
Citation: Galveias, A.; Antunes, C.;

Costa, A.R.; Fraga, H. Pollen- and

Weather-Based Machine Learning

Models for Estimating Regional Olive

Production. Horticulturae 2024, 10, 584.

https://doi.org/10.3390/

horticulturae10060584

Academic Editor: Yongfeng Zhou

Received: 10 May 2024

Revised: 23 May 2024

Accepted: 28 May 2024

Published: 3 June 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

horticulturae

Article

Pollen- and Weather-Based Machine Learning Models for
Estimating Regional Olive Production
Ana Galveias 1 , Célia Antunes 1 , Ana Rodrigues Costa 1 and Helder Fraga 2,*

1 Department of Medical and Health Sciences, School of Health and Human Development & Institute of
Earth Sciences & Centro Académico Clinico, C-TRAIL, University of Évora, Rua Romao Ramalho, 59,
7000-671 Évora, Portugal

2 Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for
Innovation, Capacity Building, and Sustainability of Agri-Food Production (Inov4Agro), University of
Trás-os-Montes e Alto Douro (UTAD), P.O. Box 1013, 5000-801 Vila Real, Portugal

* Correspondence: hfraga@utad.pt

Abstract: The olive tree is one of the most common type of cultivation in the Mediterranean area,
having high economic and social importance. The Alentejo region, Portugal, is an area with a high
presence of olive groves, which in 2022 accounted for 201,474 hectares. The aim of this study was
to assess the relationship between olive pollen, weather data, and olive tree production, between
the years 2002 and 2022. Pollen data were obtained from an urban station located in Évora, in the
Alentejo region, and were used to calculate several metrics, such as the Pollen Season Duration
(PSD), Seasonal Pollen Index (SPIn), peak value, and weekly pollen accumulation values. Monthly
minimum, maximum, and mean temperature and precipitation sums were obtained from the E-OBS
observational dataset. Considering the relationship between pollen/weather and olive production,
mutual information and correlation analyses were conducted. Subsequently, several machine learning
algorithms were trained using pollen and weather datasets, and we obtained suitable forecast
models for olive tree production after cross-validation. The results showed high variability in pollen
concentrations in Évora over the years. Complex associations were found, with certain weeks of
pollen accumulation showing significant mutual information with olive production, particularly
during June. The analyzed linear correlation coefficients remained generally low, underscoring the
challenge of predicting olive production based on linear relationships. Among the machine learning
algorithms employed to predict olive production, Decision Trees, Extreme Gradient Boosting, and
Gradient Boosting Regressor were the most robust performers (r2 > 0.70), while linear models
displayed a subpar performance (r2 < 0.5), emphasizing the complexity of this approach. These
models highlight the roles of maximum and minimum temperatures during March and May and
pollen accumulation during the second half of June. The developed models may be used as decision-
support tools by growers and stakeholders to further enhance the sustainability of the thriving olive
sector in southern Portugal.

Keywords: Olea; aerobiology; yield forecasting; statistical model; Hirst volumetric trap; climatic
factors

1. Introduction

The olive tree Olea europeae, subsp. europeae var. europeae, is a species represented in
95% of the Mediterranean region with high social, historical, and economic importance [1].
The culture of the olive grove is believed to have originated about 6000 years ago in the
Middle Eastern area [2]. Cultivation of olive groves occurs in 40 countries (2022 data) [3]
and occupies about 12.5 million hectares on the Earth’s surface, with the olive considered
the most cultivated fruit tree. In 2023, in Portugal, 379,565 hectares were accounted for,
an increase of 40,054 hectares since 1986. In the Alentejo region alone, 201,298 hectares
were identified, which is equivalent to more than 50% of Portugal’s total [4,5]. In fact, with
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the construction of the Alqueva dam infrastructure, olive grove cultivation has become
even more pronounced [6,7]. Trás-os-Montes is the second region in which olive grove
planting is accentuated (81,475 ha—22%). Less than 1% of the olive-growing area is found
in the region of Entre o Douro e Minho [8,9]. As it is a crop characterized by high pollen
production, high productivity, and a long flowering period, its expansion in the number of
hectares has been particularly evident [10]. The olive tree is a dicotyledonous angiosperm,
of the Oleaceae family, the same family to which the ash, privet, and lilac belong. From a
physiological point of view, the olive tree adapts perfectly to all types of soils, resisting, for
example, poorly drained or very calcareous soils. The most prevalent and at the same time
limiting factors, when we refer to fruit production, are water and luminosity in the hottest
months [11].

The selection of olive cultivars, carried out by growers over time, has led to a change in
the pollination process, i.e., the olive tree is an entomophilous species that evolves into an
anemophilous species with high pollen and flower production [12], where pollen spreading
is conducted by the wind. In this pollination process, the existence of large amounts of
pollen helps reproduction and fertilization [13,14]. The olive tree, as in other fruit trees,
has a biennial reproductive or vegetative cycle, that is, years with high and low pollen
production [15]. Cyclical behavior, completed after 2 years, is strongly determined by the
flowering load—since in the second year, the buds develop into inflorescences [1,16]—and
is a characteristic observed in all cultivatable varieties of olive trees. This phenomenon can
occur in one individual tree or in parts of a single tree. One of the possible causes for the
occurrence of this phenomenon is the production of endogenous hormone levels, which can
promote or inhibit flowering and consequently contribute to the variability of the Seasonal
Pollen Index [17]. Flowering in fruit trees can be inhibited by gibberellins and promoted
by cytokines [18], and the balance between these two hormones can correlate with flower-
ing [19]. However, gibberellins are hormones that play a very important role in plants at
the physiological level, and they have already been described as substances that contribute
to the development of buds and induction of flowers [20]. This is an andromonoecious
species, that is, one where hermaphrodite and functional male flowers occur in the same
individual [21]. Olive pollen is colporate and tricolporate with a reticulated exine [22,23].
The monitoring and performance of aerobiological studies with olive pollen have shown
not only a high importance in terms of the risk to public health with the development of
allergic disease [24,25] but also for ecological [26] and agricultural studies [27–30].

In agricultural studies, harvest forecasting in agricultural crops throughout the year
has become essential at all levels of production. Until the end of the 20th century, harvest
forecasting was usually carried out through observation by a plot farmer. From this
observation, it was possible to extrapolate the total production of a region [31]. However,
this method had disadvantages since estimates of crop yields made by a single individual
observing a field were very subjective. It was also costly, as there would have to be many
sampling points, and on top of that, the older estimates had a huge error that could only be
corrected in the next harvest. Other methods include the use of crop growth monitoring
system models or prediction models based on satellite measurements [32]. However, due to
the disadvantages of the methods described above, in 1980, a methodology was developed
that used aerosolized pollen as a bioindicator in production forecasting [33]. Airborne
pollen counts are an indicator of pollen production by a plant, and their use in creating long-
term pollen time series has been proven by several studies to be an effective technique [34].
This relationship between pollen emission and fruit production has been demonstrated for
many other crops, such as Vitis vinifera [35] and Quercus ilex [36]. However, although pollen
is important from the point of view of forecasting production, it cannot be the only factor
considered since there are other external factors that can condition production both in terms
of quality and quantity, such as atmospheric and physiological conditions arising from
lack of water and extreme temperatures, as well as the occurrence of phytopathological
problems [26,29,34,37]. Hence, forecasting olive production remains of key importance,
particularly under the predicted climate change challenges for this sector [38,39].
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Several studies have shown the significance of using pollen to model olive produc-
tion/yield, providing valuable insights into predicting olive production [40]. As an exam-
ple, [41] focused on developing pollen-based models for forecasting Mediterranean olive
production, highlighting the importance of understanding the reproductive biology of
olive trees for improved crop management. Ref. [42], in northern Portugal, developed a
bioclimatic model, integrating pollen and weather data to quantitatively forecast the olive
yield. Ref. [40] emphasized the positive correlation between annual pollen production
and olive yield, indicating the potential for pollen-based forecasting of fruit production.
These studies collectively underscore the value of pollen data in enhancing the accuracy of
olive yield predictions and optimizing agricultural practices. Nonetheless, most of these
studies take advantage of the linear relationship between pollen and olive tree parameters,
which is only possible in certain conditions, i.e., if the pollen traps are placed directly on
the olive groves [41]. The European Aeroallergen Network (EAN) database is a network
of pollen stations scattered throughout Europe (including Portugal), which provides a
database of several sources of pollen, such as from olive trees. Many of these stations are
located in urban areas, not located directly in olive orchards. To the authors’ knowledge,
data from these stations have never been used to develop suitable models, possibly due to
the difficulty in establishing effective relationships.

Given the high interest in the use of pollen data in harvest forecasting, specifically of
olive trees, the current study aimed to investigate the possibility of modeling regional olive
production based on pollen counts acquired from stations not located within olive groves,
along with using weather data, thus filling a research gap. The objectives of the current
study were four-fold: (i) to analyze a long-term series of olive pollen data obtained from
an urban station; (ii) to assess linear relationships between the pollen series and regional
olive production; (iii) to train (linear and non-linear) machine learning models using pollen
and weather data to forecast olive production; and (iv) to attempt to understand the most
important factors that influence regional olive yields. Hence, the current study attempted to
improve our knowledge of how to make an olive production forecast from pollen emissions
and weather variables, aiming to optimize all technical and human resources associated
with harvesting.

2. Materials and Methods
2.1. Study Area

This research was conducted in the city of Évora, situated in the south of Portugal
(Figure 1) and characterized by a temperate climate with warm and dry summers, which can
be described as a hot-summer Mediterranean climate (Köppen Climate Classification—Csa).

The annual mean air temperature in Évora is 16.8 ◦C, with the highest monthly
temperature occurring in August, with 32.3 ◦C, and the lowest in January, with 5.1 ◦C
(Figure 2). The annual precipitation is approximately 400 mm and the summer precipitation
is only 10 mm (Figure 2). According to an ombrothermic diagram (Figure 2), the dry season
starts in May and ends in September (where precipitation values are lower than 2× the
temperature), and it only accounts for 50 mm of rainfall.

The cultivation of olive groves is predominant in the Alentejo region (Figure 1) and
specifically in the region south of Évora, where a greater number of hectares are concen-
trated [6]. The pollen monitoring station is located in the Évora Atmospheric Sciences
Observatory (EVASO) of the Institute of Earth Sciences (ICT) at the University of Évora
(38◦34′ N, 7◦54′ W, 293 m asl), which is in an urban area; however, on its periphery, there
are many olive groves (Figure 1).
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Figure 2. Ombrothermic diagram for Évora, calculated using the E-OBS dataset from 2002 to 2022,
representing monthly minimum, maximum, and mean air temperatures and the monthly precipitation
sum. The red-colored bars represent the dry season months.

2.2. Aerobiological Data

The airborne olive pollen was collected with a volumetric trap of the Hirst type [43],
located at the Évora Atmospheric Sciences Observatory (EVASO) of the Institute of Earth
Sciences, University of Évora, at approximately 10 m above ground level. The station
belongs to the EAN network. The data were collected from 2002 to 2022, except in the
years 2007, 2015, and 2016, for which records are unavailable. The sampled air passing
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through the inlet hole (2 × 14 mm) impacts a tape placed in a sampling drum driven by a
clock that rotates at an angular velocity of 2 mm/h for 7 days. After the end of the 7 days
of sampling, the double-sided tape is removed from the drum and cut into segments of
48 mm in size, where each one corresponds to one day of sampling. After all the slides
are prepared, each slide is analyzed under an optical microscope, at a magnification of
40×, to count and identify the pollen. The pollen results are expressed in pollen per cubic
meter of air (Pollen/m3). The main pollen season of the olive tree was calculated by the
logistic method, developed by [44] and modified by [45]. This method is based on the
fitting of a non-linear logistic regression model to the accumulated daily curve for each
type of pollen [44]. Parameters such as start_date, end_date, Pollen Season Duration (PSD),
Seasonal Pollen Index (SPIn), peak value and date, and a weekly pollen accumulation time
series were determined based on asymptotes when pollen amounts were stabilized at the
beginning and end of the accumulated curve (Table 1).

Table 1. Characterization of the Olea pollen seasons between 2002 and 2022. In the years 2007, 2015,
and 2016, records were not available.

Year Start Date Start
DOY End Date End DOY PSD

(Days)
Peak
Date

Peak
DOY

Peak Value
(Pollen/m3)

SPIn,
(Pollen/m3)

2002 02/05 123 05/06 157 35 20/05 141 396 2789
2003 10/05 131 06/06 158 28 28/05 149 900 5933
2004 06/05 127 05/06 157 31 18/05 139 1605 8201
2005 03/05 124 08/06 160 37 20/05 141 517 5567
2006 07/05 128 30/05 151 24 17/05 138 1159 7340
2008 14/04 105 03/06 155 51 03/05 124 664 3246
2009 26/04 117 01/06 153 37 09/05 130 1176 9435
2010 12/05 133 31/05 152 20 20/05 141 1252 6255
2011 24/04 115 22/05 143 29 14/05 135 906 9737
2012 07/05 128 08/06 160 33 17/05 138 420 4489
2013 02/05 123 15/06 167 45 14/05 135 920 8009
2014 04/05 125 24/05 145 21 14/05 135 1155 7483
2017 17/04 108 25/05 146 39 04/05 125 591 3967
2018 11/05 132 28/06 180 49 23/05 144 365 3855
2019 01/05 122 24/05 145 24 12/05 133 1884 6420
2020 11/04 102 07/06 159 58 03/05 124 372 1896
2021 26/04 117 01/06 153 37 08/05 129 1613 13,718
2022 01/05 122 24/05 145 24 12/05 133 174 869

Avg 30/04 121 03/06 155 35 14/05 135 893 6067

2.3. Climatic Data

The climatic data utilized in this study were sourced from the E-OBS observational
interpolated/gridded dataset, version 29.0e [46]. This ensemble dataset is constructed
through a conditional simulation procedure and is produced by the European Climate As-
sessment & Dataset (E-OBS). The data were retrieved from the Copernicus Climate Service
(CCS). Despite some documented limitations [47], the E-OBS dataset offers uninterrupted
and homogeneous gridded fields of daily minimum (TN), maximum (TX), and mean (TM)
temperatures, as well as the daily precipitation (RR) across Europe, dating back to 1950.
These data are provided at a spatial resolution of approximately 10 km. To facilitate analy-
sis, climatic data corresponding to the Évora station grid-box were extracted. Subsequently,
the monthly means of TN, TX, and TM, as well as the monthly sums of RR, were computed
from the extracted dataset. This robust dataset and subsequent computations provide a
comprehensive understanding of the climatic conditions in the study area, aiding in the
investigation of their influence on the target variables under consideration.
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2.4. Machine Learning Models

In this study, we selected several regression machine learning algorithms to model
the relationship between predictor variables (weekly pollen accumulation and monthly
temperatures and precipitation) and olive production. Each algorithm offers unique charac-
teristics suited for different types of datasets and predictive tasks (Table 2). We categorized
each algorithm into 1 of 3 distinct categories—linear algorithms, boosting algorithms, or
bagging algorithms—or they were categorized under “Others” [48].

Table 2. List of the machine learning models used in the current study.

Group Algorithms Acronym

Linear

Linear Regression LR
Ridge Regression RG
Lasso Regression LA

ElasticNet Regression EN
Huber Regression HR

Bagging Random Forest Regression RF
Extra Trees Regression ET

Boosting
Gradient Boosting Regression GBR

AdaBoost Regression ADB
XGBoost Regression XGB

Other
Nearest Neighbors Regression KNN

Decision Tree Regression DT

Linear models were chosen for their ability to capture linear relationships between pre-
dictor variables and olive production, as well as to address issues such as multicollinearity
and outliers. In this category, we selected linear regression (LR), which is a fundamen-
tal algorithm used for modeling the linear relationship between predictor variables and
the target variable [49]. Ridge regression (RD) is a regularization technique that adds a
penalty term to the linear regression cost function to shrink the coefficients, effectively
reducing model complexity and mitigating multicollinearity issues [50]. Lasso regression
(LR), similar to ridge regression, adds a penalty term to the linear regression, but employs
L1 regularization, which encourages sparsity by driving some coefficients to zero, thus
performing feature selection [51]. ElasticNet regression (EN) combines the penalties of
ridge and lasso regression (L1 and L2 regularization) to address both multicollinearity and
feature selection simultaneously [52]. Finally, Huber regression (HR) is a robust regression
technique that minimizes the sum of absolute differences (L1 loss) between the observed
and predicted values, thereby reducing the impact of outliers on the model [53].

Boosting algorithms sequentially build a strong learner by combining several weak
learners. In this category, we employed Gradient Boosting Regression (GBR), AdaBoost
Regression (ABR), and XGBoost Regression (XGB). GBR constructs an ensemble of weak
learners (typically decision trees) sequentially, with each new model fitting the residual
errors of the previous model, reducing bias and improving predictive performance [54].
ABR iteratively trains weak learners (e.g., decision trees) on subsets of the data, focusing
on instances that were misclassified by previous models, to improve overall accuracy [55].
XGB is an optimized implementation of gradient boosting, introducing enhancements
such as parallelization, tree pruning, and regularization for faster training and improved
performance [56].

Bagging algorithms utilize bootstrap resampling to create multiple models and aggre-
gate their predictions. In our study, we utilized Random Forest Regression (RF) and Extra
Trees Regression (ET). RF constructs multiple decision trees during training and averages
their predictions, enhancing accuracy and robustness [57]. ET builds multiple decision
trees using random subsets of features and random thresholds to split nodes, improving
model diversity and generalization [58].
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Lastly, we explored other regression techniques to capture various aspects of the
relationship between predictor variables and olive production, such as K-Nearest Neighbors
Regression (KNN) and Decision Tree Regression (DT). KNN predicts the target variable of
a new data point by averaging the target values of its nearest neighbors in the feature space,
suitable for capturing non-linear relationships [59]. DT partitions the feature space into
disjoint regions and fits a simple model (e.g., constant value) within each region, providing
interpretability and capturing complex non-linear relationships [60].

These diverse regression techniques were selected to explore different modeling strate-
gies and capture various aspects of the relationship between predictor variables and olive
production. To evaluate model performance and errors, we employed standard metrics
such as the Coefficient of Determination (r2), MAPE (Mean Absolute Percentage Error),
and the Maximum Percentage Error (MAXP) [61]. Although other algorithms were also
selected, such as neural networks and SVN, their performance was very low, and they were
not included in this study. These two models usually require large amounts of training
data, which potentially explains their low performance.

2.5. Feature Selection and Model Training

As potential predictors (features), weekly pollen accumulation and monthly temper-
atures and precipitation were considered (Table 3). In order to isolate potential outliers,
we only considered features from a certain temporal resolution. For example, for pollen
accumulation, we used weekly data relating to the historical seasonal pollen from the 1st
week of April (91) until the 2nd week of July (195). Regarding weather data, we used
monthly data from January to May. To assess the best possible combinations of features
for model training, the bestFeatures v1.0 python package was used [62]. This script uses
a cross-validation scheme when running each model for each combination of features in
order to evaluate the performance of each algorithm. Specifically, a k-fold cross-validation
technique with 5 folds is used, meaning each algorithm is effectively evaluated multiple
times with the split dataset. Each split divides the data into training and testing, with the
test dataset being withheld from the algorithm. This cross-validation technique helped us
to avoid model overfitting and obtain a more accurate estimate of the model performance.
Additionally, hyperparameter tunning was applied for each algorithm. Grid search tech-
niques were employed to find the optimal combination of hyperparameters that maximized
the model performance [63]. Hence, the bestFeatures script accurately provides the best
combination of features for each model.

Table 3. Feature acronyms and descriptions.

Feature Description

91 Pollen Accumulation—DOY 91–97 (1st week of April)
98 Pollen Accumulation—DOY 98–104 (2nd week of April)

105 Pollen Accumulation—DOY 105–111 (3rd week of April)
112 Pollen Accumulation—DOY 112–118 (4th week of April)
119 Pollen Accumulation—DOY 119–125 (1st week of May)
126 Pollen Accumulation—DOY 126–132 (2nd week of May)
133 Pollen Accumulation—DOY 133–139 (3rd week of May)
140 Pollen Accumulation—DOY 140–146 (4th week of May)
147 Pollen Accumulation—DOY 147–153 (1st week of June)
154 Pollen Accumulation—DOY 154–160 (2nd week of June)
161 Pollen Accumulation—DOY 161–167 (3rd week of June)
168 Pollen Accumulation—DOY 168–174 (4th week of June)
175 Pollen Accumulation—DOY 175–181 (5th week of June)
182 Pollen Accumulation—DOY 182–188 (1st week of July)
189 Pollen Accumulation—DOY 189–195 (2nd week of July)

TX_01 Maximum Temperature—January
TN_01 Minimum Temperature—January
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Table 3. Cont.

Feature Description

TM_01 Mean Temperature—January
RR_01 Precipitation—January
TX_02 Maximum Temperature—February
TN_02 Minimum Temperature—February
TM_02 Mean Temperature—February
RR_02 Precipitation—February
TX_03 Maximum Temperature—March
TN_03 Minimum Temperature—March
TM_03 Mean Temperature—March
RR_03 Precipitation—March
TX_04 Maximum Temperature—April
TN_04 Minimum Temperature—April
TM_04 Mean Temperature—April
RR_04 Precipitation—April
TX_05 Maximum Temperature—May
TN_05 Minimum Temperature—May
TM_05 Mean Temperature—May
RR_05 Precipitation—May

3. Results
3.1. Characterization of Olea Pollen Season between the Years 2002 and 2022

The characteristics of the Olea pollen season in the period of 2002–2022 were analyzed
and are presented in Table 1 and Figures 3 and 4. Olea pollen was detected in large concen-
trations in the atmosphere of the city of Évora, where its specific pollination period occurs
in the month of May. In most of the years under study, the beginning of the pollen season
occurred between the end of April and the beginning of May; however, there were years in
which the beginning occurred earlier, as is the cases of 2008 (14 April) and 2017 (17 April).
The year 2020 registered an earlier start to the season, on 11 April. Regarding the duration of
the pollen season, on average, the duration was 35 ± 11 days; however, it was observed that
the year 2008 had a duration of 51 days, followed by the year 2020 with 58 days. We found
that in 2010 the pollen season was relatively shorter, with only 20 days. Regarding the SPIn,
the average among all the years under study was 6067 ± 3168 pollen/m3; however, there
was only one year in which 10,000 pollen/m3 was exceeded, in 2021 (13,718 pollen/m3). We
found that 2020 and 2022 had the lowest pollen indexes, with only 1896 and 869 pollen/m3,
respectively. In Figure 3, it can be observed that Olea SPIn has an alternate bearing behavior,
that is, there are high years followed by low years. The peak of the maximum concentration
occurred in the month of May for all years, obtaining an average of 893 ± 496 pollen/m3.
The year 2019 had the highest peak maximum concentration (1884 pollen/m3), followed
by 2021 with 1613 pollen/m3 and 2004 with 1604 pollen/m3. Meanwhile, in the year 2022,
only a 174 pollen/m3 maximum concentration was reached in the entire season. In 7 of the
18 years under study, the peak maximum concentration was lower than the average for all
years (Table 1).

3.2. Relationship between Pollen/Weather and Olive Production

A preliminary analysis was performed to investigate the relationship between pollen/
weather and olive production. Two metrics were computed: mutual information and corre-
lations. Mutual information quantifies the degree of dependence or association between
two variables and serves as a crucial metric in comprehending the relationship between
features and a target variable, particularly in predictive modeling contexts [64]. In this
scenario, the features encompass meteorological data such as maximum temperature (TX),
minimum temperature (TN), and precipitation (RR), alongside pollen weeks (dates), while
the target variable is olive production. Therefore, the mutual information values provided
indicate the strength of association between each feature and the target variable. A higher



Horticulturae 2024, 10, 584 9 of 18

mutual information value suggests a stronger relationship, signifying that the feature
contains valuable information for predicting olive production.
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It is imperative to note that while some features exhibit discernible relationships with
olive production, the overall mutual information values are generally low, highlighting the
complexity inherent in predicting olive production. This suggests that multiple factors may
result in a non-linear relationship with olive production.

Among the features considered, accumulated pollen demonstrates varying degrees
of mutual information with olive production (Figure 5a). For instance, the third and
fourth weeks of June (168 and 175, respectively) have the highest mutual information
values, indicating a potential relationship with olive production. Other weeks, such as the
thirrd and fourth weeks of May (140 and 147, respectively), also exhibit significant mutual
information values, albeit comparatively lower. Similarly, meteorological features such
as maximum temperature (TX), minimum temperature (TN), and precipitation (RR) for
certain months showcase their respective mutual information values. For example, the
maximum temperatures in May (TX_05) and precipitation in February (RR_02) possess
relatively higher mutual information values, suggesting stronger associations with olive
production during those periods.
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Correlation analysis is another valuable method for understanding the relationships
between features and a target variable (Figure 5b). Correlation coefficients close to 1 indi-
cate a strong positive linear relationship, whereas values near −1 suggest a strong negative
linear relationship. Values around 0 imply little to no linear relationship. Herein, the
correlations show relatively low values, which further indicates the low collinearity with
olive production. Nonetheless, the maximum temperature in January (TX_01) exhibits
the highest positive correlation coefficient (0.34), indicating a positive relationship with
olive production. This suggests that high temperatures in January positively influence
olive production. Other features such as the minimum and mean temperatures in May
(TN_05 and TM_05) and precipitation in February (RR_02) demonstrate negative corre-
lation coefficients, implying a negative relationship with olive production. For instance,
high temperatures in May could adversely affect olive production. Regarding the pollen
accumulation during specific weeks, these also display low degrees of correlation with olive
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production, indicating no linear relationship. Weeks like the third (168) and fourth weeks
of June (175) show positive correlations, despite higher mutual information (cf. above),
while others like the third (140) and fourth weeks of May (147) display higher negative
correlations, although still relatively weak. It is important to note that while correlation
analysis provides valuable insights into linear relationships, other non-linear factors may
be at play.

3.3. Model Performance

Figure 6 shows the performance (r2—Coefficient of Determination) and errors (MAPE—
Mean Absolute Percentage Error and MAPX—Maximum Percentage Error) for all trained
models. Among the array of regression machine learning algorithms employed in this study,
the DT model emerged as the most robust performer, boasting the lowest MAPE/MAXP
and the highest r2 value. Such results signify DT’s predictive accuracy and its adeptness
in elucidating the underlying relationships between predictor variables and the target
variable. Conversely, the EN model exhibited subpar performance, displaying the highest
errors and the lowest performance among the models scrutinized. However, in effect, all
of the linear models used show low performance levels, with r2 values lower than 0.5.
This underscores the ineffectiveness of these models in capturing intricate patterns within
the data and in accommodating the inherent complexity of the dataset. All bagging and
boosting algorithms demonstrated notable performance levels. Regarding the bagging
algorithms, the RF model demonstrated a good performance, characterized by relatively
low MAPE/MAXP and relatively high R2 values, indicative of its ability to mitigate over-
fitting and capture nuanced relationships within the data. Still, the ET model showcased
less favorable outcomes, suggesting potential limitations in its ability to generalize well
to unseen data. Similarly, within the boosting category, models such as GBR displayed a
strong predictive performance, while models like ADB exhibited inferior results, suggest-
ing potential challenges in effectively leveraging the boosting methodology to improve
predictive accuracy.
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3.4. Feature Importance

Figure 7 shows the feature importance values for each model, providing valuable
insights into the relative significance of individual features in predicting the target variable
across different regression machine learning algorithms. Overall, all models give more
importance to climatic variables than to pollen accumulation. In the DT model, which
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shows the highest performance (Figure 5), strong importance is given to May’s weather
characteristics, with TX_05 and TN_05 demonstrating notable importance, combined with
January’s precipitation (RR_01). Other models, such as the GBR model, completely agree
with DT, while also giving strong importance to May’s climatic conditions (TX_05 and
TN_05), with features such as RR_01 particularly high-importance values, indicating their
crucial role in predicting the target variable.
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In the ADB model, strong predictive importance is given to March’s minimum temper-
ature (TN_03), along with the pollen counts at the beginning of the season. As such, there
are some features with consistently high importance across multiple models, such as March
and May’s temperatures (TX_05 and TN_03), underscoring their universal relevance and
robust predictive power across diverse regression algorithms. In effect, Figure 8 presents
the frequencies of occurrence of certain features in the feature importance levels across
all models, indicating their collective importance in predicting the target variable. Un-
derstanding the frequency of feature occurrence in feature importance levels can provide
insights into the relative importance levels and consistencies of features in predicting the
target variable, guiding feature selection and model interpretation efforts in predictive
modeling tasks. Among these features, TX_05 appears most frequently, occurring in the
feature importance results of six models, followed by TN_03 and RR_01, each appearing in
five models. Features such as TN_05 and pollen accumulation during the second half of
June (DOY 168 and DOY 182) occur in four models, suggesting their consistent relevance
in multiple predictive models. On the other hand, some features only appear once or twice
in the feature importance results, indicating potentially lower importance or less consistent
predictive power across models.
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4. Discussion

Given the acknowledged significance of pollen in fruit production across various crops,
including olives, as evidenced by prior research [65], it is logical to explore whether urban
pollen station data may be used to effectively predict regional olive production. While
the existing literature emphasizes the importance of direct pollen collection within olive
groves, indicating a strong correlation, the potential utility of urban pollen data remains
underexplored. Urban pollen stations, due to their distance from olive groves, may provide
data that do not linearly correlate with olive tree parameters, and understanding the specific
relationship between pollen and the fruit load in olive trees may become difficult. However,
by employing cutting-edge machine learning algorithms, this study aimed to bridge this
gap and ascertain the viability of urban pollen data as a predictor of olive production on a
regional scale. Additionally, weather variables, such as monthly mean temperatures and
monthly precipitation, were also included in this modeling approach [26,29,34,37].

The results collected in this study on the relationship between the olive season, fruit
production, and meteorological variables are consistent with those of several studies present
in the literature [31,44,66,67]. The Alentejo region, as seen in Figure 1, has the largest area of
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olive grove cultivation when related to other regions of Portugal [5]. The number of hectares
of olive groves has grown exponentially, a fact proven by the significant difference between
olive groves’ area in 2002 (146,266 ha) compared to that in 2022 (201,474 ha), constituting
an increase of 37% (equivalent of 55,208 ha) in the number of hectares in the study area [5].
However, this significant increase in the olive grove area did not translate immediately into
increased pollen concentrations in the air (Figure 3), probably due to the ages and sizes of
the plants. Considering the period between the years 2002 and 2022, it can be observed that
from year to year, there was a lot of variability in terms of pollen concentrations detected;
however, when observing the pollen seasons in the period under analysis, the main pollen
season usually occurred between the end of April and the beginning of May, and the month
of May was when the maximum concentration of this crop occurred. These observations
corroborated by other authors, specifically for the Iberian Peninsula area [68]. There are
different factors that can contribute to the observed variation, such as meteorological
parameters, associated with the increase or decrease in pollen concentration during the
pollination season [69,70], along with the biennial reproductive cycle of the plant itself [17].

In addition to these two factors, there are already reports of differences in pollen
concentrations in different olive cultivars [40]. Consequently, and since the pollen index is
the sum of pollen concentrations over the main season, this represents an aerobiological
variability directly related to flower production [12] and can be considered an important
indicator of productivity [26]. Correlation analysis to investigate the relationship between
pollen, climatic conditions, and yield reflects a common approach in the literature to
understand the interactions between the three variables [69,70]. Finding that certain
meteorological variables, such as temperature, show a significant association with fruit
production is in line with what has already been observed by other authors who have
highlighted the direct influence of meteorological conditions on productivity [71].

When examining the relationship between pollen/weather and olive production,
mutual information and correlation analyses were conducted. The results indicate com-
plex associations, with certain weeks of pollen accumulation showing significant mutual
information with olive production. Linear correlation coefficients generally remain low,
underscoring the challenge of predicting olive production based on linear relationships.
Regarding model performance, among the machine learning algorithms employed to
predict olive production, DT, XGB, and GBR were the most robust performers (r2 > 0.7),
while linear models displayed a subpar performance, emphasizing the complexity of this
approach. Bagging and boosting algorithms demonstrated varying degrees of success,
with RF and GBR models performing well, although with differences in predictive accu-
racy. Feature importance analysis provided valuable insights into the relative significance
of climatic variables versus pollen accumulation in predicting olive production. March
and May temperature conditions consistently emerged as influential predictors across
different models, highlighting their crucial role in forecasting olive production. Features
such as the maximum temperature in May appeared frequently in the feature importance
results of different high-performing models, indicating their universal relevance and robust
predictive power.

Comparisons of the performance levels of the different models in predicting fruit
production in olive trees reflect an increasingly common approach in precision agriculture,
where predictive models are used to optimize production [72]. The results presented
in this study using machine learning algorithms were analyzed to establish non-linear
relationships between pollen concentrations and olive production, an innovative approach
compared to other studies in the literature where linear regression models were used to
try to establish an association between the two variables, pollen and yield [31,44,66,67].
Beyond that, the use of machine learning algorithms allows for the identification of complex,
non-linear relationships that may not be captured by traditional linear regression models.
This capability opens up new avenues for precision agriculture, enabling farmers to make
more informed decisions and optimize production in response to changing environmental
conditions. Furthermore, our approach uses pollen data from an urban station, which
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until now has not been performed. This novel approach not only expands the scope of
previous research but also underscores the importance of considering diverse sources of
data in agricultural studies. By incorporating pollen data from an urban station, this study
not only provides insights into the relationship between pollen concentrations and olive
production but also highlights the potential impact of urban environments on agricultural
processes. Understanding these dynamics is crucial for developing resilient and sustainable
agricultural practices, particularly in regions where urbanization is rapidly encroaching on
agricultural land.

5. Conclusions

The present study advances our understanding of using urban pollen station data, com-
bined with weather data and powerful ML algorithms, to predict regional olive pro-duction.
The pollen season in Évora occurs mainly in the month of May, with high variability in
relation to the yearly intensity and duration of the pollen season. Non-linear ML algorithms
have shown better performance when compared to linear models. Algorithms such as
DT, XGB, and GBR have shown promising results in detecting complex relationships or
associations between the variables under study (r2 > 0.7). In the analysis of climatic condi-
tions, the temperatures in the months of March and May, in particular, were identified as
useful in the prediction of fruit production. Furthermore, pollen accumulation during the
second half of June showed potential associations with olive production. The developed
models may be used as decision-support tools by growers and stakeholders to further
enhance the sustainability of the thriving olive sector in southern Portugal. Future research
endeavors should focus on further validating these models across diverse environmental
conditions and integrating them into practical agricultural management systems. In effect,
several urban pollen stations are located throughout Europe but are not yet used for yield
forecasting purposes. Analyzing these vast datasets could provide a more comprehen-
sive understanding of how these factors influence olive production dynamics, possibly
enabling the development of a multicriteria yield-forecasting system for olive trees in
southern Europe.
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