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Abstract 

 

Analysis of Smart Hybrid Microgrid Systems with RE 

and ESS for Sustainable Grid Integration 

This research focuses on a Smart Hybrid Microgrid System (SHMs) energy forecasting, technical 

design and power optimization for diverse applications, like remote areas, community based 

SHM’s, and small commercial establishments. Integrating Renewable Energy Sources (REs), and 

Battery Energy Storage System (BESS) to enhance the grid integration, grid stability, and 

reliability. This study begins with an in-depth literature review, investigate existing Smart Hybrid 

Microgrid System (SHMs) energy forecasting, modeling, optimization, along with their 

challenges and advantages. The Long short-term memory (LSTM) machine learning model is 

employed for energy demand forecasting, and renewable energy generation forecasting. 

MATLAB/Simulink is used for SHM system modeling, and optimization of renewable power 

generation through Maximum Power Point Tracking (MPPT) algorithms, enabling performance 

analysis for proposed electrification grid network. The major components of the SHM’s include 

solar photovoltaic panels, wind turbines, battery energy storage system, peripheral power 

electronics, and measurement blocks. The machine learning and MATLAB/Simulink models 

demonstrate accuracy, efficiency, convergence time, and power losses minimization. The smart 

hybrid microgrid system optimized using traditional and advanced MPPT algorithms, such as 

Perturbation and Observation (P&O), Predictive Control Method (PCM), Fuzzy Logic, and 

Artificial Neural Network (ANN). The result shows that the forecasting model achieves 98% 

accuracy, while ANN MPPT algorithm provides the highest efficiency with 99.6%, compared to 

the other MPPT algorithms. The key finding provides comprehensive insights into demand and 

generation forecasting, power optimization, and SMH’s technical analysis, ensure reliability and 

sustainability. The research concludes with recommendations for future improvements, financial 

assessment, implementation strategies, real time energy management, and monitoring which 

contribute more cleaner and resilience energy future.   

Keywords: Hybrid Microgrid System, Energy Forecasting, Optimization, LSTM, MPPT 

Algorithms, Grid Integration, MATLAB/Simulink                       
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Resumo 

 

Análise de sistemas de micro-redes híbridas inteligentes 

com RE e ESS para integração de redes sustentáveis 

Esta investigação centra-se na previsão energética, na conceção técnica e na otimização da 

potência de um sistema de microrredes híbridas inteligentes (Smart Hybrid Microgrid SHM) para 

diversas aplicações, tais como áreas remotas, SHM de base comunitária e pequenos 

estabelecimentos comerciais. Integração de fontes de energia renováveis (Renewable Energy 

Sources  ER) e de sistemas de armazenamento de energia em baterias ( Battery Energy Storage 

System BESS) para melhorar a integração, a estabilidade e a fiabilidade da rede. Este estudo 

começa com uma revisão aprofundada da literatura, investiga a previsão de energia, modelação, 

otimização do Sistema Híbrido Inteligente de Microrredes (SHMs) existente, juntamente com os 

seus desafios e vantagens. O modelo de aprendizagem automática de memória de curto prazo 

longa (Long short-term memory LSTM) é empregue para a previsão da procura de energia e para 

a previsão da produção de energia renovável. O MATLAB/Simulink é utilizado para a modelação 

do sistema SHM e para a otimização da produção de energia renovável através de algoritmos de 

seguimento do ponto de potência máxima (MPPT), permitindo a análise do desempenho da rede 

de eletrificação proposta. Os principais componentes dos SHM incluem painéis solares 

fotovoltaicos, turbinas eólicas, sistema de armazenamento de energia em baterias, eletrónica de 

potência periférica e blocos de medição. Os modelos de aprendizagem automática e 

MATLAB/Simulink demonstram precisão, eficiência, tempo de convergência e minimização de 

perdas de energia. O sistema de microrrede híbrida inteligente foi optimizado utilizando 

algoritmos MPPT tradicionais e avançados, tais como Perturbação e Observação (P&O), Método 

de Controlo Preditivo (PCM), Lógica Difusa e Rede Neuronal Artificial (RNA). O resultado 

mostra que o modelo de previsão atinge 98% de exatidão, enquanto o algoritmo ANN MPPT 

proporciona a maior eficiência com 99,6%, em comparação com os outros algoritmos MPPT. A 

principal conclusão fornece uma visão abrangente sobre a previsão da procura e da produção, a 

otimização da energia e a análise técnica da SMH, garantindo a fiabilidade e a sustentabilidade. 

A investigação conclui com recomendações para melhorias futuras, avaliação financeira, 

estratégias de implementação, gestão de energia em tempo real e monitorização que contribuem 

para um futuro energético mais limpo e resiliente. 

Palavras-chave: Microrede Híbrida Inteligente, Previsão de Energia, Otimização, LSTM, 

Algoritmos MPPT, Integração à Rede, MATLAB/Simulink. 
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Chapter 1  

1. Introduction 

1.1 Background 

Recently the global energy landscape is shifting to renewable energy systems, which are driven 

by climate mitigation, increase energy security, and bridge the electrification gap underprivileged 

areas. Conventional centralized grid systems often suffer from power disruption, grid instability, 

high power transmission losses, and dependency on fossil fuels. To address those challenges, a 

decentralized system, like smart hybrid microgrid system (SHMs) provides a reliable and 

sustainable energy solution [1]. These systems incorporate with Renewable energies sources 

(REs), like Solar photovoltaic (PV) panels, Wind turbines (WT), and Battery energy storage system 

(BESS) that offer reliable and stable energy supply through the grid network. These SMHs are 

particularly essential for remote regions, community based, and small commercial applications 

where grid stability and reliability are crucial [2]. The design of such SHMs requires several 

challenges, such as renewable energy resource feasibility, intermittency, power optimization, grid 

stability and reliability [3].  

                

  

 

 

 

 

 

 

 

 

Figure 1.1: Smart hybrid microgrid system schematic diagram 

A smart hybrid microgrid system integrated with several renewable energy resources, AC and 

DC loads, hybrid grid tied inverter, string inverters, controlling units and distribution 

transformers.     
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1.2 Motivation 

According to world energy poverty data [4], 1.18 billion people can not use electricity for several 

reasons. One of the reasons is the unavailable grid infrastructure in remote areas or small 

community areas. The motivation behind this study is to promote clean renewable energy 

solutions using decentralized hybrid microgrid infrastructure. There is a deficiency of robust 

energy access in underprivileged areas due to the intermittent nature of renewable energy. Where 

smart hybrid microgrid system (SHMs) plays a crucial role to serve continuous energy supply. 

The traditional hybrid microgrid system often fails, due to lack of feasibility study (energy 

demand, and renewable energy generation forecasting), grid stability and reliability assessment. 

By leveraging modern technologies like machine learning models, and sophisticated power 

optimization algorithms promise to bridge the gaps. Using those artificial models and power 

optimization algorithm, hybrid microgrid system can minimize demand-supply mismatch, 

improve grid stability, grid integration, and mitigate carbon footprints.               

1.3 Literature Review 

The adaptation of global electricity is rapidly changing towards renewable energy. Solar 

photovoltaic (PV) and wind energy are the leading renewable energy sources. According to 

Ember data, solar and wind technology cumulatively generate approximate 13.4% global energy 

by 2023 [5], that is contributes more than 70% of renewable energy globally among all renewable 

energy resources. The energy landscape suggests that in 2030 combinedly renewable contribution 

will be 46% of global electricity [6]. To use renewable energy, there are some drawbacks due to 

intermittency nature. Hence renewable energy sources (REs) integration with the grid also 

increases, which led to grid stability failure [7]. If renewable energy integration rapidly increases 

and does not maintain the grid code, it can be major voltage fluctuation in PCC. Increasing 

renewable energy significantly raise the concern about energy reliability. To overcome those 

issues, hybrid microgrid is one of the best solutions. This literature review focuses on 

advancements in smart hybrid microgrid system (SHMs) [8], integration into renewable energy 

resources [9], machine learning language for energy demand and renewable energy resource 

forecasting [10], and energy optimization using maximum power point tracking (MPPT) 

algorithms [11]. One of the characteristics is that a smart hybrid microgrid system has the ability 

to operate independently or integrate with nation grid, which makes SHMs more reliable and 

sustainable energy solutions. Integrate renewable energy sources, like solar photovoltaic panels, 

wind turbines, battery energy storage system (BESS) presents both opportunities and challenges 

[11]. Accurate energy demand and renewable energy resource forecasting is crucial to enhance 

hybrid microgrid optimization, energy management and operation. Traditional forecasting 

models are not efficient to capture complex energy patterns data. The advance artificial machine 

learning models has revolutionized energy demand and REs forecasting by the utilization of large 
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datasets that identify complex patterns and trends [11-17]. In this research, Long Short-Term 

Memory (LSTM) machine learning model has been employed to forecast the proposed location 

of energy demand and available renewable energy resources. There are several forecasting 

methods available, but LSTM and ANN models are the most used machine learning models for 

energy forecasting [18]. Maximum Power Point Tracking (MPPT) is crucial to extract maximum 

power from solar PV panels and wind power under extreme weather conditions. It operates 

continuously by tracking and adjusting the operating point of the solar PV system to make sure 

that this point follows it’s I-V (current-voltage) curve where MPP power is generated. There are 

several MPPT methods that have been published in the literature to achieve optimal performance. 

The most used MPPT algorithms of direct methods are Perturb and Observe (P&O), and 

Incremental Conductance. Although there are some prominent MPPT methods such as indirect 

methods Fractional Short Circuit Current (FSCC) and Fractional Open Circuit Voltage (FOCV) 

and soft computational methods, Particle Swarm Optimization (PSO), Genetic Algorithm (GA), 

Fuzzy Logic Control (FLC), Artificial Neural Network (ANN), Model Predictive Control (MPC), 

Adaptive Neuro-Fuzzy Inference System (ANFIS), Modified P&O (ModP&O), Adaptive Gradient 

Method (AGM), Ant Colony Optimization (ACO), Fast-Sweep Method (FSM), Dual-Perturbation 

Method (DPM), and Variable Step Size Incremental Conductance (VSSIncCond) [34-43]. Recent 

research demonstrates that machine learning model based MPPT techniques performance are fer 

better than traditional MPPT algorithms. For this research four (4) different MPPT algorithms 

(P&O, Predictive Control Method, Fuzzy Logic and Artificial Neural Network) are used to 

identify the best MPPT model for smart hybrid microgrid (PV) system power optimization. 

Including machine learning model (LSTM), and power optimization MPPT algorithm (ANN 

based MPPT) are incorporate into smart hybrid microgrid system (SHMs) MATLAB/Simulink 

modeling goals to enhance renewable energy resources forecasting accuracy and maximize 

power extraction from solar PV panels, which improve overall efficiency, reliability and the SHMs 

operation.                                                           

1.4 Research Objectives 

This research represents the following objectives:  

1. To develop a Long Short-Term Memory (LSTM) machine learning model for accurate 

energy demand forecasting and renewable energy resources forecasting.  
 

2. Evaluate the performance of different Maximum Power Point Tracking (MPPT) 

algorithms such as P&O, Predictive Control Method (PCM), Fuzzy Logic and ANN to 

maximize solar PV panels power output.  
 
 

3. Design and simulate a Smart Hybrid Microgrid System (SHMs) architecture in a 

MATLAB/Simulink environment with best fitted MPPT algorithm. 
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4. Perform MATLAB/Simulink models simulation for MPPT (PV) and SHMs performance 

analysis, towards efficiency, convergence time, power losses, grid stability, and reliability.  
 

5. Provide essential recommendations for smart hybrid microgrid system deployments, 

optimization, real time monitoring, and resiliency enhancements.  

1.5 Dissertation Organization  

The dissertation is organized into six (6) chapters: 

Chapter 1 (Introduction): 

This chapter illustrating the problems background, motivation led to do the research, research 

objectives, and the importance of this study. It highlighted global energy transition, and the 

significance decentralized smart hybrid microgrid system for sustainable and reliable energy 

solutions.  

Chapter 2 (Basic Principles and Technologies (PV)): 

This chapter represents an overview of solar PV cells modeling, irradiance and temperature effect 

on solar PV. It provides fundamental principles of DC-DC power conversion technologies, and 

MPPT algorithms for optimize power generation.  

Chapter 3 (RE Resource and Demand Forecasting): 

This chapter provides an overview for renewable energy resource forecasting and energy 

demand utilizing advanced machine learning language (LSTM). It comprises with data collection 

and processing, model training, testing and validation. Performance metrics assessment (MAE, 

RMSE, R²) for precise forecasting.   

Chapter 4 (Smart Hybrid Microgrid System Modelling and Design): 

This chapter focuses on modeling and designing for proposed Smart Hybrid Microgrid System 

(SHMs) in the MATLAB/Simulink environment. It included mathematical modeling of smart 

hybrid microgrid components, and different types of hybrids microgrid architectures. 

Chapter 5 (Results and Discussion): 

This chapter represents machine learning model (LSTM) results and accuracy and performance 

metrics with discussions, and comparative analysis of multiple MPPT (PV) algorithms for power 

optimization. Also proposed Smart hybrid microgrid system efficiency, grid stability, and power 

losses analysis.  
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Chapter 6 (Conclusion): 

In this chapter summarizes the main findings of the study and provides necessary 

recommendations for future research, including real time monitoring, scalability, policy, 

economic viability.   
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Chapter 2 

2. Basic Principles and Technologies (PV) 

2.1 Overview of Solar PV Energy 

As the worldwide demand of sustainable and clean renewable energy rises, the energy sources 

like solar, wind, geothermal, ocean and hydro energy have taken center place. Among all of these, 

solar energy has the potential to meet the energy demand from small scale to large scale. Still, the 

solar energy contribution is less than 3.6% towards global energy production [19]. Solar panels 

capture the sunlight and converts into electricity. It can reduce the toxic gases like carbon (CO2) 

emission and dependency on traditional fossil fuels-based plant which significantly mitigate 

climate change.     

2.2 Brief History of Solar PV Technology 

In 1839 French physicist Alexandre Edmond Becquerel first observe photovoltaic effect. He 

proves that the metallic plates such as silver or platinum when immersed in an electrolyte have 

potential to generate small electrical voltage when exposed to light. This finding was groundwork 

to develop a solar photovoltaic panel. In 1877, two scientists from North America, W.G Adams 

and R.E. Day first used solid-state device which converts sunlight into electricity using selenium 

that has photoconductive properties.  

  

Figure 2.1 Modern solar cell inventors from Bell Labs [20]. 

They used layer of selenium film deposited with iron substrate; semitransparent thin gold film 

that is serve frontal contact. The energy conversion efficiency was 0.5%. In 1905, the most popular 

scientist sir Albert Einstein explains the photovoltaic effect mechanism. After that in 1921, he 

received the Nobel Prize in Physic. The modern technology of silicon based solar PV was first 

created at Bell Laboratories in 1954. Over the years solar PV technology has increased efficiency 

and durability. Moreover, the prices, affordability and scalability lead to their widespread 
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adaption. Today, solar PV panels are the most common renewable energy source to generate 

clean energy.  

2.3 Importance of Solar PV in Renewable Energy 

Solar PV technology is one of the promising renewable energy sources which is game changer 

towards worldwide energy transition. It is reducing conventional fossil fuels-based power plants 

and greenhouse gases. Now a days, solar PV panels are cheaper renewable energy solution 

compared to others renewable energy sources. Due to environmentally friendly technology, it 

does not pollute environment such as air, water, and soil. It also mitigates global warming, which 

makes it one of the best options for clean energy production. Sunlight is abundant for that reason; 

solar PV energy is reliable and cost effective. Once solar panels installation serves more than 20 

years of green energy. Whether conventional fossil fuel-based energy is costly and its 

continuously raises the price, also it is the reason for producing toxic greenhouse gases and global 

warming. Solar PV panels offer energy independence, because they do not rely on electrical grids 

and provide reliable energy in outage situations. From small individual rooftops to large scale 

solar power plants has the capability to meet the energy demands. This flexibility enables 

decentralized energy generation and replaces conventional centralized grid systems. In remote 

areas, where conventional grid infrastructure is not available, a small solar plant can bring light 

and serve energy to empowering communities which significantly improve quality of life. 

 

Figure 2.2 Solar minigrid empowering community [21] 

Solar PV will be more economically attractive energy solution due to continuous research of 

technological advancement. This affordability also reduces energy storage costs, which 

accelerates solar energy adaptation globally and pushes the clean and sustainable energy growth.  
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2.4 Basic Principles of Solar Photovoltaic Technology 

2.4.1 Solar Photovoltaic Effect 

Photovoltaic effect refers to the process, which generates voltage and current when it is exposed 

to light. Due to this fundamental effect solar cells covert, the light to electrical energy [21]. This 

photovoltaic effect has a close relation with photoelectric effect. For both of these phenomena 

light is absorbed, which excite an electron to a large energy state. When photons of sunlight strike 

to surface of solar cells, it transfers energy to electrons within semiconductor materials. This 

energy allows electrons to release their atoms and create free electron (current) flows. The most 

recognized application for photovoltaic effect is used in solid-state devices especially in 

photodiodes. When sunlight or any other high energy light incidents into the photodiode, the 

electrons of valance band absorb that energy. As a result, they become excited and jump into 

conduction band to be free.  

 

Figure 2.3 photovoltaic effect bang diagram [22] 

From those all-excited electrons being diffused, and some of them reach to rectify junction (P-N 

junction diode). Because of free movement, this electron passes through material where they 

build in potential which is known as “Galvani potential”, that accelerate electrons to n-type 

semiconductor and generate electromotive force to produce electrical current. This process 

converts sunlight energy into electrical energy [23]. The photon is defined by its energy (E) and 

wavelength (λ). The mathematical relationship between them is given by: 
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𝐸 =   ℎ𝑐/λ                          (2.1) 

Where, 

  ℎ = 𝑃𝑙𝑎𝑛𝑐𝑘′ 𝑠 𝑐𝑜𝑛𝑠𝑡𝑎𝑛 [J.s] 

𝑐 = 𝑆𝑝𝑒𝑒𝑑 𝑜𝑓 𝑡ℎ𝑒 𝑙𝑖𝑔ℎ𝑡  [m/s] 

λ = 𝑃ℎ𝑜𝑡𝑜𝑛 𝑤𝑎𝑣𝑒𝑙𝑒𝑛𝑔𝑡ℎ [m] 

𝐸 = 𝑃ℎ𝑜𝑡𝑜𝑛 𝑒𝑛𝑒𝑟𝑔𝑦 [J] 

To generate the current, photon energy should be higher than the bandgap of material.  

All the photovoltaic effects occur in solid material involve with several things. 

• Light must have to be absorbed by solid materials 

• Free charge carrier produces through absorption  

• An internal variation or nonuniform distribution impurities or faults are the reason to 

develop internal electric fields which separate two types of charge carrier.  

• Electrical connections 

The diagram represents photovoltaic effect is given below.  

 

Figure 2.4 Photovoltaic effect diagram [23] 

However, this photovoltaic effect will occur when two photons are simultaneously absorbed. This 

phenomenon is called “two photons photovoltaic effect”. The photovoltaic effect will continue as 

long as sunlight incidents to solar cells. To extract the current for electrical circuits, it must have 

to be an electrical field which accelerates the electrons to a particular direction. 
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2.4.2 Basic Working Principle of a Solar Cell 

The solar cell is a solid-state electronic device that has capabilities to convert sunlight into 

electricity. When sunlight is shining and falls into solar cells, it produces power which is the 

product of voltage and current. The electrical characteristics (voltage, current and resistance) will 

change with changing light. To complete this process semiconductor material is needed. Solar 

cell structure basically is an absorption layer with positive (+) and negative (-) terminal as like 

battery electrode connected. To make one directional electron flow through an electromagnetic 

force, an internal electric field is necessary to produce practical p-n junction. The material of p-

type semiconductors that conduct huge number of holes and n-type semiconductors can conduct 

huge number of electrons rather than holes.  

The main requirement to produce photovoltaic energy is electronic asymmetric structure between 

p-type and n-type semiconductors. Figure 2.6 shows a band diagram of a solar cell structure.   

 

Figure 2.5: Solar cell band diagram [24] 

When sunlight strikes the n-type region and penetrate into depletion region, the photon energy 

is enough to create electron-hole pairs within depletion region. The electric field present in this 

depletion region drives the electrons from there. Hence the concentration of holes in p-type region 

and electrons of n-type region become high, it is known as potential difference (voltage) if load is 

connected [25].  

    

Figure 2.6: Solar cell structure diagram [26] 
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This is the reason electron flow through external electrical load and produce direct current (DC). 

This process gives the permission to get steady DC power, which we can use in daily life.       

2.4.3 Modeling of Solar PV Cells 

Solar PV cells modeling involves a mathematical representation which can simulate equivalent 

electrical circuit behavior under any environmental conditions. A photovoltaic solar panel 

consists of several cells. There are several models of equivalent circuit such as single diode model, 

double diode model and three diode model [25]. From those, single diode model is most 

commonly used, that represents an equivalent circuit consisting of a current source, a diode, a 

resistor (Rs), and shunt resistor (Rsh) component (figure 2.8). The symbol of current source 

illustrates photocurrent generator that from sunlight and diode represent p-n junction 

characteristic within solar cells. The series resistance (Rs) accounts internal losses and parallel or 

shunt resistance (Rsh) that is for leakage current. All those elements make the effect of overall 

performance and efficiency of solar photovoltaic cells.          

 

                   Figure 2.7: Equivalent circuit of solar cell 

Where, 

  𝐼𝐿 = 𝑃ℎ𝑜𝑡𝑜𝑐𝑢𝑟𝑟𝑒𝑛𝑡 [𝐴] 

𝐼𝑑 = 𝐷𝑖𝑜𝑑𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 [A] 

𝐷 = 𝐷𝑖𝑜𝑑𝑒  

𝐼𝑠ℎ = 𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑜𝑟 𝑠ℎ𝑢𝑛𝑡 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 [A] 

𝑅𝑠ℎ = 𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑜𝑟 𝑠ℎ𝑢𝑛𝑡 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 [Ω] 

𝑅𝑠 = 𝑆𝑒𝑟𝑖𝑒𝑠 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 [Ω] 

𝐼 = 𝑆𝑜𝑙𝑎𝑟 𝑐𝑒𝑙𝑙 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 [A] 

𝑉 = 𝑆𝑜𝑙𝑎𝑟 𝑐𝑒𝑙𝑙 𝑣𝑜𝑙𝑡𝑎𝑔𝑒 [V] 
 

The single diode solar cell model is specifically effective for predicting I-V curve, where the main 

electrical parameters are open circuit voltage (Voc), short circuit current (Isc) and maximum 

power point (MPP) [13]. This model helps the researchers and engineers to design a highly 
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efficient solar cells and improve their performance under diverse conditions such as irradiance 

and temperature variation.      

• Key Parameters for Solar PV Cell Model 

Before exploring different types of solar cell modeling, it is important to first explore the 

significance of solar cell parameters which define the efficiency and performance. To understand 

all those parameters is crucial, because those are influenced by environmental factors such as 

irradiance and temperature. It can change the solar PV cell operating conditions (MPP). 

• Photocurrent of Solar PV Cell (𝐈𝐋) 

The photocurrent (𝐼𝐿) illustrates the current that is generated by solar PV cell when it is exposed 

to sunlight. The photocurrent generally depends on standard temperature, irradiance, and their 

changes, also the changes of temperature coefficient. As irradiance increases, temperature also 

increases while photocurrent will be decrease [28]. The mathematical expression is:  

  𝐼𝐿 = (𝐼𝑠𝑐 + 𝑘. (𝑇 − 𝑇𝑟𝑒𝑓)).
𝐺
𝐺𝑟𝑒𝑓

            (2.2) 

Where, 

  𝐼𝐿 = 𝑃ℎ𝑜𝑡𝑜𝑐𝑢𝑟𝑟𝑒𝑛𝑡 [𝐴] 

𝐼𝑠𝑐 = 𝑆ℎ𝑜𝑟𝑡 𝑐𝑖𝑟𝑐𝑢𝑖𝑡 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 [A] 

𝑘 = 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑓𝑜𝑟 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 [
𝐴

𝐾
]  

𝑇 = 𝑆𝑜𝑙𝑎𝑟 𝑃𝑉 𝑐𝑒𝑙𝑙 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 [K] 

𝑇𝑟𝑒𝑓 = 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 [K]  

𝐺 = 𝐼𝑟𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒 [W/m2] 

𝐺𝑟𝑒𝑓 = 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑖𝑟𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒 [W/m2] 
 

• Diode Saturation Current of Solar PV Cell (𝐈𝟎) 

Diode saturation current is the main factor that influences the open circuit voltage (Voc). This 

parameter reflects the leakage current, when no sunlight is available. As temperature increases, 

the diode saturation current also increases exponentially because of electrons recombination and 

holes among p-n junction (figure 2.9).  
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Figure 2.8: Diode saturation current graph [29]. 

The mathematical expression for diode saturation current is:  

  𝐼0 = 𝐼0,𝑟𝑒𝑓 . (
𝑇
𝑇𝑟𝑒𝑓

)
3

. 𝑒𝑥𝑝 [
𝑞.𝐸𝑔
𝐾𝐵

(
1

𝑇𝑟𝑒𝑓
− 1

𝑇
)]                      (2.3) 

Where, 

  𝐼0 = 𝐷𝑖𝑜𝑑𝑒 𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 [𝐴] 

𝐼0,𝑟𝑒𝑓 = 𝑆𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑜𝑓 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 [A] 

𝑇 = 𝑆𝑜𝑙𝑎𝑟 𝑃𝑉 𝑐𝑒𝑙𝑙 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 [𝐾]  

𝑇𝑟𝑒𝑓 = 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 [𝐾] 

𝑞 = 𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑟𝑦 𝑐ℎ𝑎𝑟𝑔𝑒 [C]  

𝐸𝑔 = 𝑆𝑒𝑚𝑖𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑜𝑟 𝑏𝑎𝑛𝑑𝑔𝑎𝑝 𝑒𝑛𝑒𝑟𝑔𝑦 [eV]  

𝐾𝐵 = 𝐵𝑜𝑙𝑡𝑧𝑚𝑎𝑛𝑛 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 [J/K] 
 

• Series Resistance of Solar PV Cell (𝐑𝐬) 

The resistance refers to resistive losses on solar cell along with semiconductor contacts, materials 

and interconnections (figure 2.10). It can be determined experimentally by the slope of I-V curve 

that is closer to open circuit voltage (Voc).  

 

Figure 2.9: Series resistance diagram of solar cell 
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According to the study [30], there is a dependency on changes of irradiance and temperature for 

series resistance (Rs) across the conditions, hence it can be express as the equation:  

𝑅𝑠  <
0.1 𝑉𝑜𝑐

𝐼𝑠𝑐
                        (2.4) 

𝑅𝑠 = 𝑅𝑠,𝑟𝑒𝑓                        (2.5) 

The equation (5) refers to series resistance (𝑅𝑠) is equal the reference resistance (𝑅𝑠,𝑟𝑒𝑓). 

• Open Circuit Voltage of Solar PV Cell (𝐕𝐨𝐜) 

It is the maximum voltage that solar cell can produce, when zero current flow. The open circuit 

voltage (Voc) is determined by the properties of solar cell material and make balance within 

saturation current and photocurrent [31], figure 2.11.    

 

Figure 2.10: Solar cell I-V curve with open circuit voltage  

The mathematical expression for open circuit voltage (Voc) found by, 

𝑉𝑜𝑐 = 
𝑛𝐾𝐵𝑇

𝑞
. 𝑙𝑛 (

𝐼𝐿

𝐼0
+ 1)                   (2.6) 

Where, 

  𝑉0𝑐 = 𝑂𝑝𝑒𝑛 𝑐𝑖𝑟𝑐𝑢𝑖𝑡 𝑣𝑜𝑙𝑡𝑎𝑔𝑒 [𝑉] 

𝐼𝐿 = 𝑃ℎ𝑜𝑡𝑜𝑐𝑢𝑟𝑟𝑒𝑛𝑡 [A]  

𝑇 = 𝑆𝑜𝑙𝑎𝑟 𝑃𝑉 𝑐𝑒𝑙𝑙 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 [𝐾]   

𝐼0 = 𝑆𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑜𝑓 𝑑𝑖𝑜𝑑𝑒 [𝐴] 

𝑞 = 𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑟𝑦 𝑐ℎ𝑎𝑟𝑔𝑒 [C]  

𝑛 = 𝐼𝑑𝑒𝑎𝑙𝑖𝑡𝑦 𝑓𝑎𝑐𝑡𝑜𝑟  

𝐾𝐵 = 𝐵𝑜𝑙𝑡𝑧𝑚𝑎𝑛𝑛 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 [J/K] 

While net current is zero the equation (8), indicate open circuit voltage (Voc) rise linearly with 

the temperature. It also depends on the photo generated (IL) current and saturation current (I0).    
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• Short Circuit Current of Solar PV Cell (𝐈𝐬𝐡) 

This current is the maximum current, when solar PV cells are shorted. Short circuit refers to when 

there is no voltage [31]. Which indicates solar PV cells can produce maximum current in ideal 

conditions (figure 2.12).   

 

Figure 2.11: Solar cell I-V curve with short circuit current (Ish) 

The mathematical expression of short circuit current is: 

𝐼𝑠ℎ ≈ 𝐼𝐿                          (2.7) 

Where, 

  𝐼𝑠ℎ = 𝑆ℎ𝑜𝑟𝑡 𝑐𝑖𝑟𝑐𝑢𝑖𝑡 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 [𝐴] 

𝐼𝐿 = 𝑃ℎ𝑜𝑡𝑜𝑐𝑢𝑟𝑟𝑒𝑛𝑡 [A]  

• Maximum Power Point of Solar PV Cell (MPP) 

The parameter of MPP is crucial to optimize the solar energy generation and enhance 

performance towards practical applications. It is the point of I-V curve, where product of voltage 

and current is maximum, which represents solar PV cell maximum power (figure 2.13). The MPP 

voltage drift may depend on diverse factors such as irradiance, temperature and degradation of 

device [32].  

 

Figure 2.12: Solar PV cell maximum power point (MPP) curve [32] 
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The mathematical expression for MPP of solar PV cell is: 

𝑃𝑚𝑎𝑥 = 𝑉𝑚𝑝𝑝  ×  𝐼𝑚𝑝𝑝                        (2.8) 

Where, 

  𝑃𝑚𝑎𝑥 = 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑝𝑜𝑤𝑒𝑟 𝑝𝑜𝑖𝑛𝑡 [𝑊] 

𝑉𝑚𝑝𝑝 = 𝑉𝑜𝑙𝑡𝑎𝑔𝑒 𝑎𝑡 𝑀𝑃𝑃 [V]  

𝐼𝑚𝑝𝑝 = 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑎𝑡 𝑀𝑃𝑃 [A]  
 

• Ideality Factor of Solar PV Cell (n) 

It is an essential parameter for the diode that expresses the behavior of solar cells p-n junction 

and different semiconductors devices. It quantifies the ideal behavior of perfect diode. In practical 

solar cells, ideality factor values between 1 and 2 (figure 2.14), which varies in accordance with 

their characteristics [33].       

• n = 1: Represents the ideal behavior, due to recombination occurs on depletion region. 

• n > 1: Represents non ideal behavior, due to material defects or surface recombination       

 

Figure 2.13: Ideality factor of SiC Schottky diode [33] 

According to the equation (8), ideality factor can influence solar cells I-V curve that has direct 

impact on open circuit voltage (Voc) and overall efficiency.  

• Maximum Efficiency of Solar PV Cell (η) 

It refers to maximum possible light conversion into electrical energy within extreme 

environmental conditions (figure 2.15). A solar cell efficiency is influences by many factors, such 

as properties of material, cell design, intrinsic physical limitation, and variable weather 

conditions [34].  
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Figure 2.14: Maximum efficiency of different material based solar cell [34] 

The mathematical expression of maximum efficiency is: 

   𝜂 =  
𝑃𝑜𝑢𝑡

𝑃𝑖𝑛
 =  

𝑉𝑚𝑝 .  𝐼𝑚𝑝

𝐺 .  𝐴
                    (2.9) 

Where, 

  𝑉𝑚𝑝 = 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑝𝑜𝑤𝑒𝑟 𝑝𝑜𝑖𝑛𝑡 𝑣𝑜𝑙𝑡𝑎𝑔𝑒 [𝑉] 

  𝐼𝑚𝑝 = 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑝𝑜𝑤𝑒𝑟 𝑝𝑜𝑖𝑛𝑡 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 [𝐼] 

𝐺 = 𝑆𝑜𝑙𝑎𝑟 𝑖𝑟𝑟𝑎𝑑𝑎𝑛𝑐𝑒 [W/m2]  

𝐴 = 𝑆𝑜𝑙𝑎𝑟 𝑐𝑒𝑙𝑙 𝑎𝑟𝑒𝑎 [m2]  

According to theory, the single junction silicon based solar cell has the maximum efficiency 

around 33. 7%, while commercial silicon based solar cell efficiency within 15% to 22%. However, 

multijunction cells achieve more than 40% efficiency. In figure 2.16, it shows a recent research 

chart of solar cells efficiency [35].   
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Figure 2.15: Recent research chart of solar cells (NREL) [35] 

• Fill Factor of Solar PV Cell (FF) 

The fill factor is one of the major parameters that identifies the efficiency of solar cells and 

modules. It is the ratio of maximum output power and the theorical output power of the solar 

cells. The fill factor specifies the solar cell performance compared to theorical limits. It is easy to 

identify solar cells performance and losses considering FF values. High Fill Factor (FF) means the 

power losses are low, it is caused by internal resistance of solar cells, for instance series (Rs), and 

shunt (Rsh) resistance [36].  

 

Figure 2.16: Solar cell fill factor graph [36] 
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The mathematical expression of fill factor is: 

   𝐹𝐹 = 
𝑃𝑚𝑝

𝑉𝑜𝑐 × 𝐼𝑠𝑐
 =  

𝑉𝑚𝑝 .  𝐼𝑚𝑝

𝑉𝑜𝑐 .  𝐼𝑠𝑐
                    (2.10) 

Where, 

  𝐹𝐹 = 𝐹𝑖𝑙𝑙 𝑓𝑎𝑐𝑡𝑜𝑟 

  𝑉𝑚𝑝 = 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑝𝑜𝑤𝑒𝑟 𝑝𝑜𝑖𝑛𝑡 𝑣𝑜𝑙𝑡𝑎𝑔𝑒 [𝑉] 

  𝐼𝑚𝑝 = 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑝𝑜𝑤𝑒𝑟 𝑝𝑜𝑖𝑛𝑡 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 [𝐴] 

𝑉𝑜𝑐 = 𝑂𝑝𝑒𝑛 𝑐𝑖𝑟𝑐𝑢𝑖𝑡 𝑣𝑜𝑙𝑡𝑎𝑔𝑒[V]  

𝐼𝑠𝑐 = 𝑆ℎ𝑜𝑟𝑡 𝑐𝑖𝑟𝑐𝑢𝑖𝑡 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 [A]  
 

Usually, a commercially well-known solar cell fill factor values are between 0.7 to 0.85 and ideal 

solar cell value is near to 1. It is basically dependent on materials and solar cell design. If the FF 

value is low, it indicates internal resistivity high- or low-quality materials which reduces solar 

cell efficiency to convert light into electricity.        

• Cell Temperature (Tcell) 

Solar cell temperature is crucial; it directly affects efficiency and performance. As irradiance is 

increased simultaneously, the temperature also increases. This high temperature impacts the 

solar cell and reduces efficiency due to electrical characteristics. Each of the solar cell’s materials 

has particular temperature coefficient which indicates performance degradation while raising the 

temperature. For standard quality silicon has the temperature coefficient between -0.4%/°C to -

0.5%/ °C of power. This means each of degree Celsius temperature increases over STC (25°C) 

limit, it will reduce -0.4%/°C to -0.5%/ °C of efficiency. The cell temperature relies on diverse 

environmental factors, for instance solar irradiance, ambient temperature and wind speed [37].  

The mathematical expression of solar cell temperature is:     

   𝑇𝑐 = 𝑇𝑎𝑚𝑏 + 
𝐺 .  (𝑁𝑂𝐶𝑇−20)

800
                    (2.11) 

Where, 

  𝑇𝑐 = 𝑆𝑜𝑙𝑎𝑟 𝑐𝑒𝑙𝑙𝑠 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 [°C] 

𝐺 = 𝑆𝑜𝑙𝑎𝑟 𝑖𝑟𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒 [W/m2] 

  𝑇𝑎𝑚𝑏 = 𝐴𝑚𝑏𝑖𝑒𝑛𝑡 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 [°C] 

  𝑁𝑂𝐶𝑇 = 𝑁𝑜𝑚𝑖𝑛𝑎 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑐𝑒𝑙𝑙 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 [°C]  
 

I. Single Diode (Ideal) Solar PV Cell Modeling 

The single diode ideal model of solar cell refers to the formation of a simple mathematical model 

which illustrates the behavior of solar PV cells, without influencing resistive losses, 

environmental effects and recombination processes. It consists of three major parameters such as, 

photocurrent source, a diode and p-n junction electrical behavior (figure 2.18). The aim of this 
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single diode ideal solar PV cells modeling is to acknowledge maximum efficiency and 

performance according to the theory with the ideal conditions. This simple model can be 

expressed by the theory of Skockley diode [38].   

 

 

Figure 2.17: Single diode ideal solar PV cells model 

The mathematical expression of single diode ideal modeling is: 

   𝐼𝑑 = 𝐼0  (𝑒
(
𝑉

𝑛𝑉𝑇
)
− 1)                    (2.12) 

Where, 

𝐼0 = 𝑆𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑐𝑢𝑟𝑟𝑒𝑛𝑡  

  𝑛 = 𝐼𝑑𝑒𝑎𝑙𝑖𝑡𝑦 𝑓𝑎𝑐𝑡𝑜𝑟 𝑜𝑓 𝑑𝑖𝑜𝑑𝑒 [n=1 ideal diode and n > 1 real diode]  

 𝑉𝑇 = 
𝑘𝑇

𝑞
 (Thermal potential) 

  𝑞 = 𝐶ℎ𝑎𝑟𝑔𝑒 𝑜𝑓 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛 

  𝑘 = 𝐵𝑜𝑙𝑡𝑧𝑚𝑎𝑛𝑛 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

𝑇 = 𝑆𝑜𝑙𝑎𝑟 𝑐𝑒𝑙𝑙 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒  

𝑉 = 𝑉𝑜𝑙𝑡𝑎𝑔𝑒 𝑎𝑐𝑟𝑜𝑠𝑠 𝑠𝑜𝑙𝑎𝑟 𝑃𝑉 𝑐𝑒𝑙𝑙𝑠  

According to characteristic equation deducted from Kirchhoff law:   

𝐼𝑝𝑣 = 𝐼𝑝ℎ − 𝐼𝑑                      (2.13) 

𝐼𝑝𝑣 = 𝐼𝑝ℎ − 𝐼0  (𝑒
(
𝑉

𝑛𝑉𝑇
)
− 1)                    (2.14) 

II. Single Diode Four Parameter Solar PV Cell Model 

In this model the equivalent electrical circuit includes a current source with a parallel connected 

diode that consists of ideality factors to recombination of space charge region [39]. This four 

parameters model enhances accuracy by series resistance and parallel resistance considered to be 

infinite. It is the most simple and perfect model to diagnostics solar PV panels with high precision 

[40]. It has the following parameters: 𝐼𝐿, 𝑅𝑠 , 𝑛 , and 𝐼𝑠.  
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Figure 2.18: Equivalent circuit of four parameters model  

The mathematical expression of single diode four parameter PV cell model:  

𝐼𝑝𝑣 = 𝐼𝑝ℎ − 𝐼𝑠  (𝑒
(
𝑞𝑉+𝑞𝑅𝑠𝐼

𝑛𝐾𝑇
) − 1)                    (2.15) 

In the equation, 𝑅𝑠 is solar cell series resistance. With the equal irradiance and the temperature of 

p-n junction conditions, short circuit current equation can be obtained, 

𝐼𝑠𝑐 = 𝐼𝑝ℎ − 𝐼𝑠  (𝑒
(
𝑞𝑅𝑠𝐼𝑠𝑐
𝑛𝐾𝑇

) − 1)                    (2.16) 

When, the voltage V=0.  

Also, the open circuit voltage can be expressed by [41]: 

𝑉 = 𝑉𝑜𝑐 = 
𝑛𝐾𝑇

𝑞
𝑙𝑛 (1 +

𝐼𝑠𝑐

𝐼𝑠
)                     (2.17) 

When, the current I=0.  

Equation of (2.16) and (2.17) represents the I-V characteristic curve of solar PV, under changing 

resistive load conditions (figure 2.20).     

 

Figure 2.19: Ideal solar cell I-V curve 
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When the resistance value is small, voltage (V=0) is zero and short circuit current (Ish) of solar cell 

is maximum. And when resistance value is high current (I=0) is zero and open circuit voltage (Voc) 

of solar PV is maximum.  

III. Single Diode Five Parameter Solar PV Cell Model 

The single diode five parameter modeling is also known as real solar cell modeling. To enhance 

the maximum power from real solar cell, the series resistance (Rs) should be as minimum as 

possible (milli-ohms) and shunt resistance (Rsh) as high as possible. This model represents the 

actual solar cell behavior [41]. It includes a diode, series resistance, and a shunt resistance.  

 

Figure 2.20: Equivalent circuit diagram five parameters model 

The mathematical model for five parameters solar cells can be express as 

𝐼𝑝𝑣 = 𝐼𝐿 − 𝐼𝑠  (𝑒
(
𝑞𝑉+𝑞𝑅𝑠𝐼

𝑛𝐾𝑇
) − 1) − (

𝑉+𝑅𝑠𝐼

𝑅𝑠ℎ
)       (2.18) 

And the equation of the voltage expresses as 

𝑉 =  𝐼𝐿𝑅𝑠ℎ −  𝐼𝑅𝑠ℎ + 𝐼𝑠 (𝑒
(
𝑞𝑉+𝑞𝑅𝑠𝐼

𝑛𝐾𝑇
) − 1) − 𝐼𝑅𝑠      (2.19) 

The figures 2.22 represent the P-V and I-V characteristic curves for ideal and real solar PV cells.   

     

Figure 2.21: P-V and I-V characteristic curves for ideal and real solar PV cells 
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From the graph it is visible that the ideal solar PV cells generate higher power than real solar PV 

cells due to the series (Rs) and shunt (Rsh) resistance losses.  

2.4.4 Influence of Irradiance and Temperature on Solar PV Cells 

The solar PV cells efficiency and performance are heavily influenced by two major environmental 

factors such as light intensity or irradiance and temperature. Those factors are very crucial for 

shaping the solar PV cells electrical behavior, which directly influences PV voltage, current, and 

overall energy harvesting.  

a) Influence of Irradiance on Solar PV Cells 

The irradiance is normally measured by watts per square meter (W/m2), which represents the 

received sunlight from sun. The solar irradiance is directly proportional to solar PV cell 

photocurrent (Iph ∝ G), which opposes to diode current. As solar irradiance raises the number of 

photons also raises and hatted to the solar cells, as a result the photocurrent of PV cells also rises. 

Hence it is most influencing external factors for solar PV cells that can change the parameters 

behavior [41].    

The mathematical expression to obtain the variation of short circuit current relation with standard 

testing condition (STC) is: 

𝐼𝑠𝑐 = 𝐼𝑠𝑐,𝑆𝑇𝐶  .  
𝐺

𝐺𝑆𝑇𝐶
 .  [1 + 𝛼𝐼𝑠𝑐  . (𝑇 − 𝑇𝑆𝑇𝐶)]      (2.20) 

Where,  

𝐼𝑠𝑐 = 𝑆ℎ𝑜𝑟𝑡 𝑐𝑖𝑟𝑐𝑢𝑖𝑡 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 [𝐴] 

  𝐼𝑠𝑐,𝑆𝑇𝐶 = 𝑆ℎ𝑜𝑟𝑡 𝑐𝑖𝑟𝑐𝑢𝑖𝑡 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑎𝑡 𝑆𝑇𝐶 [𝐴]  

 𝐺 =  𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑖𝑟𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒 [W/m2] 

  𝐺𝑆𝑇𝐶 = 𝐼𝑟𝑟𝑎𝑑𝑎𝑛𝑐𝑒 𝑎𝑡 𝑆𝑇𝐶 [W/m2] 

  𝛼𝐼𝑠𝑐 = 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑡 𝑜𝑓 𝑠ℎ𝑜𝑟𝑡 𝑐𝑖𝑟𝑐𝑢𝑖𝑡 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 [%/°C or A/°C] 

𝑇 = 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 [°C] 

𝑇𝑆𝑇𝐶 = 𝑆𝑜𝑙𝑎𝑟 𝑐𝑒𝑙𝑙 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑎𝑡 𝑆𝑇𝐶 [°C] 
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Figure 2.22: Solar PV cell irradiance effect  

The figure 2.23 represents, if the solar irradiance changes, there will be small changes of solar PV 

open circuit voltage (Voc). But the short circuit current (Isc) changes a lot. So, the irradiance has 

huge influence on short circuit current, and it can strongly influence the solar PV panels overall 

power generation.  

b) Influence of Temperature of Solar PV Cells 

Temperature can affect both voltage and current of solar cell. But temperatures influence is more 

complex than irradiance. Increasing the temperature slightly will increase photocurrent, because 

it reduces the bandgap energy of the p-n junction material. But it mainly affects solar PV cells 

open circuit voltage (Voc) [43]. Because the high temperature is the reason to increase 

recombination of solar cell electron-hole pairs and reduce effective voltage through the solar PV 

cells.   

 The mathematical expression to obtain the variation of open circuit voltage relation with 

standard testing condition (STC) is: 

𝑉𝑜𝑐 = 𝑉𝑜𝑐,𝑆𝑇𝐶 + 𝛽𝑜𝑐. (𝑇 − 𝑇𝑆𝑇𝐶)          (2.21) 

Where,  

𝑉𝑜𝑐 = 𝑂𝑝𝑒𝑛 𝑐𝑖𝑟𝑐𝑢𝑖𝑡 𝑣𝑜𝑙𝑡𝑎𝑔𝑒 [𝑉] 

  𝑉𝑜𝑐,𝑆𝑇𝐶 = 𝑂𝑝𝑒𝑛 𝑐𝑖𝑟𝑐𝑢𝑖𝑡 𝑣𝑜𝑙𝑡𝑎𝑔𝑒 𝑎𝑡 𝑆𝑇𝐶 [𝑉]  

  𝛽𝑜𝑐 = 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑡 𝑜𝑓 𝑜𝑝𝑒𝑛 𝑐𝑖𝑟𝑐𝑢𝑖𝑡 𝑣𝑜𝑙𝑡𝑎𝑔𝑒 [%/°C] 

𝑇 = 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 [°C]  

𝑇𝑆𝑇𝐶 = 𝑆𝑜𝑙𝑎𝑟 𝑐𝑒𝑙𝑙 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑎𝑡 𝑆𝑇𝐶 [°C] 
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Figure 2.23: Solar PV cell temperature effect 

The figure 2.24 illustrates that the temperature has a strong influence on solar PV open circuit 

voltage (Voc) compared to short circuit current (Ish). But temperature affects both parameters of 

solar PV cells, and it also has huge influence on overall power generation from solar PV panels.  

The maximum solar power is achieved when irradiance is high and should be temperature is low. 

Although in real world conditions, it is very difficult to get that favorable environment.  

2.5 Power Conversion and Control for Solar PV Systems 

Due to environment, the photovoltaic (PV) panels exhibit non-linear I-V characteristics. It has a 

single optimal operating point at any given point of time, which is known as the Maximum Power 

Point (MPP) under STC (irradiance: 1000 W/m2 and temperature: 25°C) conditions. There are 

several techniques exist, that have unique features to optimize the PV panels’ performance. PV-

to-load connection topologies depend on load characteristics. Optimal efficient converters are 

essential for interconnecting with photovoltaic (PV) systems to the grid, which can convert and 

invert (Inverter) low-voltage DC to AC. Some well-known topologies are discussed below.  

▪ Direct Solar PV to Load Connection: 

The direct connection of solar PV modules to loads is the most cost-effective solution. The 

operating point of the solar PV panel changes continuously in the direct method. The MPP point 

of the solar panel depends on the impedance of the loads (DC). The IV characteristic of solar PV 

and loads both intersect. To protect the reverse current into the PV modules and loads (DC), a 

blocking diode should be placed. However direct method has the quickest oscillations, slow 

convergence, and sensitivity to temperature fluctuation. This will cause inefficient energy 

conversion and reduce energy efficiency.           
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Figure 2.24: Direct Solar PV to DC Load Connection Diagram 

The direct solar PV to loads connection can be two types:   

1. Battery as DC voltage source   

2. Resistive loads  

 

 

 

 

 

 

 

 

 

 

At different MPP operating points the solar PV module produces different output power. From 

the above figure 2.26, the point of ‘A’ will produce maximum power than the points of ‘B’ and ‘C’. 

The power generation will vary with the changes in irradiance and temperature. Due to higher 

irradiance, solar PV cell temperature also will increase which is the reason for the decrease in PV 

power generation.     

Maximum power generation from solar PV panels depends on irradiance, temperature, and load 

resistor variation. To get the maximum power from solar PV panels, the load must match with 

(DC) 

Voc 

Is
c 

Vmpp 

Figure 2.25: Solar PV MPP according with load resistance for direct connection 

A 

B 

C 
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PVs MPP. Although in the fixed irradiance and temperature there is one MPP, but in partial 

shading condition there are different MPP points [44].  

To extract the maximum power from the solar PV panel the load resistance should be passed 

through the MPP point. 

     𝑅𝑙𝑜𝑎𝑑 =
𝑉𝑚𝑝𝑝

𝐼𝑚𝑝𝑝
= 𝑓(𝐺, 𝑇)         (2.22) 

The best practice is to always keep the load resistance at its optimum point when the irradiance 

and temperature change. Therefore, the power system must be fulfilled to ensure optimal 

operation to extract maximum power.      

▪ Power Conversion Stages: 

To ensure optimal performance and enhance efficiency, a power conversion stage is very crucial. 

These stages convert DC power to AC power and supply to the loads. The process normally 

involves multiple steps, such as a DC-DC converter, MPPT algorithm, DC-AC inverter, and grid 

integration. All the parameters should comply with the standard electrical system. All those steps 

must be implemented to ensure efficient energy harvest from solar and reduce the losses of an 

overall reliable system. 

2.5.1 DC-DC Converter: 

The DC-DC converter is a very essential component for solar energy systems. The converter 

regulates the voltage and current to ensure solar optimal power transfer. It adjusts the desired 

voltage and current to maximize system efficiency through the MPPT techniques.  

 

Figure 2.26: Solar PV to DC load connection diagram via power electronic stage [45]  

By optimizing the reliable power flow DC-DC converter plays a crucial role in enhancing 

performance and efficiency. There are different types of converter topology available that can 

serve the desired output power [45]. The traditional DC-DC converter topologies are mainly two 

types. 
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1. Non-isolated Converter 

2. Isolated Converter 
 

1. Non-isolated Converter:  

The isolated type of converter represents the electrical barrier within the input and output side of 

the device. The non-isolated converter is commonly used in the solar energy system due to simple 

and lower complex systems. The non-isolated converters are Buck (step-down) converter, Boost 

(step-up) converter, and Buck-Boost Converter. 

2. Isolated Converter:  

The isolated converter is also used in solar energy systems that can provide electrical isolation 

within input and output. The typical isolated converter such as a Flyback converter, Forward 

converter, Push-pull converter, Half-bridge and Full-bridge converter, etc.         

 

 

 

 

 

 

Figure 2.27: Isolated and Non-isolated DC-DC Converter [46] 

To implement and extract maximum power from solar PV modules, we consider DC to DC boost 

converter with MPPT techniques. The boost converter is used as an electronic power conversion 

stage.  

2.5.2 Boost Converter: 

The boost converter is a power converter or step-up converter that is used in diverse applications. 

It steps up the input voltage as required to load. Boost converter contains at least two 

semiconductors, a diode, and a switching element such as a transistor and one energy storage 

component (inductor, capacitor) or both. To reduce the ripple of the system a capacitor filter is 

used [47]. In the applications of power electronic devices with solar PV panels, battery storage 

systems, laptops, phones, and many more.    
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Figure 2.28: Boost converter schematic diagram 

The principle of the boost converter is that it resists changing the inductor current by either 

increasing or decreasing. For a boost converter, the output voltage is higher than the input 

voltage. It is widely used as the switched-mode power supply (SMPS) where the input voltage 

does not meet the output higher voltage.  

• Switch ON State Operation: 

During the ON-state operation, input voltage (Vs) is applied through the inductor (L), hence 

inductor current increases linearly and stores energy as in a magnetic field. Meanwhile, the diode 

(D) is reverse-biased and prevents the current flow to the load.  

 

Figure 2.29: Switch ON state operation 

The mathematical expressions of the inductor voltage and current are given by:   

        𝑉𝑆 = 𝑉𝑜           (2.23) 

    
𝑑𝐼𝐿

𝑑𝑡
=

𝑉𝑠

𝐿
           (2.24) 

Where,  

Input voltage: Vs  

Output voltage: Vo 

Changing inductor current = dIL  

and Inductance = L  
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• Switch OFF State Operation: 

During the OFF-state operation, there is no input voltage (Vs), while the inductor (L) releases 

stored energy to maintain the current flow for continued operation. While an inductor discharges, 

the polarity of the diode (D) is forward-biased and allows current flow through the load resistor 

(Vo).          

 

Figure 2.30: Switch OFF state operation. 

The waveforms graph for the boost converter is given below. 

 

Figure 2.31: Waveforms of the boost converter [48] 

The voltage passes through the inductor,  

        𝑉𝐿 = 𝑉𝑠 − 𝑉𝑜          (2.25) 

The mathematical expression of the inductor current is given by. 

    𝑑𝐼𝐿
𝑑𝑡
=

𝑉𝑠 − 𝑉𝑜

𝐿
           (2.26) 

The average value of the inductor voltage (𝑉𝐿) is zero:  

Open 

𝑉𝐿 
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   < 𝑉𝐿> = ∫ 𝑉𝐿𝑑𝑡
𝑇

0
 = 0                     (2.27) 

Then,  

    𝑉𝑜 = 
 𝑉𝑠

1−𝐷
                      (2.28) 

 𝐼𝑜 =  𝐼𝑖  (1 − 𝐷)                                                                                    (2.29) 

Designing an efficient boost converter depends on the ripple current, which is inversely 

proportional to the inductance. The equation is given below. 

   𝐿 = 
 𝑉𝑠 × 𝐷

∆𝐼 × 𝑓𝑠 
                      (2.30) 

2.5.3 DC/AC Converter 

Solar PV panels generate direct current (DC) power, while maximum electrical loads require AC 

power. Hence to fulfill the requirement of AC loads, an inverter must be used to continue supply. 

An inverter is a power electronic device that converts DC voltage to AC voltage, enabling the 

integration with solar PV panels. The inverter consists of power electronic switches such as 

Insulated Gate Bipolar Transistors (IGBTs), Thyristors, or Transistors which provide efficient and 

reliable energy conversion. Inverter ensures reliable AC power supply to households, industry, 

and the electrical grids. 

2.6 MPPT Algorithms for Solar PV Systems 

Maximum Power Point Tracking (MPPT) is a technique that is used in solar photovoltaic systems 

to extract maximum power by varying the PV panel operation point (MPP). Maximizing the solar 

PV panels power is significantly affected by the meteorological parameters such as irradiance and 

temperature. It is very challenging to continuously harvest maximum power, due to different 

operating conditions. To overcome this challenge, engineers employ MPPT algorithms that 

always monitor and adjust solar PV modules or array MPP points with the changes of 

environmental conditions. There are several MPPT algorithms, that are commonly used such as 

Perturb and Observe (P&O), Incremental Conductance (InCon), Fractional Short Circuit Current 

(FSCC), Fractional Open Circuit Voltage (FOCV), Fuzzy Logic Control (FLC), Artificial Neural 

Network (ANN), Model Predictive Control (MPC), Adaptive Neuro-Fuzzy Inference System 

(ANFIS), Modified P&O (ModP&O), Adaptive Gradient Method (AGM), Ant Colony 

Optimization (ACO) [49-53]. Among those, four algorithms have been evaluated for their broad 

applicability, cost-effectiveness, and reliability with the goal of efficient solutions for optimizing 

solar energy generation. For our research, four of the most used MPPT algorithms are discussed 

below. 
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2.6.1 Perturb and Observe (P&O) Algorithm       

The perturb and Observe (P&O) algorithm is a fundamental method that is widely used in 

photovoltaic systems to optimize energy harvesting. The P&O algorithm is easy to implement 

with hardware systems and commercial utilization. This method perturbates the operating 

voltage of a PV panel and observes the resulting changes in the power yield. If the energy yield 

increases with the perturbation, then it continues in the same direction. Conversely, if the energy 

yield decreases then the perturbation direction is reversed to adjustment [54]. This increase and 

decrease process helps to identify optimal MPP points, where the solar PV module energy yield 

is maximum. The table shows the response for the control system.  

No. of 

Case 
∆𝑽 ∆𝑷 

∆𝑷

∆𝑽
 

Tracking 

direction 
Control system response 

1 + + + Excellent Increasing:  𝑉𝑟𝑒𝑓=  𝑉𝑟𝑒𝑓 + 𝑉 

2 - - + Poor Increasing:  𝑉𝑟𝑒𝑓=  𝑉𝑟𝑒𝑓 + 𝑉 

3 + - - Poor Decreasing:  𝑉𝑟𝑒𝑓=  𝑉𝑟𝑒𝑓 − 𝑉 

4 - + - Excellent Decreasing:  𝑉𝑟𝑒𝑓=  𝑉𝑟𝑒𝑓 − 𝑉 
 

Table 2.1: The behavior of the control system for each case of P&O MPPT 

The principle of the P&O algorithm is to increase or decrease the solar PV module or array output 

voltage, adjusted periodically by the duty ratio (d) by using a DC to DC converter. This process 

is referred to as “perturbation” and the direction of solar PV output power is adjusted after 

“observation”.     

 

Figure 2.32: Different possible cases for P&O MPPT algorithm [55] 
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When increasing the voltage of PV panels, the power will increase as well. During this period the 

PV module operating point on the left of MPP is shown in figure 2.33. Therefore, perturbation 

continues to increase the voltage and observe, if it still increases then it will change new MPP 

point which produces maximum power. Moreover, if the voltage decreases and the power is also 

decreased that means the operating point of the PV module is on the right side in figure 2.33. In 

this situation perturbation goes back to the previous voltage and observes the power is increased 

or decreases and compare which one is producing more power. If the previous MPP point 

produces more power, then the algorithm will keep on that MPP point.  

The utilization of the P&O algorithm has the benefits of precise and speedy response which may 

help to harvest maximum power from solar PV modules. It also has some drawbacks such as high 

oscillations near MPP points, slow tracking of weather conditions, less efficiency for partial 

shading conditions, etc. For better understanding figure 2.34 shows the flowchart of the perturb 

and observe (P&O) algorithm.        

 

Figure 2.33: The flowchart of P&O MPPT algorithm [39] 

5.6.2 Predictive Control Method (PCM) MPPT 

The predictive control method for maximum power point tracking is a modern technique that 

maximizes solar PV panel power generation. The PCM technique is a mathematical model-based 

prediction, that adjusts the MPP operating point and generates maximum power by predicting 

future performance. Unlike perturb and observe (P&O) and incremental conductance (IncCond) 
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conventional techniques. The method analyzes PV panel voltage, current, and weather conditions 

to predict PV panel behavior for optimal control, which ensures it can operate near to MPP point. 

Also, the PCM algorithm minimizes control framework error for reference and next-step 

sampling interval. To predict control parameters, discretization methods such as Euler are mostly 

used [56]. It has high accuracy, but computational complexity is also high. The mathematical 

expression for low order system is given below. 

          
𝑑𝑖

𝑑𝑡
≈  

𝑖(𝑘+1)− 𝑖(𝑘)

𝑇𝑠
         (2.31) 

Equation (13) is derived by the Euler method which is the output current expression while 

removing the inductor voltages.    

𝑖(𝑘+1)− 𝑖(𝑘)

𝑇𝑠
=

1

𝐿𝑓
(𝑉𝑖𝑛𝑣 − 𝑉𝑔𝑟𝑖𝑑(𝑘) − 𝑅𝐿𝑓𝑖(𝑘))        (2.32) 

Hence the prediction equation expression can be. 

𝑖(𝑘+1) = [
𝑇𝑠

𝐿𝑓
 (𝑉𝑖𝑛𝑣(𝑛) − 𝑉𝑔𝑟𝑖𝑑(𝑘) − 𝑅𝐿𝑓𝑖(𝑘))] + 𝑖(𝑘)       (2.33) 

The block diagram of the predictive control method is presented in figure 2.34.  

 

Figure 2.34: The schema of PCM-based MPPT [57]. 

The PCM method has advantages to enable rapid response to changing conditions such as solar 

irradiance and temperature that can reduce oscillation than conventional MPPT algorithm. While 

it offers high efficiency, dynamic response, and stability. PCM has some drawbacks such as 

complex mathematical models for accurate system modeling, and high compositionality. This 

predictive control-based model is mostly used for hybrid systems or grid-connected systems, 

where adaptability and precision are crucial.        
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Figure 2.35: The PCM-based MPPT flowchart [57] 

2.6.3 Fuzzy Logic MPPT Algorithm 

The fuzzy logic MPPT is a modern technique to track the maximum power points (MPP) for solar 

PV and wind systems. This method can handle inherent changeability and uncertainty of weather 

conditions. This method is unlike a conventional algorithm that depends on complex 

mathematical models and precise measurement. It utilizes a heuristic approach that allows to 

process of input variables such as irradiance and temperature with prominent adaptability. The 

fuzzy logic algorithm has three main steps Fuzzification, Inference System, and Defuzzification.  
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Figure 2.36: Block diagram of fuzzy controller [58] 

• Fuzzification: In fuzzification, it takes numerical input (changing voltage and power) and 

converts it into fuzzy variables. To do fuzzification it uses linguistic terms such as ‘Positive 

Large’, ‘Positive Small’, ‘Negative Small’, and ‘Negative Large’. All those variables 

illustrate quantitative conditions rather than required values, which make the system 

noise and variation tolerant.    

• Inference System: The rule-based inference system, where the set of predefined 

regulations typically IF-THEN statements determines the system response to diverse 

conditions.  

For instance: 

o IF the condition of changing power is ‘Positive Large’ AND changing voltage is ‘Positive 

Small’ THEN it will increase the duty cycle. 

o IF the condition of changing power is ‘Negative Small’ AND changing voltage is 

‘Negative Large’ THEN it will decrease the duty cycle. 

        CE     

E 
NL NS ZE PS PL 

NL PL PS NL NS NS 

NS PS PS NL NS NS 

ZE NS NS NS PL PL 

PS NS PL PS NL PL 

PL NL NL PL PS PL 

Table 2.2: Fuzzy logic rules for MPPT controller 

• Defuzzification: It is the process of transforming fuzzy outputs and converting them into 

crisp numerical output values as like adjustment of DC-to-DC converter duty cycle. This 

adjustment secures the system movement into exact MPP. The mathematical expressions 

for two input variables are given below. 

𝐸(𝑘) =
𝑃(𝑘)−𝑃(𝑘−1)

𝑉(𝑘)−𝑉 (𝑘−1)
= 

∆𝑃

∆𝑉
         (2.34) 
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𝐶𝐸(𝑘) = 𝐸(𝑘) − 𝐸(𝑘 − 1) = ∆𝐸                   (2.35) 

𝐷(𝑘) = 𝐷(𝑘 − 1)  + ∆𝐷(𝑘)                    (2.36) 

Where, 

E(k) = Identify the location of MPP from the slope of the P-V curve  

CE(k) = Verify if the movement of the MPP direction aligns with an operating point or not.  

D(k) = Duty cycle, where ∆𝐷 can be positive and negative depending on the MPP location.  
 

 

Figure 2.37: Membership functions of errors and increment of duty cycle. 

This method can adapt rapidly to changing conditions (irradiance, temperature, wind speed) 

which ensures precise MPP tracking and optimal performance. It can reduce oscillations near 

MPP and improve system efficiency. It also has some drawbacks like complex fuzzy logic design, 

required robust membership function, and rules that ensure optimal system performance.  
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Figure 2.38: The flowchart of fuzzy logic MPPT [59]. 

2.6.4 Artificial Neural Network (ANN) MPPT Algorithm 

Artificial Neural Network (ANN) is one of the most advanced techniques in the range of artificial 

intelligence (AI). Unlike traditional MPPT algorithms, ANN MPPT has capability to handle 

complex patterns, learn from big dataset, and prediction. ANN models are very useful for 

research fields such as function fitting, optimization, machine and deep leaning. ANN-based 

MPPT algorithm is very useful to handling rapid environmental changes, quick response time, 

and tracking solar PV maximum power point (MPP). It is one of the fastest responses MPPT 

techniques. ANN MPPT employs a data driven technique that mimics human neural networks 

[60]. This MPPT technique is especially effective for extreme environmental conditions, where 

solar irradiance and temperatures are rapidly changes. ANN-based MPPT are not very common 

to use, because of computational complexity.  

Principle of the Operation 

The main principle of this ANN MPPT algorithm is to use complex nonlinear relationship among 

solar irradiance, temperature and maximum power point (MPP) of solar PV system. The artificial 

neural network is trained utilizing long term historical dataset to learn the data patterns and make 

the relationship with the govern of MPP under extreme conditions. Once data is trained, the ANN 

MPPT can predict MPP of solar panels based on real world environmental inputs, that allow the 

MPPT system to adjust operating point rapidly and effectively.  
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Figure 2.39: Artificial neural network architecture [61] 

ANN MPPT Algorithm Components 

1. Data Collection and Processing: 
 

o Input Variables: The preliminary variables for the ANN-based MPPT includes 

solar irradiance, and temperature. More variables can be included like wind 

speed, humidity etc. These input variables are continuously analyzed and 

measure data, then fed into neural networks.  

o Output Variable: For MPPT output variable is duty cycle for DC-DC electronic 

converter, that controls solar PV panel operating voltage to track the maximum 

power point (MPP).   

 

2. Neural Network Architecture: 
 

o Input Layer: In this layer collect environmental data such as irradiance and 

temperature.  

o Hidden Layer: One or multiple hidden layers process the environmental input 

data utilizing activation functions that capture the nonlinear relationship.   

o Output Variable: This layer give the predicted duty cycle for DC-DC power 

converter.  

 

3. Training the Neural Network: 
 

o Training Data: Long term historical environmental conditions data and 

corresponding MPP are used to train the neural network.  

o Backpropagation: The backpropagation algorithm is used to adjust the weights 

of neural network and minimizes the error among predicted and actual MPP.    

o Validation and Testing: The trained ANN model is validated and tested using 

different datasets to ensure model accuracy and reliability.  
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Mathematical Expressions of ANN MPPT 

1. Weighted Sum Calculation: 

𝑁𝑒𝑡𝑗 = ∑ 𝑊𝑖𝑗𝑋𝑖
𝑛
𝑖=1 + 𝐵𝑗        (2.37) 

Where, 

𝑋𝑖 = Input parameters such solar irradiance, temperature, voltage and current  

𝑊𝑖𝑗 = Weight related with each input   

𝐵𝑖 = Bias term   

𝑁𝑒𝑡𝑗 = Weighted sum for neuron j   

 

2. Activation Function (Sigmoid/Tanh/ReLU): 

𝑓(𝑁𝑒𝑡𝑗) =
1

1+𝑒
−𝑁𝑒𝑡𝑗

                       (2.38) 

3. DC to DC duty cycle adjustment: 

𝐷𝑛𝑒𝑤 = 𝐷𝑜𝑙𝑑 +  𝛥𝐷                      (2.39) 

Where ΔD is changing a duty cycle for DC-DC converter by employed ANN MPPT. The ANN-

based MPPT algorithm flow chart is given below.  

 

Figure 2.40: The flowchart of ANN-based MPPT [62] 
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Chapter 3  
 

3. RE Resource and Demand Forecasting 
 

3.1 Overview of RE Resource and Demand Forecasting 

In the context of hybrid microgrid system, renewable energy resource and demand forecasting 

are the key features to optimize energy use and stability. Diverse renewable energy integration 

with the modern smart grid or hybrid energy system has significant advantages. But there are 

lots of challenges also, due to intermittent characteristics of renewable energy sources such as 

solar and wind energy. Modern hybrid microgrid systems are combined with the renewable 

energy resources, conventional power generation system and energy storage system (ESS). Where 

energy generation, energy demand and energy management are essential for overall system 

reliability. Accurate renewable energy production forecasting plays a vital role in balancing 

energy demand and supply. It mitigates energy wastage and minimizes the dependency of 

conventional grids [63]. Whether as, energy demand forecasting ensures to estimate optimal 

component sizing, and energy management by predicting energy demand patterns. Energy 

forecasting allows operators to synthesize energy generation, and supply required demand in 

real time. Both forecasting techniques provide the advantages to optimize the hybrid microgrid 

system, which ensures generated energy meets the consumer energy demand with maximum 

renewable energy fraction. By the accurate prediction of renewable energy resources and load 

demand, hybrid microgrid reduces energy wastage, minimizes operational costs and improve 

grid resilience.       

 

Figure 3.1: Renewable energy generation and demand forecasting [64] 
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3.1.1 Importance of Accurate RE Resource and Demand Forecasting 

Renewable energy resource and demand forecasting are crucial for reliable and efficient energy 

supply and operation, especially for hybrid microgrid systems that rely on environmental 

conditions. There are several importances for accurate renewable energy generation and demand 

forecasting such as:  

o Ensuring Stability and Grid Efficiency: Accurate renewable energy resource and load 

demand forecasting, assure the supply aligns with the consumer energy demand. By the 

predicting renewable energy generation sources fluctuation, the grid operators can make 

better energy balance of demand and supply. These reduce energy generation costs, and 

wastage that enhance grid efficiency and stability. 
 

o Optimize RE Generation Resources: Accurate and precise energy forecasting ensures 

optimal usage of renewable energy sources, such as solar PV panels and wind turbines. 

It minimizes conventional sources like fossil fuel generators and costs which optimize 

the RE generation. 
 

o Costs Reduction: By the prediction of energy generation and consumer energy demand, 

the grid operators can reduce their operational costs. By utilizing accurate predictions, 

they can reduce energy storage and fuel consumption costs.  
 

o Load Management: Load demand pattern analysis and forecasting helps to find several 

insights, like peak energy demand, average demand, seasonality, and yearly energy 

demand variation that allows to make decision for better energy distribution. These 

predictions ensure overload and underload of grid system and enhance overall 

performance.  
 

o Improve Decision Making: Real time data analysis and forecasting can help to make a 

better decision or planning or scheduling for energy management. It ensures dynamic 

adaptation of energy generation, storage and meets the energy demand with the 

changing conditions. 
 

o Environmental Impact: Accurate forecasting and effective utilization of energy, 

minimize fossil fuels and resilience on conventional grids. Resulting in reducing 

greenhouse gases (CO2) emissions and promoting sustainability.  

3.1.2. Purpose of Machine Learning (ML) for Forecasting 

Machine learning (ML) is a powerful tool that has the potential to forecast in time series. It is not 

like traditional techniques for forecasting like statistical regression, ARIMA, and SARIMA 

models. They have limitations to capturing nonlinear pattern complex data. While hybrid 

microgrid systems often observe nonlinearities of energy generation and demand. Machine 



43 

 

learning (ML) model provides more accurate and precise forecasting than traditional statistical 

models. Especially deep learning models such as Long Short-Term Memory (LSTM), it is a type 

of recurrent neural network (RNN). It has proven effectiveness for time series forecasting, and 

capabilities to handle complex variable renewable energy generation and energy demand data. 

LSTM model can process big dataset with different variables like environmental conditions, 

energy demand and supply historical data, which offer accurate and precise predictions even 

uncertainties. Hence LSTM model for renewable energy generation and load demand forecasting 

are well suited application, where long term and short-term fluctuation trends are related to each 

other. In the context of hybrid microgrid system, LSTM model provide dynamic optimization, 

helps to make decisions, and enhances effective energy resource allocation to sustainable grid 

infrastructure.     

3.2 Fundamentals of RE Resource Forecasting 

Since the beginning of industrial revolution, most of the country’s energy consumption has been 

dominated by fossil fuels. Diverse fossil fuels are burned and emit toxic gases, that is the major 

factor in increased global warming and are bad for human health. Whereas renewable energies 

are the major element for sustainable, cost effective and environmentally friendly energy solution 

[64]. According to Internation Energy Agency (IEA), the use of renewable energy massively 

increased nowadays to reduce greenhouse gas emission and enhance sustainability.  

a) Resources Analysis (Solar and Wind Energy):  

For hybrid microgrid system, we consider primary energy sources would be solar PV panels and 

wind turbines. Both energy resources are dependent on environmental conditions such as solar 

irradiance, temperature and wind speed. Solar PV exhibits sensitivity with temperature and 

reduces energy generation efficiency. On the other hand, wind turbine power generation directly 

depend on the variation of wind speed. Solar energy can generate maximum power on sunny 

days, whereas wind may generate maximum energy on windy or cloudy days. The integration 

of both sources compensates for the consumer demand, enhances resilience on national grid, and 

ensures sustainable reliability. 

    b) Analysis of Meteorological Data: 

Meteorological data analysis is essential to predict renewable energy generation due to its 

intermittent nature. Meteorological parameters such as wind speed, solar irradiance and 

temperature have a close correlation with solar PV panels and wind turbines power generation. 

By the forecasting model those parameters such as hourly, weekly, monthly and seasonality 

patterns can be predicted. To analyze these variables of meteorological data, provide better 

insights of energy generation, and more accurate renewable energy generation prediction of 

hybrid microgrid system.     
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c) Variability of RE Resource in Seasonal and Temporal: 

Renewable energy resources significantly depend on time, due to diverse fluctuation of 

environment. Solar PV panels energy generation stick to clear sunny day cycle at noon for peak 

generation. But it also depends on several variable parameters like, seasonality, sun angle, solar 

height, and length of the day. Wind energy also varies with seasonal, local weather during the 

months, and geographical location. To predict accurately, these variabilities analysis are essential 

which allows hybrid microgrid system energy generation forecasting and ensure stable energy 

supply even with intermittency of renewable resources. 

d) Challenges of RE Resource Forecasting: 

Forecasting of renewable energy resources is inherently complex for its intermittent nature. It can 

be affected by cloud covers, solar irradiance, ambient temperature, while wind energy generation 

relies on variability of wind speed. Short-term fluctuation of weather induces uncertainties, which 

makes the prediction model complex. To overcome all these challenges is more complex 

compared to conventional statistical forecasting models.                  

3.3 Load Demand Forecasting 

3.3.1 Load Demand of Hybrid Microgrid System: 

Load demand of hybrid microgrid systems refers to the net amount of energy that is consumed 

by total connected electrical loads among hybrid microgrid systems over a define time. The load 

demand included diverse consumers such as residential, industrial and commercial. According 

to load demands, the application of hybrid microgrid can be designed and installed. The demand 

loads vary with several factors like, time of the days, week, and season. Others environmental 

factors can also influence the demand loads, such as temperature, humidity and sudden 

unwanted situation patterns. Unlike conventional grids, hybrid microgrid systems are designed 

to integrated with renewable energy sources and fossil fuels based traditional system [66]. Where 

accurate load demand prediction is very important to meet the consumers demand without any 

interruption. Consumer load pattern has a complex relationship with renewable energy 

generation due to rapid variability, also energy storage and backup generator to make decision 

for dispatch strategies. Optimizing the load demand and generation management provides 

resilience and system stability.         

3.3.2 Load Forecasting for Demand and Supply: 

Load forecasting plays a vital role within the operation of hybrid microgrid system. It allows 

dynamic energy balance of supply and demand. The concept of decentralized energy systems 

includes accurate demand predictions, which ensure that sufficient energy storage is available to 

meet daily energy demand of consumers. Load forecasting enhances resilience and minimizes 
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dependency on conventional powered systems, which will reduce the costs and carbon (CO2) 

emissions. It also optimizes energy storage scheduling, renewable energy integration, priorities 

RE’s fractions, and strategically store extra available energy during peak hours. Well load 

forecasting mitigates the system overload and short circuit hazard. The demand load forecasting 

assures smoother operations, enhances sustainability and stability of grid network. In hybrid 

microgrid system, load forecasting is used by operators to load management and increase overall 

system flexibility. 

3.3.3 Traditional and Modern ML Techniques for Load Forecasting: 

Traditionally load forecasting relies on statistical models, like linear regression, autoregressive 

integrated moving average (ARIMA), exponential smoothing, and many more. All those models 

are effective for the simple linear stationary datasets, where relationships of variables are 

ordinary. In hybrid microgrid systems, where consumer demand can be influenced by diverse 

complex factors (environmental conditions, energy demand dynamics, etc.). To predict 

accurately, traditional techniques are not very effective. To deal with these limitations, advanced 

machine learning (ML) forecasting applications are widely adopted [67]. There are several ML 

models which are suitable for nonlinear forecasting, such as long short-term memory (LSTM) 

neural networks, artificial neural networks (ANN), and support vector machines (SVMs). 

Specially, long short-term memory (LSTM) models are designed to handle long series of historical 

dataset that has advantages to time series prediction. They can hold past information from time 

horizon dataset and make them very effective for forecasting demand loads within hybrid 

microgrid. We consider LSTM machine learning models for energy demand forecasting. This 

model captures complex energy demand patterns, including diverse weather conditions and 

dynamically modify predictions with the response of trends. However, ML models allow hybrid 

microgrid operators to get precise forecasting data and optimize the consumer energy 

management. ML based demand forecasting also helps to make decisions among hybrid 

microgrid systems and reduces overall costs.  

3.4 Data Collection and Preprocessing 

Data collection and processing are the vital steps for data driven projects. It can ensure data 

quality for insightful analysis, which helps to determine mathematical modeling. Data collection 

is a process to gather raw data from diverse sources, like sensors, databases, surveys and different 

kinds of IoT or digital platforms related to the project. Data collecting is a crucial step due to 

finding meaningful insights. On the other hand, data processing is the first step to analysis. This 

step involves data cleaning, handling missing data, transforming it into standardized format and 

data scaling, if needed. Data processing ensures stability and eliminates errors, categorized 

variables, and provides valuable insights [68]. Together, data collection and processing set up a 
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dynamic foundation for precise and effective analysis, which enhances the result quality and 

reliability. 

3.4.1 RE Resource Data Collection and Preprocessing 

(i) Overview of Key Variables in RE Resource Forecasting:  

This study utilizes photovoltaic geographical information system (PVGIS) nineteen (19) years of 

historical solar irradiance, temperature and wind speed datasets. This dataset is very essential for 

solar energy and wind energy forecasting in the context of hybrid microgrid systems. Solar 

irradiance and temperatures have a direct impact on solar PV power generation. While wind 

speed is a primary factor that directly affects wind energy generation and overall grid efficiency. 

With these variables, we can analyze the potential of solar and wind energy availability and their 

variability over time. PVGIS meteorological dataset is crucial to identify long and short-term 

patterns for solar and wind energy productions, daily and seasonal fluctuations [69]. By analyzing 

all those historical datasets, decision makers can forecast and optimize their hybrid microgrid in 

a more robust and resilient way. 

(ii) Historical Dataset of Irradiance and Temperature:  

To analyze the feasibility of the location for hybrid microgrid system installation, historical 

dataset is necessary. We consider satellite PVGSI dataset, that is pointing dataset and freely 

available in online according to the location. PVGIS is reliable and more accurate data for Europe. 

Our studies area is in Portugal and PVGIS provides pointing datasets for it, which is recognized 

by the European Energy Commission [70]. To achieve higher precision, we consider analyzing 15 

years of solar irradiance and temperature dataset. For solar energy production, irradiance has the 

direct influence. While ambient temperature has the influence of PV energy generation efficiency. 

High temperature of solar PV cells decreases the power output. Together, analyzing these 

parameters help to accurate energy estimation for solar energy within diverse environmental 

conditions.  

(iii) Preprocessing of Solar Energy Data: 

o Missing Data Handling and Outliers: In historical dataset, there are often missing values 

either from electronic sensors malfunction or error and environmental conditions. These 

issues are essential to addressed for maintaining consistency. Outliers also should be 

addressed considering the method of interquartile range (IQR), which eliminates skewing 

forecasts.  
 

o Data Scaling and Normalization: Meteorological data such as irradiance and temperature 

were normalized using the common scale like minimum and maximum normalization 
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that improves overall model performance and convergence. This method assures the 

contribution of forecasting model proportionately to outcomes.  
 

o Features Selection and Extraction: The key features like solar irradiance, temperature, 

time, and seasonality were selected. Time based features such as daily and monthly hours, 

which allow forecasting model to determine accurate energy prediction for the day and 

seasonal fluctuations. 
 

o Training and Testing Dataset Split: To complete this process, the solar PV dataset was 

divided into several steps such as training, validation and testing that can evaluate the 

model performance. This splits enables ML model to learn from the historical dataset and 

understand the trends to maximize the predictive accuracy.                     

(iv) Wind Energy Data Collection and Processing: 

Historical datasets of wind speed have significant impacts on wind energy generation. It varies 

with several factors such as geographic and atmospheric conditions, also altitude, landscape and 

seasonality. Reliable datasets of wind speed is vital for precise wind energy forecasting and 

finding potential locations, which make it possible to manage energy storage from different 

resources within the hybrid microgrid. Long term (19 years) dataset was obtained from PVGIS 

that has daily, monthly, seasonal and yearly wind speed patterns. This extensive data allows the 

machine learning model to identify consistent pattern of wind speed that is crucial to optimizing 

the wind energy integration among hybrid microgrid.  

(v) Preprocessing of Wind Energy Data: 

o Data Cleaning and Anomaly Management: Due to extreme environmental conditions 

wind speed frequently contains anomaly. To detect anomaly of wind speed, the 

techniques were applied to determine abnormal readings that can be corelated or 

excluded. To fill out the missing data suitable interpolation methods are used to ensure 

data consistency over the historical dataset.  
 

o Data Scaling and Normalization: To describe the wind speed range and distribution, the 

data was standardized for same scale normalization, that reduce the large deviations 

effect and enhance model response to fine tune the wind speed variation patterns.  
 

o Feature Selection: There are several features to forecast wind energy, such as wind speed, 

wind direction, daily and seasonal, and time-based characteristics. These features are 

crucial for optimization of wind turbine energy forecasting and operation within hybrid 

microgrid system.  
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o Data Split Model Training and Testing: As like solar data, wind meteorological dataset 

also was segmented for model training, testing and validation. This process ensures the 

model accuracy and adapts new wind speed data which balance renewable energy 

generation among hybrid microgrid. 

3.4.2 Energy Demand Data Collection and Preprocessing 

1). Energy Demand Data Collection: 

Energy demand reveals the consumption patterns of diverse loads including hourly, daily and 

seasonal energy demand variations. Energy demand forecasting can make balance of energy 

production and energy storage, minimize resilience on additional energy resources, and maintain 

grid stability [71]. It is very crucial for electrical grid management, system design, simulation and 

analysis. To make the resilience electrical power system, it requires equilibrium within energy 

supply and demand [72].             

2). Preprocessing of Energy Demand: 

o Handling of Missing Data and Gaps: To maintain the continuity of data, missing values 

identification is important and proper interpolation methods are needed to fill it. Energy 

demand, particularly in peak and off-peak hours, is critical to fill the gaps, hence each 

missing value is carefully addressed.  
 

o Data Scaling and Normalization: Energy demand data must be scaled by utilizing min-

max normalization to make standard range, which makes it possible to model and learn 

energy consumption patterns.  
 

o Feature Selection: To make energy demand iterative trends, temporal features like hour 

of the day, week, months and seasonality’s are extracted. Aggregated energy demand 

patterns, like average hourly, daily, weekly, monthly and annual loads are derived to 

maximize the performance for short- and long-term fluctuations. 
 

o Data Splitting: Energy demand was split into data modeling, training, testing and 

validation. It allows the model for generalization and future demand patterns forecasting, 

which enable precise energy demand prediction within hybrid microgrid network.  

Preprocessing solar irradiance, temperature, wind speed and energy demands are essential for 

accurate forecasting. All the datasets of renewable energy generation and demands must be clean, 

normalize, feature selections, and split to enhance the accuracy. To integrate renewable energy 

and load demand variables have strong foundation of ML based data driven forecasting model 

within hybrid microgrid system that balance supply and demand.                
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3.5 Long Short-Term Memory (LSTM) ML Model Fundamentals 

3.5.1 Introduction of LSTM Model 

The LSTM model is a part of recurrent neural network (RNN), which is well suited for time series 

prediction for the ability to handle long and short-term dependencies of sequential dataset. To 

predict renewable energy generation and energy demand, LSTM machine learning models are 

essential to identify historical patterns and capture complex relation within time like, hourly, 

daily, weekly, monthly, seasonal and annual cycles [73]. These features make the LSTM model 

ideal for hybrid microgrid energy generation and load demand forecasting. It can predict the 

trends and variation of renewable energy generation and energy demand. 

A) LSTM Architecture for Time Series Forecasting:  

The LSTM machine learning model architecture designed by the memory cells and with gating 

mechanisms, input, forget and output gates, which control the information flow among the 

networks. This architecture allows the LSTM model to hold necessary temporal information, to 

mitigate the issues and explode the gradients that are often resisted in conventional RNNs. For 

renewable energy and energy demand forecasting, it can recognize recent trends and future 

trends by cycling patterns.  

 

Figure 3.2: LSTM model general architecture [73] 

B) Capture Long-Term Dependency in Energy Forecasting:  

The machine learning model of LSTM network has the memory to handle sequential 

dependencies of renewable energy dataset in optimized way. It can hold and refine the temporal 

data which allows us to manage current and long-term energy trends. LSTM models enable 

precise predictions of renewable energy fluctuations and energy demand peaks and off peaks. 

This is pivotal for hybrid microgrid system energy balancing, as its support to predict and adapt 

to renewable energy generation and energy consumption variations.  
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3.5.2 ML Model Design for RE Resource and Demand Forecasting 

1. LSTM Architecture for RE Resource Forecasting 

The LSTM model structured with layers and optimized for the sequential renewable energy 

resource dataset. The renewable energy resource forecasting model was designed with several 

features including solar irradiance, ambient temperature, and wind speed. The forecasting model 

analyzed the variables, which enables correlations with variables over the time. The machine 

learning LSTM cells has the capability to handle both short term and long-term fluctuations and 

predict renewable energy generation and thereby helping electrical grid balancing efforts [74]. 

2. Data Preprocessing for RE Generation Forecasting 

• Normalization: The input data should be normalized to ensure all the features are on 

same scale. It will help to rapid convergence and enhance performance.  

• Data Splitting: To evaluate the LSTM model performance, the data should be split into 

training, validation and test sets.  

• Sequence Preparation: To fix the LSTM model format, data must be converted into the 

same sequential length.     

3. Model Architecture for RE Generation Forecasting 

• Input Variables: Solar irradiance, ambient temperature, wind speed, and time variables 

(hour, day, month, seasonal). These inputs layer typically used to preprocess the original 

data.   

• Hidden Layers: The hidden layer of LSTM model is mainly used to optimize all the 

parameters and train the dataset.  

• Output Layers: The output layer used to forecast the renewable energy data according to 

the LSTM model trained in hidden layer. 
 

 

Figure 3.3: LSTM model layers architecture [74] 
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4. LSTM Architecture for Energy Demand Forecasting 

The architecture of LSTM model for demand load forecasting is designed with leveraging   

historical load demand data. It involves with the prediction of electricity consumption for a region 

or industries or households. These have various features, such as hourly, daily, monthly and 

seasonally energy demand patterns, which capture load demand dynamics and trends for 

accurate forecasting. Accurate energy demand forecasting is crucial for electrical grid 

management, operations, reliable power supply, and optimal power usages.  

4.1 Data Preprocessing for Energy Demand Forecasting 

• Normalization: The input data should be normalized to ensure compatible scaling.  

• Data Splitting: Split the energy demand dataset into training, validation and test sets.  

• Sequence Preparation: Model format must be converted into same sequential length.     

4.2 Model Architecture for Energy Demand Forecasting 

• Input Layer: In this layer capture the historical energy demand data. All those 

characteristics provide essential information for models, which ensure accurate 

predictions.  

• Hidden Layer: Single or multiple hidden layer capture temporal dependencies.  

• Output Layer: A fully joint layer maps the LSTM outputs to forecast the energy demand 

for a desired time frame. 

5. LSTM Hyperparameter Tuning and Optimization Methods 

The hyperparameter tuning is crucial to optimize the model performance, that utilizes grid and 

random search techniques. The key hyperparameters comprises with learning rate, number of 

LSTM units, layers, batch size and epochs, which optimize the errors. Initial stopping during the 

training can help to avoid overfitting, that is optimize algorithm and provide steady convergence 

for the LSTM model [75].  

Hyperparameters to Tune:  

• Number of LSTM Units: It refers to number of neurons or memory cells in every LSTM 

layer, that determines ability of network to capture the accurate patterns. 

• LSTM Layer: It is the depth of LSTM layer, which learn complex model representations. 

• Learning Rate: It is the step size for every iteration, which synthesizes the model weights 

during the training and decreases loss function.  

• Batch Size: Number of training samples processed in a single iteration, before model 

update it affect model speed and performance.  

• Epoch Count: It refers to how many times the trained dataset passed through model.      
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Optimization Methods:  

• Grid Search: Search all the combinations within the predefined ranges to determine 

optimal set. 

• Random Search: Randomly select the hyperparameters from distinct distribution, that is 

faster than grid search.  

• Bayesian Optimization: This method utilizes the probabilistic model to predict optimal 

hyperparameter set.  

• Cross-Validation: It is evaluating model the model performance, applying the k-fold cross 

validation to avoid overfitting.  

3.6 Evaluation Metrics 

(i). Mean Absolute Error (MAE): 

MAE is an evaluating metric, which determines the forecasting accuracy with the focus on 

average absolute error magnitude. It measures the difference within the predicted and actual 

values. 

𝑀𝐴𝐸 =  
1

𝑛
 ∑ |𝑦𝑖 − �̂�𝑖|

𝑛
𝑖=1                     (3.1) 

Where,  

 𝑦𝑖 = Actual value 

 �̂�𝑖 = Predicted value 

Mean absolute error is simple and easy to understand, also it is less sensitive than the other 

evaluation metrics.  

(ii). Root Mean Squared Error (RMSE): 

RMSE metric is effective to evaluate precise prediction, where large fluctuations can impact. It 

measures the square root difference of average squared, between actual and predicted values. 

𝑅𝑀𝑆𝐸 = √
1

𝑛
 ∑ (𝑦𝑖 − �̂�𝑖)

2𝑛
𝑖=1                  (3.2) 

Where,  

 𝑦𝑖 = Actual value 

 �̂�𝑖 = Predicted value 

To evaluate the accuracy of prediction where large data deviation is available, RMSE is very good 

choice. 
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(iii) Coefficient of Determination (𝑹𝟐):   

Its measures how the predicted value adjusts the actual value, which indicate proportion of 

variance in dependent variable from independent variables.  

𝑅2 = 1 −  
∑ (𝑦𝑖− �̂�𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑖−�̅� )
2𝑛

𝑖=1

                                                  (3.3) 

Where,  

 𝑦𝑖 = Actual value 

 �̅� = Mean of actual values 

To evaluate the overall fit of model to prediction, R2 is the best suited metric. The value of ‘1’ 

means the model is best suited and ‘0’ means model is not properly suited.  

The evaluation metrics ensure reliability and accuracy for LSTM model, which maximizes overall 

performance of renewable energy generation and energy demand forecasting.    
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Figure 4.1: Schematic diagram of hybrid microgrid [77] 

Chapter 4  
 

4. Smart Hybrid Microgrid System Modelling and Design  

4.1 Introduction 

The main aims of this chapter are to model a hybrid microgrid system and design using the 

software of MATLAB Simulink. Those are the professional software’s that are used to make the 

design, simulate and analysis of all the aspects such as electrical behavior, best possible 

combination analysis, minimizing cost, enhancing reliability and safety. The hybrid microgrid 

includes different kinds of renewable energy resources like solar photovoltaic (PV), wind turbine 

(WT), and energy storage system (ESS). A case study was designed and simulated in 

MATLAB/Simulink environment considering the multiple energy sources to observe the behavior 

of SHMs and reveals the best outcomes of the hybrid microgrid system.     

4.1.1 Overview of Hybrid Microgrid Systems: 

The hybrid microgrid systems are becoming the most essential and effective energy solutions to 

address the challenges of integrating diverse renewable energy resources with the grid and 

energy storage system (ESS) for reliable and sustainable energy generation. Due to increasing 

energy demand and rising global warming and natural climate, the world is trying to shift toward 

a green energy solution, which reduces resilience on conventional fossil fuel-based energy [76]. 

Hybrid microgrid system offers a diverse energy solution by combining energy mixed sources, 

like solar photovoltaic (PV), wind turbine (WT), and energy storage system (ESS) that has the 

capability to supply constant reliable electricity to diverse applications.  
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This hybrid microgrid system has the capability to work both ways either grid connected or off 

grid connected. Grid connected system can enhance the grid stability and reliability by reducing 

power fluctuations due to intermittent nature of renewable energy. This system also provides 

additional services such as peak demand load management, voltage and frequency regulations. 

In the case of hybrid off-grid system, it enables reliable energy supply, minimizes the dependency 

on traditional grid and increases energy security [78].  

The objective of integrating multiple renewable and conventional energy sources into hybrid 

microgrid is due to their capability to enhance the system efficiency, resilience, and high 

reliability. Due to the intermittency of the environment, renewable energy sources such as solar 

PV and wind are also varying, and their energy production also varies with the changing weather 

conditions. To mitigate these issues a backup energy storage system (ESS) considered to 

uninterrupted energy supply. The energy storage system (ESS) store excess energy, when hybrid 

system generates more power than energy demand that reduces energy costs and mitigates 

greenhouse gas emission impacts.               

The importance of effective hybrid microgrid modeling, and accurate system design are crucial 

towards optimization and high performance. The optimization of system design requires detailed 

considerations of feasibility study including daily, monthly and seasonally energy demand 

patterns, environmental constraint, regional energy prices, and availability of natural resources. 

Considering all these aspects it can make possible to install a cost-effective and efficient system 

configuration. This configuration will help decision makers, engineers and researchers to select 

the best possible energy mixed solution that can operate under diverse environmental conditions 

[79]. However, this hybrid microgrid system illustrates a pivotal step to reach sustainability and 

energy resilience infrastructure.           

4.2 Hybrid Microgrid Architectures 

The hybrid microgrid architecture refers to a diverse energy solution with the combination of DC 

and AC power systems. Which create flexibility, enhances efficiency and resilience throughout 

the energy network. The HMG architecture combines multiple renewable and conventional 

energy sources, for instance solar PVs, wind, traditional power generators and energy storage 

system (ESS) to assure energy reliability. In our traditional grid system AC can handle the 

conventional loads, while hybrid system is combined with AC and DC power. For DC grid system 

renewable energy sources, such as solar, ESS are ideal to supply electricity to DC loads like DC 

motors, fans, light, electric vehicles etc. The power electronic devices, along with converters and 

inverters, play a vital role in supplying and managing energy flow within AC and DC sub 

electrical network [80]. These kinds of hybrid systems are particularly suitable for remote areas 

and smart grid systems, that offer high performance, reliability, minimize energy losses and 

maximize renewable energy integration sources.  
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4.2.1 DC Microgrid System: 

The DC microgrid is the substitute of conventional AC grid, especially for the application of direct 

current (DC) system that is more compatible with the DC loads. In recent years DC microgrid 

systems have attracted massive research interest. It is the concept of community-based power 

network or grid. It is not like AC microgrid systems that require power electronic based converter 

system to convert AC to DC power. DC microgrid systems maintain DC power throughout the 

electrical network. These systems are gradually deployed to remote areas. Because of its ability 

to seamless connection with diverse renewable energy sources, which make this system more 

attractive option for electricity. Nowadays, DC microgrid systems are utilized as distribution 

networks for automation, industries, communities, manufacturing plants, and maritime system 

[81]. To minimize the cost of DC microgrid, connection of load distance must be as minimum as 

possible. The DC microgrid structure included solar PV panels, wind turbines (WT), diesel 

generators (DG), energy storage system (ESS) and connected with DC buses by the converters 

and inverters.          

 

Figure 4.2: DC microgrid system structure [82] 

(i). Major Components of DC Microgrid System 

A traditional DC microgrid system depends on several major components:  

o Solar PV modules: These generate the direct current (DC) from the sunlight, and it is an 

ideal resource for DC microgrids that do not need any conversion process, like AC.   

o Energy storage system (Battery): The storage system store the excess energy from DC 

microgrid, when grids generate maximum power, but the energy demand is low. 
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Consequently, the battery storage will discharge during the peak energy demand, but 

low generation. For DC microgrid system these charging and discharging processes will 

be more efficient, as this system has no need to use a converter AC power to DC power.  

o DC loads: These are the electronic devices that consume direct current (DC). There are 

some general examples DC motors, LED lights, laptops, DC fans, mobile phones etc.  

o Converters: DC to DC converter plays a crucial role to regulate the voltage, which ensures 

the power supply requirements to match with various components. Converter also 

simplifies the integration within different voltage levels and DC microgrid system, for 

instance step up and down of voltage level from batteries and solar PV modules. Which 

ensure the efficient power flow throughout the grid network and safety. It has the 

capability to provide isolation between diverse parts of DC microgrid that improve grid 

protection system and stability.     

(ii) Advantages of DC Microgrid System 

The DC microgrid system provides several numbers of advantages, specifically for off-grid or 

remote areas.  

1. Improved Efficiency: Renewable energy sources such as solar PV panel naturally 

generate DC power. DC microgrid has less energy conversion process, hence, they do not 

need any power electronic inverters. Thereby it reduces energy losses and enhances 

overall system performance.  

2. Simplicity: DC microgrid architecture is simpler than other microgrid systems, as it has 

fewer energy conversion processes. It is very easy to install, operate and maintenance of 

the system, which makes it the perfect choice for remote area application.  

3. Integration with Loads and ESS: There are lots of modern loads and ESS devices, for 

instance electric vehicles, battery storage and electronic devices are DC powered. These 

systems permit direct integration, improve performance and reduce energy transmission 

losses.  

4. Sustainability: In isolated or off-grid applications, DC microgrids are very well fitted 

where maybe the conventional AC grid is absent. Their state forward architecture allows 

cost effective and reliable energy solutions.                

(iii) Challenges of DC Microgrid System 

1. Loss Minimization: Losses of DC power system are high over long distances. Distance of 

transmission and distribution in long means will increase the cable resistivity and loss the 

power. To reduce these losses the cables should be thicker, or the voltage level should be 

higher, but it will increase the costs.  
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Figure 4.3: AC microgrid system structure [84] 

2. Voltage Stability: In DC system maintaining voltage stability is more complex than 

conventional AC system, specially under loads varying conditions. Often renewable 

energy fluctuates with extreme environmental conditions. Hence, voltage monitoring 

systems are required to continuous monitor and regulation, which ensure reliable energy 

supply and operation.  

3. Standardization: Towards standardization, for DC microgrid systems still there is no 

acceptable standard (voltage and frequency) like AC microgrid systems. It has challenges 

to integrate different manufacturers’ components, due to lack of global standardization.        

4.2.2 AC Microgrid System: 

AC Microgrids refers to AC power supply to grid distribution networks. It is easy to integrate 

with existing grid networks without any requirements, like power electronic converters and 

control systems. From the beginning of microgrid concept, it has occupied the main place for 

research. Due to existing AC grid infrastructure with suitable manner of electrical instruments 

and electronic appliances [83]. The AC microgrid system is the most adapted and common types 

of microgrid architecture. It has some advantages such as residential, industrial, and commercial 

settings, where existing AC systems are already installed. In grid connected conditions, it 

provides more resilience and high system reliability. This system is highly versatile to both off-

grid and grid connected applications. It has the capability to operate independently out of utility 

grid during power outages.    

       

 

 

 

 



59 

 

A. Major Components of AC Microgrid System 

An AC microgrid system includes several components: 

o AC Generators: Traditional AC generators like diesel generator (DG) or renewable energy 

sources like wind turbines, which generate alternating current (AC) and electrify 

microgrid network.  

o Inverters: These electronic devices can convert direct current (DC) power (solar PV 

panels, battery energy storage) into alternating current (AC) power. Inverter ensures 

compatibility with remote, and grid connected network.  

o AC Loads: AC loads that consume AC power. The common examples are industrial 

machines, home appliances and commercial equipment. 

o Transformers: Transformer is an electrical passive component which transfer electrical 

power through multiple circuits. It adjusts the voltage levels for AC electricity 

transmission and distribution. Transformers also ensure the grid and load voltage by 

stepping up and down and ensures grid requirement or capability.           

B. Advantages of AC Microgrid System 

The AC microgrid systems are the most common to use and they have several advantages:  

1. Grid Integration: It can easily integrate with the same types of existing AC utility system. 

Which allows seamless operation and electrical connectivity.    

2. Developed Technology: AC microgrid system has recognized global technology and 

standards for decades. The infrastructures and components are well developed and easily 

available, which enhances reliability.  

3. High Power Capability: It can manage a large scale of power transmission and 

distribution. AC microgrid systems are suitable for heavy machinery or industrial 

applications (AC machines, motors etc.) and it can meet the high energy demand.       

C. Challenges of AC Microgrid System 

The AC microgrid system has several challenges to use:  

1. Complex Synchronization: Synchronization of AC microgrid system with existing 

traditional grid requires a very precise control system which can handle voltage, 

frequency and phase sequence. If the control system does not match with grid parameters, 

the power can damage the equipment. 

2. Reactive Power Management: AC microgrid system inherently generates reactive power 

for inductive and capacitive components. To maintain the voltage stability proper power 

management, it is required to reduce the transmission and distribution losses.  
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3. Energy Losses: In the AC microgrid system power can be lost for transmission and 

distribution process. Due to the resistance of cable, it creates a barrier to power flow and 

reduces efficiency for long distance energy transmission.  

4.2.3 Hybrid Microgrid (AC/DC) Systems 

The hybrid microgrid system is considered to be an advanced energy solution which integrates 

with AC and DC power flow. It allows energy management, optimize system efficiency, enhance 

reliability and various types of renewable and fossil fuel-based resources and loads. Conventional 

AC microgrid has the capability to manage high power over long distance electricity transmission 

lines. Consequently, DC microgrid system is more effective for renewable energy such as solar 

PV panels and battery storage system that directly produce and store DC power. The hybrid 

microgrid system is usually connected in parallel pattern and operates with grid connected and 

off grid modes [85]. This system is compatible with modern roads, like computer data centers, 

electric cars, bicycles and so on. Combining AC and DC, increase energy security, enhance 

performance, minimize costs and reduce energy losses.       

 

 
 

Figure 4.4: Hybrid (AC/DC) microgrid system structure [86] 

(a) Advantages of Hybrid (AC/DC) Microgrid System 

Hybrid microgrid system has several advantages: 

1. Flexibility: Hybrid (AC/DC) microgrid system has some great flexibility in diverse 

renewable energy and traditional energy resources integration, like solar PV arrays, and 

energy storage systems (battery) where produce and store DC power, on the other hand 
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diesel generators, and wind turbines produce AC power. This system enables efficient 

operation and proper utilization of power flow of each load.  

2. Efficiency: Hybrid microgrid optimizes the component sizing and maximizes the 

performance. One of the main benefits of this system is, it does not need much energy 

conversion process. The result is an increase in efficiency.  

3. Resilience and Reliability: This system can handle both AC and DC power 

simultaneously, which enhances operational resilience. In the case of failure, for instance 

AC side, the other side of DC can continue to operate independently which increases 

entire hybrid microgrid system reliability and performance.    

4. Smart Grids Optimization: In the application of smart grids system, hybrid (AC/DC) 

microgrid permit the dynamic energy regulation along with seamless control of different 

energy generation sources. The modern real time monitoring system provides 

information on daily energy generation, demand, and grid conditions that enhances 

optimization performance.  

(b) Power Electronics of Hybrid (AC/DC) Microgrid Integration 

Power electronics are the main integration instruments of hybrid microgrid systems, which 

facilitate smooth power flows. Major components are: 

o Inverters: Solar PV panels and energy storage (battery) system must convert DC power 

into AC power to integrate the hybrid microgrid system with grid connected loads. The 

modern inverters are well equipped along with advanced technologies, which can handle 

power and frequency stability through the hybrid microgrid.  
 

o Rectifiers: It allows the energy storage (battery) system for powering the loads from DC 

to AC source. This is specifically helpful in the case of wind turbines (WT) that produce 

AC power, while energy storage (battery) system needs to store DC power.   
 

o DC to DC Converters: DC - DC converters regulate the voltage levels among the sub buses 

of hybrid microgrid system, that assure the multiple DC sources and loads can operate at 

a time with highly efficient manner. For example, according to voltage requirement of 

battery, DC – DC converter step up and down the voltage level for charging.  
 

o Bidirectional Converters: It is crucial equipment for hybrid microgrid systems for smooth 

energy flow within AC and DC network buses. These ensure power exchange in AC and 

DC in both directions. Also, it allows us to adapt to the extreme conditions, like renewable 

energy production and demand of loads fluctuations.   
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(c) Application of Hybrid Microgrid System in Smart Energy Grids 

Modern hybrid microgrids systems have extensive applications range especially in smart grid 

energy system technologies. 

1. Integration of Smart Grid: Hybrid microgrid systems are very compatible with modern 

smart grid structures, that require automated and dynamic energy management systems. 

It enables real time adaptation within AC and DC electrical networks, which optimize 

power flow and enhance efficiency of energy uses.   
 

2. Renewable Energy Integration: Hybrid microgrid system has a major application to 

integrate diverse renewable energy sources. Solar photovoltaic panels, wind turbines 

(WT), diesel generators (DG), and energy storage system (ESS) can be integrated with 

same microgrid system with minimal power losses due to less energy conversion process.  
 

3. Charging Station for Electric Vehicle: Electric vehicles are inherently powered by DC, 

where hybrid microgrid systems can charge EV’s very fast and efficient ways. These do 

not need any energy conversion, which minimizes the charging times of electric vehicles 

and increases efficiency.  
 

4. On-Grid and Off-Grid Applications: These can effectively operate on-grid and off-grid 

both scenarios. For the application of on-grid system, these can support main utility grid 

by integrating with renewable energies, that helps to peak shaving and frequency 

regulation. This system reduces fossil fuel costs and resilience. On the other hand, off-grid 

microgrid systems supply self-efficient and reliable energy by combining multiple 

renewable and fossil fuels sources, which ensure continuous energy supply without any 

utility grid dependency.       

4.3 Mathematical Modeling of Hybrid Microgrid System 

Mathematical modeling is the crucial foundation for hybrid microgrid design, analyzing and 

optimizing the overall systems. This modeling method employs multiple mathematical equations 

which represent dynamics for components, like solar PV panels, wind turbines, diesel generators 

and energy storage system (battery). Utilizing those mathematical representations helps to 

evaluate practitioners to analyze the system performance, stability, forecast energy generation 

and consumption and optimize the operations under extreme environmental conditions. 

4.3.1 Mathematical Framework 

(I) Modeling Methodologies:  

• State-Space Model Representation: This method refers to representing dynamic behavior 

of the system considering state variables, that allows us to analyze how the hybrid 
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microgrid behavior changes over the time [86]. The typical mathematical expression of 

state-space model is: 
 

�̇�(𝑡) = A𝑥(𝑡) + B𝑢(𝑡)          (4.1) 

𝑦(𝑡)= C𝑥(𝑡) + D𝑢(𝑡)           (4.2)  

Where,  

 𝑥(𝑡)= State vector 

𝑢(𝑡)= Input vector 

𝑦(𝑡)= Output vector 

𝐴, 𝐵, 𝐶 𝑎𝑛𝑑 𝐷= Matrices to describe system dynamics 
 

• Control Theory: Control techniques like PID and MPC are the crucial to optimizing 

seamless energy flow and managing stability of the system. Control system performance 

can be analyzed by feedback loops and standard of stability, that can be developed by 

mathematical models.     

(II) key Equations of Power System:  

• Power Balance: The mathematical equations of power balance for hybrid microgrid 

system can be express [87]: 
 

𝑃𝑔𝑒𝑛 − 𝑃𝑙𝑜𝑎𝑑 − 𝑃𝑙𝑜𝑠𝑠 = 0            (4.3)  

𝑃𝑃𝑉(𝑡) + 𝑃𝑊𝑇(𝑡) + 𝑃𝐸𝑆𝑆(𝑡) = 𝑃𝐿(𝑡)           (4.4)  

Where, 

 𝑃𝑃𝑉(𝑡) = 𝑆𝑜𝑙𝑎𝑟 𝑃𝑉 𝑝𝑎𝑛𝑒𝑙𝑠 𝑜𝑢𝑡𝑝𝑢𝑡 [𝑊] 

𝑃𝑊𝑇(𝑡) = 𝑊𝑖𝑛𝑑 𝑡𝑢𝑟𝑏𝑖𝑛𝑒𝑠 𝑜𝑢𝑡𝑝𝑢𝑡 [𝑊] 

𝑃𝐷𝐶(𝑡) = 𝐷𝑖𝑒𝑠𝑒𝑙 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟𝑠 𝑜𝑢𝑡𝑝𝑢𝑡 [𝑊] 

𝑃𝐸𝑆𝑆(𝑡) = 𝐸𝑛𝑒𝑟𝑔𝑦 𝑠𝑡𝑜𝑟𝑎𝑔𝑒 (𝑏𝑎𝑡𝑡𝑒𝑟) 𝑜𝑢𝑡𝑝𝑢𝑡[𝑊] 

𝑃𝐿(𝑡) = 𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑙𝑜𝑎𝑑 𝑑𝑒𝑚𝑎𝑛𝑑 [𝑊] 

4.3.2 Hybrid Microgrid Components Modeling 

(1) Solar PV Panel Modeling  

In hybrid microgrid system, solar PV panels are the key components which require accurate 

mathematical modeling to getting optimal performance. Solar PV panels output power 

generation depend on environmental conditions, such as irradiance (W/m2) and temperature (°C). 

Considering those issues [88], solar PV panels’ output power can be expressed by: 
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𝑃𝑃𝑉 = 𝑃𝑚𝑎𝑥,𝑆𝑇𝐶 + 
𝐺𝑎𝑐𝑡𝑢𝑎𝑙

𝐺𝑆𝑇𝐶
 [1 − 𝛽(𝑇𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑇𝑆𝑇𝐶]          (4.5) 

Where, 

 𝑃𝑃𝑉 = 𝑆𝑜𝑙𝑎𝑟 𝑃𝑉 𝑝𝑎𝑛𝑒𝑙𝑠 𝑜𝑢𝑡𝑝𝑢𝑡 [𝑊] 

𝑃𝑚𝑎𝑥,𝑆𝑇𝐶 = 𝑆𝑜𝑙𝑎𝑟 𝑝𝑎𝑛𝑒𝑙 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑝𝑜𝑤𝑒𝑟 𝑜𝑢𝑡𝑝𝑡𝑢 𝑎𝑡 𝑆𝑇𝐶 [𝑊] 

𝐺𝑎𝑐𝑡𝑢𝑎𝑙 = 𝑆𝑜𝑙𝑎𝑟 𝑖𝑟𝑟𝑎𝑑𝑎𝑛𝑐𝑒 𝑎𝑡 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑡𝑖𝑚𝑒 [𝑊/𝑚2] 

𝐺𝑆𝑇𝐶 = 𝑆𝑜𝑙𝑎𝑟 𝑖𝑟𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒 𝑎𝑡 𝑆𝑇𝐶[𝑊/𝑚2 𝑜𝑟 1000𝑊/𝑚2] 

𝛽 = 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑡 [−%/°C] 

𝑇𝑎𝑐𝑡𝑢𝑎𝑙 = 𝐴𝑐𝑡𝑢𝑎𝑙 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑜𝑓 𝑠𝑜𝑙𝑎𝑟 𝑃𝑉 𝑝𝑎𝑛𝑒𝑙 [°C] 

𝑇𝑆𝑇𝐶 = 𝑆𝑜𝑙𝑎𝑟 𝑃𝑉 𝑝𝑎𝑛𝑒𝑙 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑎𝑡 𝑆𝑇𝐶 [°C or 25°C] 
 

(2) Solar PV Panels Performance and Effect Parameters  

To identify the solar PV panels’ performance the key parameters are:  

• Efficiency: Solar PV panels efficiency refers to ratio of sunlight converted into electrical 

energy. Considering efficiency, we can identify effectiveness of solar PV panels. In 

standard testing condition (STC), solar irradiance 1000 W/m2, cell temperature 25°C, and 

air mass 1.5. The efficiency express can be: 

 

𝜂 =
𝑃𝑜𝑢𝑡𝑝𝑢𝑡

𝑃𝑖𝑛𝑝𝑢𝑡
 × 100%          (4.6) 

 

• Fill Factor (FF): Using the measurement of fill factor, identify the quality of solar PV 

panels. The expression of fill factor can be: 

 

𝐹𝐹 =
𝑃𝑚𝑎𝑥

𝑉𝑜𝑐× 𝐼𝑠𝑐
=

𝑉𝑚𝑝𝑝× 𝐼𝑚𝑝𝑝

𝑉𝑜𝑐× 𝐼𝑠𝑐
            (4.7) 

 

• Temperature Coefficient of Solar Cell Power: Typically, a solar PV panels power output 

increases when temperature decreases. Usually, silicon based solar cell temperature 

coefficient within -0.3% to -0.5%/°C. The mathematical expressions can be: 
 

𝑃(𝑇) = 𝑃(𝑇𝑆𝑇𝐶) × [1 + 𝛾𝑃 × (𝑇 − 𝑇𝑆𝑇𝐶)]       (4.8) 
 

• Temperature Coefficient of Solar Cell Voltage: There is a relationship with temperature 

and open circuit voltage of solar PV panels. With the increase of temperature, open circuit 

voltage will decrease. The mathematical expressions can be: 

 



65 

 

𝑉𝑜𝑐(𝑇) = 𝑉𝑜𝑐(𝑇𝑆𝑇𝐶) + 𝛽𝑣,𝑜𝑐 × (𝑇 − 𝑇𝑆𝑇𝐶)                     (4.9) 

 

• Temperature Coefficient of Solar Cell Current: While solar cells increase the current, 

simultaneously temperature also increase, but less than the open circuit voltage. Although 

the solar PV panels loss power. The mathematical expressions can be: 
 

𝐼𝑠𝑐(𝑇) = 𝐼𝑠𝑐(𝑇𝑆𝑇𝐶) × [1 + 𝛼𝐼𝑆𝐶 × (𝑇 − 𝑇𝑆𝑇𝐶)]                (4.10) 
 

(3) Wind Turbine Modeling  

Modeling a wind turbine is a pivotal part of hybrid microgrid systems. The objective of modeling 

is to understand the behavior of wind turbines and predict their energy output under diverse 

wind speed conditions. The modeling also involves physical dynamics, such as energy 

conversion, kinetic energy into electrical energy generation. The mechanical power generation of 

wind turbine relies on some factors, such as wind speed, characteristic of rotor, and efficiency 

[89]. The mathematical expression can be: 

  𝑃𝑤𝑖𝑛𝑑 =
1

2
. 𝜌. 𝐴. 𝑣3. 𝐶𝑝(𝜆, 𝛽)        (4.11) 

Where, 

 𝑃𝑤𝑖𝑛𝑑 = 𝑊𝑖𝑛𝑑 𝑡𝑢𝑟𝑏𝑖𝑛𝑒 𝑜𝑢𝑡𝑝𝑢𝑡 [𝑊] 

𝜌 = 𝐴𝑖𝑟 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 [𝑘𝑔/𝑚3] 

𝐴 = 𝑅𝑜𝑡𝑜𝑟 𝑠𝑤𝑒𝑝𝑡 𝑎𝑟𝑒𝑎 (𝜋 ⋅ 𝑅2) [𝑚2] 

𝑣 = 𝑊𝑖𝑛𝑑 𝑠𝑝𝑒𝑒𝑑 [𝑚/𝑠] 

𝐶𝑝(𝜆, 𝛽) = 𝑃𝑜𝑤𝑒𝑟 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡  

The function of turbine tip-speed ratio (λ) and blade pitch angle (β). Power coefficient (Cp) of 

wind turbine represents the efficiency of converting kinetic energy to mechanical energy. 

Theatrically the maximum efficiency (Cp) of wind turbines is 0.593 (59.3%), that is known as Bentz 

limit.  

(4) Wind Turbines Performance and Effect Parameters  

• Tip-Speed Ratio: The tip-speed ratio is a crucial parameter, that can affect wind turbine 

efficiency. The mathematical expression can be: 

 

  𝜆 =
𝜔 .  𝑅

𝑣
           (4.12) 

Where, 

  𝜔 = 𝐴𝑛𝑔𝑢𝑙𝑎𝑟 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑜𝑓 𝑤𝑖𝑛𝑑 𝑡𝑢𝑟𝑏𝑖𝑛𝑒 𝑟𝑜𝑡𝑜𝑟 [𝑟𝑎𝑑/𝑠] 
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𝑅 = 𝑅𝑎𝑑𝑖𝑢𝑠 𝑜𝑓 𝑟𝑜𝑡𝑜𝑟 [𝑚] 

𝑣 = 𝑊𝑖𝑛𝑑 𝑠𝑝𝑒𝑒𝑑 [𝑚/𝑠] 

A wind turbine operates efficiently with the optimal range of λ, where power coefficient (Cp) can 

reach to maximum.  

• Power Coefficient: The power coefficient represent is to understand the efficiency of wind 

turbines, which varies with tip speed ratio. In practical scenario, wind turbines can 

perform with the Cp values of 0.3 (30%) to 0.5 (50%).  
 

• Cut-in Wind Speed: To generate wind power, the minimum speed of turbines should be 

3 m/s to 4 m/s (meter per second).   
 

• Cut-off Wind Speed: To mitigate the over speed damage of wind turbines, the maximum 

wind speed considers typically around 25 m/s (meter per second).   
 

• Rated Wind Speed: To get the maximum power from wind turbines, the wind speed limit 

usually around 12 m/s to 15 m/s (meter per second).  

 

Figure 4.5: Power curve of wind turbine [90] 

The mathematical equation of wind turbine power curve is given below: 

𝑃(𝑉) =  

{
 
 

 
 

0                                                𝑓𝑜𝑟 𝑉 < 𝑉𝑐𝑢𝑡_𝑖𝑛

𝑃𝑟𝑎𝑡𝑒𝑑  .  (
𝑉

𝑉𝑟𝑎𝑡𝑒𝑑
)
3
             𝑓𝑜𝑟 𝑉𝑐𝑢𝑡_𝑖𝑛 ≤ 𝑉 ≤ 𝑉𝑟𝑎𝑡𝑒𝑑

𝑃𝑟𝑎𝑡𝑒𝑑                                     𝑓𝑜𝑟 𝑉𝑟𝑎𝑡𝑒𝑑 ≤ 𝑉 ≤ 𝑉𝑐𝑢𝑡_𝑜𝑓𝑓
0                                             𝑓𝑜𝑟 𝑉 > 𝑉𝑐𝑢𝑡_𝑜𝑓𝑓

      (4.13) 

Where, 

  𝑃(𝑉) = 𝑊𝑖𝑛𝑑 𝑡𝑢𝑟𝑏𝑖𝑛𝑒 𝑝𝑜𝑤𝑒𝑟 𝑜𝑢𝑡𝑝𝑢𝑡 [𝑊] 

𝑃𝑟𝑎𝑡𝑒𝑑 = 𝑊𝑖𝑛𝑑 𝑡𝑟𝑢𝑏𝑖𝑛𝑒 𝑟𝑎𝑡𝑒𝑑 𝑝𝑜𝑤𝑒𝑟 𝑜𝑢𝑡𝑝𝑢𝑡 [𝑊] 

𝑉𝑐𝑢𝑡_𝑖𝑛 = 𝑊𝑖𝑛𝑑 𝑡𝑢𝑟𝑏𝑖𝑛𝑒 𝑐𝑢𝑡 − 𝑖𝑛 𝑤𝑖𝑛𝑑 𝑠𝑝𝑒𝑒𝑑 [𝑚/𝑠] 
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𝑉𝑟𝑎𝑡𝑒𝑑 = 𝑊𝑖𝑛𝑑 𝑡𝑢𝑟𝑏𝑖𝑛𝑒 𝑟𝑎𝑡𝑒𝑑 𝑤𝑖𝑛𝑑 𝑠𝑝𝑒𝑒𝑑 [𝑚/𝑠] 

𝑉𝑐𝑢𝑡_𝑜𝑓𝑓 = 𝑊𝑖𝑛𝑑 𝑡𝑢𝑟𝑏𝑖𝑛𝑒 𝑐𝑢𝑡 − 𝑜𝑓𝑓 𝑤𝑖𝑛𝑑 𝑠𝑝𝑒𝑒𝑑 [𝑚/𝑠] 

(5) Electrical Power Output of Wind Turbines  

After getting the mechanical power by the wind turbine, its converter into electrical power by 

using the generator. The mathematical expression for electrical power output as: 

𝑃𝑒𝑙𝑒𝑐 = 𝑃𝑤𝑖𝑛𝑑   .  𝜂𝑔𝑒𝑛           (4.14) 

Where, 

  𝑃𝑒𝑙𝑒𝑐 = 𝑊𝑖𝑛𝑑 𝑡𝑢𝑟𝑏𝑖𝑛𝑒 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙 𝑝𝑜𝑤𝑒𝑟 𝑜𝑢𝑡𝑝𝑢𝑡 [𝑊] 

𝑃𝑤𝑖𝑛𝑑 = 𝑊𝑖𝑛𝑑 𝑡𝑟𝑢𝑏𝑖𝑛𝑒  𝑜𝑢𝑡𝑝𝑢𝑡 [𝑊] 

𝜂𝑔𝑒𝑛 = 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 [𝑚/𝑠] 

For example, 

Considering a wind turbine with air density 𝜌 =1.25 kg/m3, wind speed v=10 m/s, rotor radius 

R=50m, and power coefficient Cp=0.45.  

 The wind power (mechanical), 

 𝑃𝑤𝑖𝑛𝑑 =
1

2
. (1.25). 𝜋. (50)2. (10)3. (0.45)  = 2.21 MW 

Electrical power generation with the generator efficiency of 95%, 

𝑃𝑒𝑙𝑒𝑐 =  2.21  .  (0.95) = 2.0995 𝑀𝑊 

 

(6) Energy Storage (Battery) System Modeling  

The battery energy storage system (ESS) is an electrochemical device, that can store energy either 

from AC source or DC source. It is one of the key components for hybrid microgrid systems.         

Battery storage systems are especially essential, to meet the energy demand of loads, when 

renewable energy is insufficient. The state of charge (SoC) is a vital metric to manage the battery, 

which represents battery capacity (Ah) at any given time [91]. Mathematically, SoC modeling 

refers to dynamic behavior of batter systems during discharging and charging cycles. The 

equation managing the SoC by integration with battery current over time, and connection with 

total battery capacity. The equation expresses as: 

  𝑆𝑜𝐶(𝑡) = 𝑆𝑜𝐶(𝑡0) + 
1

𝐶𝑟𝑎𝑡𝑒𝑑
∫ 𝐼(𝑡)𝑑𝑡 
𝑡

𝑡0
 

=  𝑆𝑜𝐶(𝑡0) + 
1

𝐶𝑟𝑎𝑡𝑒𝑑
∫ (𝐼𝑏 − 𝐼𝑙𝑜𝑠𝑠)𝑑𝑡 
𝑡

𝑡0
        (4.15) 
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Where, 

 𝑆𝑜𝐶(𝑡) = 𝑆𝑡𝑎𝑡𝑒 𝑜𝑓 𝑐ℎ𝑎𝑟𝑔𝑒 𝑎𝑡 𝑎𝑛𝑦 𝑔𝑖𝑣𝑒𝑛 𝑡𝑖𝑚𝑒 𝑡 

𝑆𝑜𝐶(𝑡0) = 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑡𝑎𝑡𝑒 𝑜𝑓 𝑐ℎ𝑎𝑟𝑔𝑒 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡0 

𝐼(𝑡) = 𝐶ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝑎𝑛𝑑 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑜𝑓 𝑏𝑎𝑡𝑡𝑒𝑟𝑦 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 

𝐶𝑟𝑎𝑡𝑒𝑑 = 𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝑟𝑎𝑡𝑒𝑑 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (𝐴ℎ) 

𝐼𝑏 = 𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 

𝐼𝑙𝑜𝑠𝑠 = 𝐿𝑜𝑠𝑠 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑 𝑏𝑦 𝑏𝑎𝑡𝑡𝑒𝑟𝑦 
 

(7) Technical Principle of Battery Storage System Modeling  

The two main important parameters of battery storage systems are state of charge (SoC) and 

depth of discharge (DoD). Those parameters are essential to optimize battery storage 

performance and monitoring system to enhance the lifetime. These indicators reflect the battery 

energy levels (charging and discharging), operational efficiency and battery health over the 

lifecycle [92].  

• Useable Capacity: The useable capacity refers to the amount of energy left to use or 

discharge under operating conditions. State of charge (SoC) is a ratio of usable capacity 

and rated capacity of battery, that is normally provided by manufacturers.  

 

𝑆𝑜𝐶 =
𝐶𝑢𝑠𝑒𝑎𝑏𝑒

𝐶𝑟𝑎𝑡𝑒𝑑
 × 100%           (4.16) 

 

• Maximum Capacity: A fully charged battery has a maximum usable capacity, that may 

not be same as rated capacity due to several factors such as aging, temperature, internal 

resistance, and chemical effects. To measure the battery degradation state of health (SoH) 

indicator can be used:  

 

  𝑆𝑜𝐻 =
𝐶𝑚𝑎𝑥

𝐶𝑟𝑎𝑡𝑒𝑑
 × 100%          (4.17) 

 

• Depth of Discharge: This is the indicator which represents the percentage of battery 

capacity that has been discharged compared to rated capacity. The mathematical 

expression as: 

𝐷𝑜𝐷 =
𝐶𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒

𝐶𝑟𝑎𝑡𝑒𝑑
 × 100%          (4.18) 
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• Calculation of DoD: The change of DoD within the operational period (τ), that can be 

determined by integrating battery system current over the time. The mathematical 

expression as:  

 

∆𝐷𝑜𝐷 =
1

𝐶𝑟𝑎𝑡𝑒𝑑
 ∫ 𝐼𝑏
τ

0
𝑑𝑡          (4.19) 

 

 The Ib is positive when batter is charging and negative when discharging, also it represents 

cumulative energy flow within the battery system.   
 

• Efficiency Consideration: While battery experiences changing and discharging, it will 

reduce efficiency due to several losses. To calculate DoD, operating efficiency must be 

considered, where charging and discharging efficiency are developed to calculate 

accurate DoD. The mathematical expressions as: 

    

 ∆𝐷𝑜𝐷 =
1

𝐶𝑟𝑎𝑡𝑒𝑑
 ∫ 𝜂. 𝐼𝑏
τ

0
𝑑𝑡          (4.20) 

 

• SoC Considering Battery Aging (SoH): Accurate SoC calculations is crucial to identify 

battery health or aging. Battery SoC incorporates with SoH that adjust of real maximum 

capacity. The mathematical expression as:   

 

𝑆𝑜𝐶 = (
𝐶𝑚𝑎𝑥− 𝐶𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒

𝐶𝑟𝑎𝑡𝑒𝑑
)  × 100%         (4.21) 

All those battery parameters allow precise real time monitoring and performance, 

which enhances efficiency.   
 

(8) CO2 Emission and Efficiency Metrics  

Diesel generators are consumed fossil fuels, and their produce emissions are proportional to fuel 

burns. The emission of carbon dioxide (CO2) can be calculated by the emission factors [20]. The 

mathematical expression as: 

𝐸𝐶𝑂2 = 𝑚𝑓𝑢𝑒𝑙 . 𝐸𝐹𝐶𝑂2           (4.24) 

Where, 

 𝐸𝐶𝑂2 = 𝑇𝑜𝑡𝑎𝑙 𝐶𝑂2 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 (𝑘𝑔) 

𝑚𝑓𝑢𝑒𝑙 = 𝑚𝑎𝑠𝑠 𝑜𝑓 𝑓𝑢𝑒𝑙 (𝑘𝑔) 

𝐸𝐹𝐶𝑂2 = 𝐶𝑂2 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 (𝑘𝑔) 

• Efficiency: It’s a crucial parameter for diesel-based generator performance analysis. The 

overall efficiency of diesel generators, including electrical and thermal can express as: 
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 𝜂𝐷𝐺 =
𝑃𝐷𝐺

𝑚𝑓𝑢𝑒𝑙 .  𝐿𝐻𝑉
            (4.25) 

 

The efficiency of diesel generators varies with loads, fuel quantity and operating conditions. 

Hybrid microgrid can be optimized by the model of diesel generators efficiency and reduce the 

fossil fuel consumption and carbon emissions.  
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Chapter 5  

5. Results and Discussion  

5.1 Introduction 

5.1.1 Brief Overview 

This chapter represents the results and discussions of the research conducted on hybrid microgrid 

systems. Hybrid microgrid system (HMG’s) plays a vital role in the modern energy system 

transition by integrating diverse renewable energy sources including solar PV system, wind 

energy, geothermal, ocean energy, and hydro energy along with multiple energy storage systems 

and traditional generators [93]. All these different combinations of microgrid offer multiple 

advantages, along with grid stability, uninterrupted power supply, even in off-grid areas, where 

conventional grid infrastructure may not be available.  

Hybrid microgrid system design and optimization has several challenges. The most important 

challenges are the fluctuation and intermittency of renewable energy generation sources. Solar 

photovoltaic and wind energy can vary significantly with the weather conditions, which make 

energy forecasting more complex along with managing the energy output. On the other hand, 

optimizing the hybrid microgrid system performance requires robust control strategies to ensure 

reliable energy supply under extreme weather and load conditions [94]. Another significant 

challenge is to integrate diverse energy storage systems to balance energy demand and supply 

within the hybrid microgrid areas.           

5.1.2 Objectives: 

The main objectives of this Chapter are to: 

• Evaluate ML Model Forecasting Technique: Using machine learning model of Long 

Short-Term Memory (LSTM), load demand and renewable energy output can predict 

accurately. The main objective is to identify accurate forecasting of energy demand, solar 

irradiance, temperature, and wind speed. 

• Optimize Renewable Energy (PV) Generation Using MPPT Algorithm: To optimize the 

renewable energy generation MPPT algorithm is very essential. The objective is to make 

the performance comparison with four different MPPT techniques such as Perturb and 

Observe (P&O), Predictive Control Method (PCM), Fuzzy Logic Control (FLC) and 

Artificial Neural Networks (ANN).      
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• MATLAB Simulink Model Development: Develop a hybrid microgrid system in 

MATLAB Simulink environment with all the required components and simulate the 

behavior under extreme operating conditions.    

5.1.3 Project Site Description:  

This research specifically focuses on develop a hybrid microgrid system for the location of 

Ericeira (Lat: 38.967675, Long: -9.407825), Mafra, Lisboa, Portugal. One of the primary reasons to 

choose the location is available hourly energy consumption (1 year) data from E-REDES [95]. E-

REDES is the electricity distribution network operator in Portugal. Recently they started provides 

hourly and monthly energy consumption data by various regions in Portugal. For accurate energy 

demand forecasting real data is very essential, which is pivotal for modeling and simulation of 

hybrid microgrid system.  

 

Figure 5.1: Location of the project site (Lat: 38.967675, Long: -9.407825) 

Ericeira is a touristic and costal area, which makes it the perfect location to install hybrid 

microgrid system due to available renewable resources. This study is driven by enhancing 

sustainable and reliable energy supply and setting a benchmark for similar projects in other 

locations, which contribute more resilience and greener energy future.  
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5.2 Energy Demand Forecasting Results and Discussion 

5.2.1 Energy Demand Forecasting 

The energy demand forecasting was carried out by Long Short-Term memory (LSTM) machine 

learning model. To select of LSTM model for its accuracy in time series analysis. The forecasting 

model was trained using 1 year (November 2022 to November 2023) of E-REDES dataset with the 

features of day (hours), daily pattern, and seasonal and yearly demand variations. LSTM model 

has the capability to learn long and short-term dependencies, which made it perfect choice for 

capturing extreme fluctuations and trends of energy demand.   

 

Figure 5.2: Daily energy consumption patterns of the location (Ericeira) 

 

Figure 5.3: Average hourly energy demand forecasting by a day 
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Figure 5.4: Average monthly energy consumption patterns of the location 

 

Figure 5.5: Seasonally energy demand variation patterns of the location 
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Energy Demand of Ericeira Area Required Capacity (kWh) 

Average hourly energy demand 5.24 

Average peak hourly demand  6.71 

Average daily demand 125.81 

Average peak daily demand 155.72 

Average monthly demand 3820.09 

Average seasonal demand variation 

Fall 7266.69 

Spring 10939.50 

Summer 10779.29 

Winter 13035.54 

Average seasonal demand  10505.25 

Annual demand 42021.02 

Load factor 0.68 
 

Table 5.1: Required energy demand capacity analysis for the area of Ericeira, Lisboa, Portugal 

Hour Hourly Energy Demand (Wh) 

0 4350.21 

1 3878.48 

2 3583.67 

3 3400.53 

4 3361.22 

5 3543.92 
6 4029.09 

7 4679.04 

8 5240.54 

9 5615.67 

10 5817.82 

11 5959.67 

12 5928.30 

13 5744.26 

14 5623.50 

15 5560.78 

16 5657.99 

17 6020.58 

18 6679.50 

19 7161.38 

20 6963.19 

21 6382.00 

22 5666.94 

23 4966.40 

Table 5.2: Hourly energy demand data 
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5.2.2 Methodology of Energy Demand Forecasting  

The methodology of energy demand forecasting for hybrid microgrid systems (HMG’s) 

employing Long Short-Term Memory (LSTM) machine learning model. The LSTM model 

comprises with several steps, each contributes to the development of a precise energy demand 

prediction system. The steps include relevant data collection and processing, according to 

machine learning model selection and architecture design. Once model architecture is selected, 

then the training process starts. Model evaluation and performance are constructed utilizing the 

metrics of MAE, RMSE and R², which ensure accurate prediction results and reliability.          

This methodology can be more understandable using the flowchart in figure 5.6. To visualize the 

representation of the process from the stating of data collection to model architecture, selection, 

and evaluation. The flowchart provides all the steps of the methodology, which ensures the entire 

required process for energy demand prediction. The flowchart is given below:  

       

Figure 5.6: Energy forecasting flow chart 

5.2.3 Energy Demand Forecasting Evaluation and Results 

The LSTM model for energy forecasting was developed and evaluated considering the important 

key performance metrics, such as 

o Mean Absolute Error (MAE): 0.44 kWh 

o Root Mean Squared Error (RMSE): 0.59 kWh 

o Coefficient of Determination (R²) Score: 0.99  

These results of the metrics indicate low mean absolute and root mean squared error and high 

coefficient of determination, which suggest that the model is perfectly fitted within actual and 

predicted energy demand dataset. The lower value of mean absolute error (MAE) refers to high 

precision and it suggests that the prediction model is very close to the actual values. A small root 
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mean squared error (RMSE) which means that the model is well fitted. It validates that the model 

has the capability to handle the data fluctuation effectively. For the coefficient of determination 

(R²) indicates 99% of variance of actual data. The R² value is very close to 1, which means that 

model is excellent, which capture almost all the patterns in dataset.        

A. Visualization of the Forecasting Results  

• Model Training and Validation Loss: To find out the best fit for LSTM model and 

enhance the evaluation metrics, it must be trained according to dataset. Figure 5.7 shows 

the model is well fitted at 33 epoch, where training and validation loss is minimum. On 

the other hand, more than 33 epoch the model will be overfitted (The code is written such 

a way, so that it stops the training when the training and validation loss is minimum), that 

increase the training and validation losses and minimizes the overall model performance.   

   

Figure 5.7: LSTM model training and validation loss 

• Performance Metrics Heatmap: The heatmap represents the quick comparison between 

different performance metrics and models, that shows which model and metrics is best 

fitted. The values and color gradient helps to recognize metrics performance.     
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Figure 5.8: Performance metrics heatmap for MAE, RMSE and R2 

• Coefficient of Determination (R²): The comparison among actual v/s forecasted energy 

demand for coefficient of determination (R²) metric, with the value of 0.99 (99%) 

demonstrate excellent energy demand forecasting.   

 

Figure 5.9: Actual vs prediction energy demand for R2 metrics 
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• Model Fitting: The figure 5.10 indicates the LSTM model is well fitted with the historical 

(hourly) energy demand dataset. The model is perfectly captured all the variable patterns 

over a long period.   

 

Figure 5.10: Model fitting for actual vs predicted pattern 

• Future Predictions: After completing the LSTM model training, testing and evaluation. It 

will be used for future energy demand prediction. So that, we can analyze how much 

energy is required in future for the project location.  According to figure 5.11, it shows 

future energy demand of the location. This valuable insight helps to plan and optimize 

hybrid microgrid system sizing, installation, maintenance, and minimize the project 

overall costs.   
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Figure 5.11: Energy demand forecasting of actual and future predictions 

5.2.4 Discussion of Energy Demand Forecasting                  

• Accuracy and Reliability: The energy demand forecasting model accuracy can be 

evaluated utilizing the comparison of actual energy consumption with predicted energy 

demand over the time. According to the prediction performance metrics, it is obvious that 

the long short-term memory (LSTM) model demonstrates high accuracy of prediction. 

Nevertheless, in extreme weather conditions can increase unexpected energy demand, 

which reduces accuracy of energy demand forecasting models. In this prediction model 

accuracy is very high, which enhances the reliability of energy demand forecasting for 

hybrid microgrid system.        

• Challenges and Improvement: Although the LSTM forecasting model offers high 

forecasting accuracy, some challenges remain, like handling abnormal weather events, 

and very short-term energy demand fluctuations. For future improvements can be 

included an advanced hybrid model, with incorporating multiple features that can handle 

extreme conditions and short-term fluctuations.        

5.3 RE Resource Forecasting Results and Discussion 

5.3.1 RE Resource Forecasting 

Renewable energy resource forecasting is essential for optimizing the hybrid microgrid system. 

Solar irradiance, temperature, and wind speed data have been analyzed to calculate optimal 

renewable energy generation at the location. To predict the optimal renewable energy resource, 
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the machine learning model was carried out by Long Short-Term memory (LSTM). The ML model 

was trained using 18 years of PVGIS [96] dataset with the features of time of day (hours), daily 

pattern, seasonal and yearly generation variations. PVGIS is a reliable and open-source data for 

European countries, that includes solar irradiance (GHI), ambient temperature and wind speed. 

LSTM model has the capability to learn long and short-term dependencies, which made it perfect 

choice for capturing extreme fluctuations and trends.    

 

Figure 5.12: 19 years of irradiance, temperature, and wind speed at the project location 
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Figure 5.13: Hourly average irradiance, temperature, sun height and wind speed distribution 

 

Figure 5.14: Seasonal patterns of irradiance, temperature, sun height and wind speed  
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• Average hourly patterns of solar irradiance 

The hourly average global horizontal solar irradiance (W/m2) represents a clear pattern of daily 

irradiance at the location. According to the analysis (Table 5.3), the sun rises at 6 o’clock in the 

morning. At morning and evening the sun irradiance is minimum. The peak solar irradiance 

occurs within 12 to 1 PM. According to the data the maximum solar irradiance recorded at 1 PM 

(755.23 W/m2). At morning solar irradiance is gradually increasing and after peak hour irradiance 

is gradually degreases. After 6 PM it is considered to be night. This daily solar irradiance pattern 

refers to be normal solar cycle.        

 

Hours Hourly Average Solar Irradiance (W/m2) 

0 0.00 
1 0.00 
2 0.00 
3 0.00 
4 0.00 
5 0.00 
6 10.61 
7 56.27 
8 188.20 
9 371.93 

10 536.58 
11 671.83 
12 743.28 
13 755.23 
14 695.30 
15 594.19 
16 431.04 
17 223.49 
18 72.19 
19 10.18 
20 0.00 
21 0.00 
22 0.00 
23 0.00 

 

Table 3.3: Daily solar irradiance patterns at the location 

• Average hourly patterns of ambient temperatures 

The hourly average ambient temperature (°C) refers to a pattern of daily temperature at the 

project location. According to the EDA analysis (Table 5.4), the lowest temperature observes at 
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morning hours (within 05-06 AM) and then gradually temperature increases as the sun rises. The 

peak ambient temperature occurs around 2 to 3 PM. According to analysis the maximum 

temperature recorded was at 2 PM (17.91). The morning temperature gradually increases and 

after peak hour the temperature gradually decreases in evening. The normal temperature pattern 

table given below:  

 

Hours Hourly Average Ambient Temperature (°C) 

0 14.56 
1 14.40 
2 14.26 
3 14.13 
4 14.01 
5 13.92 
6 13.85 
7 14.04 
8 14.54 
9 15.33 
10 16.18 
11 16.91 
12 17.45 
13 17.78 
14 17.91 
15 17.85 
16 17.60 
17 17.17 
18 16.59 
19 15.98 
20 15.46 
21 15.14 
22 14.91 
23 14.72 

 

Table 5.4: Daily ambient temperature patterns at the location 

• Average hourly patterns of wind speed 

The daily (hourly) average variation of wind speed (m/s) exhibits a pattern led by atmospheric 

dynamics and sun heating at the project location. During the morning between 6 to 7 AM, wind 

speed is lowest for minimal turbulence. As the sun rises, solar intensity also increases surface 

heating and promotes atmospheric mixing. Due to mixing wind speed also increases steadily. 

The peak wind speed is at approximately around 3 to 5 PM. At night when temperature drops, 
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atmospheric stability also enhances and wind speed drops gradually. Wind speed behavior 

understanding is crucial to optimize the wind energy generation. The normal temperature pattern 

table given below:  

 

Hours Hourly Average Wind Speed (m/s) 

0 6.17 

1 6.10 

2 6.05 

3 6.04 

4 6.02 

5 6.01 

6 5.99 

7 5.94 

8 6.02 

9 6.08 

10 6.17 

11 6.25 

12 6.37 

13 6.56 

14 6.79 

15 6.97 

16 7.08 

17 7.04 

18 6.90 

19 6.74 

20 6.60 

21 6.49 

22 6.38 

23 6.28 
 

Table 5.5: Daily wind speed patterns at the location 

• Correlation Between Irradiance, Temperature, and Wind Speed 

Solar irradiance, ambient temperature, and wind speed demonstrate a dynamic inter relationship 

due to metrological process. Solar irradiance pattern reaches peak at solar noon (around 12-1 PM). 

This solar irradiance leads to increases the ambient temperature through thermal inertia of 

environment. Whereas, wind speed is influenced by the temperature, as the land surface warms, 

conduction current can be strong and increase the wind speed at noon. Excessive land surface 

heating can sometime be a reason to reduce wind speed. The correlation of solar irradiance, 

temperature and wind speed exhibit clear understanding and variations.   
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Figure 5.15: Correlation heatmap of irradiance, temperature, and wind speed 

5.3.2 Methodology of Renewable Energy Resources Forecasting  

The renewable energy resources forecasting refers to the systematic methodology, which begins 

with required data acquisition and preprocessing. Reliable long-term historical data sources are 

essential for accurate energy generation prediction. The process involves managing missing or 

error values, eliminating inconsistencies, and normalizing the dataset for consistency. Then 

feature engineering is performed to extract irradiance, temperature, and wind speed patterns, 

that include time series variables such as hourly, daily, monthly and seasonal trends.  

Once the dataset is ready, LSTM machine learning is considered for solar irradiance, ambient 

temperature, and wind speed forecasting. The prediction mode is trained using the long-term 

historical data. Hyperparameters are used to optimize and enhance forecasting accuracy. During 

this process, cross-validation models are employed to stop overfitting. To test and validate the 

model performance, several major metrics are considered like, MAE, RMSE, and R2 are utilized.  

After successful training, the LSTM model is deployed for future renewable resources prediction. 

The objective of renewable resource forecasting is to calculate accurate renewable energy 

production, optimizing energy storage, demand management, and minimizing the costs. 

Additionally, renewable energy resource forecasting plays a vital role for grid stability, renewable 
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energy integration, reliability, and grid resilience. The flowchart of renewable energy resource 

forecasting is given below:  

 

 

Figure 5.16 Solar irradiance forecasting flow chart 

5.3.3 Renewable Energy Resource Evaluation and Forecasting Results 

The LSTM model for renewable energy resource forecasting was developed and evaluated 

utilizing the important key performance metrics of irradiance, temperature and wind speed. 

Metrics 

Parameters 

Irradiance (W/m²) 
Temperature 

(°C) 

Wind Speed 

(m/s) 

MAE 0.23 0.18 0.78 

RMSE 0.49 0.26 1.14 

R2 0.94 0.99 0.97 
 

Table 5.6: Model performance metrics for renewable energy resource forecasting 

These results of the metrics refer to low mean absolute error, and root mean squared error and 

high coefficient of determination. The result suggests that the model is perfectly fitted among 

actual and predicted renewable energy resource dataset. The lower values of mean absolute error 

(MAE) illustrate high precision. They suggest that the prediction model is very close to the actual 

values. The small root mean squared error (RMSE) means that the model is well fitted. It validates 

that the model has the capability to handle the resource data fluctuation effectively. For the 

coefficient of determination (R²) indicates 94%, 99% and 97% respectively of variance of actual 

data (Irradiance, temperature, wind speed). The R² value is close to 1, that mean model is 

excellent, which capture almost all the patterns in dataset.        
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A. Visualization of the Renewable Energy Forecasting Results  

• Model Training and Validation Loss: To best fit the model and evaluate LSTM, it needs 

to be trained according to the historical dataset. According to the figure 5.17, the model is 

well trained, and after 48 epoch training and validation loss is minimum (The code is 

written such a way, so that it stops the training when the training and validation loss is 

minimum). More than 48 epoch the model will be overfitted, which increases the training 

and validation losses and reduces the performance.     

   

Figure 5.17: Model training and validation loss of renewable energy resources 

• Performance Metrics Heatmap: Heatmap figure illustrates quick comparison between 

different performance metrics and parameters. It shows which metrics and parameters 

are the best fitting to the model. The values and color gradient helps to recognize the 

model performance.        

 

Figure 5.18: Renewable energy resource performance metrics heatmap  
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• Coefficient of Determination (R²): Machine learning model accuracy comparison among 

actual and forecasted renewable energy resource for coefficient of determination (R²) 

metric, with the value of solar irradiance 0.94 (94.0%), temperature 0.99 (99.0%), and wind 

speed 0.97 (97.0%) demonstrate excellent renewable energy resource forecasting. Due to 

high fluctuation of solar irradiance, its accuracy is less than the other parameters.  

 

Figure 5.19: Actual vs predicted renewable energy for R2 metrics 
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• Model Fitting: The LSTM model is well fitted with the historical (hourly) renewable 

energy resource dataset. It shows the model is perfectly capturing all the parameters 

patterns over a long period of time.   

 

Figure 5.20: Renewable energy resource model fitting for actual vs predicted pattern 

• Future Predictions: After completing the LSTM model training, testing and evaluation, it 

needs to be supplied for future renewable energy resource prediction. It helps us to 

analyze how much renewable energy can be produced in future, from the specific location.  
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According to figure 2.21, it shows future irradiance, temperature and wind speed 

predictions of the location. This valuable insight helps to planning and optimization of 

hybrid microgrid system sizing, installation, and maintenance.   

 

Figure 5.21: Renewable energy resource forecasting of actual and future predictions 
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5.3.4 Discussion of Renewable Energy Forecasting                  

The renewable energy resource forecasting provides valuable insights into trends and highlights 

prediction model strengths and limitations.   

• Accuracy and Reliability: The renewable energy resource forecasting model accuracy was 

evaluated compared with the actual historical long term (19 years) renewable energy 

resources with predicted renewable energy resources. The forecasting model (LSTM) 

performance metrics indicate how effective the model is to capture daily and seasonal 

fluctuations of solar irradiance, temperature and wind speed. In extreme weather 

conditions there can be an increase high in fluctuations of renewable energy resources, 

that can reduce accuracy of renewable energy resource forecasting. The prediction model 

demonstrates very high accuracy, which enhances the reliability of renewable energy 

resource forecasting for hybrid microgrid systems.        

• Challenges and Improvement: Although the LSTM forecasting model offers high 

accuracy, still there are some challenges remaining, such as handling abnormal weather 

events, very short-term irradiance, temperature, and wind speed variations. For future 

improvements, can be included advanced hybrid models, with incorporating multiple 

features that can handle extreme conditions and short-term fluctuations. Additionally, 

integrating real time IoT based system and adaptive machine learning technique can 

enhance model performance and ability to handle very short-term fluctuations.            

5.4 MPPT Algorithms Comparison for Optimal Energy Generation 

Maximum Power Point Tracking (MPPT) algorithm is crucial to extract the maximum power from 

the solar PV modules. In this part the MATLAB/Simulink model would be presented and analyze 

the simulation results. This analysis makes the comparison between four (4) different MPPT 

techniques. Those techniques are evaluated using their effectiveness with the metrics of tracking 

efficiency, power oscillation, convergence speed, and extreme environmental conditions 

response.  

5.4.1 Overview of MATLAB/Simulink Setup:  

To observe the behavior of different MPPT techniques, the MATLAB/Simulink model was 

developed. The simulation test setup incorporates solar PV arrays with varying solar irradiance, 

and temperature. The specifications of the test setup are given below.  

The specifications of the solar PV panel: 

Electrical Characteristics Capacity Values 

Maximum power (Pmax) 213.15Wp 

Open circuit voltage (Voc) 36.3V 
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Short circuit current (Isc) 7.84A 

Maximum power voltage (Vmp) 29.0V 

Maximum power current (Imp) 7.35A 

Module efficiency 17.3% 

Maximum system voltage 1500V DC (IEC) 

Maximum series fuse rating  15A 

Temperature Coefficient of (Isc) +0.057%/C 

Temperature Coefficient of (Voc) -0.286%/C 

Temperature Coefficient of (Pmax) -0.370%/C 

Panel Dimension (H/W/D) 1956x992x45 mm 

Table 5.7: Datasheet of 213.15Wp solar PV panel 

 

 

Figure 5.22: IV and PV curve of solar photovoltaic panel 

Using the above-mentioned solar PV panels, the MATLAB/Simulink model was developed for 

MPPT techniques assessment.   

• The Maximum Power Point Tracking (MPPT) algorithms are tested: 

1. Perturb & Observe (P&O) 

2. Predictive Control Method (PCM) 
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3. Fuzzy Logic 

4. Artificial Neural Networks (ANN) 

5.4.2 MPPT Techniques Performance Assessment:  

To find out the performance of different MPPT techniques through measuring the solar PV 

generated voltage and current [99-100]. The mathematical equation of the MPPT model 

performance analyzation is given below.  

𝜂𝑚𝑝𝑝𝑡 = 1 −
|𝑃𝑝𝑣 − 𝑃𝑖𝑑𝑒𝑎𝑙,𝑠𝑡𝑐|

𝑃𝑖𝑑𝑒𝑎𝑙,𝑠𝑡𝑐
          (5.1)      

 

This model was configured in MATLAB/Simulink environment, considering required standard 

for solar PV panels with variable environmental (irradiance, temperature) conditions. The 

Similink model block is given below for performance measurement.      

 

 
 

Figure 5.23: MATLAB Simulink diagram to evaluate MPPT efficiency 

The efficiency of MPPT techniques for the four different types of algorithms are shown in the 

figures of 5.25, 5.28, 5.30 and 5.32 respectively.  
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Figure 5.24: Output efficiency curve of MPPT algorithm 

The MPPT efficiency figure shows the obtained solar power is very close to ideal solar power. 

Mean efficiency is close to the unity, when system is steady state. The variable solar irradiance 

was utilized to evaluate MPPT performance. According to output curve the efficiency is 99%, 

over 1.5 seconds.      

5.4.3 Performance Metrics                  

To evaluate the performance of each MPPT algorithms, the following metrics are analyzed.  

• Tracking Efficiency (η): To measure the efficiency of the MPPT algorithm, how it 

effectively tracks solar PV panels maximum power point (MPP).  

• Response Time (Tr): After sudden change of solar irradiance and temperature, it will take 

time to reach the maximum power point.  

• Power Oscillations (ΔP): Minimum power oscillation refers to smooth operation and 

enhances the ability of the system.  

• Convergence Speed: How fast MPPT algorithm convergence to maximum power point 

(MPP) after disturbance.  

• Computational Complexity: Processing time requirement and quality of hardware.  

Simulation Setup (Experimental):  

• MATLAB/Simulink was developed for a 1000 Wp (1.0 kWp) solar photovoltaic system.  

• Robust DC-DC boost converters are used as a controlled system for all MPPT techniques.   

• Test conditions:  
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Two different conditions are considered to simulate the MPPT algorithms. The first uses a 24-

hours continuous dataset (Average irradiance & temperature). The second uses discrete values to 

analyze the rapidly changing conditions.  

o Solar irradiance: 200 W/m² → 400 W/m² → 600 W/m² → 800 W/m² → 1000 W/m² 

→ 800 W/m² → 600 W/m² → 400 W/m² → 200 W/m² 

o Ambient temperature: 20°C → 25°C → 30°C → 35°C → 40°C → 35°C → 30°C → 

25°C → 20°C         

5.4.4 Perturb & Observe (P&O) MPPT Simulation Setup:   

The P&O algorithm is most widely used MPPT technique, because of its simplicity and easy to 

implement in hardware system. This is also one of the cheapest techniques, although it has 

oscillation problems near to maximum power point (MPP) that increase power losses. In the 

simulation, results observe that the P&O technique has a slower response time for irradiance and 

temperature changes. However, it has several drawbacks but still, it is preferable choice for low 

cost and simple computational implementation. The MATLAB/Simulink model is given below 

with the boost converter.          

MATLAB/Simulink Model (P&O):  

The MATLAB/Simulink model was developed by utilizing extreme environmental conditions. 

The model included with efficiency measurement blocks to evaluate the performance and power 

output.       

          

 
 

Figure 5.25: MATLAB/Simulink model for P&O MPPT algorithm 
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Results of P&O Technique (Output Curve):  

In the output curve of Perturb and Observe MPPT technique usually exhibits some oscillations 

near to MPP of solar PV panels. In this operation, algorithm perturbs the duty cycle and observe 

the power output by tracking MPP.  

Figure 2.26 shows the power output according to actual irradiance and temperature at the project 

location and another one is assumption (parameter mentioned above). According to the figures 

there are some oscillations, when there are frequent changes of irradiance and temperature.  

However, in stable conditions the model is very closely following the actual power that generated 

by the solar PV panels, which ensure effective P&O MPPT performance.        

   

Figure 5.26: Power output curve of P&O MPPT algorithm 

Under stable conditions the overall performance of P&O algorithm is near to 97.8%. The figure is 

given below.     

 

Figure 5.27: P&O MPPT algorithm efficiency curve 
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5.4.5 Predictive Control Method (PCM) MPPT Simulation Setup:   

In this simulation setup, the predictive control method (PCM) MPPT technique was employed to 

enhance the tracking efficiency of solar generated power. To model included with DC-DC robust 

boost converter to regulate PV output voltage and optimal power extraction. Unlike traditional 

MPPT technique PCM has several advantages by leveraging system dynamics, fast convergence, 

and minimum MPP fluctuations. This MATLAB/Simulink model was designed to enhance 

response time, minimize power losses, and achieve a stable power output. This technique 

provides more stable output than the P&O technique for real time solar PV energy optimization. 

The MATLAB/Simulink model is given below with the boost converter.          

MATLAB/Simulink Model (PCM Algorithm):  

The MATLAB/Simulink model was developed for ideal and extreme environmental conditions. 

The model was incorporating with efficiency measurement blocks to evaluate the performance 

and power output.       

          

 
 

Figure 5.28: MATLAB/Simulink model for PCM MPPT algorithm 

Results of PCM Technique (Output Curve):  

The Predictive Control Method (PCM) MPPT automatically adjusts the duty cycle requirements 

by predicting the response of solar irradiance and temperature. PCM is not like conventional 

technique, it is not relied on continuous perturbation. It forecasts the optimal system operating 

point using the previous measurements.            
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Figure 5.29 illustrates the power output curve under ideal power generated by solar PV panels 

and PCM MPPT generated power at the project location and the second figure is assumption 

parameters (mentioned above). The results show that the PCM MPPT technique effectively tracks 

the MPP with lower oscillations, under extreme environmental conditions (irradiance, 

temperature). However, during the frequent changes of irradiance and temperature there are 

minor transient changes which occur as the model algorithm recalibrates duty cycle which 

maintain optimal PV power extraction. Despite this minor oscillation, PCM has accurate 

maximum power point tracking, strong adaptability. The PCM MPPT algorithm performance is 

0.982 (98.2%), which ensures robust MPPT model for solar PV array.         

   

Figure 5.29: Power output curve of PCM MPPT algorithm 

5.4.6 Fuzzy Logic MPPT Simulation Setup:   

The Fuzzy Logic MPPT model implemented with a fuzzy logic controller block which tracks the 

solar PV panels maximum power point (MPP) by adjusting duty cycle of DC-to-DC boost 

converter. Fuzzy logic MPPT does not depend on traditional mathematical models instead it 

depends on expert define rules that can make real time decisions by input variables, such as 

changing voltage and power. The model setup consists of a solar PV array, DC-DC boost 

converter, a fuzzy logic controller, a pulse with modulation (PWM) generator, and peripheral 

model blocks. This fuzzy logic approach ensures accurate and rapid MPPT tracking, especially 

extreme environmental conditions.         

MATLAB/Simulink Model (Fuzzy Logic Algorithm): This MATLAB/Simulink model was 

developed for both ideal and extreme environmental conditions. Fuzzy logic MPPT model 

implemented with efficiency measurement blocks that evaluate the model performance and 

power output.       
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Figure 5.30: MATLAB/Simulink model for Fuzzy Logic MPPT algorithm 

Results of Fuzzy Logic Technique (Output Curve):  

The fuzzy logic MPPT technique intelligently optimizes the duty cycle by adapting 

environmental conditions. Fuzzy logic relies on rule-based decision system, which estimates and 

maintains the best efficient operating point for solar PV array. This fuzzy logic technique 

increases adaptability and ensures quick response according to dynamic changes of weather.            

   

Figure 5.31: Power output curve of Fuzzy Logic MPPT algorithm 
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The output curve of the fuzzy logic MPPT model demonstrates stable and smooth tracking of 

solar PV arrays MPP with minimal tracking oscillations. Unlike traditional methods, it 

dynamically adjusts system duty cycle by linguistic rules. The figure 5.31 represents the 

comparison among theorical (ideal) power output form solar PV array and fuzzy logic MPPT 

algorithm power output (consider real data from the project location). The results of fuzzy logic 

MPPT technique indicates effective tracking of maximum power point and minimum oscillations. 

The figure shows even in actual solar PV generated power has oscillation in peak time, but fuzzy 

logic MPPT provides minimal oscillation for both conditions (ideal & real). Adaptation with the 

changes is very high for this MPPT technique. Although there are small transient variations 

during the fast shifting of solar irradiance and temperature, this controller adjusts very quickly 

and maintains optimal solar power output extraction. The fuzzy logic MPPT algorithm obtains 

high accuracy with the performance of 0.989 (98.9%), which makes it reliable and effective MPPT 

model for solar PV system.         

5.4.7 Artificial Neural Network (ANN) MPPT Simulation Setup:   

The Artificial Neural Network (ANN) based MPPT model was implemented for efficient tracking 

of solar PV array maximum power point (MPP). ANN technique has the capability to learn and 

adapt to changing environmental conditions. This ANN model is not like a conventional 

predefined technique; it is leveraging machine learning principles. It predicts optimal duty cycle 

form past and present input parameters, like solar voltage, current, irradiance, and temperature.       

The ANN MPPT MATLAB/Simulink model was developed for both ideal and extreme weather 

conditions to evaluate model performance with the real dataset. The ANN model involves several 

layers of neurons, that are trained by historical data with complex recognize patterns. The model 

also includes efficiency measurement blocks for power extraction assessment of efficiency and 

accuracy. The model setup consists of a solar PV array, DC-DC boost converter, an ANN MPPT 

controller, a pulse with modulation (PWM) generator, and peripheral model blocks. This 

intelligent MPPT controller allows rapid response for solar irradiance and temperature, 

minimizes overall power losses and provides seamless stability of solar PV power generation.           

MATLAB/Simulink Model (ANN Logic Algorithm):  

The MATLAB/Simulink model is given below with all necessary Simulink books.  
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Figure 5.32: MATLAB/Simulink model for ANN MPPT algorithm 

Results of ANN Technique (Output Curve):  

The Artificial Neural Network (ANN) MPPT technique represents remarkable effectiveness of 

tracking the solar PV array maximum power point (MPP). In the real-world scenario, there are 

lots of fluctuations of solar irradiance and temperature, where ANN MPPT provides precise and 

reliable MPPT tracking with nominal oscillation. Unlike traditional method, the ANN MPPT 

technique proactively adapts irradiance and temperature variations and makes sure the solar PV 

arrays would be operated at optimal power point.  

In this simulation, artificial neural network (ANN) MPPT algorithm was trained, tested, and 

validated using the real dataset that was forecasted before. The model was trained with the 

historical environmental dataset. To observe the model training accuracy (R2), the Figure 5.33 is 

given below. The model shows training accuracy (R2) value of 0.9994 (99.94%), and validation 

accuracy is 0.997 (99.7%) in the figure 5.33, that ensure strong fit among the actual data and model 

predicted data.       
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Figure 5.33: ANN MPPT algorithm training and validation  

The simulation results show that the artificial neural network (ANN) MPPT algorithm precisely 

follows the maximum power point over a diverse spectrum of solar irradiance and temperature. 

It represents quick response to dynamic variations in environmental factors and maintains solar 

PV panels optimal operating point throughout the testing period. The output curve of the ANN 

model very closely aligns with actual generated power from solar PV panels, which effectively 

maximize the power output production.     

In comparison among conventional MPPT algorithms, the ANN-based model shows superior 

performance, even in the case of rapid environmentally changing conditions. ANN MPPT ensures 

robustness for real world conditions, where solar PV generated power constantly changes. There 

are two different graphs in the figure 5.34, one is for ideal, and another is for real data (project 

site data). In ideal case, although there are some oscillations in actual solar generated power, the 

ANN MPPT generated solar PV power is very stable when no fluctuation occurs and its precisely 

follows the ideal power. Whereas, using the forecasted data (irradiance and temperature), solar 

PV generated power and ANN MPPT generated power is very closely aligned. Nevertheless, the 

artificial neural network (ANN) maximum power point tracking (MPPT) model provides the 

most reliable, fast and accurate MPPT algorithm compared to other MPPT algorithms. The 

simulation output curve is given below.             
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Figure 5.34: Power output curve of Fuzzy Logic MPPT algorithm 

5.4.8 MPPT Model Performance Metrics Comparison 

To evaluate the overall performance of each maximum power point tracking (MPPT) algorithms, 

the following metrics are considered. The performance metrics table is given below:     

MPPT 

Algorithm 

Tracking 

Efficiency (%) 

Convergence 

Time (s) 

Power 

Oscillations (W) 

Computational 

Complexity 

P&O 97.8% 0.45 ±5 W Low 

PCM 98.2% 0.18 ±2 W Medium 

Fuzzy Logic 98.9% 0.12 ±1 W High 

ANN 99.7% 0.10 ±0.5 W Very High 

Table 5.8: MPPT algorithm performance metrics 

There are four most important metrics there. The steady state tracking efficiency indicates which 

one is the best among the four different MPPT algorithms. Where artificial neural network (ANN) 

MPPT model achieves the highest tracking efficiency (99.6%). One of the crucial factors of MPPT 

model is convergence time. It indicates how fast MPPT algorithm reaches to the solar PV panels 

maximum power point (MPP) with the STC and extreme environmental conditions. As shown in 

table 5.9, ANN MPPT algorithm achieves the fastest convergence time of 0.10 seconds, whether 

P&O MPPT algorithm is the lowest convergence time of 0.45 seconds. Also, there were power 

losses due to oscillation. ANN MPPT demonstrates the lowest power losses and P&O MPPT 

algorithm gains the highest power losses.  
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5.4.9 Discussion  

The results of four different maximum power point tracking (MPPT) algorithms indicate each of 

the models have some benefits and drawbacks. While conventional MPPT algorithms such as 

P&O are less complex and easy to implement in hardware and cost efficient. But there are some 

limitations like low efficiency, slow convergence, high power losses, and high oscillation. 

Predictive control method (PCM) and Fuzzy logic MPPT controller provide better performance 

compared to P&O MPPT, but they have higher requirement for hardware (computational) to 

process the signals. Artificial neural network (ANN) MPPT algorithm offers the highest 

performance and quick response time, but it also requires high computational hardware that 

increases the cost. Moreover, among the four different MPPT algorithms, ANN MPPT model is 

the best one to choice to extract the maximum power from the solar PV panels [102-104].  

Summary of Main Findings 

Performance Criteria Best MPPT Algorithm 

Convergence Speed ANN 

Efficiency ANN & Fuzzy Logic 

Response to Changes  ANN 

Computational Complexity P&O 

Table 5.9: Performance evaluation of MPPT algorithms 

The most suitable model depends on the application requirements. The recommended models 

are: 

• Standalone Solar PV Systems: P&O or PCM MPPT models are suitable, due to less 

complexity and cost. 

• Grid Connected Solar PV Systems: ANN or Fuzzy logic MPPT models are suitable 

for high accuracy and stable power. 

5.5 Smart Hybrid Microgrid System Modeling in MATLAB Simulink 

5.5.1 Model Description 

Overview of the MATLAB Simulink Model 

The MATLAB/Simulink model was developed for this research indicate a Smart Hybrid 

Microgrid System (SHMs) incorporating solar and wind energy resources with Battery energy 

storage system (BESS). The architecture of this consists of three main components, such as solar 

photovoltaic (PV) arrays, wind turbine, and BESS. The model is structured according to load 

energy demand per day (24 hours). It represents the dynamic response among those components 

and the grid, that ensures SHMs can manage energy generation, storage and distribution 
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effectively. The typical parameters are considered (irradiance, ambient temperature, wind speed, 

load demand) to simulate the model. The model is also properly connected with a control system, 

so that it can manage generation, storage and distribution.  

SHMs Components: 

1. Solar PV Panels: The standard PV panels block is used in the MATLAB/Simulink 

environment, that accurately captures electrical behavior under diverse environmental 

conditions. The parameters are given in table 5.10, that perfectly represents the ratio of 

electrical output and incident of solar radiation. The temperature coefficient effect is also 

considered, because it has effect on peak power, open circuit voltage and current.  

2. Wind Turbine: The mathematical model was developed to simulate wind power to 

electrical power. The model parameters are included with rated power, that is the 

maximum power (kW) of a wind turbine can generate under optimal wind conditions. 

The model is incorporated with power curves to make the relationship among wind speed 

and power generation, that allows accurate simulation and observe the performance 

under diverse wind conditions.  

3. Battery Energy Storage: The battery energy storage system model was developed in 

MATLAB/Simulink to store the energy and deliver when additional power is needed to 

balance supply and demand within SHMs. BESS is also essential for grid integration to 

maintain grid stability. The BESS is model was included with control system so that it can 

maintain state of charge (SoC) limits, and depth of discharge (DoD) limits to prevent over 

charging and discharging.        

MATLAB Simulink model is a powerful tool to simulate SHMs incorporating all those 

components. It allows the analysis of the model performance and dynamic assessments which 

enable researchers and practitioners to optimize SHMs design and analysis for various 

applications.  

5.5.2 Simulation Setup Sizing Optimization: 

To design optimized Smart hybrid microgrid system (SHMs) that cover 24 hours energy demand 

of the proposed location (Ericeira, Lisbon), the proper optimal component sizing is required. To 

determine the capacity of solar PV panels, wind turbines, and energy storage system, calculations 

are given below.  

Daily Energy Demand: According to the previous assessment, the proposed location daily 

energy demand is: 125.82 kWh, where hourly average demand is: 5.24 kWh, hourly peak demand 

is: 6.71 kWh and average monthly peak demand is: 155.72 kWh. The details are provided in Table 

5.1.  
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1. Solar PV Panels Capacity Calculation: The solar PV panel’s total capacity is calculated by the 

panel specification datasheet (Table 5.7). Also, the hourly average solar irradiance, and 

temperature data are considered to calculate actual power output.  

PV Power Output Calculation: 

i. The mathematical expression of solar cell temperature is:     

   𝑇𝑐𝑒𝑙𝑙 = 𝑇𝑎𝑚𝑏 + 
𝐺 .  (𝑁𝑂𝐶𝑇−20)

800
           (5.2) 

ii. Temperature-Corrected for DC Power 

  𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 𝑃𝑝𝑎𝑛𝑒𝑙 × (1 + (𝛼𝑝 × (𝑇𝑐𝑒𝑙𝑙 − 𝑇𝑆𝑇𝐶))                   (5.3) 

Where, 

  𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 𝑃𝑜𝑤𝑒𝑟 𝑜𝑢𝑡𝑝𝑢𝑡 𝑤𝑖𝑡ℎ 𝑎𝑐𝑡𝑢𝑎𝑙 𝑐𝑒𝑙𝑙 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 [𝑊] 

  𝑃𝑝𝑎𝑛𝑒𝑙 = 𝑃𝑉 𝑟𝑎𝑡𝑒𝑑 𝑝𝑜𝑤𝑒𝑟 𝑎𝑡 𝑆𝑇𝐶 [𝑊] 

𝛼𝑝 = 𝑃𝑜𝑤𝑒𝑟 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 [°C] 

  𝑇𝑐𝑒𝑙𝑙 = 𝑃𝑉 𝐶𝑒𝑙𝑙 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 [°C] 

  𝑇𝑆𝑇𝐶 = 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑎𝑡 𝑆𝑇𝐶 [°C]  

 

iii. Solar PV Energy Calculation 

  𝐸ℎ𝑜𝑢𝑟 = (
𝑃𝑝𝑎𝑛𝑒𝑙

1000
) × 𝜂𝑝𝑎𝑛𝑒𝑙 × 𝐴𝑝𝑎𝑛𝑒𝑙 × 𝐺                     (5.4) 

Where, 

  𝐸ℎ𝑜𝑢𝑟 = 𝐸𝑛𝑒𝑟𝑔𝑦 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑏𝑦 ℎ𝑜𝑢𝑟𝑠 [𝑊ℎ] 

  𝜂𝑝𝑎𝑛𝑒𝑙 = 𝑃𝑉 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 [𝑊] 

𝛼𝑝 = 𝑃𝑜𝑤𝑒𝑟 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 [°C] 

  𝐴𝑝𝑎𝑛𝑒𝑙 = 𝑃𝑉 𝑎𝑟𝑒𝑎 [m2] 

  G = Solar Irradiance [W/m2] 

iv. Total Daily Energy production: 
 

𝐸𝑡𝑜𝑡𝑎𝑙 = ∑ 𝐸ℎ𝑜𝑢𝑟(ℎ)
23
ℎ=0                        (5.5) 

 

𝐸𝑡𝑜𝑡𝑎𝑙 (𝑘𝑊ℎ) =
𝐸𝑡𝑜𝑡𝑎𝑙

1000
                       (5.6) 

 

To calculate accurate solar PV power, it is essential to consider all the meteorological (real) data, 

that can affect power production. This approach ensures actual power production from the 

proposed location. The table is given below to observe per day energy production.    
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Hour Irradiance (W/m²) Ambient Temp (°C) Power Generation (W) 

0 0.00 14.56 0.00 

1 0.00 14.40 0.00 

2 0.00 14.26 0.00 

3 0.00 14.13 0.00 

4 0.00 14.02 0.00 

5 0.00 13.92 0.00 

6 10.61 13.85 2.35 

7 56.27 14.04 12.48 

8 188.20 14.54 41.67 

9 371.93 15.33 82.11 

10 536.58 16.18 118.10 

11 671.83 16.91 147.49 

12 743.28 17.45 162.86 

13 755.23 17.78 165.28 

14 695.30 17.91 152.09 

15 594.19 17.85 130.00 

16 431.04 17.60 94.39 

17 223.49 17.17 49.02 

18 72.19 16.59 15.87 

19 10.18 15.98 2.24 

20 0.00 15.46 0.00 

21 0.00 15.14 0.00 

22 0.00 14.91 0.00 

23 0.00 14.72 0.00 

Table 5.10: Per day solar power generation from one PV panel (213.15 Wp) 

Total daily PV generated energy = 1175.95 Wh = 1.175 kWh.  

So, using 213.15 Wp PV, it will generate 1.175 kWh of energy per day.   

 

• Total number of PV panels needed = 
𝐷𝑒𝑎𝑖𝑙𝑦 𝐸𝑛𝑒𝑟𝑔𝑦 𝐷𝑒𝑚𝑎𝑛𝑑

𝐸𝑛𝑒𝑟𝑔𝑦 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑝𝑒𝑟 𝑃𝑎𝑛𝑒𝑙
 

 

                     = 
125.82 𝑘𝑊ℎ

1.175 𝑘𝑊ℎ
 = 107.08 = 108 𝑝𝑐𝑠 𝑜𝑓 𝑃𝑉 

 

• Total PV Capacity = 108 x 0.21315 kW = 23.02 kWp  
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Figure 5.35: Hourly solar PV power generation 

2. Wind Turbine Capacity Calculation: The calculation of the precise power from wind turbine 

depends on the hourly wind speed data. According to the hourly wind speed data the wind 

power generation function is divided into four different ranges, so that it can cover whole range 

of wind speed (0 m/s to 25 m/s). To calculate the wind turbine power Table 5.11 dataset are used.  

Wind Turbine Power Calculation: 

a) The mathematical expression of wind turbine power output is:     

 𝑃(𝑣) =  

{
 
 

 
 

0                                                   𝑖𝑓 𝑣 < 3 𝑚/𝑠

𝑃𝑟𝑎𝑡𝑒𝑑  .  (
𝑣 − 𝑣𝑖𝑛

𝑣𝑟𝑎𝑡𝑒𝑑− 𝑣𝑖𝑛
)
3
             𝑖𝑓 3 ≤ 𝑣 ≤ 12 𝑚/𝑠

𝑃𝑟𝑎𝑡𝑒𝑑                                        𝑖𝑓 12 ≤ 𝑣 ≤ 25 𝑚/𝑠
0                                              𝑖𝑓 𝑣 > 25 𝑚/𝑠

       (5.7) 

         Where, 

  𝑃𝑟𝑎𝑡𝑒𝑑 = 𝑊𝑖𝑛𝑑 𝑡𝑢𝑟𝑏𝑖𝑛𝑒 𝑟𝑎𝑡𝑒𝑑 𝑝𝑜𝑤𝑒𝑟 (7.5 𝑘𝑊) 

  𝑣𝑖𝑛 = 𝐶𝑢𝑡 𝑖𝑛 𝑤𝑖𝑛𝑑 𝑠𝑝𝑒𝑒𝑑 (3 𝑚/𝑠) 

𝑣𝑟𝑎𝑡𝑒𝑑 = 𝑅𝑎𝑡𝑒𝑑 𝑤𝑖𝑛𝑑 𝑠𝑝𝑒𝑒𝑑 (12 𝑚/𝑠)] 

 

b) Wind turbine hourly energy generation:     

𝐸ℎ𝑜𝑢𝑟 = 𝑃ℎ𝑜𝑢𝑟  × 1 ℎ𝑜𝑢𝑟           (5.8) 

         Where, 
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  𝑃ℎ𝑜𝑢𝑟 = 𝐸𝑎𝑐ℎ ℎ𝑜𝑢𝑟 𝑝𝑜𝑤𝑒𝑟 𝑜𝑢𝑡𝑝𝑢𝑡 

 

C) Total wind generation by 24 hours:     

𝐸𝑡𝑜𝑡𝑎𝑙 = ∑ 𝐸ℎ𝑜𝑢𝑟(𝑖)
23
ℎ=0            (5.9) 

         Where, 

  𝐸ℎ𝑜𝑢𝑟(𝑖) = 𝐸𝑛𝑒𝑟𝑔𝑦 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑏𝑦 ℎ𝑜𝑢𝑟𝑠 𝑖 − 𝑡ℎ 

   

Wind Turbine Specifications: 

o Rated Power (Prated): 7.5 kW 

o Cut-in Speed (vin): 3 m/s 

o Rated Speed (vrated): 12 m/s 

o Cut-out Speed (vout): 25 m/s 

Using 24-hours of wind speed data and precise wind power calculation formula, the following 

power table 5.11 is prepared. It provides an hourly overview of the wind power generation.  

Hour Wind Speed (m/s) Power (W) Energy (Wh) 

0 6.17 327.73 0.33 

1 6.10 306.49 0.31 

2 6.05 291.90 0.29 

3 6.04 289.04 0.29 

4 6.02 283.37 0.28 

5 6.01 280.56 0.28 

6 5.99 275.01 0.28 

7 5.94 261.44 0.26 

8 6.02 283.37 0.28 

9 6.08 300.60 0.30 

10 6.17 327.73 0.33 

11 6.25 353.17 0.35 

12 6.37 393.75 0.39 

13 6.56 464.18 0.46 

14 6.79 560.08 0.56 

15 6.97 643.73 0.64 

16 7.08 698.74 0.70 

17 7.04 678.39 0.68 

18 6.90 610.28 0.61 

19 6.74 538.21 0.54 

20 6.60 480.00 0.48 

21 6.49 437.33 0.44 
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22 6.38 397.27 0.40 

23 6.28 363.04 0.36 

Table 5.11: Per day wind power generation from one turbine (7.5 KW) 

Total daily generated wind energy = 9845.40 Wh = 9.85 kWh.  

So, using 7.5 kW wind turbine, it will generate 9.85 kWh of energy per day.   

 

• Total number of wind turbine needed = 
𝐷𝑒𝑎𝑖𝑙𝑦 𝐸𝑛𝑒𝑟𝑔𝑦 𝐷𝑒𝑚𝑎𝑛𝑑

𝐸𝑛𝑒𝑟𝑔𝑦 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑝𝑒𝑟 𝑤𝑖𝑛𝑑 𝑡𝑢𝑟𝑏𝑖𝑛𝑒
 

 

                     = 
125.82 𝑘𝑊ℎ

9.85 𝑘𝑊ℎ
 = 12.77 = 13 𝑝𝑐𝑠 𝑤𝑖𝑛𝑑 𝑡𝑢𝑟𝑏𝑖𝑛𝑒 

 

• Total Wind Turbine Capacity = 13 x 7.5 kW = 97.5 kW  

 

Figure 5.36: Hourly wind turbine power generation 

3. Hybrid System Optimization 

To design a smart hybrid microgrid system for the proposed location, energy balance is required. 

Daily energy demand of the proposed location is 125.82 kWh. For this research we consider 60% 

will be solar PV power and 40% of the wind power for reliability.   

o Solar contribution = 125.82 𝑘𝑊ℎ × 60% = 75.49 𝑘𝑊ℎ 
 

o Required panels    =  
75.492 𝑘𝑊ℎ

1.175 𝑘𝑊ℎ
= 64.25 = 65 𝑃𝑉 𝑝𝑎𝑛𝑒𝑙𝑠 

 

o Solar Capacity       =  𝟔𝟓 × 𝟐𝟏𝟑. 𝟏𝟓 𝑾𝒑 = 𝟏𝟑. 𝟖𝟓 𝒌𝑾 
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o Wind contribution = 125.82 𝑘𝑊ℎ × 40% = 50.33 𝑘𝑊ℎ 
 

o Required turbines  =  
50.33 𝑘𝑊ℎ

9.85 𝑘𝑊ℎ
= 5.11 = 6 𝑊𝑖𝑛𝑑 𝑡𝑢𝑟𝑏𝑖𝑛𝑒𝑠 

 

o Wind Capacity       =  𝟔 × 𝟕. 𝟓 𝒌𝑾 = 𝟒𝟓. 𝟎 𝒌𝑾 
 

a. Solar and Wind Contribution:  

The combination is considered 60% solar + 40% wind for SHMs energy mixed.  

Component Capacity Daily Energy Adjusted Energy 

Solar 23.02 kW 125.82 kWh 75.5 kWh 

Wind 45.00 kW 59.10 kWh 52.00 kWh 

                      Total 127.50 kWh 

Table 5.12: Energy mixed within the SHMs 

4. Battery Storage Sizing 

Step 1: According to daily solar energy production data from 8 PM to 6 AM, there is no available 

sunlight. Hence PV will not generate any energy that time. 

Total energy required at nighttime (8 PM – 6 AM): 

     10 hours × 5.24 kWh = 52.4 kWh.  

Where, 5.24 kWh average hourly demand.  

Total energy production by wind turbines (according to hourly data). 

     ∑𝑊𝑖𝑛𝑑(8 𝑃𝑀 − 6 𝐴𝑀) = 19.79 𝑘𝑊ℎ 

Deficit:     52.4 kWh – 19.79 kWh = 32.61 kWh 

 

Step 2: Battery capacity calculation. 

To get the optimal power output from battery, it should be maintaining industry standard for 

charging and discharging.     

▪ Battery depth of discharge (DoD): 80%  

▪ Battery round trip efficiency: 90%  

    Battery Capacity: 
32.61 𝑘𝑊ℎ

0.8 ×0.9
= 45.30 𝑘𝑊ℎ  
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Step 3: Safety Margin 

To enhance the battery energy storage safety, longevity, and reliability of 20% buffer 

should be calculated, so that it can maintain seasonal variability.  

Battery Capacitysafety: 45.30 𝑘𝑊ℎ × 1.2 =  54.36 𝑘𝑊ℎ 

Step 4: Autonomy Calculation 

Battery Capacityautonomy: 2 × 54.36 𝑘𝑊ℎ = 108.72 𝑘𝑊ℎ  

Smart Hybrid Microgrid System (SHMs) design requirements.  

Component Capacity Remarks 

Solar 23.02 kWh 108 PV Panels (213.15 W each) 

Wind 45.00 kWh 6 Wind turbines (7.5 kW each) 

Battery  54.36 kWh 90% efficiency, 80% DoD 

Table 5.13: Components sizing of SHMs 

▪ Energy Balance = Demand – (Solar PV + Wind + Battery) 

Energy Management Validation: 

▪ Daily demand: 75.50 kWh (Solar) + 52.00 kWh (Wind) = 127.50 kWh (match the demand) 

▪ Peak demand: 10.7 kWh (Solar) + 3.14 kWh (Wind) = 13.84 kWh > 7.16 kWh (sufficient) 

▪ Battery Usage: Battery charges fully using surplus energy, discharges 54.36 kWh at night.  

To observe better ways, the table is presented:  

Hours Solar (W) Wind (W) Energy Demand (W) Battery (W) 

0 0.00 1918.80 4350.21 -2431.41 

1 0.00 1833.20 3878.48 -2045.28 

2 0.00 1787.12 3583.67 -1796.55 

3 0.00 1762.96 3400.53 -1637.57 

4 0.00 1748.28 3361.22 -1612.94 

5 0.00 1735.00 3543.92 -1808.92 

6 152.75 1711.24 4029.09 -2165.10 

7 811.20 1665.52 4679.04 -2202.32 

8 2708.55 1756.28 5240.54 -775.71 

9 5337.15 1822.28 5615.67 1543.76 

10 7676.50 1916.00 5817.82 3774.68 

11 9586.85 2022.32 5959.67 5649.50 

12 10585.90 2167.40 5928.30 6825.00 

13 10743.20 2416.68 5744.26 7415.62 

14 9885.85 2714.96 5623.50 6977.31 
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15 8450.00 2989.92 5560.78 5879.14 

16 6135.35 3142.32 5657.99 3619.68 

17 3186.30 3096.52 6020.58 262.24 

18 1031.55 2892.48 6679.50 -2755.47 

19 145.60 2659.40 7161.38 -4356.38 

20 0.00 2461.32 6963.19 -4501.87 

21 0.00 2321.04 6382.00 -4060.96 

22 0.00 2177.84 5666.94 -3489.10 

23 0.00 2039.60 4966.40 -2926.80 

Table 5.14: Hourly solar, wind and battery storage calculation 

 

Figure 5.37: SHMs overall energy management system 

The first graph represents solar dominating in daytime and charging the battery system with the 

surplus energy. Wind partially fulfills the demand, and the battery covers the remaining energy.   

5.5.3 SHMs MATLAB/Simulink Simulation Setup: 

The MATLAB Simulink model developed for this study represents a hybrid microgrid system 

integrating multiple renewable energy sources with energy storage and load management 

strategies. The model simulates real-world operational scenarios to assess system efficiency, 

reliability, and sustainability. 
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System Architecture in Simulink: The Simulink model architecture is integrated with PV arrays, 

MPPT DC-DC boost converter, wind turbine, battery energy storage, power electronics inverter, 

peripheral circuit breakers, and measurements blocks.  

 

Figure 5.38: MATBAL/Simulink model of SHMs 

Wind Turbine Model:  

 

Figure 5.39: Wind turbine MATLAB/Simulink modeling 
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Battery Control Model:  

 

Figure 5.40: Battery control MATLAB/Simulink modeling 

5.5.4 SHMs MATLAB/Simulink Simulation Results and Discussion: 

The MATLAB/Simulink model was developed using all the available meteorological data. The 

forecasted dataset (demand, irradiance, temperature, wind speed) was used to simulate the 

model. The smart hybrid microgrid system simulation results is given below:  

 

Figure 5.41: SHMs simulation for energy balance 
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Figure 5.42: SHMs voltage and current fluctuation during rapid changes 

 

Figure 5.43: AC power distribution in the grid network 
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Figure 5.44: Theorical and SHMs model generation comparisons 

Discussion 

The Smart Hybrid Microgrid System (SHMs) is demonstrating the promising results through the 

grid network. The SHMs are simulated to comprehensive analysis of the output results (Power 

output, Efficiency, Grid stability, Load management), in MATALB/Simulink environments. The 

model is integrated with solar PV panels, wind turbines, battery energy storage systems, DC-DC 

boost converter, bidirectional converter (battery control), and environmental factors. This method 

allows SHMs detailed investigation and analysis of dynamic behavior.  

The performance of the SHMs is evaluated compared to theorical renewable energy generation 

and the MATLAB/Simulink model generated energy. According to the results of Simulink model 

performance 97.4%, which ensures accuracy and reliability of SHMs. The Simulink model 

successfully covers the energy demand per hour. Although there are some fluctuations in the 

voltage and current, because of high renewable energy resource fluctuations. But the control 

system recovers quickly. Due to fluctuations, some electrical losses have occurred.      

The limitation of this model is that it requires robust modeling for control and energy 

management systems. Energy management is one of the most important parts for designing 

smart hybrid microgrid systems (SHMs). In this model is not integrated with real time monitoring 

systems. Hence if there are any technical and environmental issues, it cannot be provided optimal 
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power output, although this system is modeled using long term solar irradiance, temperature and 

wind speed data. For further research large scale system can be explored, with real time 

monitoring and control algorithms.     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



120 

 

Chapter 6  

Conclusion  
 

This study on Smart Hybrid Microgrid Systems (SHMs) incorporating Renewable Energy 

Resources (REs) and Battery Energy Storage System (BESS) provides valuable information into 

renewable energy resource assessments, technical design, energy demand forecasting, and 

optimization which is crucial for sustainable and reliable grid integration. The research begins 

with a comprehensive review of existing SHMs, their energy demand and REs forecasting 

techniques, SHMs modeling, optimization methods with associated challenges and advantages.  

The main aspect of this study was the analysis of SHMs with renewable energy resources and 

energy storage system for grid integration. To integrate multiple renewable energy sources, a 

battery storage system with the grid is crucial, due to rapid RE generation fluctuation. It impacts 

on grid stability and reliability. Hence Long Short-Term Memory (LSTM) machine learning model 

was developed to predict energy demand and generation of the project location. The LSTM model 

demonstrates high accuracy for solar irradiance, temperature, and wind speed with MAE: 0.23 

(W/m2), 0.18 (°C), 0.78 (m/s), RMSE: 0.49 (W/m2), 0.26 (°C), 1.14 (m/s), and R2: 94%, 99%, 97% 

respectively. This level of accuracy is critical for effective grid integration with SHMs, that can 

response very fast with the generation and demand changes.  

To extract the maximum power from solar PV arrays MATLAB/Simulink model was used, that 

allow detail simulations and performance analysis. Maximum Power Point Tracking (MPPT) 

algorithms, like Perturbation and Observation (P&O), Predictive Control Method (PCM), Fuzzy 

Logic, and Artificial Neural Network (ANN) are used for comparative analysis and find the best 

fitted MPPT algorithm for optimizing the output power. The MPPT algorithms demonstrates the 

Tracking efficiency, Convergence time, Power oscillations and Computational complexity. 

Among those four (4) MPPT, the ANN-based MPPT showed the highest tracking efficiency of 

99.7%, convergence time 0.1 second, power losses ±0.5 W due to oscillations. ANN MPPT has a 

drawback of very high computational complexity that increases the cost.  

This research also highlighted the importance of DC-DC boost converter design to control the DC 

bus voltage. The peripheral components ensure seamless operation and reliability of SHMs, that 

contribute grid stability and resilience. The result of this study demonstrates the potential Smart 

Hybrid Microgrid System (SHMs) has to provide reliable and sustainable energy solutions for 

multiple applications, including islanded areas, community-based systems, and commercial 

establishments. The key findings of this study include high accuracy of forecasting model, power 
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generation optimization, incorporate REs and BESS for grid stability and reliability, technical 

feasibility.  

Future Work and Recommendations 

The findings of this study open several opportunities for future work. For demand and generation 

forecasting models can be improved by using hybrid models, like Auto Regression AR, LSTM, 

and Conventional Neural Network (CNN) together. Also power optimization MPPT techniques 

can be hybrid system combined with P&O, PSO, ANN, and SVM. The hybrid algorithms have 

the strengths to provide improved performance in dynamic environmental changes. For grid 

stability ESS integration is crucial. ESS control and energy management are very attractive areas 

for research. In renewable energy landscape, smart grid and IoT based technologies are crucial 

for real time monitoring, power optimization, energy management, control and operations are 

very big research areas. 

According to findings there are some recommendations for researchers, engineers, and 

policymakers for renewable energy systems. 

1. For maximizing power with environmental changes ANN or Fuzzy Logic MPPT 

algorithms are recommended. Those MPPT gives better performance compared to others. 

Lost effective and small solar home system applications P&O or PCM will be better, while 

grid connected system ANN or Fuzzy Logic MPPT 

2. Energy demand and forecasting models are essential for optimizing the SHMs 

components sizing and control system design. MATLAB/Simulink tools can help to 

simulate and analyze technical issues.   

3. To implement hybrid microgrid system economic viability and local policy analysis is 

essential.     
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