regions. A value of 0 is associated
with bare soil [147]. This index is critical in fire mapping [148,149], aiding in monitoring
changes in vegetation over time and across different landscapes [146,150,151].

The BAIS2 utilizes vegetation properties characterized within the red-edge spectral
regions and the radiometric response in the SWIR spectral range, which is widely acknowl-
edged for its effectiveness in delineating burned areas. This approach harnesses the specific
spectral signatures associated with vegetation health and burn severity, enabling accurate
detection and mapping of fire-affected areas. Utilizing Sentinel-2 spectral data enables the
mapping of burned areas at a spatial resolution of 20 m and facilitates the identification of
smaller burned areas [127].

The NBR is an index that combines the NIR and SWIR spectral bands, with theoretical
values ranging between −1 and 1 [152]. This index is founded on the principle that burned
areas exhibit an increase in reflectance in the SWIR band and a decrease in the NIR band.
In the NIR band, reflectance diminishes due to the loss of leaves [153], whereas in the SWIR
band, reflectance escalates as plant moisture content decreases [154,155]. Additionally, the
NBR is sensitive to the contrast in reflectance between charred areas in the SWIR band and
unburnt vegetation in the NIR band, as observed in the Sentinel-2 spectral bands.

2.5. Calculating Rao’s Q Index

According to Rocchini et al. [156], Rao’s Q is a quantitative metric employed to
evaluate the similarity or dissimilarity between spatial patterns or distributions of ecological
variables. The calculation of Rao’s Q utilized a fixed window size of 9 × 9 pixels, which
was chosen for the purpose of index retrieval [124]. The formula to calculate the Rao’s Q
Index was used according to Rocchini et al. [124,157] (Equation (1)):

Rao’s Q = dij × pi × pj (1)

In this context, dij denotes the spectral distance between pixel i and pixel j, whereas pi

represents the proportion of pixel i in relation to the total pixels within an n × n window,
expressed as pi = 1

n2 .
The open-source repository created and developed for this research is called

“Raoq_GEE” and can be accessed on GitHub 3.15.3 at the following URL: https://github.
com/rafaelatiengo/Raoq_GEE (accessed on 3 January 2025). This repository contains
methods implemented in Python, enabling users to replicate the research findings.

The delineation of the study area can be performed within the code by either specify-
ing geographic coordinates or by directly drawing the polygon of interest on the map. This
methodology offers considerable flexibility in data processing, accommodating a variety
of use cases and strategies that prospective users may wish to employ. This adaptability
increases the customizability of the code to suit a wide range of needs and specific ap-
plications, enhancing the system’s overall versatility and utility. Additionally, users can
incorporate shapefiles of the study area, provided they have the area saved in vector format
on their devices, as previously outlined by [123,125].

https://github.com/rafaelatiengo/Raoq_GEE
https://github.com/rafaelatiengo/Raoq_GEE
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The variation between each pair of Rao’s Q maps is determined by the pixel values
corresponding to the calculated change intensity [123], as described by Equation (2).

Root Square Di f f erence =

√(
RaoA f ter − RaoBe f ore

)2
(2)

As shown in Figure 3, Rao’s Q was calculated using both the classical mode and three
multidimensional modes. While the classical Rao’s Q approach is straightforward and
facilitates interpretation, it may overlook complex interactions between indices, providing
a limited perspective on LULCC. In contrast, the multidimensional approach enables a
more comprehensive evaluation by integrating multiple spectral indices, thereby capturing
interactions that can significantly enhance the detection of burned areas. In our study, the
selected combinations for the multidimensional modes were MD 1 (NBR + MIRBI), MD 2
(NDVI + MIRBI), and MD 3 (NDVI + NBR). These combinations were selected based on
their superior performance in the classical Rao’s Q analysis, demonstrating optimal results
in the detection of burned areas.

In this context, Rao’s Q was calculated for wildfire scenarios. This study builds
upon and extends the works of Tassi & Gil [122] and Tiengo et al. [125] by testing the
approach to burnt areas incorporating fire-specific indices (MIRBI, BAIS2, NBR) and their
combinations across three case studies with diverse climates and vegetation types. While
Tassi & Gil [122] employed only NDVI and Landsat 8, and Tiengo et al. [125] focused on
monitoring nature conservation areas using multiple sensors integrated with Google Earth
Engine, our research differentiates itself by focusing on monitoring wildfires. Additionally,
we tested and validated the use of Rao’s Q for wildfire monitoring in areas with distinct
environmental characteristics, thus expanding its application to new contexts that had not
been explored in previous studies.

2.6. Threshold-Based Change Detection

The dissimilarity between each pair of Rao’s Q maps, both pre-and post-event, is repre-
sented through pixel values that quantify the estimated change intensity. For each method-
ological approach (classic, MD 1, MD 2, and MD 3), a final binary map was produced,
categorizing areas into “change” and “no change” classes based on a determined threshold.

The threshold used to classify areas as ‘change’ or ‘no change’ was determined using
a histogram-based method. This approach involves analyzing the distribution of pixel
values representing the intensity of changes observed in the difference maps between pre-
and post-event Rao’s Q Index. Specifically, the threshold is set by identifying the point
of maximum perpendicular distance from the secant line that connects the histogram’s
highest and lowest points. This method effectively identifies an optimal cut-off point that
separates significant changes from typical background variations [123,125].

2.7. Accuracy Assessment

To assess the accuracy of various Rao’s Q-based methodologies in producing binary
maps, we determined the OA as the percentage of accurate classifications. This procedure
involved generating and evaluating 100 random points, created individually using QGIS
3.10, with 50 points marked as ‘change’ and 50 points marked as ‘no change’ for each
case study. Each point’s classification was verified and validated as accurate or inaccurate
through GIS-based photo interpretation utilizing high-resolution orthophotomaps and satellite
imagery (e.g., Google Earth), supported by the respective CEMS monitoring reports.

The criteria for classifying the values into these categories were based on the methods’
accuracy classification, defined as follows: low agreement (below 40), moderate agreement
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(41 to 60), good agreement (61 to 75), excellent agreement (76 to 80), and almost perfect
agreement (above 80) [125,146,158–168].

Cohen’s κ [169] was also used to check the level of agreement between producer
and user accuracy. Although the κ-coefficient is a widely used metric, it is not without
limitations. Therefore, accuracy was additionally assessed using the Allocation and Quan-
tity Disagreement metrics (AD and QD, respectively [170], and by the True Skill Statistic
(TSS; [163]). TSS ranges from −1 to +1, accounting for both omission (i.e., sensitivity) and
commission (i.e., specificity) errors. According to Coetzee et al. [171]. TSS values below 0.5
are considered poor.

3. Results
3.1. Sardinia

On 13 July 2019, a wildfire ignited in the central-eastern region of the island of Sardinia,
near the city of Tortolì, located in the Ogliastra province. The fire consumed approximately
800 hectares of Mediterranean shrublands [138]. Given the fire danger and the threatened
values, the CEMS was activated on 17 July.

The study conducted on wildfire-affected areas in Sardinia provided valuable insights
into the effectiveness of spectral indices for detecting burned areas using Rao’s Q-based
approaches. The individual indices using the classic Rao’s Q approach were evaluated first,
revealing varying levels of accuracy in identifying fire-impacted regions (Figure 4).
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Figure 4. Accuracy assessment of Rao’s Q classic on detecting burned areas in Sardinia: MIRBI
performed best with an OA of 72%, followed by BAIS2 and NBR, both with 59%, and NDVI with 56%.

The MIRBI demonstrated the highest OA at 72%, followed by the BAIS2 and NBR,
both with an OA of 59%. The NDVI recorded a lower OA of 56% (Table 4). However,
these relatively low OA values are related to the identification of many false negatives,
leading to overestimations in the burned area. In fact, the Specificity (s) values range from
55% (BAIS2 and NBR) to 66% (MIRBI). This imbalance in classification also explains the
high values of Quantity Disagreement (QD) across all the spectral indices analyzed. The
values of the κ coefficient and TSS are all below the thresholds required to consider the
classification agreement as good (<0.60 and <0.75, respectively). However, while MIRBI
shows the highest κ value (0.44), the highest TSS value was achieved by NBR (0.55).
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Table 4. Accuracy metrics for each Rao’s Q methodological approach (The values highlighted in bold
represent OA, S, s and TSS greater than 0.75, κ greater than 0.60 and AD and QD less than 0.10).

Accuracy Metrics

Study Areas Approach Spectral Metrics OA S s κ TSS AD QD

Sardinia (Italy)

Rao’s Q Classic

MIRBI 0.72 0.87 0.66 0.44 0.52 8.00 20.00
NDVI 0.56 0.88 0.53 0.12 0.41 2.00 42.00
BAIS2 0.59 0.85 0.55 0.18 0.40 4.00 37.00
NBR 0.59 1.00 0.55 0.18 0.55 0.00 41.00

Rao’s Q MD
MIRBI + NBR 0.93 0.92 0.94 0.86 0.86 6.00 1.00

MIRBI + NDVI 0.91 0.92 0.90 0.82 0.82 8.00 1.00
NBR + NDVI 0.73 0.90 0.66 0.46 0.56 6.00 21.00

Thassos (Greece)

Rao’s Q Classic

MIRBI 0.56 1.00 0.53 0.12 0.53 0.00 44.00
NDVI 0.67 0.95 0.60 0.34 0.55 2.00 31.00
BAIS2 0.52 0.67 0.51 0.04 0.18 4.00 44.00
NBR 0.63 1.00 0.57 0.26 0.57 0.00 37.00

Rao’s Q MD
MIRBI + NBR 0.90 0.98 0.84 0.80 0.82 2.00 8.00

MIRBI + NDVI 0.82 0.97 0.74 0.64 0.71 2.00 16.00
NBR + NDVI 0.93 0.96 0.91 0.86 0.86 4.00 3.00

Pantelleria (Italy)

Rao’s Q Classic

MIRBI 0.71 0.89 0.64 0.42 0.53 6.00 23.00
NDVI 0.68 1.00 0.61 0.36 0.61 0.00 32.00
BAIS2 0.57 0.89 0.54 0.14 0.43 2.00 41.00
NBR 0.70 1.00 0.63 0.40 0.63 0.00 30.00

Rao’s Q MD
MIRBI + NBR 0.96 0.98 0.94 0.92 0.92 2.00 2.00

MIRBI + NDVI 0.77 1.00 0.68 0.54 0.68 0.00 23.00
NBR + NDVI 0.78 0.97 0.70 0.56 0.67 2.00 20.00

OA: Overall accuracy; S: Sensitivity; s: Specificity; κ: Cohen’s kappa; TSS: True Skill Statistic; AD: Allocation
disagreement; QD: Quantity disagreement.

In a subsequent analysis, different combinations of indices were tested by applying
Rao’s Q multidimensional approach to enhance detection capabilities (Figure 5).
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The MIRBI + NBR combination achieved a remarkably high OA of 93%, indicating
superior performance in accurately delineating burned areas (Table 4). The MIRBI + NDVI
combination yielded an OA of 91%, while the NBR + NDVI combination reached an OA
of 73%. The values of the κ coefficient and TSS for the MIRBI + NBR and MIRBI + NDVI
combinations indicate high levels of accuracy, highlighting their synergistic effect. These
high values result from significant improvements in reducing false negatives, with clear
effects on the QA metric (1% for both combinations). The NBR + NDVI combination
outperforms the spectral indices in the classical approach but does not stand out from the
performance of MIRBI. These results demonstrate that the OA for these combined indices
was significantly higher, particularly for the MIRBI + NBR combination, highlighting the
benefits of integrating multiple indices for more precise fire impact assessments.

3.2. Thassos

On 10 August, a wildfire ignited near the village of Potamia on Thassos Island, located
in the Eastern Macedonia and Thrace Region of Greece. The fire burned through forest
stands, shrubland, and agricultural areas [139]. In response to the disaster, the CEMS was
activated on 17 August. The indices using the classic Rao’s Q approach were first computed
(Figure 6).
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highest OA at 67%. NBR followed with an OA of 63, while MIRBI and BAIS2 demonstrated lower
accuracy, with OAs of 56% and 52%, respectively.

NDVI achieved the highest OA of 67%, indicating a relatively strong performance in
identifying fire-impacted areas (Table 4). The NBR followed with an OA of 63%, demon-
strating moderate reliability. The MIRBI recorded an OA of 56%, while the BAIS2 had the
lowest OA of 52%. However, both the κ coefficients and the TSS values are very low. The
highest κ value was determined by the NDVI (0.34, fair agreement), and the highest TSS
value with the NBR (0.57, moderate accuracy). The same issue identified in the previous
case study is observed regarding the identification of false negatives, resulting in low values
of the Specificity metric (between 0.51 and 0.60) and moderately high values of the Quantity
Disagreement (QD between 31% and 44%).
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Additional analysis involved testing the combination of the three top-performing
individual spectral indices by applying Rao’s Q multidimensional approach (Figure 7).

Remote Sens. 2025, 17, x FOR PEER REVIEW 16 of 29 
 

 

 

Figure 7. Effectiveness of Rao’s Q MD for detecting burned areas in Thassos: the MIRBI + NBR com-
bination achieved an OA of 90%. The combinations of MIRBI + NDVI showed an OA of 82% and 
the NBR + NDVI an OA of 93%, indicating its superior accuracy in mapping burned areas. 

3.3. Pantelleria 

On 17 August, a significant wildfire, sparked by two separate ignitions, erupted on 
the island of Pantelleria, Sicily, fueled by the strong Scirocco winds that continued to blow 
across the island [140]. In response, the CEMS was activated on 18 August. Rao’s Q classic 
was computed for this event; its results are shown below (Figure 8). 

 

Figure 7. Effectiveness of Rao’s Q MD for detecting burned areas in Thassos: the MIRBI + NBR
combination achieved an OA of 90%. The combinations of MIRBI + NDVI showed an OA of 82% and
the NBR + NDVI an OA of 93%, indicating its superior accuracy in mapping burned areas.

The MIRBI + NBR combination resulted in an exceptional OA of 90%, highlighting
its superior ability to accurately delineate burned areas in this context (Table 4). The
MIRBI + NDVI combination achieved an OA of 82%, and the NBR + NDVI combination
yielded an OA of 93%, both showing significant improvements over the individual indices.
The improvement in performance with these combinations is mainly due to the reduction
of false negatives (0.74 ≤ s ≤ 0.91), with reflections in the QD metric (3% ≤ QD ≤ 16%).
In this case study, the greatest synergetic effects appear to come from the use of the NBR
index, reaching the highest values of κ and TSS when combined with NDVI (0.86 in both
accuracy metrics). These results underscore the advantage of integrating multiple indices
for more precise and reliable fire impact assessments in Thassos.

3.3. Pantelleria

On 17 August, a significant wildfire, sparked by two separate ignitions, erupted on
the island of Pantelleria, Sicily, fueled by the strong Scirocco winds that continued to blow
across the island [140]. In response, the CEMS was activated on 18 August. Rao’s Q classic
was computed for this event; its results are shown below (Figure 8).

Analyzing Rao’s Q classic, MIRBI achieved an OA of 71%, indicating its effectiveness
in identifying fire-impacted on this island (Table 4). The NBR closely followed with an
OA of 70%, demonstrating comparable reliability. The NDVI showed an OA of 68%, while
BAIS2 had the lowest accuracy among the classical indices, with an OA of 57%. The κ

coefficient ranges from 0.14 (BAIS2) to 0.42 (MIRBI), and the TSS ranges from 0.43 (BAIS2)
to 0.63 (NBR). In all cases, the performance of the indicators varies from low to moderate,
again showing low values of Specificity (0.54 ≤ s ≤ 0.64) and moderately high values of
Quantity Disagreement (23% ≤ QD ≤ 41%).
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In subsequent evaluations, different sets of indices were utilized to enhance the
capability for detection (Figure 9).
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Figure 9. Effectiveness of Rao’s Q MD for detecting burned areas in Pantelleria: the MIRBI + NBR
combination achieved an exceptional OA of 96%, demonstrating superior accuracy in delineating
burned areas. The MIRBI + NDVI and NBR + NDVI combinations also showed significant improve-
ments, with OAs of 77% and 78%, respectively, highlighting the effectiveness of combining multiple
indices for more precise fire impact assessments.
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The combination of MIRBI + NBR achieved an outstanding OA of 96%, underscoring
its superior performance in accurately delineating burned areas (Table 4). The NBR + NDVI
combination recorded an OA of 78%, and the MIRBI + NDVI combination yielded an OA
of 77%. However, from the analysis of the remaining accuracy metrics, it is observed that
this synergistic effect is more relevant in the MIRBI + NBR combination, resulting in a κ

coefficient and TSS of 0.92, Specificity of 94%, and Quantity Disagreement (QD) of only
2%. These results highlight the significant improvements in accuracy when integrating
multiple indices, particularly the combination of MIRBI + NBR, for more precise fire impact
assessments in Pantelleria.

3.4. Overall Accuracy Assessment

Table 4 presents the accuracy outcomes of the methodological approaches based on
Rao’s Q. Among these, Rao’s Q MD employing the MIRBI and NBR index demonstrated
better performance, highlighting its effectiveness in detecting LULCC resulting from wild-
fire events.

4. Discussion
This study evaluates the effectiveness of Rao’s Q methodology in detecting burned

areas across three distinct islands within the Mediterranean Basin: Sardinia, Thassos, and
Pantelleria. The results highlight the usefulness of this methodology for detecting burned
areas in the above locations. They also showed remarkable differences between spectral
indices when used independently (classical approach) or in combination (multidimensional
approach), which undoubtedly improved the results.

In the classical approach of the algorithm, the best results were obtained using the
MIRBI (in Sardinia and Pantelleria) and the NDVI (in Thassos), while the worst results were
obtained using the BAIS2 (in Thassos and Pantelleria) and the NDVI (in Sardinia), as shown
in Table 4. These findings are consistent with previous studies that have demonstrated
MIRBI’s effectiveness in fire detection [141] due to its sensitivity to burnt vegetation and
soil [172]. Several authors have noted its good performance, especially in arid savannahs,
shrublands, and grasslands [173–175], which are the cover types for which this index was
designed [109]. These ecosystems are characterised by a low canopy density, a consequent
importance of the soil signal in the spectral response and a senescence that can often
overlap with the arrival of the fire season. Additionally, Schepers et al. [173] found good
performance of the MIRBI, especially in dry and highly flammable vegetation. Most of these
characteristics are shared by the fire-affected ecosystems of Sardinia [150] and Panttelleria,
which may explain the results achieved in these two study areas. However, whenever the
vegetation cover is denser and more vigorous, as is more the case of Thassos, the spectral
response after a fire is less evident in the mid-infrared spectrum (as captured by MIRBI)
and more apparent in the red and NIR bands [131]. This same behavior has been shown by
Fornaca et al. [175] demonstrating a better detection of burned areas when using indices
that work with the NIR band, such as the NDVI or the NBR. The NDVI, by capturing the
loss of green biomass and live fuel moisture, ensures good separability between burned
and unburned areas in landscapes where vegetation is dense [146,151,152], which may
explain the good results in Thassos, failing in regions with low primary productivity, such
as Sardinia.

Despite the limitations shown by Roy et al. [145], the NBR index is one of the most
widely used for mapping burned areas and severity [176–179]. In general, it tends to
perform well in areas with dense, photosynthetically active vegetation [109,173], while it
can misclassify bare soil, water bodies, or urban areas as burned. In fact, its performance
can be influenced not only by vegetation density but also by the burn severity [109,151,180].
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Additionally, effective detection was very robust over time when using this index, as
shown by Schepers et al. [173] when analyzing coniferous forests. As shown in Table 4, the
overall accuracy of this index under the classical approach reached the second highest value
among the three study cases, demonstrating its ability to perform well in Mediterranean
ecosystems of both low (Sardinia, Pantelleria) and medium vegetation density (Thassos).
These favorable results could be attributed to the choice of images taken very close to
the occurrence of the event, a crucial factor for the detection of burned areas in sparsely
vegetated ecosystems [109].

The launch of the Sentinel-2 MSI series in 2015 opened up the possibility of calculating
burned area spectral indices with improved spectral resolution, as is the case of BAIS2 [127].
This index benefits from either the first part of the red-edge region, where variations
in chlorophyll content can be derived, the NIR part of the spectrum, more related to
variation in leaf structure, or the SWIR bands, where burned area detection is known
to be efficient [127]. The performance of BAIS2 and fourteen other indices in detecting
burned areas was studied by van Dijk et al. [141]. Dijk et al. [141] concluded that the most
effective Sentinel-2 bands for discriminating burned areas were the NIR and long red-edge
wavelengths (bands 6, 7, and 8A) due to the decrease in the amount of vegetation after
the fire. Also, the LSWIR band (band 12) showed a high discriminatory ability attributed
to the change in the water content of the plant tissue. In terms of indices, those with the
highest discriminating power were the ones using the two SWIR bands (bands 11 and 12).
Despite the BAIS2 being a promising index [180], the results for the three areas studied for
this index showed the lowest overall accuracy values in Thassos and Pantelleria and the
second lowest in Sardinia (tied with the NBR) (see Table 4). Han et al. [180] have shown
that this index is influenced by vegetation density and fire severity. Unfortunately, there is
still little literature on this index to help us interpret these results. The low OA values for
the BAIS2 index meant that it was discarded for the second stage of the algorithm, so Rao’s
Q MD was not calculated using the BAIS2 due to its consistently inferior performance in
the classical Rao’s Q analysis across all study areas.

In the multidimensional (MD) approach of the algorithm, the best results were ob-
tained in all cases by combining the MIRBI and NBR indices. These results emphasize
the value of combining indices to overcome the limitations of individual methods and
improve the overall accuracy of fire performance assessment. These results are in line
with those shown by other authors on the suitability of the MIRBI and NBR indices for the
detection of burnt areas [141,175], especially in environments such as the Mediterranean
basin. Other works have also shown the usefulness of combining several indices and using
them synergistically in the assessment of the burnt area [181], highlighting the importance
of integrating indices that can respond to the different responses of the land cover to the
fire phenomenon.

In this study, the boundaries of burned areas were delineated using data provided by
the CEMS. The results obtained from applying Rao’s Q metric to detect burned areas were
found to be consistent with the CEMS-provided delineations. This alignment validates the
effectiveness of the employed indices and methods, as the CEMS data represents a reliable
and authoritative source for assessing fire-affected regions. The concurrence between
the detected burned areas and CEMS boundaries reinforces the accuracy of our results
and supports the robustness of our validation approach. By aligning our findings with
established CEMS limits, we ensure that our analysis provides a credible and comparable
assessment of fire impacts, thereby enhancing the reliability and applicability of our results
in fire management and response efforts.
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5. Conclusions
This study provides a comprehensive evaluation of the effectiveness of various indices

in detecting burned areas across Sardinia, Thassos, and Pantelleria using Rao’s Q. The
analysis demonstrates that while individual classical indices such as MIRBI, NBR, and
NDVI exhibit varying levels of accuracy in identifying fire-impacted regions, combining
these indices enhance significantly detection capabilities. The multidimensional approach
leverages the strengths of individual indices and Sentinel-2 MSI’s improved spectral reso-
lution, particularly in the SWIR and NIR bands. This advancement is crucial for accurate
burned area delineation in diverse Mediterranean ecosystems. Integrating indices with
complementary spectral sensitivities provides a robust tool for fire prevention strategies,
resource allocation, and ecological restoration planning.

Overall, the results from Sardinia, Thassos, and Pantelleria illustrate the variability
in index performance and the advantages of combining multiple indices to enhance de-
tection accuracy. The study underscores the importance of selecting appropriate indices
and combinations based on regional characteristics and specific detection needs. Future
research should continue to explore and validate these approaches across diverse land-
scapes to refine wildfire detection methodologies further and improve overall wildfire
management strategies.

The findings affirm that integrating multiple indices, particularly MIRBI and NBR,
provides a robust approach to enhancing fire detection accuracy. This synergistic approach
improves accuracy and highlights the value of incorporating spectral responses to fire
phenomena. The boundaries of burned areas were detected using Rao’s Q metric, which
was aligned with those provided by the Copernicus Emergency Management Service
(CEMS). This consistency validates the reliability and robustness of the fire detection and
assessment methodology. It facilitates its adoption by policymakers, land managers, and
emergency response teams for reliable fire impact assessments.

This study introduces a novel methodology for detecting and mapping burned areas
by adapting Rao’s Q index—traditionally used to measure spatial heterogeneity—to wild-
fire monitoring. Using high-resolution Sentinel-2 imagery, the approach integrates multiple
spectral indices, namely NDVI, NBR, MIRBI, and BAIS2, individually and in a multidimen-
sional framework. Notably, the multidimensional method significantly enhances detection
accuracy, demonstrating that the multidimensional approach may overcome the limitations
inherent in single-index methods, such as false negatives and commission errors. Validation
against authoritative Copernicus Emergency Management Service (CEMS) data confirms
the robustness of the results. This work also provides an open-source, reproducible work-
flow using Python integrated with Google Earth Engine, facilitating further application
and development. It pioneers the application of Rao’s Q index in burned area detection
and sets a new and robust approach for utilizing freely accessible remote sensing data in
fire monitoring and management.
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