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Summary 

 

This work presents a comprehensive approach for photovoltaic (PV) power 

forecasting, integrating various models and data sources to improve 

predictions accuracy and reliability. It combines numerical weather 

prediction (NWP) models with artificial neural networks (ANNs) aiming to 

assess and predict solar resource and PV power generation at different spatial 

and temporal scales. First, this approach was used to improve NWP solar 

irradiance data for a typical meteorological year, reducing errors of global 

horizontal (GHI) and direct normal irradiance (DNI) estimates to 2.3 % and 

3.4 %, respectively, compared to data from eight stations in southern Portugal. 

Weather and aerosol data are also combined into an ANN-based model for 

DNI forecasting, reducing root mean squared error (RMSE) by 24.2 W/m² 

compared to original NWP forecasts, using data from six stations over four 

years as reference. An improved solar irradiance transposition model is also 

proposed that accounts for shading effects from adjacent PV rows, resulting 

in an improvement of 224.4 W/m² in RMSE for global tilted irradiance using 

data from an experimental setup. Thermal and electrical models for 

predicting PV module temperature and power output were assessed against 

three years of data from four systems, and the best performing empirical 

models were identified. A coupled thermal-electric model, using the single 

diode 5-parameter electric model, achieves RMSE values of 3.6 °C for 

temperature and 84.2 W for power output. Finally, an integrated algorithm 

combining these models was set up to provide accurate PV power forecasts 

across various systems and locations. Validation with real power plant data 

demonstrates its accuracy and robustness, achieving a RMSE of 121.0 W/kWp 

for AC power output forecasts, proving its value in managing solar energy 

systems.
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Resumo 

 

Previsão de radiação solar e produção de energia em sistemas 

fotovoltaicos com base em modelos numéricos de previsão do tempo 

 

Este trabalho apresenta um método para previsão de potência fotovoltaica (PV), 

integrando vários modelos e fontes de dados para aumentar a precisão e 

fiabilidade das previsões. Combina modelos de previsão numérica do tempo 

(NWP) com redes neuronais artificiais (ANNs) com o objetivo de avaliar e prever 

o recurso solar e a geração de energia PV em diferentes escalas espaciais e 

temporais. Esta abordagem foi inicialmente usada para melhorar as previsões de 

modelos NWP para um ano meteorológico típico, reduzindo os erros da irradiância 

horizontal global (GHI) e normal direta (DNI) para 2,3% e 3,4%, respetivamente, 

em comparação com os dados de oito estações no sul de Portugal. Foram 

incorporados dados meteorológicos e de aerossóis num modelo baseado em ANNs 

para previsão de DNI, reduzindo a raiz do erro quadrático médio (RMSE) em 

24,2W/m² em comparação com previsões NWP, usando como referência dados de 

quatro anos de seis estações no sul de Portugal. Foi melhorado um modelo de 

transposição da irradiância solar, considerando os efeitos do sombreamento de 

filas de módulos PV adjacentes, resultando numa melhoria de 224,4W/m² no 

RMSE da irradiância no plano inclinado, utilizando dados experimentais. Foram 

avaliados modelos térmicos e elétricos para previsão da temperatura dos módulos 

PV e da potência gerada com dados de três anos e quatro sistemas, identificando-

se os modelos empíricos com melhor desempenho. Um modelo acoplado térmico-

elétrico, baseado num modelo elétrico de um díodo e 5 parâmetros, apresentou um 

RMSE de 3,6°C para a temperatura e 84,2W para a potência. Finalmente, foi 

construído um algoritmo integrado combinando estes modelos para fornecer 

previsões de potência PV para vários sistemas e localizações. A validação com 

dados reais de uma central fotovoltaica demonstrou a sua precisão e robustez, 

apresentando um RMSE de 121,0W/kWp para previsões de potência AC, 

provando a sua utilidade na gestão de sistemas solares. 
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Chapter 1 

 

Introduction  

 

1.1 Preliminary remarks 

In recent years, the use of renewable energy sources has seen a significant 

increase, driven by climate and socioeconomic changes. At the same time, 

electricity is increasingly being used as a key energy vector across various 

sectors, enhancing the integration of renewable resources into the energy mix. 

These resources are inherently variable, making the continuous monitoring 

of electrical energy production by companies and electric grid operators 

crucial for ensuring the efficient performance of energy conversion and 

distribution systems. Reliable assessments and accurate forecasts of these 

renewable energy sources, along with the energy generation from conversion 

systems, enable operators to make timely adjustments to equipment and 

informed decisions that enhance overall efficiency.  

Solar energy, in particular, has more recently been the main focus of 

investment promoters in this area, with more than 5% of the world’s 

electricity generation covered by photovoltaic energy in 2023 [1] and its 

continued growth expected in the coming years. As photovoltaic (PV) energy 

integration into the grid increases, the importance of accurately forecasting 

solar radiation and PV power output becomes paramount. Solar PV 

generation depends on a variety of atmospheric factors, including solar 

radiation, air temperature and humidity, cloud cover, and wind speed all of 

which can fluctuate over time and significantly impact energy output. Given 

these complexities, accurately modeling and forecasting these processes is 

essential for optimizing PV performance and ensuring reliable integration 

into the grid. 
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Weather and climate involve complex systems with many interacting 

variables. Traditional dynamic physical models, while useful, are often 

computationally expensive and require approximations. In contrast, 

statistical models, particularly those using machine learning techniques, can 

analyze vast amounts of data and capture the intricate interactions among 

variables, leading to accurate predictions. Thus, in this thesis, the goal is to 

answer the question: How can the accuracy of solar resource assessment and 

short-term photovoltaic power forecasting be improved across different 

locations and technologies, by evaluating the performance of existing data 

sources and developing adaptable, physically-informed correction models that 

do not require on-site measurements? 

 

1.2 Solar radiation and solar energy resource 

Solar radiation consists of the energy emitted by the Sun within the 

ultraviolet, visible and infrared regions of the electromagnetic spectrum, 

ranging from 0.15 to 0.3 μm [2]. The amount of solar radiation incident at the 

top of Earth’s atmosphere fluctuates with the varying distance between the 

Earth and the Sun and the activity of the Sun. The solar radiation value at 

the Earth’s surface varies even more significantly due to complex phenomena 

in the atmosphere and the interaction with the surface, including scattering, 

reflection back into space, reflection on the surface and absorption. 

An important distinction in solar energy research is between solar irradiance 

and solar irradiation. Solar irradiance refers to the radiant power incident on 

a surface per unit area (W/m2), while solar irradiation denotes the radiant 

energy incident on a surface per unit area (J/m2 or Wh/m2).  

According to [2], solar irradiance received on a horizontal plane on the ground, 

whether total or spectral, is called global horizontal radiation. This is the sum 

of the direct and diffuse components. The direct component can be defined as 

the energy per unit time and area received on the plane within a solid angle 

under which the sun is centered. Its exact definition may vary based on the 

field of application or the measuring instruments used, which may have 

different aperture angles. The diffuse component is the sum of all the energy 
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per unit time and area received by the plane coming from the sky due to 

scattering process in the atmosphere. If the plane is tilted, it also receives 

part of the radiation reflected from the surrounding ground, which is called 

the reflected component. Another important variable is the direct normal 

irradiance (DNI) which is the amount of solar radiation coming from a small 

solid angle centered at the sun’s disk received per unit area by a surface that 

is perpendicular to the sun's rays and is particularly important for 

concentrating solar power plants. 

Measuring and physically modeling these variables are essential for 

understanding and studying solar radiation and solar energy applications. 

 

1.2.1 Solar radiation measurement and resource assessment 

Solar radiation data are critical for various applications, requiring different 

types of equipment to measure the instantaneous and long-term integrated 

values of direct, diffuse, and global radiation on a surface. The process of 

radiation measurement is known as radiometry, wherein radiometric 

detectors convert irradiance into measurable signals through thermal 

processes (thermopile) or the photovoltaic effect [3].  

To measure the DNI component of solar radiation, a pyrheliometer is typically 

used. This instrument tracks the sun’s position in the sky and collects all light 

within the solid angle subtended by the solar disk, which has approximately 

0.5° total solid angle, while blocking photons from the rest of the hemisphere 

[4]. Pyrheliometers have an aperture angle greater than the limit angle of the 

solar disk, contributing circumsolar radiation to direct normal irradiance 

measurements. 

A pyranometer, on the other hand, measures global radiation on a surface. 

When shaded from direct radiation by a shading sphere or disk that tracks 

the sun, it measures diffuse radiation. Positioned on a horizontal surface, it 

measures global horizontal irradiance (GHI) or, if shaded, diffuse horizontal 

irradiance (DIF). When placed on a tilted surface, the data observed are 

termed global tilted irradiance (GTI), which includes also the reflected 

component. 
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Solar resource assessment involves characterizing the solar irradiance and/or 

irradiation available for energy conversion in a region or specific location over 

a given period. Reliable resource assessment requires calibrated measuring 

instruments and a prolonged period of quality-controlled observations. The 

Baseline Surface Radiation Network (BSRN) is an international project 

initiated by the World Meteorological Organization (WMO) to provide high-

quality ground-based radiation measurements, following WMO guidelines 

[5,6]. However, the distribution of high-quality measurement stations 

worldwide is uneven and uncoordinated, primarily due to the costs associated 

with procurement, installation, operations, maintenance, data collection, 

quality assessment, archiving, and the impact of political climates [7]. 

If observations of solar radiation and other relevant meteorological variables 

for solar energy systems, such as air temperature and humidity, and wind 

speed, are available for a specific location, a typical meteorological year (TMY) 

can be constructed [8]. The recommended period for generating a TMY 

generally ranges from 10 to 25 years. A 10-year period is commonly used and 

considered sufficient for many applications [9,10], while a 25-year period can 

offer enhanced accuracy for long-term weather representation [11]. This TMY 

was developed for energy efficiency analysis in buildings and consists of 

twelve calendar months selected from specific years of a long time series, 

concatenated to form a complete year, and serves as a representative dataset 

of long-term typical weather data for that location, enabling the estimation of 

the typical solar radiation resource.  

When planning and designing solar energy systems, extended periods of 

observations for the specific site of interest are often unavailable, or the site 

might initially be unknown. In such cases, solar resource maps provide a 

valuable general overview of solar radiation availability. Large-scale solar 

resource maps are typically based on numerous climatological databases and 

geographical interpolation models. Regional solar resource maps can be 

derived from TMY data obtained from observations at representative 

locations of the regional climate [12]. Ideally, these maps would be built using 

observations from an extensive network throughout the region over long 



1.2 Solar radiation and solar energy resource 

5 
 

periods. However, due to the expense and difficulty of maintaining such a 

network, alternative approaches, such as satellite data [13–15], numerical 

weather prediction models including reanalysis data [16] and local adaptation 

models, are often employed for developing regional solar resource maps. 

In addition to solar resource mapping, the accurate measurement of aerosols 

is a critical factor in determining solar radiation levels, as aerosols can 

significantly affect the amount of solar energy reaching the Earth's surface. 

The AERONET (Aerosol Robotic Network) [17] provides valuable data in this 

regard, offering a comprehensive, long-term, and globally distributed network 

of ground-based observations. By measuring aerosol optical properties, 

AERONET data helps improve the accuracy of solar radiation models and 

forecasts, particularly by refining estimates of DNI and other solar 

components. 

 

1.2.2 Solar irradiance on tilted surfaces 

Solar radiation is typically measured on a horizontal plane or normal to the 

sun’s rays in the case of DNI. For the design, simulation and performance 

assessment of different solar energy applications, such as the design and 

energy analysis of buildings or photovoltaic power output estimation, for 

example, knowing the solar irradiance on the respective surfaces is critical 

[18]. In these cases, a transposition model is used to estimate the irradiance 

on a tilted surface by taking measured and/or modelled values of the solar 

radiation components on a horizontal surface and knowing the geometric 

parameters. This procedure includes the computation of the direct, diffuse 

and reflected radiation incident on the surface.  

There are several models available in the literature, and most of those models 

agree on the computation of the direct and ground reflected irradiance while 

the modeling of diffuse radiation remains challenging [19]. On the other hand, 

the distribution of the diffuse component over the sky dome is not isotropic 

and depends on cloud cover and the scattering phase function of atmospheric 

particles, which results in phenomena such as circumsolar radiation and 

increased brightness near the horizon, both of which are highly variable. The 
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isotropic sky transposition model, developed by Liu and Jordan [20], was the 

first to be published and assumes that all diffuse radiation is uniformly 

distributed over the sky dome and that ground reflection is diffuse. Since then, 

many models – both physical and empirical – have been developed, 

considering the anisotropic nature of sky irradiance and increasing in 

complexity [21].  

Empirical transposition models are based on observational data, which can 

generate model biases towards the specific location depending on climate 

variables and/or orientation of the surface, depending on the experimental 

setup. Anisotropic physical models typically compute the diffuse component 

differently for two to three regions of the sky dome: i) the isotropic region, 

which consists of the background area of the sky dome remaining after 

excluding the other regions considered, from which radiation is received 

uniformly; ii) the circumsolar diffuse region, where forward scattering of solar 

radiation dominate and is defined as a circular corona area surrounding the 

sun disk; iii) the horizon brightening region, commonly defined as a band 

along the horizon and most evident under clear skies [22]. Global tilted 

irradiance can also be computed using ray-tracing software, which simulates 

the propagation of light rays to determine how irradiance is distributed on 

surfaces [23,24]. The Monte Carlo ray tracing method, in particular, is widely 

used for global illumination calculations [25]. 

The performance of transposition diffuse models tends to be better under 

clear-sky conditions when the sky diffuse irradiance is lower compared to the 

higher direct component of irradiance and its short-term variation over time 

is minimal. Clear-sky conditions are also characterized by a more 

homogeneous radiance over the sky dome compared to other sky conditions. 

Although developed transposition models consider the anisotropic aspect of 

diffuse radiance, they still make assumptions that induce errors, especially 

under cloudy conditions. The complexity of the scattering process, the rapidly 

varying shape and position of clouds, and their uneven distribution across the 

sky make an accurate short-term evaluation of the diffuse irradiance on a 

tilted surface exceedingly difficult [26].  
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Isotropic and anisotropic models were developed for unobstructed tilted 

surfaces, however, in many cases, the sky dome can be obscured, or surfaces 

can be shadowed by surrounding objects. Depending on the application of the 

transposition model, this aspect can be critical. For example, in photovoltaic 

power plants, the front rows of modules typically obscure the sky dome and 

surrounding ground surface and sometimes even shadow the modules behind 

them. Given that the largest part of a photovoltaic powerplant consists of 

rows of tilted panels that are not the first, considering this aspect when 

designing and modeling is extremely important.  

Similarly, in small to medium-scale photovoltaic systems, including those 

integrated into buildings (Building-Integrated Photovoltaics or BIPV), and in 

agrivoltaic systems where solar panels are installed on agricultural land, 

shading issues are also significant. In BIPV applications, panels are often 

installed on building facades or rooftops, where nearby structures and other 

architectural features can cast shadows. In agrivoltaic systems, the 

interaction between solar panels and crops or livestock can affect shading 

patterns. In these contexts, accurately modeling and accounting for shading 

and the transposition of solar radiation are crucial for optimizing energy 

production.  

 

1.3 Solar radiation forecasting 

 

A forecast is a statement about what is expected to happen in the future based 

on the information currently available. Solar radiation forecasts estimate 

these variables using present data and various forecasting techniques. The 

approaches for computing these forecasts can be categorized into image-based 

models, numerical weather prediction models, statistical models, and hybrid 

models. These forecasting methods can also be classified based on the time 

scale of the predictions: short-term, mid-term, and long-term. Short-term 

forecasts, typically ranging from minutes to a few hours ahead, often rely on 

image-based models, such as satellite or sky camera data, and are crucial for 

real-time grid management. Mid-term forecasts, which cover several hours to 
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a few days, usually involve numerical weather prediction models that 

simulate atmospheric conditions. Long-term forecasts, extending from weeks 

to months, often involve a combination of NWP and non-linear statistical 

models. Hybrid models, which integrate both NWP and statistical techniques, 

have been shown to provide more accurate predictions for time horizons of 2-

3 weeks, as they leverage the strengths of both approaches . These models 

are essential for planning and decision-making in energy management and 

infrastructure development. 

 

1.3.1 Image based models 

Image-based models estimate solar radiation by analyzing satellite and/or 

ground-based sky imagery obtained from a total sky imager (TSI). These 

models typically identify cloud structure and dynamic through the 

observations and extrapolate their motion vector fields to forecast cloud 

movement short-term and, consequently, solar radiation [28]. Satellite-based 

models tend to perform best for short temporal horizons (up to 6 hours) but 

exhibit greater errors under low irradiance conditions, such as when the sun 

is low in the sky (high zenith angles) and in locations with high spatial 

variability [29]. TSI-based models offer higher spatial and temporal 

resolutions, but the forecast horizon viability depends on the monitored 

spatial extent and the velocity of the clouds, usually ranging from 5 to 25 

minutes [30]. More detailed information on this topic can be found in [28]. 

 

1.3.2 Numerical Weather Prediction models 

Numerical Weather Prediction (NWP) models solve the physical constitutive 

and state equations that describe atmospheric processes obtaining estimates 

of the evolution of atmospheric conditions over time [31]. For both the 

atmosphere and ocean, motion is described by fluid dynamic equations 

applied to air and water, derived from fundamental principles like the 

conservation of mass, linear momentum and energy and constitutive and 

thermodynamic state laws. Ideally, these equations would perfectly describe 

the Earth's dynamics, but their strongly non-linear nature impose 
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approximate numerical solutions. To achieve this, space is discretized into 

grid points and time into steps. 

NWP models can be global, encompassing the entire Earth's atmosphere, or 

regional, requiring lateral boundary conditions in addition to surface 

information. While using a grid facilitates the numerical solving of equations 

of motion and energy, it inherently limits the model's ability to resolve 

features smaller than the grid spacing. Thus, finding the optimal 

discretization of these equations on a given grid spacing is crucial, balancing 

accuracy and computational effort. Efficient numerical methods enable using 

finer grids and higher model resolution, but they can also induce numerical 

errors, such as discretization errors and round-off errors, that may lead to 

instabilities or inaccurate forecasts. These errors become particularly 

significant when attempting to resolve small-scale features of the Earth 

system, such as individual clouds, which are often too small to be accurately 

represented on the commonly used grid spacings.  

To represent those features, sub-grid-scale parametrization schemes can be 

employed using information on the main grid nodes to approximate sub-grid 

features. This process is important but can always only be a rough 

approximation of the actual physical process. In NWP modeling, 

parameterization schemes are needed in order to represent small-scale 

dynamics of clouds, convection, land, water, urban and sea surfaces, and 

small turbulent eddies [32]. 

The grids which are commonly used in state-of-the-art global NWP models 

have hundreds of millions of 3D grid-points. To perform simulations with 

these models a supercomputer is needed and forecast centers such as the 

European Centre for Medium-range Weather Forecasts (ECMWF) host 

supercomputers which are among the fastest computers in the world [33]. 

These models are also dependent on the quality of the information used for 

the initial state [34]. This information comes from ground based and/or 

remote observations of three-dimensional fields of pressure, wind, 

temperature and water species contents.  The initial states are called 

meteorological analyses and are obtained through processes known as data 
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assimilation. The principle of data assimilation is to get the result based on 

the prediction, compare the predicted result with real time data at the 

specified time, and reflect the uncertainty back to the next time step and 

make it more accurate. Data assimilation combines observations with 

forecasting models in an iterative process in which the model results are 

corrected on the basis of observations at subsequent instants. The accuracy 

of the NWP forecasts relies on the quality of data assimilation. After several 

years of continuous research, the data assimilation process attained a mature 

stage in currently operational NWP [27].  

Additionally, the prediction of aerosols has become an integral part of NWP 

models, as aerosols can significantly influence weather and climate by 

affecting radiation balance and cloud formation. The Copernicus Atmosphere 

Monitoring Service (CAMS) [35] provides forecast data on aerosol 

concentrations, which can be used to improve the accuracy of weather 

forecasts by accounting for the impact of aerosols on atmospheric processes.  

Many weather forecasts today are based on ensemble simulations from 

numerical weather prediction models [31]. Ensemble forecasts consist of 

typically around 10 – 50 individual simulation runs of a numerical weather 

prediction model with perturbed initial conditions and alterations in the 

model parameterizations, resulting in a collection of possible scenarios for the 

future developments of the weather, generating probabilistic forecasts, from 

which several key products can be derived such as probabilistic forecasts, 

most probable forecast scenario, prediction intervals and extreme event 

forecasts [31]. 

 

1.3.3 Statistical and machine learning models  

Statistical and machine learning forecast models are based on historical data. 

Statistical linear or time-series methods derive relations between the 

variables used as input and the variable to be predicted through statistical 

analysis. Examples of statistical models are the persistence model or naïve 

predictor commonly used as a reference model [36], the Autoregressive 

Moving Average (ARMA) and the Autoregressive Integrated Moving average 
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(ARIMA) [37].The persistence model assumes that the next value of a time 

series is calculated under the assumption that nothing changes between the 

current time and the forecast step time and thus the model’s accuracy 

decreases greatly with forecast duration. Several studies with respect to 

direct time series modeling have been performed [38,39]. 

Machine learning models are non-linear models [40]. Today, machine 

learning and artificial intelligence are often used interchangeably, however, 

machine learning is a set of algorithms that improve their performance on a 

set task through experience. Often this is achieved by a combination of 

statistical methods and numerical optimization to incrementally improve the 

machine learning algorithm and gain insight into the task that generalizes to 

future variations of that same task [40].  

The most known type of machine learning is supervised learning [41]. In 

supervised learning, a dataset and labels or output data for this dataset is 

used and then a training process is carried out to map the samples in the 

dataset to the according labels or output data. Tasks within this type of 

machine learning are classification tasks, such as detecting clouds in satellite 

images, or regression tasks, including predicting the temperature from 

observations at weather stations, for example. 

Machine learning modeling is different from classical numerical models, 

where the data and the rules are known, and the answers are obtained from 

the model. In supervised machine learning the data and answers are provided 

to derive the rules (albeit those rules are often implicitly stated). 

Artificial neural networks (ANNs) are machine learning algorithms inspired 

by the structure and function of the human brain, specifically the neurons in 

the brain. An artificial neural network is made up of layers of interconnected 

neurons that perform simple calculations on their input and pass the result 

to the next layer. Typical inputs include historical solar radiation data, along 

with key meteorological variables like temperature, humidity, wind speed, 

and cloud cover. Temporal factors such as time of day, day of the year, and 

geographical location are also included, as they account for natural variations 

in solar radiation [42]. The input data is fed through the network, layer by 
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layer, until it reaches the output layer, where the final decision or prediction 

is made. During the training process, the network is presented with a large 

set of input-output pairs of experiments or observations and makes 

predictions based on these training examples. Whenever the predictions are 

incorrect, the network adjusts its internal weights and biases to better fit the 

data. This process is repeated over and over, until the network can accurately 

predict the best output for a given input. 

A more in-depth review of the different machine learning models including 

their advantages and disadvantages for solar radiation forecasting can be 

seen in [43]. 

 

1.3.4 Hybrid models  

Hybrid forecasting models combine two or more models with different 

forecasting approaches typically outperforming individual models [40]. Some 

examples are the use of statistical models for post-processing outputs from 

numerical weather prediction models or the use of machine learning 

techniques for estimating irradiance from satellite data.  

Model Output Statistics (MOS) is applied to outputs of NWP models to derive 

regression functions for localized bias reduction for future forecasts based on 

historical data of forecasts and ground-based irradiance measurements. This 

can also be achieved by using artificial neural networks or other types of 

machine learning models for a non-linear approach to bias correction and it 

can be applied not only to the output of NWP models but also to other physical 

models, namely image based models. 

 

1.4 Solar photovoltaic system modeling 

 

Solar photovoltaic systems convert part of the incident solar radiation directly 

into electricity through the photovoltaic effect and are made of a junction of 

doped semiconductor materials [22]. This junction, known as the p-n junction, 

is formed by doping the semiconductor on one side with a material that has 

fewer electrons in its valence layer to create p-silicon, which has a deficiency 
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of electrons, and doping the other side with a material that has more electrons 

in its valence layer to form n-silicon, which has an excess of electrons. When 

a semiconductor absorbs a photon with sufficient energy, an electron from the 

outer layer of an atom is freed, creating a hole-electron pair within the 

structure. In the case of silicon, which is an indirect bandgap semiconductor, 

photon absorption alone is not sufficient to promote an electron from the 

valence to the conduction band. The process also requires the involvement of 

a phonon to conserve momentum within the crystal lattice. When the two 

materials that make up a photovoltaic cell are joined, the surplus electrons 

from the n-type material fill the holes in the p-type material, and the gaps 

from the p-type diffuse into the n-type material. Consequently, the n-side of 

the junction becomes positively charged, while the p-side becomes negatively 

charged. The negative charges on the p-side inhibit the movement of 

additional electrons from the n-side, while the movement of additional 

electrons from the p-side is easier due to the positive charges at the junction 

on the n-side. Thus, the p-n junction behaves like a diode. These two materials 

are connected through an external circuit, allowing electrons (i.e., electric 

current) to flow through.  

The amount of solar irradiance absorbed by the photovoltaic cell significantly 

impacts its power output. Additionally, cell temperature is a crucial factor, as 

higher temperatures can negatively impact the semiconductor material in 

photovoltaic cells. Specifically, increased temperature lowers the bandgap 

energy of the semiconductor, which is the energy required to free an electron 

from its atomic bond. This reduction in bandgap energy leads to a higher 

intrinsic carrier concentration and increased recombination rates, both of 

which reduce the cell's power output and efficiency. Essentially, as the 

temperature rises, the semiconductor becomes less effective at converting 

sunlight into electricity [44].  

The most prevalent photovoltaic technologies use silicon and include 

monocrystalline silicon, polycrystalline silicon, and amorphous silicon doped 

with materials such as phosphorus (for type n) and boron (for type p). 

Monocrystalline silicon cells are composed of a single continuous crystal 
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lattice structure, making them more efficient but also more expensive due to 

the production process. The record efficiency for monocrystalline silicon cells 

is 26.1 % [45] under Standard Test Conditions (STC), which involves a cell 

temperature of 25°C, an irradiance of 1000 W/m² and air mass of 1.5. 

Polycrystalline silicon cells, produced using multiple grains of silicon, have 

lower efficiency [46], with the record being 24.4 % [45]. Amorphous silicon, 

also known as thin-film photovoltaic technology, consists of silicon in a thin, 

homogeneous layer that can be deposited on a variety of substrates. These 

cells generally have lower efficiencies, with the record being 21.24% [45]. In 

addition to these traditional silicon-based cells, there are several other types 

of photovoltaic technologies. Second-generation cells, like cadmium telluride 

(CdTe) and copper indium gallium selenide (CIGS), are also thin-film 

technologies with record efficiencies of 22.4 % and 23.6 %, respectively [45]. 

Third-generation cells include advanced concepts such as multi-junction cells, 

which stack multiple layers of photovoltaic materials to capture a broader 

spectrum of sunlight and achieve efficiencies above 30% [45]. Perovskite solar 

cells, an emerging technology, have shown rapid improvements in efficiency, 

reaching up to 26.1% in laboratory conditions [45], while organic 

photovoltaics, though still less efficient, offer potential benefits in flexibility 

and low-cost production. Each of these technologies has its own advantages 

and trade-offs regarding efficiency, cost, and application suitability. 

Photovoltaic systems are typically modular and can be built to virtually any 

size. Photovoltaic cells are grouped into modules, connected in series and 

parallel, which are encapsulated with various materials to protect the cells 

and electrical connections from the environment. These modules can be 

combined to form photovoltaic strings (groups of modules in series) and arrays 

(groups of modules or strings in parallel), thereby increasing the power output. 

Photovoltaic equipment usually has no moving parts, requiring minimal 

maintenance and offering long-term reliability. However, some systems may 

include a tracking mechanism to follow the apparent movement of the sun in 

the sky, thereby increasing the collected solar irradiation. Most solar 

photovoltaic power plants do not use tracking mechanisms. 
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For the design and performance optimization of photovoltaic systems, 

trustworthy modeling before and during their operation is essential [47]. 

Models simulate the response of these complex systems, providing clear 

insights into multivariate and changing conditions. Depending on the 

conditions and limitations of each problem, the first step is to select an 

appropriate model. 

 

1.4.1 Modeling photovoltaic conversion 

Various models have been proposed in the literature for estimating 

photovoltaic power output of solar cells. The most basic models employ 

simplified linear relationships that consider the efficiency of the PV cell or 

module, as well as the impact of incident solar irradiance and sometimes the 

cells temperature.  

More complex physical models are based on modeling an electric circuit that 

can be considered equivalent to the photovoltaic cell or module through 

assumptions and approximations.  

Equivalent electric circuit models typically consist of a diode representing the 

p-n junction and a current source representing the electric current generated 

due to the photovoltaic effect. Additional electric resistors are also included, 

namely a series resistance representing the resistance inside the cell, a shunt 

or parallel resistance associated with the internal resistance of the p-n 

junction (diode), and sometimes additional diodes to account for 

recombination losses at low irradiance levels, the impact of grain boundaries, 

and leakage currents due to proximity effects [47].  

These models rely on several parameters defining the electric circuit, which 

are typically not measured or disclosed by photovoltaic cell or module 

manufacturers. Therefore, before the model can be applied, these parameters 

must be extracted using available information or by performing experiments. 

The more complex the model, the more information is needed, that is, more 

parameters need to be determined. Another crucial aspect for applying these 

models in real conditions is accounting for the irradiance and temperature 
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dependence of the photovoltaic cell’s efficiency and power output. This 

requires adjusting the different parameters to the actual conditions. 

The process of extracting and adjusting model parameters can be time-

consuming. Many approaches have been proposed, ranging from purely 

empirical models to physical models, either using iterative or non-iterative 

methods, as well as machine learning techniques and hybrid methods [48]. 

 

1.4.2 Modeling photovoltaic cell temperature 

The temperature of a photovoltaic cell or module under illumination is 

determined by modeling the energy balance in the cell [44]. The solar energy 

absorbed by the cell is converted in a large part to thermal energy, which is 

transferred to the environment through a combination of heat transfer 

mechanisms: conduction-convection, and thermal radiation. Given the 

significant impact of cell temperature on electrical energy generation, 

accurately determining this temperature that arises from the energy balance 

is crucial for the application of photovoltaic electric power output models. In 

photovoltaic powerplants, this variable is typically measured by attaching a 

temperature sensor to the back of photovoltaic modules; however, this may 

not always provide an accurate measurement of the actual photovoltaic cell 

temperature.  

Several models have been developed to compute photovoltaic cell temperature, 

many of which are simple empirical correlations involving air temperature 

and wind speed. Other approaches consider the energy balance of the 

photovoltaic module, which can be modeled as either multiple layers with 

different properties or a single layer with weighted average thermal 

properties. These models can also be categorized as steady-state or dynamic 

models (transient) and may be one-, two- or three-dimensional. 

Another aspect to consider is whether the thermal and electrical photovoltaic 

models are coupled, as well as the type of solver used (numerical or analytical) 

since temperature and power output are dependent [49]. It is important to 

note the trade-off between performance and complexity when selecting the 

most appropriate model for a specific application [50]. 
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1.4.3 Modeling electric power output 

To connect a solar photovoltaic system to the electric grid, a conversion from 

direct current (DC) to alternating current (AC) is necessary. Power conversion 

systems (PCS) used in photovoltaic powerplants typically include inverters 

and a controller with maximum power point tracking (MPPT). The maximum 

power point corresponds to the point on the current-voltage (I–V) curve where 

the product of current and voltage is maximized. It is closely related to the 

fill factor (FF), which is defined as the ratio between the maximum power 

output and the product of open-circuit voltage and short-circuit current, 

providing an indicator of the cell’s electrical quality and efficiency. The MPPT 

is a high-efficiency DC-to-DC converter that functions as an optimal electrical 

load for the solar panel or array to operate at maximum power output [44].  

This conversion process relies on various electronic circuit devices, and it 

inherently involves losses, which can be quantified by the efficiency of the 

PCS. When using only datasheet information, the modeling of these devices 

often focuses on their efficiency and power capacity, while some models 

consider efficiency as a function of input power, provided there is sufficient 

data [51].  Typical equipment datasheets usually offer a constant efficiency 

value and the nominal power rating. 

 

1.4.4 Other losses 

In solar photovoltaic systems, other types of losses can impact overall 

performance depending on the specific characteristics of the modules, electric 

connections and environmental conditions. One significant loss is due to the 

reflection of solar radiation on photovoltaic modules, typically accounted for 

through a function that considers the incidence angle, known as the incidence 

angle modifier [52]. Shading of modules and the obscuring of the sky dome 

also contribute to losses, which can be factored in when calculating the 

irradiance on tilted surfaces. Cable losses, another important origin of losses, 

can be computed based on the nominal voltage drop for the specific system 

design [53]. Additional losses include those from soiling, light-induced 
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degradation, and module mismatch [53]. For systems incorporating electric 

batteries, energy storage losses must also be taken into account. 

 

1.5 Applications and importance of solar forecasting 

 

Solar energy forecasting, namely photovoltaic power, is essential for 

integrating solar energy systems into the power grid. Additionally, it is very 

useful for optimizing photovoltaic system operations and managing financial 

risks associated with solar energy projects. Accurate forecasts enable grid 

operators to balance supply and demand, enhancing grid stability and 

reducing reliance on backup power sources. They assist in scheduling 

maintenance and deploying energy storage systems, maximizing energy 

production and efficiency. Reliable forecasts help investors and stakeholders 

assess the economic feasibility of projects, secure financing, and develop 

pricing strategies. Additionally, reliable solar energy forecasts contribute to 

stabilize energy markets, promote competitive pricing, and support 

environmental sustainability by reducing greenhouse gas emissions and 

promoting renewable energy transition. 

The need for integrated PV forecasting models is increasingly evident as these 

models play a vital role across various time scales. Long-term forecasts, which 

involve solar resource mapping, are essential during the design and planning 

phases of solar power plants. These forecasts help determine the optimal 

location and configuration of PV systems, ensuring that the long-term energy 

output justifies the investment. Mid-term forecasts, ranging from days to 

weeks, are critical for the operational management of PV installations. They 

allow for better planning of maintenance activities, energy storage 

management, and grid integration, ensuring that energy production is 

optimized, and downtime is minimized. 

In the short term, forecasts covering minutes to hours are indispensable for 

real-time grid management and the immediate operational control of PV 

systems. These short-term predictions enable rapid responses to changes in 

weather conditions, helping to maintain grid stability and prevent power 
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outages. By integrating forecasting across these different time scales, PV 

systems can be designed, operated, and managed more effectively, ensuring 

that solar energy contributes reliably and efficiently to the overall energy mix. 

This comprehensive approach not only supports the technical and economic 

viability of solar projects but also reinforces their role in the broader 

transition to renewable energy. 

 

1.6 Objectives 

 

The goal of this work was to improve the accuracy of solar resource 

assessment and short-term photovoltaic power forecasting across different 

locations and technologies, by developing an integrated and transferable 

model which incorporates physical modeling, data-driven approaches and 

inputs from Numerical Weather Prediction and aerosol models.  

To fulfill this main objective, the following partial objectives were pursued: i) 

assess NWP models outputs for solar resource mapping and solar radiation 

forecasting; ii) develop ANN models to improve solar radiation modeling and 

forecasting; iii) evaluate and improve transposition models for converting 

solar irradiance components to tilted surface irradiance; iv) develop coupled 

models for estimation of photovoltaic temperature and power output; v) 

research inverter and typical losses models; vi) integrate different models into 

a global forecast model and validate with experimental data for accurate and 

reliable PV power prediction. 

By achieving these objectives, the model aims to provide a robust tool for 

forecasting the power output of PV systems, thereby supporting the efficient 

operation and management of solar energy resources. 

 

1.7 Outline of the thesis 

 

This thesis is organized into seven chapters. The first chapter provides an 

introduction to the background and significance of the study, offering an 
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overview of solar modeling and forecast, of photovoltaic systems and the 

importance of global forecasting models. It introduces key concepts such as 

solar radiation, solar photovoltaic systems, and the different models used for 

forecasting solar energy. After this, the following four chapters correspond to 

published papers in international peer-review journals while the fifth one is 

under review. The second chapter focuses on the development of ANN models 

aimed at improving solar irradiance forecasting using NWP and aerosol data 

as input. Details on the process of optimizing ANN configurations, including 

the selection of input variables and training functions are presented, as well 

as the evaluation of model performance against the traditional numerical 

weather prediction results. The use of the proposed method for mapping solar 

resource for a typical meteorological year is also presented. Building on this, 

the third chapter extends the work by validating the developed ANN models 

using operational NWP data. It discusses the application of these models in 

predicting direct normal irradiance and their integration with existing 

weather prediction data within a mid-term forecast horizon, highlighting the 

improvements in forecasting accuracy. The fourth chapter shifts focus to the 

prediction of global solar irradiance on tilted surfaces, considering the effects 

of shading and anisotropic diffuse radiation. This chapter explores the 

development of models designed to enhance the accuracy of power predictions 

in real photovoltaic powerplants. The fifth chapter delves into the 

development and validation of coupled thermal-electric models for 

photovoltaic systems. It addresses the challenges associated with predicting 

the temperature and power output of photovoltaic systems, considering the 

effect of various environmental factors. In the sixth chapter, the study 

introduces the model for forecasting photovoltaic power output by integrating 

the previously presented models. It is designed to operate without on-site 

observations, allowing for broad application and reduced operational costs. It 

provides 72-hour power output forecasts with flexible temporal resolution. 

The chapter highlights the algorithm's versatility and its potential to improve 

PV system management and grid integration, even in locations with limited 

historical data. Finally, the seventh chapter presents the conclusions of the 
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work by summarizing the key findings, discussing the impact of the research 

carried out, and suggesting directions for future work. This chapter reflects 

on the contributions of the study to the fields of solar energy forecasting and 

photovoltaic system optimization. 
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Chapter 2 

Method for solar resource assessment using numerical 

weather prediction and artificial neural network 

models based on typical meteorological data: 

application to the south of Portugal† 

 

Abstract 

 

In this work a method for regional solar resource assessment based on 

numerical weather prediction (NWP) and artificial neural network (ANN) 

models is presented. The method was developed using typical meteorological 

and solar radiation data and applied to the location of Évora, Portugal with 

the goal of assessing solar global horizontal (GHI) and direct normal (DNI) 

irradiations with 1.25 km of horizontal resolution in the south of Portugal. 

The NWP model used was the research model Meso-NH and a site adaptation 

model was developed based in ANNs and using as inputs the simulated 

meteorological variables from Meso-NH and aerosol data from Copernicus 

Atmospheric Monitoring Services (CAMS) for the observation site. The 

resulting annual relative mean bias errors for GHI and DNI at Évora and 

typical meteorological year are of 0.55 % and 0.98 %, respectively, while the 

values for the original Meso-NH simulations are of 8.24 % for GHI and 

31.71 % for DNI. The developed site adaptation model is applied to the region 

for the purpose of solar radiation assessment and validated using data from 

a network of solar radiation measuring stations scattered throughout the 
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south of Portugal, showing relative mean bias errors of 2.34 % for GHI and 

3.41 % for DNI, while the original Meso-NH simulations presents relative 

mean bias errors of 8.50 % and 29.54 %, respectively. These results allowed 

the generation of improved solar resource availability maps which are a very 

useful tool in solar resource assessment, the study of shortwave radiative 

climate, as well as project planning and solar system design and operation. 

 

Keywords 

Solar radiation; Solar energy; Site adaptation; Typical meteorological year; 

Numerical weather prediction; Artificial neural network 

 

2.1 Introduction 

 

The solar energy industry has been growing since the 1990s mainly in 

response to environmental issues related to the use of fossil fuels. At the end 

of 2020, the total installed power worldwide was of 707 GW for photovoltaic 

technologies and 6.5 GW for solar concentration systems [1]. The number of 

new solar energy systems is expected to grow in the future as countries aim 

for low-carbon alternatives for electricity generation. Thus, a reliable 

assessment of the solar resource and solar radiation forecast tools are crucial 

as they are helpful not only for the understanding of the climate of the Earth 

but also for project planning and energy systems design and operation.  

Solar radiation comprises two components, the direct normal irradiation 

(DNI), which is the direct beam on a plane perpendicular to the rays of the 

sun, and the diffuse irradiation, usually measured on a horizontal plane (DHI 

- diffuse horizontal irradiation). The total irradiation on a horizontal surface 

is known as Global Horizontal Irradiation (GHI). If the surface of interest is 

tilted, a photovoltaic panel or a solar thermal collector for instance, then a 

third component must be considered, which is the solar radiation reflected on 

the ground and surrounding objects. On the other hand, if the focus is solar 

concentration systems the component of interest is DNI, including circumsolar 

irradiance. 
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Ground-based measurements of solar irradiance are usually made by 

pyranometers for the global or diffuse components and by pyrheliometers for 

the direct normal component and can be used to assess the solar resource in a 

specific location or in a region using observations from different locations [2,3]. 

For regional resource assessment, it would be ideal to have observations made 

throughout a long period of time in multiple sites and in a somewhat gridded 

layout. Such network, however, is difficult to install and maintain. 

Once long-term data series are available for a given location, a way to assess 

solar resource is generating a Typical Meteorological Year (TMY) by 

concatenating typical meteorological months of real measurements that 

reproduce the long-term statistics. These are useful for energy simulation of 

solar power plants and buildings, either to determine their thermal response 

under different environmental conditions or to design and simulate integrated 

renewable energy systems. A TMY generated for solar resource assessment is 

composed of solar radiation and other meteorological variables during a period 

of one year [4] usually including mean and extreme values of temperature, 

wind and relative humidity.   

The first version of TMY was developed using the Sandia method proposed by 

I. J. Hall et al. [5]. The National Renewable Energy Laboratory (NREL) has 

developed a second (TMY2) [6] and third version (TMY3) [7] by slightly 

modifying the process of selecting the typical months. Regardless of the 

method used, the TMY has been recently used in applications related to solar 

energy as reported in the literature [8–11]. 

In addition to observations, satellite data [12,13] and numerical weather 

prediction (NWP) models [14–16] have been used to study the solar resource 

in more extensive regions instead of in discrete locations as is the case of TMY. 

NWP models solve the physical constitutive and state equations that describe 

atmospheric processes obtaining estimates of the evolution of atmospheric 

conditions over time. Usually, the main goal of these NWP models is weather 

forecast, so the detailed prediction of the different components of solar 

radiation is not essential for that purpose, namely the DNI and DHI, since 

only GHI is considered relevant for the computation of the energy balance of 
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the surface and atmosphere. More recently, due to the need for solar energy 

system development, attention has been drawn to this aspect and to the 

improvement of the accuracy regarding solar radiation specific variables [17]. 

Soukissian et al. [18] used the recently released ERA5 reanalysis dataset from 

the European Centre for Medium-Range Weather Forecasts (ECMWF) for the 

study of offshore wind and solar resource in the Mediterranean Sea.  

The existence and location of clouds as well as the concentration and type of 

aerosols in the atmosphere strongly affect solar radiation at the surface, which 

is difficult to accurately describe in NWP models. In the case of aerosols, for 

example, monthly-mean aerosol climatologies are typically used to reduce the 

computational effort of the operational models. Modeling and prediction of 

aerosols has been recently studied [19–21] and its application to NWP models 

tested. Breitkreuz et al. [22] used aerosol predictions and experimental data 

to forecast solar irradiance, which was compared with the output of the 

ECMWF model. There was a decrease in the mean squared error (MSE) of 

hourly GHI for the second and third forecast days from 11.5 % to 7.2 % for 

clear sky conditions. 

In another approach, site adaptation models are used to compare and correct 

modelled data against observations made at a specific site. This term is 

mainly used for the bias correction of satellite data but many other techniques 

can be used to correct modelled data [23], as is the case of machine learning 

models. Alfadda et al. [24] compared hourly GHI, DNI and DHI forecasting 

ability of various machine learning models, including Artificial Neural 

Networks (ANN), using radiation and aerosol measurements as well as wind 

and aerosol forecasts in Saudi Arabia as inputs, showing that the ANN model 

performs better than the remaining tested models. Fonseca et al. [25] 

developed a forecasting model for day-ahead solar irradiation using support 

vector machine learning algorithm that has as input NWP data from the 

mesoscale model of the Japan Meteorological Agency, achieving a reduction of 

16 % of the root mean squared error (RMSE) on the regional scale taking 

measurements as reference. 
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ANN models consist of input and output layers, as well as one or more hidden 

layers containing units defined as neurons. Such computing systems 

progressively improve task performance by considering examples, generally 

without task-specific programming. Many authors have used ANN in the field 

of renewable energy, e.g. for correction of wind speed or solar irradiance 

forecasts [26–28], and for simulation of photovoltaic power [29–37]. Ghimire 

et al. [38] assessed daily solar energy potential for five cities of Australia 

using different machine learning algorithms such as ANN, support vector 

machine, gaussian process machine learning and genetic programming using 

reanalysis data from ECMWF as inputs. The results show that the ANN 

model outperforms all other machine learning models as well as the 

deterministic models used for benchmarking. 

In this work, a method is proposed to assess direct normal and global 

horizontal irradiations at a regional scale using an artificial neural network 

model for site adaptation of simulations from a numerical weather prediction 

model based on typical meteorological data and including aerosol information. 

This approach combines the advantage of TMY in identifying the typical 

periods that better represent the long-term climatology, the ability of NWP 

model to simulate solar radiation and meteorological variables in a regional 

scale and the capability of ANN models for data correction. Experimental 

meteorological and solar radiation data from Évora, Portugal, was used for 

model development while the validation of the developed method also used 

data from a network of solar radiation measuring stations dispersed 

throughout a region centered in Évora.  

In Section 2, the experimental data and quality control tests are presented, 

and the generation of the typical meteorological year (TMY) is described. In 

Section 3 the typical months of the TMY are simulated using the NWP model 

Meso-NH and analysis data from ECMWF for initialization, generating 

atmospheric and solar radiation data for the desired region. The simulated 

variable of study (in this work there are two: GHI and DNI) for the selected 

location (Évora) is analyzed against observations and other simulated 

meteorological variables. In Section 2.4, a procedure for the development and 
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optimization of a site adaptation model based on ANN is presented using not 

only the outputs from the Meso-NH simulations but also aerosol related 

variables from the Copernicus Atmosphere Monitoring Service (CAMS). After 

the ANN model is optimized for the selected location, it can be applied to the 

desired region allowing for a better assessment of the resource as shown in 

the results and discussion section of this work (Section 2.5). Finally, the 

conclusions are presented in Section 2.6. 

 

2.2. Experimental data and typical meteorological year generation 

 

To develop this work, long-term data series of observed meteorological and 

solar radiation variables are needed. In the following, a description of these 

data series and data processing procedure are presented as well as the 

generation of a typical meteorological year. 

 

2.2.1 Experimental data 

A long and complete series of daily meteorological data is required to 

determine a TMY. A long-term data series of 16 years (2003 to 2018) of 

observations made at Évora – Verney (Fig. 2.1) is available for the method 

development. However, these are subject to instrumentation failures, thus a 

careful analysis and processing of observations are necessary for the data 

series to be correct and complete. Hence, observations that are beyond the 

appropriate physical limits are identified and removed while data gaps are 

filled through linear interpolation or using adequate correlations with other 

observations made in nearby meteorological stations. 

The first step is the identification and removal of data that are beyond the 

physical limits that can be admitted for each variable measured in Évora – 

Verney station (38.567811, -7.911459). The variables studied were GHI 

(obtained from global horizontal irradiance observations made with a Black 

& White Pyranometer from EPLAB model 8-48), average, maximum and 

minimum air temperature, and relative humidity (Hydro-Thermo 

Transmitter from Thies CLIMA, model 1.1005.50) and mean wind speed and 
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wind gust (A100R contact closure anemometer from Vector Instruments until 

2014 inclusive, and WindSonic ultrasonic wind sensor from Gill Instruments 

after 2014). 

Adjustments were made for relative humidity and wind speed. Over time, 

values of daily relative humidity show a small linear drift (decreasing values) 

until a new calibration is made. To take this into account, slopes were 

determined for each period of observations between calibrations and 

corrections were applied. A restraint was applied limiting relative humidity 

to 100 %. 

Adequate wind observations were only available in the Évora - Mitra 

meteorological station from ICT (38.525388, -8.016602, not shown in Fig. 2.1), 

approximately 10 km southwest of Évora-Verney (Fig. 2.1). However, these 

observations were not measured at the same height throughout time. From 

2003 to 2014 they were obtained at 6 m height and from 2015 to 2018 at 10 

m height. The measurements at 6 m were extrapolated through the power 

law of wind speed profile near the ground using the exponents determined for 

12 wind direction sectors according to [39] and a correction due to sensor 

degradation was applied using the software Windographer™, after which the 

daily values were computed. 

Correlations were found between the observations of each variable (except 

wind) performed in Évora – Verney and two other meteorological stations 

nearby for data gap filling, namely the Évora – Mitra station and a station 

located in Portel (38.306528, -7.689500). If the use of correlations is not 

possible, then linear interpolation is performed. After this procedure, a 

complete data series of daily GHI, mean, maximum and minimum air 

temperature, mean, maximum and minimum relative humidity, mean wind 

speed and wind gust for the period since 01/01/2003 to 31/12/2018 were 

obtained.  

DNI observations made at the Évora – Verney station were also needed for 

this work, being obtained from global horizontal irradiance and diffuse 

horizontal irradiance observations made with two Black & White 

Pyranometers from EPLAB (model 8-48) and a timestep of 10 min until 2016 



Chapter 2. Method for solar resource assessment 

36 
 

[40]. After 2016, direct normal irradiance and global horizontal irradiance 

data were obtained from 1-minute timestep observations from a Kipp & Zonen 

CHP1 pyrheliometer and a CM6B pyranometer, respectively. 

The solar radiation data were subject to quality control procedures, namely 

those of the Baseline Surface Radiation Network (BSRN) [41] which account 

for physically impossible values, extremely rare values and values that are 

not reliable when considering the ratio between diffuse and global horizontal 

irradiance. To account for instrument and/or data acquisition system 

malfunctions, a procedure similar to that presented above was implemented 

to fill the missing global horizontal irradiance values using correlations with 

nearby meteorological stations, as presented in [42]. 

For the validation of the method developed in this work, observation data of 

direct normal irradiance and global horizontal irradiance from stations of the 

DNI-A project network were used [43]. The DNI-A network is a solar 

radiation measurement network which comprises 13 stations installed in the 

south of Portugal. These stations are equipped with Solys2 sun trackers with 

one CHP1 pyrheliometer, two CMP11 pyranometers to measure horizontal 

global and diffuse irradiance. The instruments were calibrated in accordance 

with ISO 9059:1990 and 9847:1992 and the observations are corrected 

regarding their zero offset, filtered according to the BSRN quality control 

procedure and gaps filled according to the method developed in [43].  

The solar radiation observations used for the method validation were 

retrieved from the following stations of the DNI-A network: Évora – PECS 

(38.5306, -8.0112), Évora – EMSP (38.5289, -8.0053), Portalegre (39.2692, -

7.4428), Beja (38.0249, -7.8672), Lisboa (38.7734, -9.1779), Sines (37.9576, -

8.8473) and Enercoutim (37.4431, -7.7409). The location of these stations can 

be seen in Fig. 2.1 including the Évora – Verney station which data was used 

for the development of the method.  
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Fig. 2.1 - Location of solar radiation measuring stations from the DNI-A network. 

 

2.2.2 Generation of a typical meteorological year 

Sixteen years (2003 to 2018 inclusive) of daily observations of GHI, average, 

maximum and minimum air temperature and relative humidity and average 

wind speed and wind gust in Évora – Verney (Fig. 2.1), in a total of nine 

variables, were used to determine a TMY. The TMY is obtained by 

concatenating twelve typical meteorological months (TMMs) which are 

selected through a sequence of steps starting with the determination of the 

Finkelstein-Schaffer (FS) statistics [44] of the daily values for all variables, 

according to the Sandia method [5]. Next, the cumulative distribution 

function (CDF) for each variable in each month of the long-term series is 

computed and then a weighted sum of CDFs is determined for each month 

based on the weights shown in Table 2.1.  

 

Table 2.1 - Statistical weights of the variables used on the determination of the TMY. 

Variable 
Air temperature  Relative humidity  Wind speed 

GHI 
Mean Max. Min  Mean Max. Min  Mean Max. 

Weight 2/24 1/24 1/24  2/24 1/24 1/24  2/24 2/24 12/24 
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The five months (identified by their respective year, from here on termed 

month/year) for each calendar month which weighted CDFs are closest to the 

long-term CDF are selected as candidates for TMM. Next, the Sandia method 

with the slight alterations included by Pissimanis et al. [45] and used in other 

studies [5,42], is used. This procedure consists in the determination of the 

root mean square difference (RMSD) of the hourly global horizontal 

irradiation (GHI) and then the selection of the months/years that show a 

RMSD lower than min{RMSD} + 0.02 kWh/m2 for each calendar month. Then, 

their FS values are computed and the month/year showing a FS lower than 

min{FS} + 0.03 is finally selected. If this procedure does not result in only one 

month/year for a given calendar month, the month/year that shows lowest FS 

values for mean air temperature is selected. The resulting months/years 

selected for each calendar month of the generated TMY are shown in Table 

2.2. This TMY was validated by evaluating the monthly TMY means against 

long-term means (16 years) as shown for the example of global horizontal 

irradiance in Fig. 2.2. 

 

Table 2.2 - Selected months/years for each calendar month of the generated TMY for Évora. 

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. 

2018 2006 2017 2008 2005 2010 2014 2007 2011 2008 2004 2018 

 

 

Fig. 2.2 - Comparison between the TMY and long-term monthly mean values of daily mean 

global horizontal irradiance. 
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The GHI, DNI and DHI values of the generated TMY can be seen in Fig. 2.3, 

2.4 and 2.5, respectively. 

 

 

Fig. 2.3 - GHI observed at Évora-Verney station for the generated TMY. 

 

 

Fig. 2.4 - DNI observed at Évora-Verney station for the generated TMY. 

 

 

Fig. 2.5 - DHI observed at Évora-Verney station for the generated TMY. 
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2.3 Solar radiation results from the NWP model 

 

The NWP model chosen to simulate the atmospheric conditions during the 

TMY was the research model Meso-NH [46]. A brief description of the model 

and procedure for the simulation of the TMY is made in this section as well 

as an analysis of the model output data. 

 

2.3.1 Meso-NH model simulations setup 

The Meso-NH model is a mesoscale atmospheric model jointly developed by 

the Laboratoire d'Aérologie (CNRS/University of Toulouse) and by the Centre 

National de Recherches Météorologiques, CNRM (CNRS/Météo-France) that 

aims to simulate the state of the atmosphere by incorporating a system of non-

hydrostatic momentum equations and computing balances over a wide range 

of scales. It has a set of physical parameterizations with high detail in the 

representation of clouds and precipitation [46,47]. Surface-atmosphere 

interactions are represented by the SURFEX surface platform of schemes [48] 

and the ECOCLIMAP database, which contains surface parameters with 1 km 

resolution [49]. The Meso-NH model is a cloud-resolving and large eddy 

simulation model that was extensively validated and inter-compared with 

other state-of-art models (see Lac et al. [46], and the references herein or 

Capecchi [50]). A detailed and comprehensive scientific and technical 

documentation is available on the Meso-NH web site (mesonh.aero.obs-mip.fr, 

last access: 11 January 2022), where a list of hundreds of publications can be 

accessed. The model has long been used successfully in Portugal for studies 

related to phenomena that are relevant to solar radiation forecast, namely 

convection, clouds and precipitation [51,52], fog [53] and dust atmospheric 

transport [52,54]. 

The radiation transport in the atmosphere is modelled through the most 

recent ecRad scheme developed by the ECMWF. This scheme is based on the 

Rapid Radiative Transfer Model (RRTM) [55,56], which takes into account 

cloud parameterization, liquid water content, ice and snow, using the Monte 

Carlo Independent Column Approximation (McICA) method that allows for a 
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more accurate representation of the interaction between radiation and the 

clouds. 

The ECMWF developed the Integrated Forecasting System (IFS) which 

consists in several global operational models, namely an atmospheric general 

circulation model, an ocean wave model, a land surface model, an ocean 

general circulation model and perturbation models for the data assimilation 

and generation of forecast ensembles. This system generates forecasts that 

encompass different time ranges from the intermediate range (up to 15 days) 

to seasonal intervals (up to 7 months) with a horizontal resolution of 0.125° 

and temporal resolution of 1 h. Analyses are produced by combining short-

range forecast data with observations to produce the best fit between them. 

These data are available twice per day and since this work falls under the 

scope of the development of an operational solar energy and photovoltaic 

power forecasting algorithm the operational forecasts of the ECMWF were 

retrieved and used for initialization of the Meso-NH model.                                

The simulations of the TMY were performed in series of 3 days with a 6-hour 

spin-up period (every model run covered 6 + 72 h) for the region of the south 

of Portugal as in Fig. 2.1, with 1.25 km of horizontal resolution and 

generating several meteorologic near surface variables with the timestep of 1 

min. This numerical experiment was also used for the evaluation of the 

impact of the Alqueva lake on the regional climate as described in detail in 

[57] where the specific schemes and parameters used can be found as well as 

a validation of the simulations against several meteorological observations. 

 

2.3.2 Analysis of solar radiation data output from Meso-NH  

After integrating the simulated 1 min global horizontal and direct normal 

irradiances into 10-minute values and  interpolating these for the location of 

Évora – Verney station through a bi-linear interpolation of the values from 

the 4 neighboring grid-points, these were paired with the available 

observations for the whole TMY resulting in Fig. 2.6. The model tends to 

overestimate both variables, which is also visible when comparing the annual 

values of the modelled and observed variables for this site, which are 
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approximately 1.97 MWh/m2 and 1.82 MWh/m2, respectively, for GHI and 

2.70 MWh/m2 and 2.05 MWh/m2, respectively, for DNI. This results in a 

relative mean bias error (MBE) of 8.24 % for GHI and of 31.71 % for DNI. 

As expected, the simulations of GHI tend to be better than DNI. This happens 

due to the increased uncertainty associated with DNI resulting from its 

higher variability and dependency of clouds and aerosols in the atmosphere 

which are particularly difficult to correctly simulate. 

 

 

a)                 b) 

Fig. 2.6 - Comparison between 10-minute simulated (using Meso-NH) and observed a) GHI 

and b) DNI at the station of Évora – Verney for the TMY (Wh/m2). 

 

Figs. 2.7 and 2.8  show the daily values of simulated and observed GHI and 

DNI, respectively, in Évora – Verney as well as the daily differences between 

model and measurements, for the generated TMY.  

Once more, the overestimation of these two variables by the NWP model is 

visible. This overestimation happens not only on cloudy or partially cloudy 

days, when the model has difficulties in correctly simulating the effects of 

clouds on solar radiation, but also on clear sky days when the usage of 

monthly climatologies of aerosols by the NWP model affects the simulation 

accuracy, especially regarding DNI. This was the main motivation for the 

development of a correcting ANN model that could improve the simulation 

results.  
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Fig. 2.7 - Daily GHI values simulated using the Meso-NH model and observed at the station 

of Évora – Verney (top) and respective difference (bottom). 

 

 

Fig. 2.8 - Daily DNI values simulated using the Meso-NH model and observed at the station 

of Évora – Verney (top) and respective difference (bottom). 
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2.4 ANN model development 

 

Two ANN models, one for GHI and another for DNI, were developed using 

the neural network toolbox of MATLAB for site adaptation of the Meso-NH 

simulations using various atmospheric related variables as inputs and 10-

minute GHI and DNI observed at Évora – Verney station as targets. The 

developed ANNs are networks that were trained to map the inputs given to 

the desired targets. There are various parameters and specifications that can 

define an ANN thus, tests were performed to select the best configuration.  

Some of the ANN parameters were pre-defined such as using a fitnet (which 

is a fitting network function), the initialization function initnw (which 

initializes the weights and biases of each layer according to the Nguyen-

Widrow initialization algorithm), the hyperbolic tangent sigmoid transfer 

function tansig and the performance function mse (mean squared error). The 

input and output data were treated using removeconstantrows, which 

removes rows with constant values and mapstd that rescales the distribution 

of values so that the mean of each variable is 0 and the standard deviation is 

1. The input data was randomly divided in 70% of data for training and 30% 

for validation, while the random seed was kept constant for comparison 

between different ANN configurations. The training functions tested were 

trainlm (uses Levenberg-Marquardt backpropagation) and trainbr (uses 

Bayesian regularization backpropagation). 

As inputs, the meteorological variables obtained from the Meso-NH 

simulations were considered, namely GHI, DNI, DHI, the solar zenith angle 

(Zen), mean air temperature (T), wind speed (WS) and direction (WD) and 

average (avgCF) and maximum (maxCF) cloud fraction. 

To account for the effect of aerosols on solar radiation, aerosol variables 

obtained from the CAMS analysis data set were also considered to be used as 

inputs for the ANN models. The CAMS analysis data set is the most recent 

set of global reanalysis data for atmospheric composition produced by the 

ECMWF. It has atmospheric composition related variables, including 

aerosols, in a three-dimensional grid with approximately 80 km of horizontal 
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resolution and 3 h of temporal resolution since 2003. The aerosol model of 

CAMS is a hybrid bulk-bin scheme with 12 prognostic tracers (three bins for 

sea salt, three for dust, hydrophilic and hydrophobic organic matter and black 

carbon, sulphate aerosol and a gas-phase sulfur dioxide precursor) [58]. The 

total aerosol is corrected by the assimilation of total AOD observations which 

is done through a 4D-Var data assimilation system [59]. 

The aerosol related variables retrieved from CAMS were aerosol optical depth 

at 469 nm (AOD469), 550 nm (AOD550), 670 nm (AOD670), 865 nm (AOD865) 

and 1240 nm (AOD1240), sea salt aerosol optical depth at 550 nm (SSAOD), 

organic matter aerosol optical depth at 550 nm (OMAOD) and dust aerosol 

optical depth at 550 nm (DUAOD). These variables were obtained in a grid 

with 0.125° of horizontal resolution and temporal resolution of 3 h. 

The procedure for correction of simulations was the same for GHI and DNI 

resulting in the generation of an ANN model for each variable. After obtaining 

the 10-minute data by performing bi-linear interpolation of the 4 grid-points 

surrounding the site and matching the variables to the observed values (of 

GHI or DNI) for the observation site, in this case Évora – Verney, the 

correlations between the modelled variables and the observations (see Fig. 

2.19 in Appendix A) are determined. The Pearson's linear correlation 

coefficients are used to establish the order in which the different variables 

are added to the input matrix of the ANN for testing. The Pearson's linear 

correlation coefficients obtained in this work for each variable of study are 

presented in Table 2.3. 

To find the optimal configuration in terms of training function, inputs, and 

number of neurons, these parameters are tested by computing the mean 

squared error (MSE) of the ANN and the original Meso-NH simulations for 

the variable of interest and applying a relative difference computed through 

Eq. 2.1. The parameters chosen are the ones that result in the highest value 

of relative MSE difference (MSErd), thus resulting in the best improvement 

(in terms of MSE) with respect to the original simulations. 
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Table 2.3 - Pearson's linear correlation coefficients of the simulated variables with respect to 

the GHI and DNI observations in Évora – Verney for the generated TMY. 

Simulated 

Variables 

Observed 

GHI 

Observed 

DNI 

GHI 0.91 0.62 

DNI 0.74 0.73 

DHI 0.34 0.00 

Zen -0.87 -0.48 

T 0.49 0.37 

WS -0.04 -0.09 

WD 0.02 -0.11 

avgCF -0.32 -0.43 

maxCF -0.35 -0.52 

AOD469 -0.03 -0.23 

AOD550 -0.04 -0.24 

AOD670 -0.06 -0.26 

AOD865 -0.08 -0.27 

AOD1240 -0.12 -0.28 

OMAOD -0.06 -0.13 

DUAOD 0.03 -0.08 

SSAOD -0.18 -0.29 

 

𝑀𝑆𝐸𝑟𝑑 =
𝑀𝑆𝐸𝑀𝑒𝑠𝑜−𝑁𝐻 −𝑀𝑆𝐸𝐴𝑁𝑁

𝑀𝑆𝐸𝑀𝑒𝑠𝑜−𝑁𝐻
× 100% (2.1) 

 

For each training function (trainlm, trainbr), the number of neurons in the 

hidden layer is made to vary between 1 and 100 and for each of these 

combinations, the variables used as inputs are changed by adding them to the 

input matrix of the ANN, one by one, in the order defined by the Pearson’s 

linear correlation coefficients. After adding one variable to the inputs, the 

results of the ANN are evaluated and if the addition of this variable improves 

the MSErd, that variable is kept as input and the next is added, if not, the 

variable is removed from the input matrix and the next variable is added. 

In Table 2.4, the ANN configurations that result in the highest values of 

MSErd are presented, with two ANN models being produced, one for GHI and 
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the other for DNI. The next best combinations and its results can be consulted 

in Table 2.6 of Appendix A.  

 

Table 2.4 - Configuration parameters of the ANN models for correction and site adaptation 

of GHI and DNI simulations from the NWP model. 

Variable 

of 

interest 

MSErd 

(%) 
Function 

Number of 

neurons 
Inputs 

GHI 67.60 trainbr 100 

GHI, Zen, DNI, T, maxCF, DHI, avgCF, 

SSAOD, AOD1240, AOD865, AOD670, 

OMAOD, AOD550, WS, AOD469, DUAOD, 

WD 

DNI 82.41 trainbr 97 

DNI, GHI, maxCF, Zen, avgCF, T, SSAOD, 

AOD1240, AOD865, AOD670, AOD550, 

AOD469, OMAOD, WD, WS, DUAOD, DHI 

 

The results of the selected ANN models obtained a MSErd of 67.60% for GHI 

and 82.41% for DNI showing that they improve the Meso-NH simulations for 

the station of Évora – Verney. The higher improvement in DNI simulations 

when compared to the GHI model is explained by the fact that the NWP model 

is better at simulating GHI than DNI. 

When comparing the 10-minute data obtained through these ANN models 

with the Meso-NH simulations and observations made in Évora-Verney, as is 

shown in Fig. 2.9 for the DNI as example, small oscillations in the ANN 

corrected values are detected which are not in accordance with observations. 

The solution found was to train 100 ANNs with the parameters defined above 

but without a fixed random seed (which means initialization values of each 

ANN model are different and randomized) and use as output of the model the 

mean of the results of those 100 ANNs (more details on this procedure can be 

found in Appendix A).  

Fig. 2.9 shows the improvement that results from this procedure for the DNI. 

This procedure was adopted for the two variables being studied. 
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Fig. 2.9 - 10-minute DNI observed, simulated through Meso-NH, corrected using the original 

ANN and computed through the mean of the results of the trained 100 ANNs for Évora-

Verney from 16 to 18 of July 2014. 

 

2.5 Results and discussion 

 

After obtaining the output mean of the 100 ANNs based on the best 

combination of parameters for each variable (GHI and DNI) for the location 

of Évora, the developed models showed a MSErd of 72.36% for GHI and 85.65% 

for DNI for the TMY showing that the developed method can improve the 

Meso-NH simulations for the station of Évora – Verney. Moreover, using the 

mean of 100 ANNs with the same parameters but different initialization 

values, improves not only the results regarding the oscillation problem, as 

seen in Fig. 2.10, but also the MSErd when compared to the use of only one 

ANN. 

Figs. 2.11 and 2.12 show a direct comparison between the obtained values of 

GHI and DNI, respectively, for the TMY and the station of Évora – Verney 

and the corresponding observations. The improvement of the ANN on the 

simulations can be seen when comparing these plots with Figs. 2.6 and 2.7, 

although some dispersion is still observed. The annual irradiation for the 

TMY in this location became 1.83 MWh/m2 for GHI and 2.07 MWh/m2 for DNI 

after applying the developed ANN models on the original Meso-NH 

simulations (1.97 MWh/m2 for GHI and 2.70 MWh/m2 for DNI), which is much 
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closer to the observed values (1.82 MWh/m2 for GHI and 2.05 MWh/m2 for 

DNI) than the NWP simulations. This represents a reduction in annual 

relative mean bias error from 8.24 % to 0.55 % for GHI and from 31.71 % to 

0.98 % for DNI.  

 

a)                b) 

Fig. 2.10 - Comparison between corrected 10-minute a) GHI and b) DNI simulations using 

the 100 ANNs and observations for TMY and the station of Évora – Verney (Wh/m2). 

 

 

Fig. 2.11 - Daily GHI observed and simulated with Meso-NH and the ANN model (top) and 

the differences between modelled and observed values (bottom) for the TMY and station of 

Évora – Verney. 
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Fig. 2.12 - Daily DNI observed and simulated with Meso-NH and the ANN model (top) and 

the differences between modelled and observed values (bottom) for the TMY and station of 

Évora – Verney. 

 

Table 2.5 shows the root mean squared error (RMSE) values for the modelled 

data for each calendar month and for the TMY. The developed method based 

on the ANN models showed a significant reduction of annual RMSE from 

21.00 Wh/m2 for GHI and 49.22 Wh/m2 for DNI (obtained with the original 

Meso-NH simulations) to 12.33 Wh/m2 for GHI and 18.65 Wh/m2 for DNI. 

Figs. 2.11 and 2.12 show the daily values of GHI and DNI, respectively, as 

simulated by the Meso-NH model, the ANN model and observed, as well as 

the daily differences between the modelled and observed data, showing the 

improvement of the simulated daily values when the developed method with 

the ANN models is applied. 

The developed ANN models are then applied to the NWP simulations for the 

whole region of study and the generated TMY with two main purposes: i) 

validate the developed method; and ii) to evaluate the usage of the developed 

method for solar resource assessment and its accuracy. 
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Table 2.5 - RMSE of 10-minute GHI and DNI simulated by the Meso-NH and ANN models 

for the generated TMY, in Wh/m2. 

Month 
GHI DNI 

Meso-NH ANN Meso-NH ANN 

1 14.44 8.32 43.72 20.20 

2 17.91 10.54 49.75 21.88 

3 24.56 12.63 51.50 20.01 

4 25.86 15.20 50.72 21.38 

5 30.09 14.96 60.02 20.90 

6 23.19 13.07 45.77 16.96 

7 20.00 9.84 42.71 15.22 

8 16.15 7.95 38.42 13.79 

9 22.32 12.51 50.40 19.83 

10 19.23 8.98 49.07 16.68 

11 20.20 8.46 59.68 19.98 

12 12.54 6.35 46.09 16.60 

Year 21.52 12.33 49.22 18.65 

 

For the validation of the developed method, Figs. 2.13 and 2.14 were 

generated where the monthly values of GHI and DNI from the Meso-NH and 

ANN models were compared against the available monthly values of observed 

data at other stations from the DNI-A network shown in Fig. 2.1.  

The application of the method based on the ANN models resulted in monthly 

values much closer to observations than the original Meso-NH simulations 

for all stations. The monthly mean bias errors (MBE) resulting from the use 

of this method and including the available data from all measuring stations 

is of 2.67 kWh/m2 for GHI and 5.97 kWh/m2 for DNI, much lower than the 

MBEs for the Meso-NH simulations which are of 9.63 kWh/m2 for GHI and 

43.67 kWh/m2 for DNI. This results in a decrease in relative mean bias error 

from 8.50 % to 2.34 % for GHI and from 29.54 % to 3.41 % for DNI. 

The monthly RMSEs of the ANN are approximately 4.26 kWh/m2 for GHI and 

11.57 kWh/m2 for DNI, which are also much lower than those of the Meso-NH 

(11.49 kWh/m2 for GHI and 48.00 kWh/m2 for DNI). This means that the use 

of an ANN model developed for a specific site centered in a limited region of 

interest, which was trained with typical meteorological data, can still improve 
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NWP simulations for that region since an ANN model has the capability of 

capturing and learning the relations between the different input variables 

and the measured values.  

 

 

Fig. 2.13 - Comparison between monthly modelled (Meso-NH in blue and ANN in red) and 

observed GHI values at different locations of the south of Portugal. 

 

 

Fig. 2.14 - Comparison between monthly modelled (Meso-NH in blue and ANN in red) and 

observed DNI values at different locations of the south of Portugal. 
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Thus, besides approximating the solar irradiation simulated by the Meso-NH 

model to observations for these various locations and for typical 

meteorological months in Évora, it was also expected that the developed 

model would approximate these results to the typical values of each location. 

To verify that, the simulated GHI was compared with the monthly-mean 

values obtained from long-term observations, computed using 10 or more 

years (Cavaco et al, 2016), for two locations in the inland, Portalegre (37.0167, 

-7.9667) and Beja (38.0249, -7.8672), and other two in the coastal zone, Lisboa 

(38.7734, -9.1779) and Faro (39.2941, -7.4213), as shown in Fig. 2.15. A very 

good agreement is observed and, since the goal of a TMY is to reproduce the 

long-term climatology and the GHI is the meteorological variable with higher 

statistical weight in the typical meteorological month selection (Section 2.2.2), 

we may assume that the ANN model can reproduce the typical meteorological 

data in the entire region based on the NWP simulations. 

 

 

Fig. 2.15 - Comparison between monthly GHI results of the Meso-NH and ANN models for 

four different locations in the south of Portugal obtained for the TMY of Évora with their 

long-term monthly means. Blue: Long-term GHI monthly means; Red: Meso-NH monthly 

GHI for the determined TMY; Yellow: ANN monthly GHI for the determined TMY. 
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Thus, the developed method successfully results in an accurate assessment of 

the solar resource by incorporating NWP models, allowing the physical 

simulation of the weather for a specified region, and ANN models, which work 

as a site adaptation model and incorporate aerosol data, thus improving the 

simulations previously done for the TMY data representative of the typical 

meteorological conditions. With the resulting data, one can generate solar 

resource maps where the spatial distribution of the resource is easily visible. 

Fig. 2.16 shows the GHI and DNI resource maps for the south of Portugal 

from the original Meso-NH simulations for the generated TMY. Fig. 2.17 

shows the GHI and DNI resource maps for the same region after applying the 

method described in this work.  

The annual results of both the Meso-NH and the developed method show a 

positive difference when compared to observations as mentioned before, being 

the Meso-NH difference much higher than the one of the ANN models. Due 

to the difference in magnitude of the Meso-NH and ANN simulated variables 

and in order to be able to observe the distribution of the resource throughout 

the region, the color scales of these maps are not identical. For a better 

comparison between the original Meso-NH simulations and the solar resource 

modelled through the method based on ANNs, Fig. 2.18 was generated 

showing the differences between them.  

The differences observed are more accentuated for the coastal region of 

Portugal (mainly the Atlantic one) but are also present at a smaller scale for 

regions with greater altitudes which can be interpreted as a greater 

overestimation by the Meso-NH model. The cause of this difference can be 

explained by the higher frequency of clouds in those regions, which are more 

difficult to accurately simulate, as well as the usage of monthly aerosol 

climatologies, more specifically at the coastal region where these 

climatologies don’t adequately consider the effect of the Atlantic Ocean on the 

climate of Portugal.  

According to the obtained spatial distribution of annual solar irradiation, the 

highest values of DNI are observed in the south coastal region of Portugal 

(coastal strip of Algarve) as well as in the Algarve region with highest 
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altitudes. Higher values of DNI are also present close to the east border of 

Portugal.  

 

  

  a)        b) 

Fig. 2.16 - Spatial distribution of a) GHI and b) DNI, for the south of Portugal and TMY 

obtained from Meso-NH simulations. 

 

                                        a)        b)  

Fig. 2.17 - Spatial distribution of a) GHI and b) DNI, for the south of Portugal and TMY 

obtained from the ANN model. 
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                                         a)       b) 

Fig. 2.18 - Difference between the original Meso-NH GHI simulations of GHI and the 

corrected through the ANN model. 

 

2.6 Conclusion  

 

This work presented a method for the assessment of the solar resource with 

1.25 km of horizontal resolution obtained by developing a site adaptation 

model based on artificial neural networks and incorporating aerosol data from 

CAMS that is applied to simulations made by a numerical weather prediction 

model for typical meteorological data.  

A typical meteorological year was generated for Évora, Portugal, using 

sixteen years of experimental data, which selected typical meteorological 

months can also be considered representative of the typical meteorological 

months of the surrounding region. The weather simulations for this TMY 

were done using the NWP model Meso-NH coupled with the ecRad radiation 

scheme which generates atmospheric data for the desired region (south of 

Portugal) with a resolution of 1.25 km. 

The comparison between the NWP simulated and the observed GHI and DNI 

showed an overestimation of these variables (higher for DNI) that can be 

caused due to difficulties in correctly simulating clouds and the usage of 
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monthly-mean aerosol climatologies. It was shown that this overestimation is 

higher in the coastal strip region of Portugal, showing that the NWP model 

does not correctly account for the effect of maritime aerosols and clouds on 

the simulated solar radiation in this region.  

The developed procedure for site adaptation using an optimized ANN model 

is based on the testing of different parameters, including the addition of 

analysis aerosol data from CAMS as inputs, and choosing the variables that 

result in higher improvements in terms of MSE. 

The ANN models are obtained for the specific location used for the generation 

of the TMY, in this case Évora, and then applied to the whole region simulated 

by the Meso-NH model (south of Portugal). The monthly values obtained 

using the Meso-NH model and using the developed procedure were compared 

against observed values at stations located in this region, showing a reduction 

in relative mean bias error from 8.50 % to 2.34 % for GHI and from 29.54 % 

to 3.41 % for DNI. Thus, validating the method proposed by showing that even 

if the ANN models were designed to improve GHI or DNI simulations at 

Évora – Verney station, they can improve simulations for other locations in 

the same region. 

This is a general method and can be applied to any region of the world, 

however, it should be noted that the area simulated in this work is of 

approximately 46 000 km2 and the generation of larger maps and/or for 

locations with very different climates will probably decrease the improvement 

brought by the application of an ANN model developed for a specific site in 

that region. The understanding of these implications can be a topic for future 

research. In the future, this procedure can also be used for other 

meteorological variables, such as air temperature, which greatly affects the 

operating efficiency of photovoltaic systems and to generate solar energy 

potential maps for this specific technology that may consider photovoltaic 

cells temperature and other loss factors.  

The high resolution GHI and DNI maps generated are extremely important 

for solar radiation related applications like planning and design of solar 

energy systems and while the usage of an atmospheric model allows for the 
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assessment of the resource in a desired region, these tend to show large errors 

when solar radiation is concerned. Thus, the usage of post-processing tools 

like artificial neural networks incorporating aerosol data allows for a more 

accurate assessment of the solar resource. 

 

Appendix A – Details on the procedure for the development of the 

ANN model 

 

For the development of the ANN models proposed in this work, firstly the 1-

minute Meso-NH atmospheric variable simulations are processed obtaining 

10-minute data for the location of Évora, Portugal through bi-linear 

interpolation of the values of the 4 grid points surrounding the observation 

site. The data obtained from CAMS for the TMY is also processed in the same 

way and, additionally, is downscaled from 3-hour data to 10-minute data 

through piecewise cubic hermite interpolating polynomials which allows for 

the preservation of the shape of the data. The correlations of these variables 

with the GHI and DNI observations for the TMY are determined resulting in 

Fig 2.19. 

The simulated variables are ordered according to their Pearson’s linear 

correlation coefficients with the observed variables so they can be added to 

the input matrix of each ANN model (GHI or DNI) according to what was 

described in Section 4. 

Table 2.6 shows not only the selected ANN models as shown in Table 4 but 

the five best combinations of parameters for the ANN models developed to 

improve GHI and DNI simulations for Évora – Verney station. All these 

models use the training function trainbr which is a training function that 

updates the weight and bias values according to Levenberg-Marquardt 

optimization and uses Bayesian regularization that minimizes a combination 

of squared errors and weights, determining the correct combination to 

produce a network that generalizes well. The best models tend to use higher 

number of inputs as well as neurons. Again, all models developed for GHI 
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have lower MSErd than the ones developed for the correction of DNI since the 

NWP model is already better at simulating GHI. 

 

 

Fig. 2.19 - Correlations and Pearson’s linear correlation coefficients between modelled 

variables and observed global horizontal (GHIR) and direct normal irradiation (DNIR). 

Irradiation variables, GHI, DNI, DHI, GHIR, DNIR, in Wh/m2, temperature, T, in °C, wind 

speed, WS, in m/s, zenith angle, Zen, and wind direction, WD, in degrees. 
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Table 2.6 – Five best combinations of ANN parameters for the improvement of GHI and DNI. 

For all models, the best training function was shown to be trainbr. 

Variable of 

interest 

 
GHI  DNI 

ANN model rank  1 2 3 4 5  1 2 3 4 5 

MSErd (%)  67.60 67.07 66.95 66.92 66.83  82.41 82.34 82.28 82.24 81.89 

Number of 

neurons 

 
100 99 95 97 98  97 99 100 98 96 

Inputs 

GHI  × × × × ×  × × × × × 

DNI  × × × × ×  × × × × × 

DHI  × × × × ×  × × × × × 

Zen  × × × × ×  × × × × × 

T  × × × × ×  × × × × × 

WS  × × × × ×  × × × × × 

WD  × × × × ×  × × × × × 

avgCF  × × × × ×  × × × × × 

maxCF  × × × × ×  × × × × × 

AOD469  × × ×    × ×   × 

AOD550   × × × × ×  × × × × × 

AOD670  × × × × ×  × × × × × 

AOD865  × × × × ×  × × × × × 

AOD1240  × × × × ×  × × × × × 

OMAOD  × × × × ×  × × × × × 

DUAOD  × × × × ×  × × × × × 

SSAOD  × × × × ×  × × × × × 

 

To validate the use of 100 ANNs with the same parameters but random 

initializations as opposed to the use of the ANN trained and defined as the 

best combination, Fig. 2.20 was generated. This figure shows the MSE of the 

mean DNI obtained from the results of N trained ANNs, being these ordered 

from lowest to highest value of MSE, i.e., for N=1, the MSE shown in the 

figure is the MSE resulting from the ANN with lowest MSE, for N=2, the 

MSE shown in the figure is the MSE of the mean results of the two ANNs 

with lowest MSE, and so on. The MSE tends to decrease with the higher 

number of ANNs used in the average result.  
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Fig. 2.20 - MSE of the mean DNI of the first N trained ANNs, these being ordered from 

lowest to highest values of MSE. 
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Nomenclature 

 

ALBD  Direct albedo (–) 

ALBS  Scattered albedo (–) 

AOD469 Aerosol optical depth at 469 nm (–) 

AOD550  Aerosol optical depth at 550 nm (–) 

AOD670 Aerosol optical depth at 670 nm (–) 

AOD865 Aerosol optical depth at 865 nm (–) 

AOD1240 Aerosol optical depth at 1240 nm (–) 

avgCF Vertical average cloud fraction (–) 

DHI  Diffuse horizontal irradiation (Wh/m2) 

DNI  Direct normal irradiation (Wh/m2) 

DUAOD Dust aerosol optical depth at 550 nm (–) 

GHI  Global horizontal irradiation (Wh/m2) 

maxCF Vertical maximum cloud fraction (–) 

MSErd  Relative mean squared error difference (%) 

OMAOD Organic matter aerosol optical depth at 550 nm (–) 

SSAOD Sea salt aerosol optical depth at 550 nm (–) 

T  Air temperature (℃) 

WD  Wind direction (°) 

WS  Wind speed (m/s) 

 

Acronyms 

ANN  Artificial Neural Network 

CAMS Copernicus Atmosphere Monitoring Service 

CDF  Cumulative Distribution Function 

ECMWF European Centre for Medium-range Weather Forecasts 
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FS  Finkelstein-Schaffer 

IFS  Integrated Forecasting System 

NWP  Numerical Weather Prediction 

MBE  Mean Bias Error 

MSE  Mean Squared Error 

RMSE Root Mean Squared Error 

RRTM Rapid Radiation Transfer Model 

TMM  Typical Meteorological Month 

TMY  Typical Meteorological Year
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Chapter 3 

 

Development and assessment of artificial neural 

network models for direct normal solar irradiance 

forecasting using operational numerical weather 

prediction data† 

 

Abstract 

 

Accurate operational solar irradiance forecasts are crucial for better decision 

making by solar energy system operators due to the variability of resource 

and energy demand. Although numerical weather prediction (NWP) models 

can forecast solar radiation variables, they often have significant errors, 

particularly in the direct normal irradiance (DNI), which is especially affected 

by the type and concentration of aerosols and clouds. This paper presents a 

method based on artificial neural networks (ANN) for generating operational 

DNI forecasts using weather and aerosol forecasts from the European Center 

for Medium-range Weather Forecasts (ECMWF) and the Copernicus 

Atmospheric Monitoring Service (CAMS), respectively. Two ANN models 

were designed: one uses as input the predicted weather and aerosol variables 

for a given instant, while the other uses a period of the improved DNI 

forecasts before the forecasted instant. The models were developed using 

observations for the location of Évora, Portugal, resulting in 10 min DNI 

forecasts that for day 1 of forecast horizon showed an improvement over the 

downscaled original forecasts regarding R2, MAE and RMSE of 0.0646, 21.1 
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W/m2 and 27.9 W/m2, respectively. The model was also evaluated for different 

timesteps and locations in southern Portugal, providing good agreement with 

experimental data. 

 

Keywords 

Solar radiation; Solar energy; Numerical weather prediction; Artificial neural 

network; Operational forecasting 

 

3.1 Introduction 

 

Economic growth and an increase in energy demand are usually co-dependent, 

yet they can be partially decoupled by improving energy efficiency, 

electrification and wise use of energy. Energy generation, distribution and 

consumption are becoming more electrified, efficient, interconnected and 

clean with the increase of the use of renewable energy sources such as solar 

photovoltaic and wind power and the increasing production and use of electric 

vehicles [1]. However, renewable resources show a strong spatial and 

temporal variability that affect the power generation, which makes finding 

an optimum balance between electric generation and consumption at any 

moment challenging since direct and reliable large scale storage systems of 

electric energy are not available.  

The solar photovoltaic energy, for example, is mainly dependent on the solar 

irradiance, namely direct beam irradiance (usually measured in the normal 

plane, known as Direct Normal Irradiance, DNI) and diffuse irradiance 

(usually measured in the horizontal plane, known as Diffuse Horizontal 

Irradiance, DHI), which means that having accurate forecasts of these 

variables allows for a more accurate estimation of electric power generation. 

Forecasting solar irradiance can be done through various models and 

methods, from the physical based methods such as numerical weather 

prediction (NWP) models, models based on sky/shadow imagery or satellite 

imagery to the more data-driven and machine-learning based methods such 

as regression, artificial neural networks (ANN), support vector machines 
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(SVM) and Kalman filtering, or even a combination of these, which are 

usually known as hybrid methods. 

NWP models provide the evolution of the atmosphere by integrating 

constitutive and state equations describing physical phenomena in the 

atmosphere which are subject to boundary and initial conditions. Its main 

goal is weather forecast with a focus on meteorologic variables such as air 

temperature, humidity, wind or precipitation. An accurate prediction of the 

partition between the two components of solar global radiation is not so 

relevant in that case, i.e., DNI and DHI, with global horizontal irradiance 

(GHI) being used for the closure of the energy balance at the Earth surface. 

The Integrated Forecasting System (IFS) developed at the European Center 

for Medium-range Weather Forecast (ECMWF) is the most widely used global 

NWP model in Europe being its performance attested by various studies such 

as in [2], where 24-hour forecasts of global solar irradiation from IFS and the 

American Global Forecasting System (GFS) were compared with observations 

made at four stations in Morocco. The authors show that the IFS/ECMWF 

model performs better than the GFS model for all-sky conditions based on the 

mean bias error and correlation coefficient. In [3], hourly GHI forecasts made 

by the IFS/ECMWF global model and GFS-driven Weather Research 

Forecasting (WRF) mesoscale model (run with different configurations by 

various forecast providers) were compared with observations made in the US, 

Canada and Europe showing that the model from the ECMWF performs 

significantly better for all locations and different climatic conditions. 

Perdigão et al. [4] analyzed one year of hourly and daily direct normal 

irradiation forecasts of the ECMWF against observations made at Évora, 

Portugal, for different temporal forecast horizons (0 to 3 days ahead) showing 

that the model reproduces hourly and daily experimental values with a RMSE 

of 210.6 W/m2 and 68.5 W/m2, respectively, for the first day ahead and that 

the performance of the model tends to decrease with higher forecast horizon. 

The research on improving accuracy of solar radiation variables in NWP 

models’ output has been recently brought to light due to the need for 

development of solar energy systems [5,6]. DNI is especially difficult to 
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forecast due to its strong dependency on the presence of clouds and aerosol 

type and concentration in the atmosphere. In the case of aerosols, NWP 

models such as the IFS/ECMWF use monthly-mean aerosol climatologies 

instead of more detailed aerosol forecasts to reduce computation time. In the 

comprehensive review made by Yang et al. [7], the impact of aerosols in the 

solar resource is discussed. The importance of including aerosols in the NWP 

forecasts is mentioned where the global models Copernicus Atmospheric 

Monitoring Service (CAMS) and Goddard Earth Observing System Version 5 

(GEOS-5) are shown to be of particular interest. Breitkreuz et al. [8] used 

libRadtran [9] and achieved a decrease in the relative mean squared error 

(rMSE) of 4.3% in the case of hourly GHI from IFS/ECMWF forecasts using 

aerosol predictions and experimental data. Other studies on aerosol modeling 

and prediction and its use with NWP models can be found in [10], here the 

WRF model coupled with Chemistry (WRF-Chem) was used to model aerosol 

and radiation data which were compared against observations showing 2 to 5 

times higher shortwave radiative forcing during a dust storm relative to 

values during non-dust days, and in [11], where, using the RRTM_SW (Rapid 

Radiation Transfer Model for Shortwave radiation) widely used in 

atmospheric models, the propagation of small uncertainties on the aerosol 

microphysical parameterization on the simulated direct radiative effects is 

demonstrated.  

The knowledge of all the complex phenomena that occur in the atmosphere of 

the Earth, including the interaction between solar radiation and the 

atmosphere, and between these and the surface, is still challenging and so is 

its representation, even in the most complex and detailed NWP models, which 

are also constrained by data availability [12] and computational limitations. 

A trade-off between increasing complexity of deterministic physical models, 

with the consequent higher computational effort, and the development of 

additional tools that, based on actual physical models output and 

experimental data, allow for better solar radiation forecasts without such 

effort, must be considered. Thus, several techniques have been developed and 

evaluated to further improve solar radiation estimations made by 
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deterministic NWP models. These are divided into classic statistical methods 

and Machine Learning (ML) methods. Classic statistical methods can be as 

simple as interpolation to improve temporal and/or spatial resolution or more 

complex methods based on stepwise linear regression to select the variables 

that best represent the errors, so they can be incorporated in a multi-variate 

regression model that gives an estimate of the forecast error as a linear 

function of the variables that have been selected in the process [13]. ML 

methods have been reported extensively in the literature for solar forecasts 

[14], such as k-nearest neighbor, SVMs, random forest (RF) or ANNs, and tend 

to focus on the prediction of solar global irradiation. Alkhayat et al. [15] 

developed a novel deep learning-based auto-selective tool that allows for the 

determination of the best GHI forecasting model from four different ML 

approaches with 81% accuracy. These models can capture the relation between 

systematic errors of the outputs of NWP models and relevant variables by 

comparing historical databases of forecasts and observations and thus provide 

improved values in a fraction of the time it would take with more detailed 

physical model approaches [16]. In the work by Alfadda et al. [17], hourly GHI, 

DNI and DHI forecasts made by various machine learning models and using 

as inputs solar irradiance and aerosol observations and wind and aerosol 

forecasts in Saudi Arabia were evaluated resulting in a better performance of 

the ANN model. Pang et al. [18], compared the use of feedforward artificial 

neural networks with recurrent neural networks for global solar irradiance 

prediction using onsite measurements showing that the later moderately 

improved the prediction performance but with additional computational cost. 

For a short-range forecast of solar irradiance (15 to 180 min), McCandless et 

al. [19] developed a regime-dependent artificial neural network forecasting 

model that showed improvements over a global ANN and the persistence. 

Fonseca et al. [20] obtained day-ahead solar irradiation forecasts through 

SVMs using NWP data from the mesoscale model of the Japan Meteorological 

Agency as input, which resulted in a reduction of the root mean squared error 

(RMSE) of 16 % in a regional scale. Lima et al. [21] used artificial neural 

networks for the post-processing of NWP solar irradiation forecasts from the 
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WRF model for the Brazilian Northeastern region and obtained a reduction of 

the model bias, MSE and RMSE. The same approach can be used to improve 

solar resource assessment since, once machine learning models were trained, 

they can generate more accurate spatial distribution of solar irradiation in a 

given location or region based on historical data of NWP forecasts. For 

example, Pereira et al. [22] developed and optimized an ANN model in order 

to create a method for solar resource assessment from the meso-scale Meso-

NH NWP model outputs for a typical meteorological year. In this case, the 

method was extended and validated for the South of Portugal, showing 

important improvements regarding the direct normal and global horizontal 

irradiation mapping with a horizontal resolution of 1.25 km. Comprehensive 

reviews on machine learning methods for solar irradiance forecasting can be 

found in [23–29]. Although various ML models have been developed for solar 

irradiation forecasting, most of them focus only on GHI or cannot be readily 

used to obtain useful power output forecasts of solar energy systems since the 

temporal resolution and forecast time horizon are not synchronized with the 

real-time market forecasting requirements [30,31].  

This work proposes a method for operational DNI forecasts which includes: i) 

the spatial and temporal downscaling of the IFS/ECMWF and aerosol 

forecasts for a specific location and time step; ii) an ANN model for generating 

improved DNI forecasts using only the predicted weather and aerosol data for 

a given instant of a specific time step; iii) a second ANN model that takes as 

inputs a period of improved DNI forecasts immediately before the time step 

being forecasted as well as the season and time of day of that time step. The 

model was developed considering the location of Évora, Portugal (38.567811, -

7.911459), a temporal resolution of 10 min and a forecast horizon of 25 to 48 h 

(day 1 of forecast). After development, evaluation against observations show 

that this method can be generalized and applied to different locations, 

temporal resolutions and forecast time horizons up to 72 h.  

The paper is organized as follows: in Section 3.2 the different data sets used 

in this work are presented and the treatment of this data is explained 

including the methods for spatial and temporal downscaling of the forecast 
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data; in Section 3.3 an evaluation of the downscaled DNI forecasts made by 

the ECMWF is performed; Section 3.4 presents the development of the ANN 

models used for the improvement of the DNI forecasts obtained from the 

ECMWF; in Section 3.5 is performed an evaluation of the models for different 

time steps while in Section 3.6 this is done for different sites located in the 

region surrounding the one used for model development; Section 3.7 presents 

an analysis of the ANN models in an operational forecast setting and finally, 

in Section 3.8, the conclusions of this work are presented. 

 

3.2. Forecast and experimental data 

 

The method was developed using forecast data from the IFS/ECMWF and 

CAMS models and observed solar radiation data from a network of measuring 

stations scattered in the South of Portugal. These models are operational and 

issued everyday which means that the developed model can also be used 

operationally. The period and area of the data used was from December 2016 

to the end of May 2021 and between latitudes 37.0° and 39.3° and longitudes 

-7.4° and -9.2°, respectively. A description of the data, quality check, filtering 

and pre-processing is presented in the following subsections. 

 

3.2.1 Weather forecast data 

In this work, various weather forecast variables from the IFS/ECMWF model 

[32] were used. This NWP model includes the radiative scheme ecRad [33] 

which solves the 1D radiative transfer equation both for small and long 

wavelength ranges, considering the vertical profiles of temperature, moisture, 

cloud droplet and ice cloud effective radius, average monthly climatologies of 

aerosols, carbon dioxide, ozone and trace gases, and also ground surface 

temperature, albedo and emissivity for different spectral bands and solar 

zenith angle. The code is based on the RRTM model (Rapid Radiative Transfer 

Model) using the McICA method (Monte Carlo Independent Column 

Approximation), which allows for the parameterization of the interactions 

between radiation and clouds. The ECMWF versions RRTMLW and 
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RRTMSW describe the radiative transfer in the long wavelength range, with 

16 spectral bands, and in the short wavelength range, with 14 spectral bands, 

respectively [33].  

The operational deterministic model of the ECMWF is run every day at 

00UTC and 12UTC, providing hourly forecast values up to 90 h ahead (and 

then 3 and 6-hourly values up to 144 and 240 h ahead, respectively) at 

discrete points of a global grid with horizontal spatial resolution of 0.125° × 

0.125°. The variables retrieved from the ECMWF database are presented in 

Table 3.1.  

 

Table 3.1 - Forecast variables retrieved from the IFS/ECMWF database. 

Variable Symbol Units Range / Comments 

Longitude Lon ° East 0° to 360° 

Latitude Lat ° North -90° to 90° 

Time step Step h 1 to 240 h 

Date Date Days Days since 1900-01-01 00:00:00 

Low cloud cover LCC 0-1 – 

Medium cloud cover MCC 0-1 – 

High cloud cover HCC 0-1 – 

Total cloud cover TCC 0-1 – 

10 metre U wind 

component 
u10 m/s – 

10 metre V wind component v10 m/s – 

2 metre temperature T K Air temperature at 2 meters 

Solar zenith angle Zen ° – 

Surface solar radiation 

downwards 
SSRD J/m2 

Irradiation since forecast 

issuance 

Direct solar radiation DSRP J/m2 
Irradiation since forecast 

issuance 

 

Data were retrieved for the maximum grid point density and with a temporal 

forecast horizon up to 72 h. The retrieved GRIB files were converted to 

netCDF format and processed with a MATLAB® routine to obtain hourly 

mean values of global horizontal and direct normal irradiance in W/m2, 

converting air temperature (T) to °C and computing wind speed (WS) in m/s 
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and direction (WD) in degrees from North using the 10-meter U and V wind 

speed components. 

 

3.2.2 Aerosol forecast data 

CAMS developed a global atmospheric composition forecast based on the IFS 

model but with additional modules enabled for aerosols, reactive gases and 

greenhouse gases taking into consideration phenomena such as the emissions 

and transport of trace gases and aerosols, uptake and release by vegetation 

and land and sea surface, removal by dry deposition at the surface and 

scavenging in precipitation, chemical conversion and aerosol microphysics. It 

generates atmospheric composition variables, including aerosol optical depth 

at different wavelengths, in a three-dimensional grid with approximately 40 

km of horizontal spatial resolution and 1 h time step [34]. 

 

Table 3.2 - Forecast variables retrieved from the CAMS database. 

Variable Symbol Units Range / Comments 

Longitude Lon ° East 0° to 360° 

Latitude Lat ° North -90° to 90° 

Time step Step h 1 to 120 

Date Date Days 
Days since 1900-01-01 

00:00:00 

Total aerosol optical depth at 469 nm AOD469 – – 

Total aerosol optical depth at 550 nm AOD550 – – 

Total aerosol optical depth at 670 nm AOD670 – – 

Total aerosol optical depth at 865 nm AOD865 – – 

Total aerosol optical depth at 1240 nm AOD1240 – – 

Sea salt aerosol optical depth at 

550nm 
SSAOD – – 

Organic matter aerosol optical depth 

at 550nm 
OMAOD – – 

Dust aerosol optical depth at 550nm DUAOD – – 

 

Hourly mean total aerosol optical depth forecasts at surface level for various 

discrete wavelengths are computed every day at 00UTC and 12UTC with a 

temporal forecast horizon of 5 days. The variables retrieved from the CAMS 



Chapter 3. Development and assessment of ANN models for DNI forecasting 

80 
 

database are shown in Table 3.2, for the same area and period as the variables 

retrieved from the IFS/ECMWF. 

 

3.2.3 Spatial and temporal downscaling of forecast data 

To obtain forecast values for a specific location and with different time steps, 

spatial and temporal downscaling techniques were employed to all simulated 

variables. The spatial downscaling is conducted using bilinear interpolation 

of the values of the four grid points surrounding the desired location. This 

allows for the development and validation of the presented method against 

observations made at various solar radiation measuring stations which are 

not exactly located at a grid point, but also, in an operational setting, the 

inclusion of this technique allows for the forecasting of solar irradiance at any 

point of the domain. The temporal downscaling is computed using piecewise 

cubic hermite interpolation of the hourly mean irradiance. This method might 

not allow for the conservation of energy in each hour (forecast values) however, 

the goal is simply to obtain data in shorter timesteps which can be used as 

input for the more complex machine learning models that will perform the 

improvement of DNI forecasts. This is a compromise between developing a 

more elaborated physical downscaling method that preserves the hourly 

energy predictions (but preserves the error associated with those forecasts) 

and feeding the machine learning models directly with the original hourly 

irradiation values, and then having to develop a model for each desired 

timestep, with the consequent loss of model generalization. In this way, the 

deviation introduced by this downscaling method in the input values (which, 

at different instants, can either increase or decrease the error of the energy 

predictions, taking the ground-based measurements as reference) will also be 

assimilated by the machine learning model. 

 

3.2.4 Solar radiation measurements and data quality check 

The experimental data used for the model development were 1-min DNI and 

GHI ground-based observations made at Évora – Verney (38.567811°, -

7.911459°) with a Kipp & Zonen CHP1 pyrheliometer in the case of DNI and 
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a Kipp & Zonen CMP11 Pyranometer in the case of GHI. Experimental data 

from this location have been widely validated and used in other works in this 

field, e.g. [22,35–37]. 

For the model validation, 1-min DNI and GHI ground-based observations 

obtained from the network of radiometric stations of the DNI-ALENTEJO 

project [38] were also used. This is a solar radiation measurement network in 

the south of Portugal which comprised 13 stations scattered in the region, 

each station being typically equipped with a Kipp & Zonen Solys2 sun tracker, 

one CHP1 pyrheliometer and two CMP11 pyranometers. All instruments are 

periodically calibrated in accordance with ISO 9059:1990 and ISO 9847:1992 

and the observations are corrected regarding the zero offset of sensors, 

filtered according to the Baseline Surface Radiation Network (BSRN) quality 

control procedure [39] and gaps filled according to the method developed in 

[38]. 

 

Fig. 3.1 - Location of solar radiation measuring stations from the DNI-ALENTEJO network 

[22]. 

 

The experimental data used for the model validation were retrieved from the 

following stations of the network: Évora – PECS (38.5306°, -8.0112°), Évora 



Chapter 3. Development and assessment of ANN models for DNI forecasting 

82 
 

– EMSP (38.5289°, -8.0053°), Portalegre (39.2692°, -7.4428°), Beja (38.0249°, 

-7.8672°), Lisboa (38.7734°, -9.1779°) and Sines (37.9576°, -8.8473°). The 

location of these stations is shown in Fig. 3.1 including the Évora – Verney 

station which data were used for the model development.  

Original solar irradiance records from the radiometric stations are 1 min 

average, maximum, minimum and standard deviation from which the mean 

irradiance values for the different temporal resolutions used in this work 

were calculated (10 min for the development stage). The same period defined 

for the forecast data was used. 

 

3.3 Analysis of NWP direct normal irradiance forecasts 

 

To understand the accuracy of the original solar irradiance predictions from 

the IFS/ECMWF model, the forecast data of DNI and other atmospheric 

variables issued at 00UTC from 1st of December 2016 to the 31st of May 2021 

were analyzed and compared against observations made at Évora – Verney 

station for each of the first three days of forecast time horizon. All forecast 

data was spatially downscaled to the location of the radiometric station and 

10 min mean values were determined as described in Section 3.2.3. 

Experimental data were also averaged for the same 10 min time step as 

described in Section 3.2.4. 

 

3.3.1 Comparison of NWP direct normal irradiance forecasts with 

experimental data 

Firstly, a direct comparison between the 10 min DNI forecasts after spatial 

and temporal downscaling and observations at Évora – Verney station was 

conducted for each of the 3 days of forecast horizon as presented in Fig. 3.2. 
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Fig. 3.2 - Comparison between downscaled IFS/ECMWF forecasts and DNI observations (10 

min) at Évora – Verney for forecast days 0, 1 and 2 (the colormap represents the number of 

data points in each bin. Bin size: 20x20 W/m2). 

 

These results show a better performance (lower mean absolute error, MAE, 

and root mean squared error, RMSE) of the model for day 0 of forecast which 

decreases for higher forecast time horizons which was also verified by other 

works in the literature [4]. The correction of these errors can be done with 

many different tools, from a simple bias correction to more complex machine 

learning models, as mentioned in Section 3.1. Simple artificial neural 

networks offer a middle ground where the computational effort is not too high, 

but the influence of the different variables used as inputs is taken into 

consideration. Day 1 of forecast (second day of forecast time horizon, or day-

ahead) was used for the model development since, even though forecast 

issuance corresponds to the 00 UTC, data can take until 6:55 UTC to be 

available, which may turn the forecast unhelpful for that day depending on 

the location of interest. 
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3.3.2 Correlations between forecast variables and DNI observations  

The various meteorological variables are to some extent all correlated with 

each other and, in a system so complex as the atmosphere, a way to identify 

the degree of correlation between two variables is to compute their linear 

correlation coefficients. Fig. 3.3 was generated with this purpose, comparing 

forecast values of each variable after spatial and temporal downscaling (10 

min) with observed DNI at Évora – Verney station for the three forecast days.  

The Pearson’s linear correlation coefficients (the values shown in each graph 

of Fig. 3.3) for each forecast variable are similar but tend to show a decrease 

in correlation across the three days of forecast time horizon. As expected, the 

highest absolute values of linear correlation occur with the forecasted DNI 

followed by GHI, cloud cover variables and solar zenith angle. While the 

aerosol variables show lower values of linear correlation, this does not mean 

that they are necessarily more independent since they might have a nonlinear 

relationship.  

It is difficult to find any physical world phenomenon which follows linearity 

straightforwardly. Thus, a non-linear model that can approximate the non-

linear phenomenon is needed. Representing these kinds of relationships 

using classical methods is known to be difficult. In that sense, machine 

learning models like artificial neural networks with non-linear activation 

functions will allow the model to create complex mappings between the inputs 

and outputs of the network. The non-linear layers enable ANNs to learn 

making conditional decisions for controlling the computational flow which 

makes them better suited to provide accurate data fitting and forecast. 
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Fig. 3.3 - Comparison and Pearson’s linear correlation coefficients of the forecast values of 

each meteorological variable (y axis) with the 10 min observed DNI at Évora – Verney 

station (x axis) for each of the forecast days. The colormap represents the number of points 

(total number of data points for each graph: 236592); Bins grid (50x50 bins). 

 

3.4 Artificial neural network model development 

 

Artificial neural networks (ANN) are constituted of connected artificial 

neurons forming a network. Since the relevance of each input given to the 

neuron is not equal, different weights are assigned to each of the inputs, then 

a linear net function is used to aggregate a bias and the weighted inputs after 



Chapter 3. Development and assessment of ANN models for DNI forecasting 

86 
 

which a transfer function is applied to obtain the output of the neuron that 

will then be passed on to the next neuron.  

The ANNs developed in this work are multi-layer feed-forward networks with 

back propagation learning, which are some of the most established ANN 

architectures due to their ability to perform arbitrary non-linear mappings. 

These are usually composed of an input and an output layer and one or more 

hidden layers of neurons. When training, for a given input dataset, the 

information flows forward through the network until it reaches the output 

layer and errors are calculated using the given desired output dataset 

(targets). These errors are then propagated backwards through the network 

and the weights of each neuron are adjusted so that the next iteration results 

in outputs with smaller error. This allows solving complex problems that can 

be stochastic, poorly defined, non-linear, non-analytic and/or non-stationary 

with low or no intervention in the program itself.  

After the spatial and temporal downscaling of the forecast data shown in 

Section 3.2.3, two ANN models coupled in series are applied in this work 

according to Fig. 3.4 for the generation of improved DNI forecasts from NWP 

data. Observations of DNI made at Évora - Verney described in Section 3.2.4 

were used for the development of the two ANNs: (i) development of an ANN 

using only the predicted weather and aerosol variables for a given time step 

in the temporal horizon of forecasts (Section 3.4.1); (ii) development of an 

ANN using the predicted DNI data over a period of time before the forecasted 

instant (Section 3.4.2).  

For the evaluation and comparison of the different models, the coefficient of 

determination (R2), mean absolute error (MAE) and root mean squared error 

(RMSE) were used as metrics along with the forecast skill (FS), which 

represents the improvement in terms of MAE over the original ECMWF 

forecasts, and a global performance index (GPI) based on the three statistical 

indicators, for model configurations comparison. The coefficient of 

determination is intuitively informative as it provides a measure of how well 

observed outcomes are replicated by the model, based on the proportion of 

total variation of outcomes explained by the model. According to the literature, 
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the MAE and RMSE metrics are suitable [40] and the most commonly used 

indicators to assess the performance of machine learning regression 

algorithms [41]. Each error contributes to MAE in proportion to the absolute 

value of the error while the RMSE involves squaring the differences, so that 

a few major differences will increase the RMSE to a greater degree than the 

MAE.  

 
 

Fig. 3.4 - Flowchart of the developed model. DNI observations are only used for the 

development and evaluation of the ANN models they are not required as inputs in an 

operational setting. 

 

The used definition of GPI results in a statistical tool that combines various 

metrics allowing for the performance comparison of different models and has 

been widely used in many works in several fields of study, for example in [42–

44]. To compute the GPI, the n metrics need to be normalized into values 

ranging from 0 to 1 and then Eq. (3.1) is used, where the GPI value for the ith 

model configuration is determined using the median of the normalized values, 

𝑦̃𝑗 , of the indicator j, the normalized value of indicator j for model 

configuration i, 𝑦𝑖𝑗 , and a factor 𝛼𝑗  that has a value of 1 for all indicators 

except the coefficient of determination for which it is -1.  

 

𝐺𝑃𝐼𝑖 =∑ 𝛼𝑗(𝑦̃𝑗 − 𝑦𝑖𝑗)
𝑛

𝑗=1
 (3.1) 
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In this work, the metrics used for the computation of GPI are the previously 

mentioned R2, MAE and RMSE. Since all the metrics used in this definition 

take the ground-based measurements as reference, a higher value of GPI 

represents a better performance of the respective model configuration. 

 

3.4.1 ANN model with weather and aerosol forecasts as inputs (ANN model A) 

The forecast data included as inputs in the development of this ANN model 

are the various weather and aerosol variables from the IFS/ECMWF and 

CAMS global NWP models (see Table 3.1 and Table 3.2) for forecast day 1 (25 

to 48 h ahead), after temporal and spatial downscaling as described in Section 

3.2.3. The 10 min ground-based observations of DNI at Évora – Verney station 

as described in Section 3.2.4, are used as targets. 

To obtain an ANN configuration that generates improved DNI forecasts while 

having a good generalization capability, datasets were divided in three 

subsets: the first subset for training and validation of various internal 

configurations of the tested ANNs (78,854 data points from 1st December 2016 

to 30th November 2019), a second subset for testing and selection of the final 

ANN configuration (23,654 data points from 1st December 2019 to 30th 

November 2020) and finally a third subset of data for a blind test so the 

performance and generalization capability of the selected ANN configuration 

can be demonstrated (12,470 data points from 1st December 2020 to 31st May 

2021). For training and validation, the input data is divided randomly using 

80% of the available data points in the first subset for training and the other 

20% for validation. 

An ANN is defined by numerous parameters and specifications, some of which 

are pre-established such as using a feedforward ANN with one hidden layer 

and a linear layer output (fitnet) with an initialization function that 

initializes the weights and biases of the layers according to the Nguyen-

Widrow initialization algorithm (initnw), the hyperbolic tangent sigmoid 

transfer function (tansig) and the mean squared error as performance 

function (mse). The input and output data are treated by removing rows with 
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constant values (removeconstantrows) and scaling the mean of each row to 0 

and deviations to 1 (mapstd). 

Other parameters and configurations were specifically evaluated in this work, 

namely the training function, the number of neurons and the input variables. 

The training functions assessed were the Levenberg-Marquardt 

backpropagation (trainlm) and the Bayesian regularization backpropagation 

(trainbr) and, for each of these, the number of neurons was varied from 1 to 

25 and the input forecasted variables were added one by one according to the 

sequence DNI, GHI, TCC, Zen, T, SS, AOD1240, WS, LCC, MCC, HCC, 

AOD865, AOD670, AOD550, AOD469, DU, WD, OM, for each combination of 

training function and number of neurons. 

Additionally, for better results, ten randomly initialized ANNs were trained 

and validated for each configuration combo mentioned above, being the 

average output of those ten ANNs considered the result of the corresponding 

ANN configuration, as already tested in other works in this field [22]. 

The values of R2, MAE, RMSE were computed, and the performance of the 

different ANN configurations is compared using the FS and the GPI. The five 

ANN configurations with highest GPI at the training and validation stage 

(among the 900 cases evaluated with GPI values ranging between 1.159 and 

-1.840) are presented in Table 3.3. 

The configurations using the training function trainbr with all input 

variables and high number of neurons show more accurate DNI forecasts 

when considering observations as reference. For the best performing 

configuration, there is an improvement over the original ECMWF forecasts 

revealed by a forecast skill of 22 % and an increase of 0.1118 in the R2 and a 

decrease of 34.2 W/m2 and 38.4 W/m2 in the MAE and RMSE, respectively. 
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Table 3.3 - ANN model A training and validation results (five best configurations in 

descending order). 

Training 

function 

Number of 

neurons 

Number 

of inputs 
R2 

MAE 

(W/m2) 

RMSE 

(W/m2) 
FS (%) GPI 

trainbr 25 18 0.7535 122.9 180.7 22.0 1.159 

trainbr 24 18 0.7528 123.0 181.0 21.9 1.144 

trainbr 23 18 0.7525 122.9 181.1 22.0 1.141 

trainbr 25 17 0.7511 123.6 181.6 21.5 1.099 

trainbr 24 17 0.7508 123.5 181.7 21.6 1.097 

 

However, regarding the final purpose of the developed model, that is, an 

algorithm that can generalize well and improve newly generated forecasts, 

the 900 combos were run for the test data set to select the best configuration. 

The five ANN configurations with highest GPI are presented in Table 3.4. 

 

Table 3.4 - ANN model A testing results (five best configurations in descending order). 

Training 

function 

Number of 

neurons 

Number 

of inputs 
R2 

MAE 

(W/m2) 

RMSE 

(W/m2) 
FS (%) GPI 

trainbr 7 13 0.7127 136.7 197.8 10.2 0.876 

trainlm 7 13 0.7132 137.1 197.7 9.9 0.867 

trainlm 9 13 0.7121 136.8 198.0 10.1 0.844 

trainlm 5 13 0.7112 136.5 198.3 10.3 0.832 

trainbr 5 13 0.7115 136.9 198.2 10.0 0.818 

 

Thus, the ten ANNs using the trainbr training function, 7 neurons and 13 

inputs (DNI, GHI, TCC, Zen, T, SS, AOD1240, WS, LCC, MCC, HCC, 

AOD865 and AOD670) were selected as the base configuration for this ANN 

model (ANN model A). This configuration showed an improvement over the 

original ECMWF forecasts (values in Fig. 3.2) with a forecast skill of 10.2 % 

and an increase of 0.0712 in the R2 and a decrease of 20.4 W/m2 and 21.3 W/m2 

in the MAE and RMSE, respectively. The performance and good 

generalization of the selected ANN configuration was verified by using a new 

set of data (blind test), which resulted in values of R2, MAE and RMSE of 
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0.6874, 147.2 W/m2 and 207.6 W/m2, respectively, which is better than all 

statistical indicators of the original DNI forecasts (Fig. 3.2).  

 

3.4.2 ANN model with forecasted DNI time series and date/time as inputs 

(ANN model B) 

A different approach for an ANN configuration that considers the temporal 

variation of solar irradiance as input was also addressed and evaluated. This 

configuration uses the same internal parameters as the one described above, 

being the evaluated parameters the training function (trainlm, trainbr) and 

the number of neurons (from 1 to 25), while the inputs are the season and 

time of day of forecast and the existing time series of DNI values for a given 

period before the forecast computation. This time series can be either the 

original IFS/ECMWF predictions or experimental values but, to further 

improve the solar irradiance forecasts and to make the model independent of 

ground-based measurements, the corrected DNI forecast data from the ANN 

model A was used instead in this case.  

 

Table 3.5 - ANN model B training and validation results using a period of 2 h of predicted 

DNI from ANN model A as input (five best configurations in descending order). 

Training 

function 

Number of 

neurons 
R2 

MAE 

(W/m2) 

RMSE 

(W/m2) 

FS 

(%) 
GPI 

trainbr 25 0.7332 126.1 188.0 20.0 1.126 

trainbr 24 0.7337 126.3 188.1 19.8 1.019 

trainbr 23 0.7335 126.4 188.2 19.8 0.977 

trainbr 22 0.7321 126.4 188.3 19.8 0.917 

trainbr 21 0.7319 126.6 188.4 19.6 0.852 

 

Regarding the length of the time series, two cases were tested: (i) a period 

corresponding to the previous 2 h (12 time steps of 10 min data); and (ii) a 

period of 24 h (144 time steps of 10 min data). The same data sets of 

experimental data were used for training and validation, testing and blind 

testing as in the Section 3.4.1, as well as the procedure of averaging the 
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results of ten randomly initialized ANNs for each configuration. The resulting 

metrics for the five configurations with highest GPI are shown in Tables 3.5 

and 3.6 for these two cases. 

 

Table 3.6 - ANN model B training and validation results using a period of 24 h of predicted 

DNI from ANN model A as input (five best configurations in descending order). 

Training 

function 

Number of 

neurons 
R2 

MAE 

(W/m2) 

RMSE 

(W/m2) 

FS 

(%) 
GPI 

trainbr 25 0.7518 123.0 181.2 21.9 1.990 

trainbr 24 0.7496 123.5 182.0 21.6 1.788 

trainbr 23 0.7485 123.9 182.5 21.4 1.672 

trainbr 22 0.7479 123.8 182. 7 21.4 1.642 

trainbr 21 0.7456 124.4 183.5 21.1 1.418 

 

Similar to the case of ANN model A, the configurations that show better 

performance tend to have more neurons and the more complex training 

function trainbr. However, the best models that arise from the training 

process might not be the best at generalization, thus all configurations were 

also evaluated using the test data set to select the configuration that achieves 

good performance on new data. Tables 3.7 and 3.8 show the five best 

configurations using the previous 2 and 24 h of predicted DNI from ANN 

model A as inputs, respectively. 

Selecting the best configurations for each case and applying these models to 

the blind test data set, values of R2, MAE and RMSE of 0.6934, 142.4 W/m2 

and 205.1 W/m2 for the model using a period of 2h and 0.6916, 142.6 W/m2 

and 205.5 W/m2 for the model using a period of 24h were obtained, 

respectively. These metrics result in a forecast skill of 12.4 % for both models 

and an improvement over the predicted values from the ANN model A with 

an increase in R2 of 0.0060 and a decrease of MAE and RMSE of 4.8 W/m2 and 

2.5 W/m2 for the 2h model and an increase in R2 of 0.0042 and a decrease of 

MAE and RMSE of 4.6 W/m2 and 2.1 W/m2 for the 24 h model, respectively.  
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Table 3.7 - ANN model B test results using a period of 2 h of predicted DNI from ANN model 

A as input (five best configurations in descending order). 

Training 

function 

Number of 

neurons 
R2 

MAE 

(W/m2) 

RMSE 

(W/m2) 

FS 

(%) 
GPI 

trainlm 8 0.7197 133.3 195.3 12.4 0.709 

trainlm 7 0.7194 133.3 195.4 12.4 0.630 

trainbr 7 0.7191 133.2 195.5 12.5 0.572 

trainlm 10 0.7191 133.3 195.5 12.4 0.563 

trainbr 5 0.7190 133.3 195.5 12.4 0.512 

 

Table 3.8 - ANN model B test results using a period of 24 h of predicted DNI from ANN 

model A as input (five best configurations in descending order). 

Training 

function 

Number of 

neurons 
R2 

MAE 

(W/m2) 

RMSE 

(W/m2) 

FS 

(%) 
GPI 

trainbr 3 0.7184 133.1 195.7 12.4 0.451 

trainlm 12 0.7190 133.4 195.5 12.2 0.439 

trainlm 11 0.7183 133.2 195.7 12.4 0.429 

trainlm 5 0.7191 133.5 195.4 12.2 0.429 

trainbr 4 0.7180 133.3 195.8 12.3 0.299 

 

Although the differences between the two cases are small, the selected 

configuration of the ANN model B was the one using as input a period of 2 h 

of DNI predictions due to its slightly better performance and simplicity. The 

resulting composite ANN model (ANN model B) is thus the combination of an 

ANN model based on the input of a complete set of meteorological and aerosol 

forecast data for a given instant (ANN model A) and an ANN model based on 

the input of a time series of DNI for a given period before the forecast 

computation (ANN model B configuration), provided that the input values of 

the second model are the predicted DNI output values of the first model. 

Using two separate ANN models can result in better forecasts than a single 

model which considers both the actual and temporal variations of weather 

variables on DNI forecasts since it allows for better model specialization. This 

means that each ANN can be specialized for a specific task. The first ANN 
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was developed for improving DNI forecasts from NWP data at a specific time 

step being designed and optimized for representing the relationship between 

the different atmospheric variables and DNI, being optimized to extract 

relevant features and relationships specific to the current conditions. The 

second ANN was developed to model the temporal tendencies and patterns in 

DNI which can be complex and non-linear. By using a separate ANN model 

to capture these tendencies, it allows the model to focus solely on learning the 

temporal dependencies and trends, which might be distinct from the 

relationships governing the immediate forecast. 

 

3.5 Assessment of the developed ANN models using different 

temporal resolutions  

 

The proposed model was developed using 10 min mean values, but it could 

easily be adapted to different time steps as required by solar system operators. 

Also, since mean irradiance values are used instead of irradiation data in the 

case of DNI, inputs with different time steps can also be directly used with 

the already developed model.  

In order to evaluate the performance of this feature, input data with temporal 

resolutions of 5 and 15 min and the original hourly (60 min) forecasts were 

fed to the model, generating the results shown in Table 3.9. It is important to 

note that, as described in Section 3.4.2, the ANN model B was developed using 

as inputs 12 records of 10 min DNI predictions, corresponding to the period 

of 2 h before the forecast time step, while for different temporal resolutions, 

the number of inputs used is still 12 records but instead of corresponding to 

a period of 2 h they are equivalent to periods of 1, 3 and 12 h for 5, 15 and 60 

min temporal resolutions, respectively. 
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Table 3.9 - Metrics for the original downscaled ECMWF predictions, ANN model A and 

ANN model B with different temporal resolution and for the different data sets used in the 

development of the models (for all data and each statistical indicator, the best performing 

model is represented in bold for each time step, the best performing time step is underlined 

for each model, and the best combination of time step and model is marked with *). 

Time 

step 

(min) 

Model 

R2  MAE (W/m2)  RMSE (W/m2) 

Train Test 
Blind 

test 
All  Train Test 

Blind 

test 
All  Train Test 

Blind 

test 
All 

5 

ECMWF 0.6290 0.6489 0.6168 0.6341  160.7 155.9 168.7 160.4  225.2 222.0 236.3 225.7 

A 0.7088 0.7017 0.6776 0.7058  135.9 140.9 151.3 138.7  199.4 204.5 213.7 202.1 

B 0.7129 0.7053 0.6802 0.7096  131.1 135.2 146.3 133.6  198.2 203.2 213.4 201.0 

                

10 

ECMWF 0.6353 0.6579 0.6273 0.6415  157.5 152.1 165.1 157.1  220.0 216.1 230.5 219.1 

A 0.7176 0.7130 0.6874 0.7148  132.3 136.7 147.2 135.2  193.4 197.8 207.6 196.1 

B 0.7265 0.7197 0.6934 0.7234  128.3 133.3 142.4 130.9  190.3 195.3 205.1 193.0 

                

15 

ECMWF 0.6515 0.6739 0.6422 0.6574  153.0 147.3 159.7 152.5  214.5 210.0 224.3 214.6 

A 0.7339 0.7284 0.7053 0.7314  127.8 131.9 141.7 130.2  187.3 191.5 200.4 189.7 

B 0.7411 0.7355 0.7117 0.7386*  127.4 130.4 138.4 129.3*  185.1 189.2 197.1 187.3* 

                

60 

ECMWF 0.5527 0.5877 0.5519 0.5624  176.3 169.0 179.3 175.0  239.9 231.8 245.0 238.7 

A 0.6677 0.6705 0.6505 0.6684  153.3 154.1 157.7 153.9  203.5 204.2 209.0 204.3 

B 0.6946 0.6904 0.6685 0.6929  174.4 171.5 164.3 172.7  217.7 217.8 213.3 217.3 

 

Comparing the results for the different temporal resolutions, the model seems 

to perform better for a time step of 15 min, followed by 10, 5 and finally 60 

min. However, these results are also affected by the number of data points 

available which differs with temporal resolution (more data for shorter 

temporal resolution). Thus, to take this aspect into consideration, the results 

of the models for each temporal resolution were converted to hourly means 

for comparison and the same metrics were computed, as shown in Table 3.10.  
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Table 3.10 - Results of hourly mean DNI forecasts with different temporal resolutions and 

from different models and data sets. Color comparison within each metric and data set 

where darker color means better performance. 

Data 

set 

Time 

step 

(min) 

R2  MAE (W/m2)  RMSE (W/m2)  GPI 

ECMWF A B  ECMWF A B  ECMWF A B  ECMWF A B 

Train 

5 0.5678 0.6429 0.6493  173.5 156.4 154.5  234.0 211.8 211.1  -1.177 0.140 0.240 

10 0.5280 0.5915 0.6738  183.2 170.2 147.5  247.5 230.3 202.2  -1.926 -0.880 0.740 

15 0.6029 0.6798 0.6916  164.3 146.2 144.2  222.7 199.3 195.6  -0.515 0.864 1.057 

60 0.5527 0.6677 0.6946  176.3 153.3 174.4  239.9 203.5 217.7  -1.456 0.528 -0.126 

                 

Test 

5 0.5994 0.6505 0.6560  166.6 155.3 153.0  226.9 210.6 210.2  -1.449 -0.111 0.035 

10 0.6164 0.6629 0.6777  162.1 152.6 147.7  221.3 206.5 202.2  -0.974 0.219 0.652 

15 0.6330 0.6848 0.6952  157.6 145.9 143.9  216.0 199.1 196.1  -0.507 0.870 1.125 

60 0.5877 0.6705 0.6904  169.0 154.1 171.5  231.8 204.2 217.8  -1.787 0.298 -0.528 

                 

Blind 

test 

5 0.5883 0.6424 0.6507  170.4 158.2 154.8  232.8 212.7 212.0  -1.272 -0.076 0.103 

10 0.6027 0.6533 0.6695  167.0 155.4 149.1  228.4 209.2 204.2  -0.971 0.163 0.577 

15 0.6166 0.6720 0.6854  163.6 151.1 145.6  224.2 203.3 198.1  -0.674 0.555 0.932 

60 0.5519 0.6505 0.6685  179.3 157.7 164.3  245.0 209.0 213.3  -2.068 0.078 -0.076 

                 

All 

5 0.5790 0.6467 0.6532  171.6 156.3 154.2  232.3 211.6 211.0  -1.136 0.122 0.233 

10 0.5384 0.5962 0.6764  181.6 169.9 147.7  245.9 229.5 202.4  -1.939 -0.925 0.729 

15 0.6130 0.6821 0.6938  162.8 146.6 144.3  221.4 199.7 196.0  -0.463 0.848 1.061 

60 0.5624 0.6684 0.6929  175.0 153.9 172.7  238.7 204.3 217.3  -1.463 0.473 -0.132 

 

Regarding the temporal downscaling, although the metrics for the ECMWF 

forecasts can, for some instances, deteriorate with downscaling (metrics for 

hourly values better than for the remaining temporal resolutions) due to a 

smoothing effect that does not capture the rapid and nonlinear variations of 

real data, these metrics are improved when using the developed ANN models 

to the downscaled data when compared with the original hourly ECMWF 

forecasts. This means that the developed models can not only counteract the 

possible deviations induced by the temporal downscaling but also further 

improve the DNI forecasts. As previously discussed, the ANN model B tends 

to perform better than the ANN model A and ECMWF models except for 

hourly temporal resolutions. 

Finally, the performance (measured by the GPI) of the developed model with 

a temporal resolution of 15 min is better than the one for 10, 5 and 60 min for 



3.6 Application of the ANN models for different locations 

97 

the data used in this work which is in accordance with the results shown in 

Table 3.9. 

 

3.6 Application of the ANN models for different locations   

 

The ANN models described in the previous sections were developed based on 

data for a specific location (Évora - Verney). In this section, the hypothesis of 

using the same models in other locations in the region surrounding the 

reference station of Évora-Verney (south of Portugal) is analyzed. The 

ECMWF and CAMS forecast data obtained for six different sites where solar 

radiation measuring stations are installed (DNI-A network, see Fig. 3.1) were 

used as inputs. The original 10 min downscaled ECMWF forecasts and the 

DNI forecasts obtained from the ANN model B were compared with the 

available observed DNI data for each station. The results and the number of 

data points (N) for each station are shown in Table 3.11, where the data used 

for evaluating Verney station is comprised of the test and blind test datasets. 

The results show that the developed model can improve the overall metrics 

for all stations being best at generating improved DNI forecasts for the 

station of Verney which data was used in the development of the algorithm, 

as expected. The stations for which the improvement of DNI forecasts is lower 

are Lisboa and Sines, both located near the coast of Portugal where the 

climate is more disparate from that observed at the station of Évora - Verney. 

Considering all stations and data available, the use of the developed models 

result in a forecast skill of 14.4 % and improve the original downscaled DNI 

forecats by 0.0707 in R2, 23.1 W/m2 in MAE and 24.1 W/m2 in RMSE, taking 

experimental data as reference showing that the application of this model for 

locations in the surrounding area of the location for which it was developed, 

can generate improved DNI forecasts. 
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Table 3.11 - Metrics for the original downscaled ECMWF DNI forecasts and ANN models B 

predictions (10 min) for the different stations located in the south of Portugal. 

Station 
R2  MAE (W/m2)  RMSE (W/m2)  FS 

(%) 
N 

ECMWF ANN  ECMWF ANN  ECMWF ANN  

Verney 0.6630 0.7237  151.3 131.8  215.1 194.4  12.9 28101 

EMSP 0.6528 0.7222  153.2 130.5  218.1 194.2  14.8 96323 

PECS 0.6348 0.7128  161.7 135.5  226.9 200.4  16.2 113300 

Portalegre 0.6329 0.7083  157.5 134.8  225.9 200.8  14.4 115997 

Beja 0.6393 0.6996  156.8 135.0  219.8 199.7  13.9 97109 

Lisboa 0.5970 0.6659  170.9 147.6  238.3 212.2  13.6 61942 

Sines 0.5459 0.6184  175.8 153.3  244.8 220.9  12.8 53192 

All 0.6269 0.6976  160.4 137.2  226.5 202.4  14.4 478574 

 

 

Fig. 3.5 - Comparison between monthly DNI forecasts (irradiation) from the ECMWF (blue) 

and from ANN model (red) against the available experimental data for each station in the 

South of Portugal. 

 

Fig. 3.5 shows a direct comparison between the monthly forecasted DNI 

(irradiation) by the ECMWF and the developed ANN models (based on 10 min 

data) and the available monthly observed DNI for the different stations, while 

Table 3.12 presents the metrics resulting from this data. For the Verney 

station only the data from test and blind test datasets was considered. 



3.7 Application of the developed model for operational DNI forecasts 

99 

Considering the monthly irradiation values for all stations, an improvement 

over the original DNI forecasts from the ECMWF of 0.0331, 5.9 kWh/m2 and 

6.6 kWh/m2 for R2, MAE and RMSE, respectively, is achieved by the 

developed algorithm with a forecast skill of 38.1 %.  

 

Table 3.12 - Metrics for the monthly original spatially downscaled ECMWF DNI 

(irradiation) forecasts and ANN model B predictions for the different stations located in the 

south of Portugal. 

Station 
R2  MAE (kWh/m2)  

RMSE 

(kWh/m2) 
FS 

(%) 
ECMWF ANN  ECMWF ANN  ECMWF ANN 

Verney 0.9431 0.9771  13.0 7.4  16.3 9.4 43.0 

EMSP 0.9483 0.9758  15.0 9.8  17.6 12.1 34.9 

PECS 0.9518 0.9803  13.6 7.8  16.8 9.7 43.1 

Portalegre 0.9402 0.9717  15.9 11.9  19.7 14.9 25.5 

Beja 0.9472 0.9689  14.0 9.6  16.2 12.3 31.0 

Lisboa 0.8948 0.9598  22.2 11.4  25.7 13.6 48.6 

Sines 0.8244 0.8742  18.3 9.6  22.1 13.9 47.6 

All 0.9313 0.9644  15.5 9.6  18.9 12.3 38.1 

 

3.7 Application of the developed model for operational DNI 

forecasts  

 

The model developed in this work can be used operationally to obtain more 

accurate DNI forecasts which can help solar energy systems and power grid 

operators to estimate the energy generation and make better informed 

decisions. After retrieving the operational forecasts of ECMWF of the 00UTC 

run, the model is applied resulting in 10 min DNI forecasts for the present 

day and the next 2 days. As an example, Fig. 3.6 was generated, where the 

model was used to generate DNI forecasts for 3 consecutive days (forecast 

issue time at 00:00 UTC of 9, 10 and 11 of January 2020, as example) at the 

location of Évora - Verney station. Here, the model results show very good 

agreement with observations for clear sky conditions, with larger errors for 

overcast or partially cloudy skies, as expected. The day January 11 is 
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forecasted for all presented runs of the model and, in order to assess the 

variation of model performance along the successive forecast issues, the 

variation of statistical indicators R2, MAE and RMSE for this day is shown in 

Fig. 3.7.  

 

Fig. 3.6 - Example of operational use of the developed model for 3 consecutive days. 

 

            (a)                                                (b)                                               (c) 

Fig. 3.7 - Variation of statistical indicators (a) R2, (b) MAE and (c) RMSE for Jan. 11, 2020 

using 00:00 UTC forecasts at day 0 (forecast issue: Jan. 11), 1 day ahead (forecast issue: 

Jan. 10) and 2 days ahead (forecast issue: Jan. 9), based on 10 min data. 
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As this is just an example for a specific day, the same operational test was 

carried out for the test and blind test datasets of Évora – Verney station and 

the results can be seen in Figs. 3.8 and 3.9 for the ANN model A and ANN 

model B, respectively. Comparing these figures with the one obtained for the 

original downscaled ECMWF forecasts (Fig. 3.2), a higher density of data 

points near the bisection line is found for the forecasts of the ANN models. 

 

 

Fig. 3.8 - Results of ANN model A for test and blind test 10 min data of Évora-Verney 

station (the colormap represents the number of data points in each bin. Bin size: 20x20 

W/m2). 
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Fig. 3.9 - Results of ANN model B for test and blind test 10 min data of Évora-Verney 

station (the colormap represents the number of data points in each bin. Bin size: 20x20 

W/m2). 

A similar way to visualize these results to that of Fig. 3.7 is shown in Fig. 

3.10 for each forecasting model and each of the forecast days, now for all data 

and not for a specific day. Again, all models show an overall increase in 

performance for shorter forecast time horizons and all metrics are improved 

by the models developed in this work for all days of the forecast time horizon.  

 

 

(a)                                              (b)                                              (c) 

Fig. 3.10 - Variation of statistical indicators (a) R2, (b) MAE and (c) RMSE results for Évora 

– Verney station for each forecast day ahead, based on 10 min data. 

 



3.8 Conclusions 

103 

3.8 Conclusions  

 

This work presents the development of a model that can successfully generate 

improved DNI forecasts based on data from NWP models in an operational 

setting. This model uses forecast data from the IFS/ECMWF and CAMS of 

several atmospheric variables including aerosol data which affects the 

transport of solar radiation through the atmosphere. These forecasts are 

spatially and temporally downscaled to the location and time resolution 

desired using bi-linear interpolation of the values of the four surrounding grid 

points and piecewise cubic interpolation of the hourly mean variables, 

respectively. Then, two different models based on artificial neural networks 

were designed and optimized to generate improved DNI forecasts with the 

desired temporal resolution and for a forecast time horizon of 72 h. Different 

configurations of these models were tested, and the selected configuration 

uses two feedforward ANNs in series, that is, the second ANN uses the output 

of the first as input. In an operational setting, the model is run every day 

when the ECMWF and CAMS operational forecasts are available for retrieval 

(maximum dissemination time 06:55 UTC) and results for the next two days 

can be used by solar energy producers and power grid operators to estimate 

the energy production and make better informed decisions. 

Comparing the final model results using only test and blind test datasets with 

a temporal resolution of 10 min and for the location of Évora – Verney (the 

location used for model development) with the ground-based observations at 

the same location, values of R2, MAE and RMSE of 0.7195, 133.9 W/m2 and 

191.7 W/m2 for forecast day 1 and of 0.6812, 141.7 W/m2 and 209.0 W/m2 for 

forecast day 2 were achieved, respectively. This results in an improvement 

over the original downscaled DNI forecast from ECMWF of 0.0646, 21.1 W/m2 

and 27.9 W/m2 for forecast day 1 and of 0.0608, 19.8 W/m2 and 21.2 W/m2 for 

forecast day 2 for R2, MAE and RMSE, respectively. 

The model was also applied to other locations scattered in the region 

surrounding the site for which it was developed showing improvements of the 

DNI forecasts of 0.0713, 23.3 W/m2 and 24.2 W/m2 for day 1 of forecast and 
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for R2, MAE and RMSE respectively, when compared to the ECMWF forecasts 

and taking the ground-based measurements in each location as reference. 

It was also shown that the already developed algorithm can be applied to 

similar temporal resolutions, such as 5 or 15 min, achieving good results 

which can be extremely helpful when forecasts with different time steps are 

needed so that they are in accordance with the real-time market forecasting 

requirements.  

With these improved forecasts, more accurate estimations of energy 

generation in solar energy systems can be achieved which is extremely 

important for solar power plant and energy market operators. 
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Nomenclature 

 

AOD469 Aerosol optical depth at 469 nm (–) 

AOD550  Aerosol optical depth at 550 nm (–) 

AOD670 Aerosol optical depth at 670 nm (–) 

AOD865 Aerosol optical depth at 865 nm (–) 

AOD1240 Aerosol optical depth at 1240 nm (–) 

avgCF Vertical average cloud fraction (–) 

DHI  Diffuse horizontal irradiance (W/m2) 

DNI  Direct normal irradiance (W/m2) 

DUAOD Dust aerosol optical depth at 550 nm (–) 
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GHI  Global horizontal irradiance (W/m2) 

maxCF Vertical maximum cloud fraction (–) 

OMAOD Organic matter aerosol optical depth at 550 nm (–) 

SSAOD Sea salt aerosol optical depth at 550 nm (–) 

T  Air temperature (℃) 

WD  Wind direction (°) 

WS  Wind speed (m/s) 

Zen  Solar zenith angle (°) 

 

Acronyms 

ANN  Artificial Neural Network 

BSRN  Baseline Surface Radiation Network 

CAMS Copernicus Atmosphere Monitoring Service 

ECMWF European Centre for Medium-range Weather Forecasts 

FS  Forecast Skill 

GFS  Global Forecasting System 

GPI  Global Performance Index 

NWP  Numerical Weather Prediction 

MAE  Mean Absolute Error 

ML  Machine Learning 

MSE  Mean Squared Error 

RF  Random Forest 

rMSE  Relative Mean Squared Error 

RMSE Root Mean Squared Error 

RRTM Rapid Radiation Transfer Model 

SVM  Support Vector Machines 

WRF  Weather Research Forecasting
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Chapter 4 

 

Prediction of global solar irradiance on parallel rows 

of tilted surfaces including the effect of direct and 

anisotropic diffuse shading† 

 

Abstract 

 

Solar photovoltaic power plants typically consist of rows of solar panels, 

where the accurate estimation of solar irradiance on inclined surfaces 

significantly impacts energy generation. Existing practices often only account 

for the first row, neglecting shading from subsequent rows. In this work, ten 

transposition models were assessed against experimental data and a 

transposition model for inner rows was developed and validated. The 

developed model incorporates view factors and direct and circumsolar 

irradiances shading from adjacent rows, significantly improving global tilted 

irradiance (GTI) estimates. This model was validated against one-minute 

observations recorded between 14 April and 1 June 2022, at Évora, Portugal 

(38.5306, −8.0112) resulting in values of mean bias error (MBE) and root-

mean-squared error (RMSE) of −12.9 W/m2 and 76.8 W/m2, respectively, 

which represent an improvement of 368.3 W/m2 in the MBE of GTI 

estimations compared to the best-performing transposition model for the first 

row. The proposed model was also evaluated in an operational forecast setting 

where corrected forecasts of direct and diffuse irradiance (0 to 72 h ahead) 

were used as inputs, resulting in an MBE and RMSE of −33.6 W/m2 and 169.7 
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W/m2, respectively. These findings underscore the potential of the developed 

model to enhance solar energy forecasting accuracy and operational 

algorithms’ efficiency and robustness. 

 

Keywords 

Solar radiation; Solar energy; Transposition model; Solar power plant; 

Forecast 

 

4.1 Introduction 

 

In recent decades, there has been a significant surge in the installed capacity 

of PV systems. In 2022 alone, solar photovoltaics comprised two-thirds of the 

new renewable energy capacity added to the grid, totaling 239 GW [1]. This 

growth is driven by global efforts to decarbonize the economy and achieve net-

zero greenhouse gas emissions by 2050. The International Energy Agency 

(IEA) estimates that PV systems will continue to expand, with new capacity 

projected to exceed 700 GW by 2028 [2]. With the rapid increase in the 

installed capacity of solar energy systems worldwide and the characteristic 

variability of solar radiation, accurate estimation and forecasting of power 

output is becoming increasingly important. The factor that most affects this 

output is the irradiance incident on the solar energy collectors. However, 

weather stations, satellites, and numerical weather prediction (NWP) models 

usually provide global (GHI) and diffuse (DIF) irradiance data on the 

horizontal plane and direct irradiance on a plane normal to the sun’s rays 

(DNI). Therefore, transposition models that can compute the irradiance 

incident on a tilted surface from the available variables are essential. 

Various transposition models have been developed and studied over the 

years. They can be divided into analytical, semi-empirical, and empirical 

models [3]. Analytical models are based on the laws of physics and only 

require the geometric characteristics and position data of the surface, while 

semi-empirical and empirical models also rely on observation data.  
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Physical models are usually based on the sum of the direct, diffuse, and 

reflected irradiances on the tilted surface. The computation of the direct and 

reflected components is often the same for all models, with the computation 

of the diffuse irradiance being the distinct factor [4]. Among these models, 

some assume a uniform sky dome radiance with the same intensity in all 

directions, termed isotropic. Anisotropic models, on the other hand, define 

indices representing the irradiance intensity from different regions of the sky 

dome, such as the circumsolar region (an annular region surrounding the sun 

disk), the horizon-brightening region (a band along the horizon), and the 

background or remaining region often called the isotropic region.  

Transposition models also tend to show varying degrees of performance 

depending on sky conditions, whether clear, cloudy, or overcast [5]. The 

complexity and variability of the shape and position of clouds make the 

accurate instantaneous evaluation of the diffuse component extremely 

difficult without knowing the distribution of sky radiance. A model 

considering this would be more complex and require not only the simple 

measurement of the irradiance on the tilted plane but many more variables 

that are not commonly measured, such as the spectral radiance. Thus, 

physical models must rely on assumptions that can result in high transient 

errors [6]. Some of the most referenced analytical physical models in the 

literature are reviewed in this work, such as the Klucher [7], Hay–Davies [8], 

and Modified Bugler [9]models. On the other hand, abundant research on the 

comparison of the different models at different locations and positions of the 

surfaces has been published [3,4,10,11]. From these, no single model emerges 

as the best for all studied locations/positions, but it has been widely 

demonstrated that anisotropic models tend to outperform isotropic models 

when compared to measured data because they consider the angular 

dependence of sky radiance, thus reflecting real-world conditions more closely 

compared to isotropic models. 

Semi-empirical and empirical models, including machine learning 

approaches which are data-driven, tend to be site-dependent, which means 

that they are biased towards specific locations and/or tilt and azimuth angles 



Chapter 4. Prediction of GTI on parallel rows of tilted surfaces 

114 
 

[12–16], and will not be considered here. While these models are gaining 

relevance and can provide substantial benefits in some situations, their 

applicability is often limited because extensive local experimental data are 

required for the model calibration. This increases the challenge and difficulty 

of generalizing them to different geographic locations or environmental 

conditions. Given the focus of this study on developing a transposition model 

that is applicable across various conditions without the need for site-specific 

parameter adjustments, these models were excluded to maintain a broader 

applicability and robustness of proposed approach. 

Most transposition models have been developed for a tilted surface in an open 

field. However, a solar energy power plant, such as photovoltaic power plants, 

comprises several rows of modules, where rows other than the first have a 

different view of the sky dome and the ground compared to the first row. 

Therefore, when computing the global tilted irradiance (GTI) on a panel not 

located in the front row, the transposition model should be adjusted to account 

for the fraction of the sky dome obscured by the rows at the front, as well as 

the possible blocking of the direct beam and circumsolar irradiance from the 

sun disk and the reflected irradiance coming from the front row and the 

ground between them. Since in large solar power plants the number of panels 

in the first row can be much smaller than the number of panels in the 

remaining rows, having a more accurate transposition model for these panels 

can improve the estimation of power output. Few authors have focused on this 

aspect, with the most notable and recent works being those by Applebaum et 

al. [17], Varga and Mayer [18], and Tschopp et al. [19].  

As mentioned above, one aspect of higher complexity in transposition models 

is the parametrization of diffuse irradiance. This component of the GTI is 

strongly related to the diffuse horizontal irradiance (DIF) and the global 

horizontal irradiance (GHI), which are typically measured in radiometric 

stations. However, if only GHI is measured, a separation method is needed to 

estimate DNI and DIF. If there are no measurements at the location of 

interest, estimations or forecast values need to be used instead. This 

increases the uncertainty associated with the estimation of GTI and, 
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consequently, of power output. Of particular interest in this work is the usage 

of forecast values of solar radiation components, with the goal of predicting 

power output in a time horizon up to three days with an acceptable accuracy. 

In this regard, when utilizing forecast DNI and DIF as inputs, a transposition 

model allows for the forecasting of GTI and power output of photovoltaic 

systems if coupled with thermal and electric models of photovoltaic systems.  

These forecasts can be obtained from a global operational numerical weather 

prediction model (NWP) such as the Integrated Forecasting System (IFS) of 

the European Centre for Medium-range Forecasts (ECMWF) [20]. By 

incorporating constitutive and state equations describing physical 

phenomena in the atmosphere, subject to boundary and initial conditions, 

NWP models provide the evolution of the atmospheric state, which include 

surface-level GHI. In the case of IFS/ECMWFS, DNI is also included, 

allowing for the study and assessment of solar resources and operational 

forecasts [21,22]. 

This work presents a comprehensive review of transposition models, 

categorizing models that do not include shading or irradiance masking as 

“first-row models” and those that include these aspects as “inner-row models”. 

The development of a transposition model for inner rows is also presented, 

which can be applied to a desired first-row model. The proposed model is 

validated using experimental values, which are also used for the assessment 

and comparison of all models. The use of operational forecasts of solar 

irradiance is assessed to estimate the impact of the accuracy of the 

transposition model on GTI prediction at different time horizons. The primary 

aim is to develop a transposition model for inner rows of solar power plants, 

validate the proposed model against experimental measurements, and 

evaluate its performance using operational solar radiation forecasts. This 

study addresses gaps in the existing literature, which mainly focuses on the 

first row of panels, neglecting the impact of direct and anisotropic diffuse 

shading on inner rows. The hypotheses focus on the expected improvement in 

the accuracy of the developed model’s results over existing models for the first 
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row, as well as its robustness when used with forecasted irradiance data as 

input. 

This paper is organized as follows: An initial review of the most used 

analytical models and recent models developed for rows that are not the first 

is presented in Section 4.2. Section 4.3 details the development of a 

transposition model based on the works of Tschopp et al. and Varga and 

Mayer [18,19] for surfaces not located in the first row. Section 4.4 presents 

the experimental setup and procedure for testing the different models, and 

Section 4.5 discusses the evaluation and results. Section 4.6 establishes a 

connection with solar irradiance forecasting by applying the developed model 

to forecasted values of direct normal and diffuse horizontal irradiance, 

integrating it as an essential part of an operational algorithm for forecasting 

solar irradiance on a tilted surface. Finally, Section 4.7 presents the 

conclusions of this work. 

 

4.2. Solar irradiance transposition models for tilted surfaces  

 

This section provides a review of analytical transposition models, ranging 

from the most widely used and commonly referenced transposition models 

that do not consider shading and obscuration to the few and most recently 

proposed models designed for inner rows in solar power plants.  

 

4.2.1 Transposition models for the first row of collectors in solar power plants  

For modeling solar irradiance on a tilted surface (GTI), nine of the most 

commonly used analytical transposition models are reviewed, where one is 

isotropic and the remaining are anisotropic models. In all the following 

equations, 𝛼 is the solar height, Φ is the solar zenith angle,  𝛾𝑠 is the solar 

azimuth, 𝜃 is the incidence angle on the surface, 𝛽 is the tilt angle of the 

surface and  𝛾𝑝 is the azimuth of the surface, taking the horizontal plane and 

the local meridian as references.   

Analytical transposition models include the computation of tilt factors for 

determining the beam (𝑅𝑏), diffuse (𝑅𝑑), and reflected (𝑅𝑟) irradiances on the 
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tilted surface. These factors are used in Eq. (4.1) for determining 𝐺𝑇𝐼, where 

𝐷𝐻𝐼 is the direct horizontal irradiance as defined in Eq. (4.2): 

𝐺𝑇𝐼 = 𝑅𝑏𝐷𝐻𝐼 + 𝑅𝑑𝐷𝐼𝐹 + 𝑅𝑟𝐺𝐻𝐼 (4.1)  

𝐷𝐻𝐼 = 𝐷𝑁𝐼 ×  cos (Φ) (4.2) 

For the first row of photovoltaic panels, assuming no obstruction of the sun’s 

rays, the direct irradiance on the tilted plane can be calculated at any given 

instant by multiplying 𝐷𝐻𝐼 with the beam radiation tilt factor described in 

Eq. (4.3): 

𝑅𝑏 =
cos (𝜃)

cos (Φ)
 (4.3)  

The irradiance reflected onto the tilted surface by the surrounding surfaces 

is assumed isotropic and is modeled by multiplying 𝐺𝐻𝐼 with the reflected 

irradiance tilt factor 𝑅𝑟 (Eq. (4.4)) which consists of the product of the albedo 

of the surrounding ground (𝜌𝑔) and the view factor 𝐹𝑔 (Eq. (4.5)). 

𝑅𝑟 = 𝜌𝑔𝐹𝑔, (4.4) 

𝐹𝑔 =
1 − cos (𝛽)

2
 (4.5) 

Numerous models have been proposed for determining the diffuse tilt factor 

𝑅𝑑  since the diffuse radiation is highly variable due to its dependency on 

atmospheric conditions. Models that consider the diffuse irradiance on a tilted 

surface coming from the entire sky-dome to have the same intensity are 

isotropic, while others that divide the sky-dome into regions with different 

intensities of diffuse radiance are called anisotropic models. These regions are 

usually the circumsolar region, which constitutes an annular region 

surrounding the Sun, the horizon brightening region, which is the region of 

the sky-dome near the horizon, and the remaining sky-dome region is termed 

the isotropic region.  

In the following, several models are presented, including the widely used 

isotropic model that was developed by Liu and Jordan [23]. It assumes that 

the diffuse solar radiation is uniformly spread across the sky, which simplifies 
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the calculation of solar radiation on inclined surfaces by considering the sky 

as a homogenous light source. This model only considers the tilt angle of the 

surface as input, as presented in Eqs. (4.6) and (4.7), where the diffuse tilt 

factor is simply a view factor between the surface and the sky. Its advantages 

lie in its simplicity and widespread adoption for preliminary solar energy 

designs and studies. However, the model's accuracy can be compromised due 

to its isotropic assumption, leading to potential inaccuracies in non-

homogenous sky conditions and environments with significant obstructions. 

Despite these limitations, it remains a significant tool in solar energy 

research and engineering, often serving as a benchmark for more complex 

anisotropic models that account for the directional distribution of diffuse 

radiation. 

 

Liu and Jordan model (LJ): 

𝑅𝑑 = 𝐹𝑠 (4.6) 

𝐹𝑠 =
1 + cos (𝛽)

2
 (4.7) 

The remaining models analyzed are anisotropic models, which are often more 

representative of real sky conditions. 

 

Bugler model (B): 

The Bugler model [24] includes a circumsolar region in which its contribution 

to the diffuse irradiance is assumed to be 5 %  of DNI and can be computed 

using Eq. (4.8), where 𝐹𝑠  is the sky view factor given by Eq. (4.7). Bugler 

derived this model by analyzing solar radiation data and developing 

equations that incorporate these anisotropic factors, resulting in more 

accurate predictions of solar irradiance on tilted surfaces. However, this 

model overlooks the contribution of the circumsolar region to the isotropic 

irradiance and was later modified.  

𝑅𝑑 = 𝐹𝑠 + 0.05
𝐷𝐻𝐼 × 𝑅𝑏
𝐷𝐼𝐹

 (4.8)  
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Temps and Coulson model (TC): 

The Temps and Coulson [25] model, defined by Eq. (4.9), considers the 

circumsolar region through the factor [1 + 𝑐𝑜𝑠2(𝜃)𝑠𝑖𝑛3(Φ)] and the horizon 

brightening through [1 + 𝑠𝑖𝑛3 (
𝛽

2
)] . This model was obtained through 

measurements of direct and diffuse solar flux incident on slopes of various 

orientations for clear sky conditions through a pyranometer. 

𝑅𝑑 = 𝐹𝑠[1 + 𝑐𝑜𝑠
2(𝜃)𝑠𝑖𝑛3(Φ)] [1 + 𝑠𝑖𝑛3 (

𝛽

2
)] (4.9) 

Klucher model (K): 

The Klucher model [7], given by Eq. (4.10), is similar to the Temps and 

Coulson model, except for the inclusion of the clearness index 𝑓, defined by 

Eq. (4.11). Under overcast conditions, this model reduces to the isotropic 

model (where 𝑓  tends to 0). It was derived from a 6-month dataset of 

measured hourly diffuse and total solar radiation on a horizontal plane and 

total radiation on surfaces with 0° azimuth and tilts of 37° and 60°. 

𝑅𝑑 = 𝐹𝑠 [1 + 𝑓𝑠𝑖𝑛
3 (
𝛽

2
)] [1 + 𝑓𝑐𝑜𝑠2(𝜃)𝑠𝑖𝑛3(Φ)] (4.10) 

𝑓 = 1 − (
𝐷𝐼𝐹

𝐷𝐻𝐼 + 𝐷𝐼𝐹
)
2

 (4.11) 

Hay-Davies model (HD): 

The Hay-Davies model [8], which does not consider horizon brightening, is 

given by Eq. (4.12). Here, 𝐴 is named anisotropy index, also termed direct or 

beam irradiance index, and is defined in Eq. (4.13), where 𝐸𝑁𝐼  is the 

extraterrestrial normal irradiance. This index represents the total 

transmittance of the atmosphere for beam radiation and is used to define the 

portion of circumsolar (𝐴 × 𝑅𝑏) and isotropic (𝐹𝑠(1 − 𝐴)) diffuse irradiance on 

the tilted surface.  

𝑅𝑑 = 𝐴 × 𝑅𝑏 + 𝐹𝑠(1 − 𝐴) (4.12) 

𝐴 =
𝐷𝑁𝐼

𝐸𝑁𝐼
 (4.13) 
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Ma Iqbal model (MI): 

The Ma Iqbal model [26], described through Eq. (4.14), is similar to the Hay-

Davies model but uses the clearness index 𝑘𝑇  (Eq. (4.15)) to define the 

circumsolar portion of diffuse irradiance instead of the direct irradiance 

index. The clearness index is computed as the ratio of Global Horizontal 

Irradiance (GHI) to extraterrestrial horizontal irradiance (EHI). This 

formulation allows the Ma Iqbal model to account for varying sky conditions 

and solar geometry, enhancing its applicability in solar energy studies and 

irradiance forecasting. 

𝑅𝑑 = 𝑘𝑇𝑅𝑏 + 𝐹𝑠(1 − 𝑘𝑇) (4.14) 

𝑘𝑇 =
𝐺𝐻𝐼

𝐸𝐻𝐼
 (4.15) 

Modified Bugler model (MB): 

The Modified Bugler model [9] improves the Bugler model by considering the 

contribution of the circumsolar region to the background isotropic diffuse 

radiance, computed through Eq. (4.16). This model was validated using 

extensive datasets from various locations around the world. These datasets 

included measured solar radiation data collected under different sky 

conditions, such as clear sky, cloudy sky, and overcast sky conditions. 

Additionally, the model was validated against experimental data that 

accounted for various surface orientations, including horizontal, tilted, and 

vertical surfaces. 

𝑅𝑑 = (1 − 0.05
𝐷𝐻𝐼

𝐷𝐼𝐹
)𝐹𝑠 + 0.05

𝐷𝐻𝐼 × 𝑅𝑏
𝐷𝐼𝐹

 (4.16) 

Modified Ma Iqbal model (MMI): 

The modified Ma Iqbal model (Eq. (4.17)) [3] is similar to the original model 

proposed by this author but uses a clearness index (Eq. (4.18)) adjusted with 

an optical air mass as defined in Eq. (4.19) [27]. 

𝑅𝑑 = 𝑘′𝑇𝑅𝑏 + (1 − 𝑘′𝑇)𝐹𝑠, (4.17) 
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𝑘′𝑇 =
𝑘𝑇

1.031𝑒𝑥𝑝(
−1.4

0.9 +
9.4
𝑀

) + 0.1

 

(4.18) 

𝑀 =
1

cos(Φ) + 0.15(93.885 − Φ)−1.253
 (4.19) 

Reindl model (R): 

The Reindl model [28], based on the Hay-Davies model, uses the same 

anisotropic index, 𝐴 (Eq. (4.13)), but includes an additional term to account 

for horizon brightening (Eq. (4.20)). This model was developed based on 

datasets from locations across the USA. 

𝑅𝑑 = 𝐴 × 𝑅𝑏 + 𝐹𝑠(1 − 𝐴) [1 + √
𝐷𝐻𝐼

𝐷𝐻𝐼 + 𝐷𝐼𝐹
𝑠𝑖𝑛3 (

𝛽

2
)] (4.20) 

 

Perez model (P): 

The Perez model, one of the most widely used transposition models in the 

literature, is included in this work, even though it cannot be classified as an 

analytical model since it is built upon measured data and is subject to 

continuous revisions for this reason. The version of the Perez model [29] used 

in this work, often referred to as Perez3, is considered the most widely 

accepted version of this model [4]. This model categorizes the sky in three 

zones: the circumsolar zone, horizon band, and isotropic zone. The diffuse 

irradiance tilt factor is computed using Eq. (4.21) through (4.27), with the 

assumption that the circumsolar irradiance originates from a point source 

and irradiance from the horizon from an infinitesimally thin region. The 

zenith angle is exceptionally used in radians for Eq. (4.26). The coefficients 

𝐹𝑖𝑗 were determined using data from 10 American and 3 European locations 

and can be consulted in [4,29]. 

𝑅𝑑 = 𝐹1
𝑎

𝑏
+ (1 − 𝐹1)𝐹𝑠 + 𝐹2 sin 𝛽 (4.21) 



Chapter 4. Prediction of GTI on parallel rows of tilted surfaces 

122 
 

𝑎 = max (0, cos 𝜃) (4.22) 

𝑏 = max[cos 85° , sin(90° − 𝜃𝑧)]  (4.23) 

𝐹1 = 𝑚𝑎𝑥[0, 𝐹11(𝜀) + 𝐹12(𝜀)∆ + 𝐹13(𝜀)𝜃𝑧] (4.24) 

𝐹2 = 𝐹21(𝜀) + 𝐹22(𝜀)∆ + 𝐹23(𝜀)𝜃𝑧 (4.25) 

𝜀 =
𝐺𝐻𝐼/𝐷𝐼𝐹 + 1.041𝜃𝑧

3

1 + 1.041𝜃𝑧
3

 (4.26) 

∆=
𝐷𝐼𝐹

𝐸𝑁𝐼 cos 𝜃𝑧
 (4.27) 

 

4.2.2 Transposition models for surfaces not located in the front row of a solar 

power plant  

The models presented in the Section 4.2.1 were developed for a single row. In 

the case of photovoltaic power plants, for instance, which are composed of 

various parallel rows, there is a partial obscuring of the sky radiance and, 

eventually, the blocking of direct sun rays by the front rows over the second 

and subsequent rows, thus affecting the global tilted irradiance on these 

surfaces. An obscuring of the ground between rows can also occur, which 

affects the reflected irradiance. 

Some authors have considered this, namely Appelbaum et al. [17], who 

adjusted the Klucher transposition model [7] by computing the sky-view 

factor for the second row and adjusting the indices of the circumsolar and 

horizon brightening diffuse regions. For this, the authors considered the 

circumsolar irradiance coming from a point source (the sun) which would be 

completely obscured when the obscuring angle from the sun to the base of the 

second row caused by the front row is higher than the sun elevation angle. 

The correction for the horizon brightening region was considered near sunrise 

and sunset. This adjusted model was validated with data obtained in Tel 

Aviv, showing that for rows other than the first the effect of the anisotropic 

region defined as horizon brightening is negligible. 
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Varga and Mayer [18] modified the Hay-Davies model [9], which does not 

include a horizon brightening region, to calculate the distribution of solar 

irradiance along a tilted surface for rows behind the first. Besides the 

adjustment of the view-factors, the circumsolar irradiance was corrected 

through the modeling of the fraction of the region obscured by the front row 

by considering a circumsolar region with an apparent angular radius of 15°, 

and the ground was divided into two sections: a shaded section that reflects 

only isotropic diffuse irradiance and an unshaded section that reflects global 

irradiance. The model was validated against power generation data from 

Hungary showing a clear improvement when compared to a model that only 

considers shading of the direct irradiance. 

Tschopp et al. [19] also adjusted the Hay-Davies model for surfaces that are 

not on the front row by dividing the length of the surface of the row being 

evaluated, the back surface of the row at its front, and the ground between 

them in segments and then computing diffuse and direct irradiance in each 

segment. For this, the view-factors between all segments and between each 

segment and the sky are computed, while the obscuring of the direct and 

circumsolar irradiances are determined based on a simple formula for the 

shadow height on the surface. The model showed a significant improvement 

in the estimation of GTI for rows other than the first compared to the original 

transposition model. 

Considering this, it is expected that combining the higher detail in the 

modeling of shadow and circumsolar irradiance obscuration presented in [18] 

and the inclusion of the back surface of the row at the front and the ground 

between rows presented in [19] will provide better estimations of GTI for rows 

that are not at the front of a solar power plant. 

 

4.3 Development of transposition model for surfaces not located in 

the front row of a solar power plant  

 

The model proposed in this work for determining solar irradiance on tilted 

rows adjacent to the first row builds upon the models presented in [18,19]. 
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Similar to these models, it assumes rows of panels with lengths much greater 

than their heights, resulting in a 2D representation as commonly used in the 

literature [17–19,30,31].  

While the aforementioned models only consider cases when the sun is 

positioned at the front of the rows, here, the modeling of the direct and 

circumsolar irradiance shading for all involved surfaces is also included, 

considering any position of the sun, resulting in a more realistic model. 

Additionally, the developed model was made generic and can be applied to 

any first-row transposition model as long as it clearly considers direct, 

circumsolar and isotropic irradiance, instead of relying on a predefined first-

row model. Extra detail was also included in the modeling of ground shading 

by considering rows beyond the two main rows being modeled.  

 

Fig. 4.1 - Schematic for modeling GTI in rows that are not the front row. 

The three surfaces considered in this model, namely the front of the panel 

being evaluated, the back of the panel at its front, and the ground between 

rows, are divided into segments, as shown in Fig. 4.1, where 𝐿, 𝐷, ℎ0 and 𝛽 

are the length of the panels, the horizontal distance between rows, the 

vertical distance between the ground and the base of the rows, and the tilt 

angle, respectively. The value of 𝐺𝑇𝐼 is computed for each segment 𝑐 of the 

panel being evaluated and considers the reflected solar irradiance from each 
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segment of the ground 𝑢 and the back of the front panel 𝑣. The number of 

segments into which these surfaces are divided is defined by the user and can 

be adjusted, namely the number of segments of the panel being evaluated 𝑖 =

1: 𝑛 , the number of segments of the ground  𝑗 = 1: 𝑝 , and the number of 

segments of the back of the front panel 𝑘 = 1: 𝑞. 

For each segment of both panels and ground the 𝐺𝑇𝐼 is computed as in [19] 

using Eq. (4.28), where 𝐺𝑇𝐼⃗⃗⃗⃗⃗⃗  ⃗, 𝐼 𝑟 and 𝐷⃗⃗  are vectors with the values of the global 

tilted irradiance, the direct normal irradiance, and the diffuse horizontal 

irradiance, respectively, on each segment of the panel, ground and front 

panel. 𝑰 is the identity matrix while 𝑭 is the view-factor matrix between all 

segments and 𝑹 is the reflectivity matrix for each segment. The view-factors 

between all segments are computed using the Hottel crossed-string rule [32], 

and the reflectivity of the front of the panel is assumed to be 0 as in [19].  

𝐺𝑇𝐼⃗⃗⃗⃗⃗⃗  ⃗ = (𝑰 − 𝑭𝑹) −1(𝐼 𝑟 + 𝐷⃗⃗ ), (4.28) 

𝐼 𝑟 = 𝐷𝐻𝐼 × 𝑅⃗ 𝑏 (4.29) 

𝐷⃗⃗ = 𝐷𝐼𝐹 × 𝑅⃗ 𝑑 (4.30) 

𝑅⃗ 𝑏 = 𝑚𝑎𝑥 (0,
𝑐𝑜𝑠𝜃 

𝑐𝑜𝑠Φ⃗⃗⃗ 
) (1 − 𝑆 ) (4.31) 

𝑅⃗ 𝑑 = 𝐹 𝑠𝑋𝑖 + 𝑋𝑐𝑠(1 − 𝑆 𝑐𝑠) (4.32) 

For the computation of the transposed direct normal (Eq. (4.29)) and diffuse 

(Eq. (4.30)) irradiance on each segment, the vectors 𝑅⃗ 𝑏 and 𝑅⃗ 𝑑 are obtained 

from Eqs. (4.31) and (4.32) which consist of the tilt factors for the direct 

(beam) and diffuse irradiances. The shading of the direct irradiance in each 

segment is taken into consideration in the direct tilt factor through the vector 

𝑆  whose values are either 0, when direct irradiance is not obscured, or 1, when 

the direct irradiance is obscured, depending on the geometrical 

characteristics of the installation and the apparent position of the sun in the 

sky. Regarding the diffuse tilt factor, an isotropic component, 𝑋𝑖 , and a 

circumsolar component, 𝑋𝑐𝑠 , are modeled as in a first-row transposition 
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model, which, as mentioned above, can be any first-row model as long as it 

includes direct, circumsolar and isotropic irradiance components. In the 

present work, a set of analytical transposition models for first rows are firstly 

assessed against experimental values and then one is selected, which will 

then be used in this model evaluation, as reported in the following sections. 

The sky view factors are computed for each segment considering the 

summation and reciprocity rules. The fraction of circumsolar irradiance that 

is obscured is modeled by the vector 𝑆 𝑐𝑠  ranging from 0, when there is no 

obscuration, to 1, when all irradiance from the considered circumsolar region 

is obscured. 

The vectors 𝑆  and 𝑆 𝑐𝑠  (Eqs. (4.33) and (4.34), respectively) are determined 

based on the model proposed by Varga and Mayer [18] with various 

modifications for the inclusion of cases in which the sun is positioned at the 

back of the row and the computations for the different segments of the back 

surface of the row in front of the one being evaluated and the ground. 

Depending on the surface of each segment, namely the surface of the panel 

being evaluated, 𝑐, the back surface of the panel of the row at its front, 𝑣, or 

the surface of the ground between them, 𝑢, the way the shading vectors are 

modeled differs. Since this is a two-dimensional model, firstly, the projection 

of the solar elevation angle to the azimuth of the panels, 𝛼′, is needed, which 

is obtained through Eq. (4.35), where 𝛾𝑠  is the solar azimuth and 𝛾𝑝  is the 

azimuth of the surfaces. 

𝑆 =

[
 
 
 
 𝑆
 
𝑐

𝑆 𝑢

𝑆 𝑣]
 
 
 
 

 (4.33) 

𝑆 𝑐𝑠 =

[
 
 
 
 𝑆
 
𝑐𝑠,𝑐

𝑆 𝑐𝑠,𝑢

𝑆 𝑐𝑠,𝑣]
 
 
 
 

 (4.34) 
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𝛼′ = tan−1 (
tan 𝛼

cos(𝛾𝑠−𝛾𝑝)
) (4.35) 

The shading of direct beam and the fraction of obscured circumsolar 

irradiance are determined for each segment of the panel, ground and back of 

the front panel according to the projected solar elevation angle relative to 

each of the angles shown in Fig. 4.2. These angles are computed using Eqs. 

(4.36) through (4.43), where 𝑖, 𝑗 and 𝑘 are the indices of the segments in the 

panel being evaluated, at the back of the front panel, and on the ground 

between the rows of panels, respectively. The angles with subscript 𝑐  are 

obtained for each segment of the panel being evaluated, those with subscript 𝑣 

are obtained for each segment of the back of the front panel, and those with 

subscript 𝑢 are obtained for each segment of ground between the two rows. 

The angles 𝛿 and 𝜀 result from the view of the top of an adjacent panel from 

a segment, the angles 𝜁  and 𝜉  result from the view of the bottom of an 

adjacent panel from a ground segment, and the angles 𝜆 and 𝜎 result from the 

view of the top of a subsequent panel from a ground segment.  

 

Fig. 4.2 - Schematic of the various angles for the computation of shadows and obscuring of 

circumsolar radiation for (a) a segment of the panel being evaluated, (b) the back of the front 

panel and (c) the ground between the rows of panels. 
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𝛿𝑐(𝑖) = tan
−1 [

(𝐿−
𝑐(𝑖+1)−𝑐(𝑖)

2
)sinβ

𝐷+(
𝑐(𝑖+1)−𝑐(𝑖)

2
−𝐿)cosβ

]a = 1, (4.36) 

𝛿𝑣(𝑘) = tan−1 [(
(L −

𝑣(𝑘 + 1) − 𝑣(𝑘)
2

) sinβ

D
)] (4.37) 

𝛿𝑢(𝑗) = tan−1 [
Lsinβ + ℎ0

𝑢(𝑗 + 1) − 𝑢(𝑗)
2 − Lcosβ

] (4.38) 

𝜀𝑢(𝑗) = tan
−1 [

Lsinβ + ℎ0

𝐷 −
𝑢(𝑗 + 1) − 𝑢(𝑗)

2 + Lcosβ
] (4.39) 

𝜁𝑢(𝑗) = tan
−1 [

ℎ0
𝑢(𝑗 + 1) − 𝑢(𝑗)

2

] (4.40) 

𝜆𝑢(𝑗) = tan
−1 [

Lsinβ + ℎ0

𝐷 +
𝑢(𝑗 + 1) − 𝑢(𝑗)

2 − Lcosβ
] (4.41) 

𝜉𝑢(𝑗) = tan
−1 [

ℎ0

𝐷 −
𝑢(𝑗 + 1) − 𝑢(𝑗)

2

] (4.42) 

𝜎𝑢(𝑗) = tan−1 [
Lsinβ + ℎ0

2𝐷 −
𝑢(𝑗 + 1) − 𝑢(𝑗)

2 + Lcosβ
] (4.43) 

The shading of direct irradiance for each segment of the panel surface, 𝑖,  is 

given by Eq. (4.44). Shading can occur (𝑆𝑐(𝑖) = 1) when the sun is positioned 

either in front of or behind the rows. Specifically, shading occurs when the 

projected solar elevation angle is positive and lower than the angle from the 

middle of the segment to the top of the front row (indicating that the sun is 

behind the front row), or when the projected solar elevation angle is negative 

and lower than the tilt angle of the surfaces (indicating that the sun is behind 

the panel). For the remaining cases, the segments are not shaded. 
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𝑆𝑐(𝑖) = {
1, [ 𝛿𝑐(𝑖) > 𝛼′ ∧ |𝛾𝑠−𝛾𝑝| < 90°] ∨ ( β > |𝛼′| ∧ |𝛾𝑠−𝛾𝑝| ≥ 90°)

0, [ 𝛿𝑐(𝑖) ≤ 𝛼′ ∧ |𝛾𝑠−𝛾𝑝| < 90°] ∨ ( β ≤ |𝛼′| ∧ |𝛾𝑠−𝛾𝑝| ≥ 90°)
 (4.44) 

The shading of direct irradiance for each segment of the back surface of the 

front row, denoted by index 𝑘, is computed through Eq. (4.45). Each segment 

is always shaded if the sun is positioned in front of the rows. Additionally, if 

the sun is not in front of the rows, shading occurs when the projected solar 

elevation angle exceeds the tilt angle of the surfaces or when it is lower than 

the angle from the middle of the segment to the top of the panel being 

evaluated.  

𝑆𝑣(𝑘) = {
1, |𝛾𝑠−𝛾𝑝| < 90° ∨ (|𝛾𝑠−𝛾𝑝| ≥ 90° ∧ [𝛿𝑣(𝑘) > |𝛼

′| ∨ β < |𝛼′|]) 

0, |𝛾𝑠−𝛾𝑝| ≥ 90° ∧ 𝛿𝑣(𝑘) ≤ |𝛼′| ∧ β ≥ |𝛼′| 
 (4.45) 

The computation of the shading of direct irradiance on the ground between 

the rows is performed through Eq. (46), which involves comparing the 

projected solar elevation angle with six other angles as depicted in Fig. 4.2 

and calculated through  Eqs. (4.38) to (4.43). 

𝑆𝑢(𝑗) =

{
 
 
 
 

 
 
 
 

1,

|𝛾𝑠−𝛾𝑝| < 90° ∧ ([𝜁𝑢(𝑗) < 𝛼
′ < 𝛿𝑢(𝑗) ∧ 𝛿𝑢(𝑗) > 0] ∨ 𝜆𝑢(𝑗) > 𝛼

′ ∨ [𝛿𝑢(𝑗) ≤ 0 ∧ 𝛼
′ > 𝜁𝑢(𝑗)]) ∨

|𝛾𝑠−𝛾𝑝| ≥ 90° ∧ (
[𝜀𝑢(𝑗) > 𝜉𝑢(𝑗) ∧ 𝜀𝑢(𝑗) > |𝛼

′| > 𝜉𝑢(𝑗)] ∨ [𝜀𝑢(𝑗) ≤ 𝜉𝑢(𝑗) ∧ 𝜀𝑢(𝑗) < |𝛼
′| < 𝜉𝑢(𝑗)] ∨

[𝛿𝑢(𝑗) < 0 ∧ |𝛿𝑢(𝑗)| < |𝛼
′|] ∨ |𝛼′| ≤ 𝜎𝑢(𝑗)

)

0,

|𝛾𝑠−𝛾𝑝| < 90° ∧ ([𝛿𝑢(𝑗) ≥ 0 ∧ 𝛿𝑢(𝑗) ≤ 𝛼
′] ∨  [𝜆𝑢(𝑗) ≤ 𝛼

′ ≤ 𝜁𝑢(𝑗)]) ∨

|𝛾𝑠−𝛾𝑝| ≥ 90° ∧ (
[𝛿𝑢(𝑗) ≥ 0 ∧ 𝜀𝑢(𝑗) ≤ |𝛼

′| ∧ 𝜉𝑢(𝑗) ≤ |𝛼
′|] ∨  [𝜎𝑢(𝑗) ≤ |𝛼

′| ≤ 𝜉𝑢(𝑗) ∧ |𝛼
′| ≤ 𝜀𝑢(𝑗)] ∨

[𝛿𝑢(𝑗) < 0 ∧ 𝜀𝑢(𝑗) ≤ |𝛼
′| ∧ 𝜉𝑢(𝑗) ≤ |𝛼

′| ∧ |𝛿𝑢(𝑗)| ≥ |𝛼
′|]

)

  

(4.46) 

Each ground segment, denoted by index 𝑗 , is shaded under the following 

conditions: when the sun is positioned in front of the rows and behind the row 

in front, or when its projected solar elevation angle is lower than the angle of 

the middle of the segment to the top of the subsequent row in front. 

Additionally, ground segments are shaded if the sun is behind the row being 

evaluated or when the projected solar elevation angle is lower than the angle 

from the middle of the segment to the top of the subsequent row behind. 
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Moreover, for ground segments positioned below the front row, shading occurs 

when the projected solar elevation angle exceeds the tilt of the surfaces. 

The modeling of the circumsolar irradiance obscuring follows a similar 

approach, albeit with the utilization of the vector 𝑆 𝑐𝑠 to represent the fraction 

of circumsolar irradiance that is obscured. Circumsolar irradiance is assumed 

as being uniformly distributed within the annular region surrounding the sun 

disk, with an apparent external angular radius, 𝑟, of 15°. The obscured area 

of the circumsolar region is given by Eq. (4.47) as in [18].  

𝐶(𝑥) =
𝑠𝑖𝑛−1

√𝑟2 − (|𝛼′| − 𝑥)2

𝑟
180

−
√𝑟2 − (|𝛼′| − 𝑥)2

2𝜋𝑟
 

(4.47) 

In the case of the segments of the panel being evaluated (Eq. (4.48)), several 

conditions dictate the obscuring of circumsolar irradiance.  

𝑆𝑐𝑠,𝑐(𝑖) =

{
 
 
 
 
 

 
 
 
 
 
1, [|𝛾𝑠−𝛾𝑝| < 90° ∧ 𝛼

′ − 𝛿𝑐(𝑘) ≤ −𝑟] ∨ (|𝛾𝑠−𝛾𝑝| ≥ 90° ∧ |𝛼′| − β ≤ −𝑟)

|1 − 𝐶(𝛿𝑐(𝑖))|, |𝛾𝑠−𝛾𝑝| < 90° ∧ −𝑟 < 𝛼
′ − 𝛿𝑐(𝑖) < 0

|1 − 𝐶(β)|, |𝛾𝑠−𝛾𝑝| ≥ 90° ∧ −𝑟 < |𝛼
′| − β < 0

𝐶(𝛿𝑐(𝑖)) |𝛾𝑠−𝛾𝑝| < 90° ∧ 0 ≤ 𝛼
′ − 𝛿𝑐(𝑖) < 𝑟

𝐶(β), |𝛾𝑠−𝛾𝑝| ≥ 90° ∧ 0 ≤ |𝛼
′| − β < 𝑟

0, [|𝛾𝑠−𝛾𝑝| < 90° ∧ 𝛼
′ − 𝛿𝑐(𝑖) ≥ 𝑟] ∨ (|𝛾𝑠−𝛾𝑝| ≥ 90° ∧ |𝛼

′| − β ≥ 𝑟)

 

(4.48) 

When the sun is positioned in front of the rows, total obscuration (𝑆𝑐𝑠,𝑐(𝑖) = 1) 

occurs if the entire circumsolar region is below the angle defined by the 

middle of the segment to the top of the front row, denoted as 𝛿𝑐(𝑖). Substantial 

obscuration (more than 50%, 𝑆𝑐𝑠,𝑐(𝑖) = |1 − 𝐶(𝛿𝑐(𝑖))|) occurs if this angle is 

higher than the projected solar elevation angle and the difference between 

these two angles is smaller than the angular radius. It is less obscured (less 

or equal to 50%, 𝑆𝑐𝑠,𝑐(𝑖) = 𝐶(𝛿𝑐(𝑖))) if the projected solar elevation angle is 

higher than 𝛿𝑐(𝑖) and the difference between these two angles is smaller than 

the angular radius. Finally, no obscuration (𝑆𝑐𝑠,𝑐(𝑖) = 0) occurs if the projected 

solar elevation angle exceeds 𝛿𝑐(𝑖)  and the difference between these two 

angles is higher than the angular radius. A similar principle applies when the 
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sun is behind the rows, with the difference that instead of using the angle 

𝛿𝑐(𝑖), the comparison is made with the tilt angle β. 

The fraction of circumsolar irradiance obscured for each segment of the back 

surface of the front panels is given by Eq. (4.49). It is assumed that all 

circumsolar irradiance is obscured when the sun is positioned in front of the 

rows. When the sun is positioned behind the rows, the projected solar 

elevation angles plus or minus the circumsolar angular radius are compared 

in a similar manner to Eq. (4.48), but with reference to the tilt angle of the 

surface and the angle of the middle of the back surface segment to the top of 

the panel being evaluated.  

𝑆𝑐𝑠,𝑣(𝑘) =

{
 
 
 
 
 

 
 
 
 
 
1,  ( |𝛾𝑠−𝛾𝑝| < 90°) ∨ (|𝛾𝑠−𝛾𝑝| ≥ 90° ∧ [|𝛼

′| − 𝛿𝑣(𝑘) ≤ −𝑟 ∨ |𝛼
′| − β ≥ 𝑟])

|1 − 𝐶(𝛿𝑣(𝑘))|, |𝛾𝑠−𝛾𝑝| ≥ 90° ∧ −𝑟 < |𝛼
′| − 𝛿𝑣(𝑘) < 0 

|1 − 𝐶(β)|, (|𝛾𝑠−𝛾𝑝| ≥ 90° ∧  0 < |𝛼
′| − β < 𝑟)

𝐶(𝛿𝑣(𝑘)) |𝛾𝑠−𝛾𝑝| ≥ 90° ∧ 0 ≤ |𝛼
′| − 𝛿𝑣(𝑘) < 𝑟

𝐶(β), (|𝛾𝑠−𝛾𝑝| ≥ 90° ∧  −𝑟 < |𝛼
′| − β ≤ 0) 

0, [|𝛾𝑠−𝛾𝑝| ≥ 90° ∧ |𝛼
′| − 𝛿𝑣(𝑘) ≥ 𝑟 ∧ |𝛼

′| − β ≤ −𝑟]

 

(4.49) 

The computation of circumsolar irradiance obscuration for each segment of 

the ground between rows is more complex (Eq. (4.50)). Complete obscuration 

is assumed when the entire circumsolar region is positioned either behind the 

front row panel or the panel being evaluated, considering the middle of the 

ground segment. Additionally, complete obscuration occurs when the angle of 

the top of the circumsolar region is lower than the angle of the top of the 

subsequent rows of panels, whether in front or behind. Similarly to the 

equations above (Eqs. (4.48) and (4.49)), the projected solar elevation angles 

plus or minus the circumsolar angular radius are compared with the six 

different angles shown in the scheme at the bottom of Fig. 4.2 for the 

computation of the fraction of circumsolar irradiance that is obscured.
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𝑆𝑐𝑠,𝑢(𝑗) =

{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1,  

[
 
 
 
 
 
 

 |𝛾𝑠−𝛾𝑝| < 90° ∧

(

 
 
 
 

[𝛿𝑢(𝑗) ≥ 0 ∧ 𝛼′ − 𝜁𝑢(𝑗) ≥ 𝑟 ∧ 𝛼
′ − 𝛿𝑢(𝑗) ≤ −𝑟] ∨

𝛼′ − 𝜆𝑢(𝑗) ≤ −𝑟 ∨

[𝛿𝑢(𝑗) < 0 ∧ 𝛼′ − 𝜁𝑢(𝑗) ≥ 𝑟] ∨

[𝛼′ − 𝑟 ≤ 𝜆𝑢(𝑗) ∧ 𝛼
′ + 𝑟 ≥ 𝜁𝑢(𝑗)] )

 
 
 
 

]
 
 
 
 
 
 

∨

[
 
 
 
 
 
 
 
 

|𝛾𝑠−𝛾𝑝| ≥ 90° ∧

(

 
 
 
 
 
 

[|𝛼′| − 𝜉𝑢(𝑗) ≥ 𝑟 ∧ |𝛼
′| − 𝜀𝑢(𝑗) ≤ −𝑟] ∨

|𝛼′| − 𝜎𝑢(𝑗) ≤ −𝑟 ∨

[𝛿𝑢(𝑗) ≤ 0 ∧ |𝛼′| − |𝛿𝑢(𝑗)| ≥ 𝑟] ∨

[|𝛼′| − 𝑟 ≤ 𝜎𝑢(𝑗) ∧ |𝛼
′| + 𝑟 ≥ 𝜀𝑢(𝑗)] ∨

[|𝛼′| − 𝑟 ≤ 𝜎𝑢(𝑗) ∧ |𝛼
′| + 𝑟 ≥ 𝜉𝑢(𝑗)] )

 
 
 
 
 
 

]
 
 
 
 
 
 
 
 

|1 − 𝐶(|𝛿𝑢(𝑗)|)|,
[|𝛾𝑠−𝛾𝑝| < 90° ∧ 𝛿𝑢(𝑗) ≥ 0 ∧ −𝑟 < 𝛼

′ − 𝛿𝑢(𝑗) < 0] ∨

[|𝛾𝑠−𝛾𝑝| ≥ 90° ∧  𝛿𝑢(𝑗) < 0 ∧ 0 ≤ |𝛼
′| − |𝛿𝑢(𝑗)| < 𝑟]

 

|1 − 𝐶(𝜀𝑢(𝑗))|, |𝛾𝑠−𝛾𝑝| ≥ 90° ∧ −𝑟 < |𝛼
′| − 𝜀𝑢(𝑗) < 0

|1 − 𝐶(𝜁𝑢(𝑗))|, |𝛾𝑠−𝛾𝑝| < 90° ∧ 𝛼
′ − 𝑟 > 𝜆𝑢(𝑗) ∧ 0 < 𝛼

′ − 𝜁𝑢(𝑗) < 𝑟

|1 − 𝐶(𝜆𝑢(𝑗))|, |𝛾𝑠−𝛾𝑝| < 90° ∧ 𝛼
′ + 𝑟 < 𝜁𝑢(𝑗) ∧ −𝑟 < 𝛼

′ − 𝜆𝑢(𝑗) < 0 

|1 − 𝐶(𝜉𝑢(𝑗))| |𝛾𝑠−𝛾𝑝| ≥ 90° ∧ |𝛼
′| − 𝑟 > 𝜎𝑢(𝑗) ∧ 0 < |𝛼

′| − 𝜉𝑢(𝑗) < 𝑟

|1 − 𝐶(𝜎𝑢(𝑗))|, |𝛾𝑠−𝛾𝑝| ≥ 90° ∧  |𝛼
′| + 𝑟 < 𝜉𝑢(𝑗) ∧ −𝑟 < |𝛼

′| − 𝜎𝑢(𝑗) < 0

𝐶(|𝛿𝑢(𝑗)|)
[|𝛾𝑠−𝛾𝑝| < 90° ∧ 𝛿𝑢(𝑗) ≥ 0 ∧ 0 ≤ 𝛼

′ − 𝛿𝑢(𝑗) < 𝑟] ∨

[|𝛾𝑠−𝛾𝑝| ≥ 90° ∧  𝛿𝑢(𝑗) < 0 ∧ −𝑟 ≤ |𝛼
′| − |𝛿𝑢(𝑗)| < 0]

𝐶(𝜀𝑢(𝑗)), |𝛾𝑠−𝛾𝑝| ≥ 90° ∧ 0 ≤ |𝛼
′| − 𝜀𝑢(𝑗) < 𝑟

𝐶(𝜁𝑢(𝑗)),  |𝛾𝑠−𝛾𝑝| < 90° ∧ 𝛼
′ − 𝑟 > 𝜆𝑢(𝑗) ∧ −𝑟 < 𝛼

′ − 𝜁𝑢(𝑗) < 0

𝐶(𝜆𝑢(𝑗)),  |𝛾𝑠−𝛾𝑝| < 90° ∧ 𝛼
′ + 𝑟 < 𝜁𝑢(𝑗) ∧ 0 < 𝛼

′ − 𝜆𝑢(𝑗) < 𝑟

𝐶(𝜉𝑢(𝑗)), |𝛾𝑠−𝛾𝑝| ≥ 90° ∧ |𝛼
′| − 𝑟 > 𝜎𝑢(𝑗) ∧ −𝑟 < |𝛼

′| − 𝜉𝑢(𝑗) < 0

𝐶(𝜎𝑢(𝑗)),  |𝛾𝑠−𝛾𝑝| ≥ 90° ∧ |𝛼
′| + 𝑟 < 𝜉𝑢(𝑗) ∧ 0 < |𝛼

′| − 𝜎𝑢(𝑗) < 𝑟

0,  

[ |𝛾𝑠−𝛾𝑝| < 90° ∧ (
[𝛿𝑢(𝑗) ≥ 0 ∧ 𝛼

′ − 𝛿𝑢(𝑗) ≥ 𝑟] ∨

[𝛼′ − 𝜁𝑢(𝑗) ≤ −𝑟 ∧ 𝛼
′ − 𝜆𝑢(𝑗) ≥ 𝑟]

)] ∨

[|𝛾𝑠−𝛾𝑝| ≥ 90° ∧ (
|𝛼′| − 𝜀𝑢(𝑗) ≥ 𝑟 ∨

[|𝛼′| − 𝜉𝑢(𝑗) ≤ −𝑟 ∧ |𝛼
′| − 𝜎𝑢(𝑗) ≥ 𝑟 ∧ |𝛼

′| − 𝜀𝑢(𝑗) ≤ −𝑟]
)]

 

(4.50) 

4.4 Experimental setup and procedure 

 

In order to obtain observational data for both a first row and subsequent rows 

of panels with varying tilt angles and inter-row distances, a structure 

featuring a pyranometer for measuring GTI was constructed in an open field 

near Évora, Portugal (38.5306°, -8.0112°), as shown in Figs. 4.3 to 4.5.  
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The experimental setup consists of three frames: a base, a front frame, and a 

rear frame, with a pyranometer installed on the rear frame. The base was 

leveled, and two transversal bars on the sides ensured that both front and 

rear frames maintained the same tilt angle. The apparatus allows for 

adjustment with three degrees of freedom: tilt angle of the front and rear 

frames (𝛽, from 20° to 90°) through the solidary adjustment of the inclination 

of both frames; distance between frames (𝐷, from 0.80 m to 1.10 m) through 

three positions of where the front frame can be fixed to the base; and position 

of the pyranometer along the length of the rear frame (𝑐𝑠, from 0.08 m to 1.08 

m) by sliding the instrument along its supporting bar. The uncertainty on the 

measurements of each of these variables is 1 cm in the cases of distances and 

1° in the case of the tilt angles.  

To represent the adjacent row, three Alveopan bilaminate white 

polypropylene boards, with a total width 𝑊 of 3.03 m and length 𝐿 of 1.08 m, 

were installed in the front frame. The reflectivity of these boards was 

measured using a FieldSpec HandHeld 2 spectroradiometer (ASD, Inc., 

Boulder, CO, USA) [33], yielding an average reflectivity of 0.921. Although 

potential edge effects were acknowledged due to board sizes, these were not 

factored into the general model. For data collection purposes relevant to the 

assessment of transposition models applied to the first rows, these boards 

were removed. 

Global tilted irradiance was measured using a Kipp & Zonen CMP11 

pyranometer (Kipp & Zonen, Delft, The Netherlands), while global horizontal 

irradiance and reflected irradiances (for the computation of ground albedo) 

were measured using a Kipp & Zonen CM7B albedometer (Kipp & Zonen, 

Delft, The Netherlands). Both sensors were connected to a CR300 datalogger 

from Campbell Scientific (Shepshed, Loughborough, UK). Additionally, DNI, 

DIF, and GHI observation data were obtained from the Évora–PECS station 

of the DNI-ALENTEJO project network [34], located 5 m from the 

experimental setup. 

The internal clock of the CR300 data logger used in the apparatus was 

synchronized with the data logger of the Évora–PECS station, both set to 
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UTC time. Sensor outputs were sampled at 1 Hz and mean, maximum, 

minimum, and standard deviation values were recorded every minute. 

Observations were corrected following the best practices in the field, namely 

the WMO recommendations and the BSRN (Baseline Solar Radiation 

Network) guide, including corrections for sensor zero offset and filters 

according to the BSRN quality control procedure, considering the extremely 

rare limits [35] and removing measurements for zenith angles equal or above 

85°. 

 

Fig. 4.3 - Experimental setup for measuring global tilt irradiance for different positions. 

 

Fig. 4.4 - Overview of the experimental setup including a) the Évora – PECS station and b) 

the pyranometers used for albedo computations. 

Prior to the field measurements, a calibration procedure was conducted 

specifically for the CMP11 pyranometer and CM7B albedometer using a 
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reference CMP21 pyranometer (Kipp & Zonen, Delft, The Netherlands), 

according to the ISO 9847:1992 standard [36]. 

 

Fig. 4.5 - Schematic for modeling GTI on the sensor in the experimental apparatus. 

For the accurate application of transposition models, the ground albedo value 

is needed. While a standard value of 0.2 is often used, this study estimated 

the ground albedo using Eq. (4.51) [37], where 𝐵𝑆𝐴 and 𝑊𝑆𝐴 represent the 

black-sky albedo and white-sky albedo, respectively. 𝐵𝑆𝐴 is defined as the 

albedo in the absence of the diffuse component and is a function of solar zenith 

angle, while the 𝑊𝑆𝐴  is the albedo considering the diffuse component as 

isotropic and in the absence of the direct component. The mean values of 𝐵𝑆𝐴 

and 𝑊𝑆𝐴 were obtained by fitting Eq. (4.44) to experimental data, where the 

albedo, 𝜌, was computed by applying the ratio of reflected (GRI) to global 

horizontal (GHI) irradiance observations from the albedometer. Following 

data treatment, including filtering and removal of the records for solar zenith 

angles higher than 70°, 𝐵𝑆𝐴  and 𝑊𝑆𝐴  were found to be 0.206 and 0.208, 

respectively, across all recorded data periods. 

𝜌 = 𝐵𝑆𝐴 + (𝑊𝑆𝐴 − 𝐵𝑆𝐴)
𝐷𝐼𝐹

𝐺𝐻𝐼
 (4.51) 

Observations were conducted between 14 April and 1 June, 2022. For first-

row tests, 5 datasets or periods were generated, each corresponding to a 



Chapter 4. Prediction of GTI on parallel rows of tilted surfaces 

136 
 

specific tilt angle, as shown in Table 4.1, with the pyranometer positioned at 

𝑐𝑠=0.50 m.  

Testing of the developed model for other rows resulted in 19 periods with 

various tilt angles, distance between rows, and pyranometer positions, as 

shown in Table 4.2.  Periods 4, 9, and 19 include instances in which the 

pyranometer is shaded. 

It should be noted that measurements were conducted during a period of 

relatively high solar elevation, minimizing shading effects. To better capture 

shading effects, the inter-row distance during experimental tests were 

shorter than typical photovoltaic power plant configurations. Nonetheless, 

the developed model is designed to encompass diverse real-world conditions 

in the field.  

 

Table 4.1 - Structure position and number of 1-min data points for each testing period of the 

first-row tests. 

Period β (°) 
Number of 

data points 

1 20 551 

2 38 582 

3 50 620 

4 70 545 

5 90 508 

All - 2806 
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Table 4.2  - Structure position and number of 1-minute data points for each testing period of 

the proposed model for rows other than the first. 

Period D (m) β (°) 𝒄𝒔 (m) 
Number of 

data points 

1 1.10 38 0.08 585 

2 1.10 38 0.58 604 

3 1.10 38 1.08 1528 

4 0.81 38 0.18 2345 

5 0.81 38 0.38 605 

6 0.81 38 0.58 615 

7 0.81 38 0.78 608 

8 0.81 38 0.98 585 

9 0.80 50 0.15 581 

10 0.80 50 0.35 2412 

11 0.80 50 0.55 617 

12 0.80 50 0.75 632 

13 0.80 50 0.95 651 

14 0.84 20 0.26 1807 

15 0.84 20 0.46 365 

16 0.84 20 0.66 648 

17 0.84 20 0.86 612 

18 0.84 20 1.06 633 

19 0.81 38 0.18 718 

All - - - 17151 

Shaded - - - 2163 

Unshaded - - - 14988 

 

4.5 Results and discussion 

 

The different transposition models, including the developed model for rows 

that are not the first, were applied to the observations of DNI and DIF from 

the Évora – PECS station. Subsequently, the model outputs were compared 

with GTI observations from the experimental setup using multiple evaluation 

metrics developed in the software MATLAB R2018b. These metrics comprised 
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the coefficient of determination (R2), mean bias error (MBE), and root-mean-

squared-error (RMSE) along with a global performance index (GPI) based on 

R2, MBE, and RMSE, where a higher value represents the better accuracy of 

the model [22].  

Given the significant influence of atmospheric conditions, particularly cloud 

cover, on global irradiance, the mean and standard deviation of the clearness 

index were computed for each period based on 1 min observations. The 

clearness index, typically ranging from 0 to 1, represents the ratio of global 

horizontal irradiance measured at ground level to its counterpart estimated 

at the top of the atmosphere [34] Eq. (4.15)). It serves as an indicator of the 

total transmittance of the atmosphere, reflecting higher values under clear-

sky conditions and lower values under overcast conditions. The subsequent 

subsections provide detailed tables presenting these clearness index values 

for each period. 

Some clearness index values exceeded unity, with a maximum value of 1.079, 

attributed to cloud enhancement events. These phenomena occur when partly 

cloudy skies lead to a temporary increase in local GHI above the 

extraterrestrial irradiance, facilitated by multiple scatterings and reflections 

by clouds [35]. These values were kept in the analysis, as they capture the 

transient nature of atmospheric conditions during the observation periods. 

 

4.5.1 Results for the first row  

The transposition models presented in Section 2.1 were computed for the 

periods shown in Table 4.1, with the resulting mean and standard deviation 

of the clearness index and GTI, alongside various evaluation metrics, 

summarized in Table 4.3.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.3 - Mean and standard deviation of the clearness index and GTI and metrics of GTI from the transposition models analyzed for each and all measuring periods of the first-row tests. The best performing model is represented in bold for each indicator and period and the clearness index data are repeated for each metric for better readability. 
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Across all models, GTI values were generally underestimated, with the 

exception of the Bugler and Modified Bugler models, where GTI was 

overestimated. This discrepancy could stem from the treatment of the direct 

normal component within the factor 𝑅𝑏  used for modeling the diffuse 

component. Nevertheless, the Modified Bugler model showed better results 

compared with the other models. The Modified Bugler model tends to perform 

best except for vertical surfaces (period 5), where the Klucher model seems to 

show better results. Given that the global performance index (GPI) for the 

overall data presented the Modified Bugler model as the best performing 

model, it was chosen as the primary model for first-row applications in the 

proposed model. Despite its tendency to overestimate GTI, with an overall 

MBE of 23.8 W/m2 and RMSE of 30.5 W/m2, it delivered optimal results for 

period 3, characterized by a tilt angle of 50° and small variation in sky 

conditions (standard deviation of clearness index of 0.087). 

 

4.5.2 Results for other rows  

For the evaluation of the developed transposition model for rows other than 

the first, some adjustments were implemented to accommodate the 

experimental setup (refer to Fig. 4.5). Given the absence of panels in the 

second row, this row was not considered in the modeling. Instead, 𝐺𝑇𝐼 was 

computed for each segment of the back of the front panel and ground, followed 

by the calculation of 𝐺𝑇𝐼 at a designated point which represents the sensor. 

In this case, the angles 𝜀𝑢, 𝜆𝑢, 𝜉𝑢, 𝜎𝑢, and 𝛿𝑣 used for shadow computation and 

circumsolar irradiance obscuration were not applicable. Another modification 

involved the length of ground considered in the model. Since the setup 

comprised only one panel, reflections from the ground beyond the modeled 

rows could significantly impact the measured GTI and were thus incorporated 

into the model validation process (depicted in Fig. 4.5).  
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Fig. 4.6 - Global tilted irradiance observed and modeled by the Modified Bugler model (first-

row model for reference and comparison) and the developed model for period 1 (1-minute 

timestep). 

 

Fig. 4.7 - Global tilted irradiance observed and modeled by the Modified Bugler model (first-

row model for reference and comparison) and the developed model for period 12 (1-minute 

timestep). 
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Fig. 4.8 - Global tilted irradiance observed and modeled by the Modified Bugler model (first-

row model for reference and comparison) and the developed model for period 19 (1-minute 

timestep). 

GTI estimation was performed using both the developed model and the 

Modified Bugler model for reference and comparison, which is a common 

practice in the absence of a specific model for other rows. It is important to 

note that the configurations used in periods 4, 9, and 19 result in direct 

shading of the pyranometer for a certain time span of the day. As example, 

periods 1 and 12, when there was no shading, and period 19, when there was 

shading and obscuration of the pyranometer by the front row, are shown in 

Fig. 4.6 through Fig. 4.8 (the small data gaps during the day are a result of 

the filtering procedure mentioned in Section 4.4). Despite the fact that 

slightly lesser improvements are observed for period 12 (Figure 4.6), which is 

attributed to partially cloudy conditions, the effectiveness of the developed 

model over the Modified Bugler is evident across the evaluated periods.  

The results for each period, all periods, and for the data when the 

pyranometer is shaded or unshaded are presented in Table 4.4. When 

compared with the original Modified Bugler model, which overestimates the 

GTI, the proposed model improves the MBE for most periods, albeit with a 

slight underestimation. Typically, the Modified Bugler performs better in 
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periods characterized by higher pyranometer positioning and greater frame-

to-frame distances, resembling first-row irradiance conditions. During 

periods of direct irradiance shading (periods 4, 9, and 19), the Modified Bugler 

model, which does not consider shading, shows significantly higher errors. 

Another aspect to highlight is the impact of clouds in the performance of the 

model. In periods 9 and 14, for example, when the mean clearness index is 

lower and its standard deviation is higher (indicating cloudier skies) the 

metrics show lower performance of both models. 

Due to the variation in sky conditions along the different periods, the 

comparison between the different positioning of the setup proved challenging 

and thus, more importance is given to the overall results instead of each 

period. In this regard, the developed model for rows affected by the presence 

of rows in front showed an MBE of -12.9 W/m2 and a root-mean-squared-error 

of 76.8 W/m2. As expected, this model outperforms the first-row model when 

the pyranometer is shaded. Even under unshaded conditions, the developed 

model is better than the model for the first row, showing the impact of the 

obscuring of the sky dome due to the other rows, considering the sky radiance 

anisotropy, namely the circumsolar region, and of the reflections from the 

front row and ground on the GTI.  

To quantify the impact of the proposed model on reducing the error for each 

irradiance component on a tilted surface compared with the Modified Bugler 

model, a weight (𝑤𝑖) for each component 𝑖 of GTI was computed through Eq. 

(4.52). 

𝑤𝑖 =
1

𝑛
∑

𝑖𝐷 − 𝑖𝑀𝐵
𝐺𝑇𝐼𝐷 − 𝐺𝑇𝐼𝑀𝐵

  (4.52)  

Here, 𝐷 stands for developed model and 𝑀𝐵 for the Modified Bugler model. 
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Table 4.4 - Mean and standard deviation of the clearness index and metrics of GTI from the Modified Bugler model and proposed model for other rows. 
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The results are presented in Table 4.5 for the direct, 𝐼𝑏, diffuse circumsolar 

𝐷𝑐𝑠 , diffuse isotropic, 𝐷𝑖𝑠𝑜 , and reflected, 𝐼𝑟𝑒𝑓𝑙 , components and for both 

unshaded and shaded conditions. For the proposed model, the reflected 

component includes reflections in the ground and in the back side of the front 

panel. The mean bias error of each model is also included in the table for 

reference. 

Overall, the masking of the isotropic diffuse irradiance has the highest weight 

in the difference between the Modified Bugler and the developed model 

followed by the modeling of reflected irradiance. As expected, when the direct 

irradiance is shaded, this becomes the most impactful component, while for 

unshaded conditions, it has no impact. 

Table 4.5 - MBE and weight of each component of GTI on the reduction of bias error when 

comparing the developed model with the Modified Bugler model. 

Period 
MBE Modified 

Bugler (W/m2) 

MBE 

Developed 

model (W/m2) 

𝒘𝑰𝒃
 (%)  𝒘𝑫𝒄𝒔 (%)  𝒘𝑫𝒊𝒔𝒐 (%) 𝒘𝑰𝒓𝒆𝒇𝒍 (%) 

Unshaded 88.9 -26.5 0.0 0.5 56.6 42.9 

Shaded 717.3 -28.9 66.5 2.6 28.7 2.2 

All 381.2 -12.9 8.4 0.8 53.1 37.7 

 

4.6 Operational algorithm for forecasting of solar irradiance on 

tilted surfaces 

 

This section presents the application of the developed model to predict 

irradiance on tilted surfaces using operational direct normal and diffuse 

irradiance forecasts as inputs. 

 

4.6.1 Forecast input data  

The transposition models presented in this work, in particular the developed 

model for rows that are not the first, require several geometrical details on 

the solar panels of the power plant as input. However, only two meteorological 

variables, specifically DNI and DIF, are necessary for the determination of 

the GTI. The European Centre for Medium-range Weather Forecasts 
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(ECMWF) developed the Integrated Forecasting System (IFS), which issues 

global hourly forecasts every day at 00 UTC up to 10 days ahead. These 

forecasts include the GHI and DNI variables, while DIF can be computed 

through the closure function 𝐺𝐻𝐼 = 𝐵𝐻𝐼 + 𝐷𝐼𝐹  (where 𝐵𝐻𝐼  is given by Eq. 

(4.2)). 

In the work by Pereira et al. [22], a method based on artificial neural 

networks (ANNs) was developed to generate improved spatial and temporal 

downscaled DNI forecasts using operational forecast outputs from the 

ECMWF/IFS and the Copernicus Atmospheric Monitoring Service (CAMS).  

This work employs the same models and procedure, while also including the 

analysis and usage of GHI as compared with previous work. Fig. 4.9 to Fig. 

4.11 provide a direct comparison between ECMWF/IFS forecasts and 

observations made through calibrated sensors at Évora – Verney station in 

Portugal (38.5678, -7.9114).  

 

Fig. 4.9 - Comparison between downscaled 10-minute forecasts of the ECMWF/IFS and 

observations made at Évora Verney of DNI, DIF and GHI for forecast day 0 (the colormap 

represents the number of data points in each bin. Bin size: 20x20 W/m2). 
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Fig. 4.10 - Comparison between 10-minute downscaled forecasts of the ECMWF/IFS and 

observations made at Évora Verney of DNI, DIF and GHI for forecast day 1 (the colormap 

represents the number of data points in each bin. Bin size: 20x20 W/m2). 

 

Fig. 4.11 - Comparison between10-minute downscaled forecasts of the ECMWF/IFS and 

observations made at Évora Verney of DNI, DIF and GHI for forecast day 2 (the colormap 

represents the number of data points in each bin. Bin size: 20x20 W/m2). 
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These figures show data for DNI, GHI, and DIF for each forecast day of the 

forecast horizon (day 0: 1 h to 24 h; day 1: 25 h to 48 h; day 2: 49 h to 72 h) 

over the period from 1 December 2016 to the 31 May 2021, with a timestep of 

10 min. As expected, shorter forecast horizons correspond to smaller errors in 

the forecasts. Improved DNI forecasts were obtained using artificial neural 

network models, accounting for the nonlinear relationships between the DNI 

and various meteorological forecasted variables, such as GHI, cloud cover, 

and aerosol optical depth, as well as the variation in DNI over a given period 

before the forecasted instant. A brief explanation of this model and procedure 

can be found in Appendix A. The application of this procedure results in the 

metrics shown in Fig. 4.12, where the diffuse component was computed using 

the GHI forecasted by the ECMWF/IFS and the improved DNI forecasts 

generated by the ANN models. 

 

Fig. 4.12 - Comparison between improved 10-minute forecasts and observations made at 

Évora Verney of DNI and DIF for forecast day 0, 1 and 2 (the colormap represents the 

number of data points in each bin. Bin size: 20x20 W/m2). 
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The application of the ANN model shows improvements in the forecasting of 

both DNI and DIF over a dataset that encompasses different sky conditions. 

The same procedure was applied by retrieving weather forecasts for the 

measurement periods used in this work to evaluate the different 

transposition models (Section 4.4). The resulting 10 min improved DNI and 

computed DIF forecasts were then evaluated against the 10 min mean 

observations obtained from the experimental data presented in Section 4.4. 

Table 4.6 shows the results for first-row and inner-row tests. Detailed results 

for each testing period can be found in Appendix B. Similar to the larger 

dataset, the longer the forecast horizon, the higher the errors. However, the 

errors obtained tend to be greater than the ones aforementioned. This 

discrepancy is due to the smaller dataset used for this analysis, where even 

minor differences between forecasts and observations can lead to significant 

errors. Forecasts of DNI and DIF tend to have larger errors compared to 

global variables such as GHI or GTI, since accurate forecasting of clouds, 

specifically their location, is critical for this temporal resolution. The GTI 

results from the transposition models, based on the output of these forecast 

models, are presented in the following. 
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Table 4.6 - DN I and DIF forecast results for all data of first-row tests and for all, shaded and unshaded data of the developed model testing (MBE, MAE and RMSE in W/m 2). 

 

 

4.6.2 Operational analysis of transposition models 

To understand how the selected transposition models perform in an 

operational forecast context, the transposition models were applied using the 

resulting forecasts of DNI and DIF for the testing location with a 10-minute 

timestep. The results were then compared with the observations.  

Table 4.7 presents the results for the first row using the Modified Bugler 

model and for inner rows using the developed model for each day of the 

forecast horizon.  
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Regarding first-row results, when compared with the results using DNI and 

DIF measurements instead of forecasts (Table 4.3), it is evident that for the 

analyzed periods, the use of forecasts shows better results for days 0 and 1 

regarding MBE. However, there is a deterioration for day 2 and across all 

forecast horizons regarding the MAE and RMSE.  

As for the inner-row test results, when compared with GTI based on DNI and 

DIF measurements instead of forecasts (Table 4.4), there is a general 

deterioration in the results, except for the MBE in unshaded conditions for 

forecast days 0 and 1. Detailed results for each testing period can be found in 

Appendix B. The use of the developed transposition model resulted in overall 

MBE and RMSE values of 33.6 W/m2 and 169.7 W/m2, respectively, for the 

entire forecast horizon. These values show that the model is beneficial for 

linking irradiance forecast models with energy generation modeling in solar 

power plants, aiding in the production of power output forecasts. These 

forecasts are essential for better decision-making by operators of such energy 

systems due to the variability of resource and energy demand. 

Table 4.7  - GTI results of the developed model for rows that are not the front row for each 

day of forecast horizon using DNI and DIF forecasts (MAE and RMSE in W/m2, MAPE and 

RMSPE in %). 

Data 
Day 0  Day 1  Day 2 

R2 MBE MAE RMSE  R2 MBE MAE RMSE  R2 MBE MAE RMSE 

First-row 

tests 
              

All 0.9646 6.7 34.5 48.7  0.9607 15.5 39.4 55.0  0.8001 71.5 67.3 128.5 

Inner-row 

tests 
              

All 0.7197 -31.5 100.6 164.0  0.7162 -32.1 101.1 165.6  0.6727 -37.2 106.8 179.4 

Shaded 0.0074 -115.3 152.4 285.1  0.0242 -116.7 152.4 281.8  0.0078 -113.9 151.3 284.5 

Unshaded 0.8031 -16.0 91.0 129.8  0.7907 -16.5 91.6 133.6  0.7318 -23.0 98.6 152.2 

 

To understand how the mean bias error of DNI and DIF forecasts affects the 

bias of the computed GTI values, Fig. 4.13 was created. This figure shows the 

difference between the MBE of GTI from the developed model using forecasts 

and experimental data as input as a function of the MBE of DNI and DIF 
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predictions for the forecast at day 0. Positive values of this difference are 

represented with blue circles, while negative values are represented with 

white circles. For better readability, only periods with an MBE difference of 

less than 100 W/m2 are represented, which resulted in excluding only period 

1.  

 

 

Fig. 4.13 - Difference between mean bias errors of GTI from the developed model results 

using forecasted or experimental data as input for day 0 (negative differences in white and 

positive differences in blue). 

Since the MBE of the proposed model is typically negative for the tests carried 

out (Table 4.7 and 4.11), and considering the relationship between the MBE 

values for the forecasted DNI and DIF components (when one tends to higher 

positive values, the other tends to more negative values, Table 4.6 and 4.10, 

as a consequence of the closure equation and knowing that the MBE of the 

GHI forecasts is lower), the bias of the GTI using prediction values may 
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decrease as shown in Fig. 4.13 due to a favorable combination of forecast and 

model errors. This is the reason why the MBE for unshaded conditions using 

forecast values (Table 4.7) is lower than the bias error for the same conditions 

using experimental values (Table 4.4). However, this trend is not observed for 

the shaded conditions, where the mean bias error is still lower when using 

ground-based measurements. A more detailed analysis of these aspects is 

needed in the future, which extends beyond the scope of the present work. 

Also, due to spatial resolution limitations, the forecasted variables from 

ECMWF (current operational horizontal resolution: ~9 km) are identical for 

the first and second rows in this experiment. In future work, this algorithm 

should be validated for a larger power plant that encompasses multiple grid 

points of a high-resolution forecast model at a hectometric scale. 

 

4.7 Conclusions 

This work presented a comprehensive analysis of nine analytical 

transposition models based on physics alongside the Perez transposition 

model to compute the global tilted irradiance on photovoltaic module surfaces. 

Additionally, it presented a model for the computation of this variable in rows 

of modules other than the first, which usually comprises most rows of solar 

power plants. The developed model can be applied to any first-row 

transposition model, provided it considers direct, circumsolar, and isotropic 

diffuse irradiance. This model computes the GTI for different longitudinal 

segments of the surfaces of the row of modules, the back of the row in front, 

and the ground between the rows. It takes into consideration the different 

view factors and the obscuring of direct and circumsolar irradiance for each 

of the segments for any apparent solar position and includes the shading 

effect of the succeeding rows on the ground segments.  

The evaluation of these models utilized data collected in Évora, Portugal, for 

different tilt angles for first-row tests and also for different inter-row 

distances, including shading conditions, to assess the performance of the 

developed model. The clearness index helps address potential confounding 

variables by providing a baseline for sunshine conditions. However, we 
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acknowledge that factors such as wind, relative humidity, precipitation, and 

aerosols also affect the experiment to some extent. In future research, these 

factors should be considered. Also, our dataset is limited to our experimental 

setup. While expanding to diverse locales would enhance generalizability, the 

focus of this study was on addressing challenges specific to inner rows of solar 

panels, rather than aiming for global applicability. Thus, while our findings 

offer valuable insights, they may not directly apply to all regions. 

Results showed that the best analytical transposition model for the first row 

is the Modified Bugler model, showing an overall MBE of 23.8 W/m2 and 

RMSE of 30.5 W/m2. Conversely, for other rows, the developed model showed 

an MBE of -12.9 W/m2 and RMSE of 76.8 W/m2, resulting in an improvement 

of 368.3 W/m2 and 224.4 W/m2, respectively, compared to using the selected 

reference transposition model for first rows. This shows the importance of 

considering the direct shading and obscuring of the sky dome when computing 

GTI for surfaces in rows that are not the first. 

Furthermore, the operational performance of transposition models was 

evaluated for GTI forecasting, using improved irradiance forecast values 

instead of measurements of DNI and DIF. These forecast values were 

obtained from artificial neural network models using numerical weather 

prediction and aerosol forecast data. Results of the first-row tests showed a 

MBE and RMSE for all data of 6.7 W/m2 and 48.7 W/m2 for forecast day 0, 

15.5 W/m2 and 55.0 W/m2 for forecast day 1, and 71.5 W/m2 and 128.5 W/m2 

for forecast day 2. This shows an increased error compared to results using 

observations which are a mean MBE and RMSE increase across the three 

days of forecast of 7.4 W/m2 and 46.9 W/m2. It also shows how the forecast 

performance tends to deteriorate with time. The same is visible for the tests 

performed for other rows, which show an overall MBE and RMSE of -31.5 

W/m2 and 164.0 W/m2 for forecast day 0, -32.1 W/m2 and 165.6 W/m2 for 

forecast day 1 and -37.2 W/m2 and 179.4 W/m2 for forecast day 2.  

This work demonstrated that transposition models that neglect shading and 

irradiance obscuration are not suitable for the accurate estimation of GTI in 

surfaces that are not in the front row of a solar power plant. The use of a 
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dedicated model for these conditions, such as the one presented in this work, 

is of great importance, given that GTI is the main factor influencing the 

energy generation of solar photovoltaic systems. 

 

Appendix A 

 

The flowchart of the model used to generate forecast data of Direct Normal 

Irradiance (DNI) [22] used in this work is shown in Fig. 4.14. 

 

 

Fig. 4.14  - Flowchart of the model used to generate DNI forecasts [22]. 

Table 4.8 - Input variables obtained from numerical weather prediction models. 

 

Variables obtained from IFS/ECMWF Variables obtained from CAMS  

Direct normal irradiance Total aerosol optical depth at 670 nm 

Global horizontal irradiance Total aerosol optical depth at 865 nm 

Low cloud cover Total aerosol optical depth at 1240 nm 

Medium cloud cover Sea salt aerosol optical depth at 550nm 

High cloud cover  

Total cloud cover  

Wind speed  

Air temperature  

Solar zenith angle  
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The model takes as input data the variables shown in Table 4.8 from the 

operational Integrated Forecasting System (IFS) of the European Centre for 

Medium-range Weather Forecasts (ECMWF) and the Copernicus 

Atmospheric Monitoring Service (CAMS). These are run every day at 00 UTC, 

providing hourly forecast values up to 90 h ahead at discrete points of a global 

grid with a horizontal spatial resolution of 0.125° × 0.125°.  

A temporal and spatial downscaling is performed on these variables, which 

results in forecasts for a specific location and higher temporal resolution. This 

downscaling is obtained through a bi-linear interpolation of the values in the 

four surrounding grid points of the desired location for the spatial 

downscaling and a piecewise cubic hermite interpolation of the hourly values 

into smaller timesteps (in this work, it was 10 min values) for the temporal 

downscaling. 

The downscaled variables are then fed to an artificial neural network (ANN 

model A), which is a feed-forward network with one hidden layer comprising 

of 7 neurons and uses: (i) a backpropagation learning function, namely 

Bayesian regularization backpropagation; (ii) a linear layer output with an 

initialization function that initializes the weights and biases of the layers 

according to the Nguyen-Widrow initialization algorithm; (iii) the hyperbolic 

tangent sigmoid transfer function; and (iv) the mean-squared error as a 

performance function. The input and output data are processed by removing 

rows with constant values and scaling the mean of each row to 0 and 

deviations to 1. This ANN takes into consideration the nonlinear 

relationships between the different atmospheric and aerosol variables and 

DNI resulting in improved DNI forecasts for the specified location and 

temporal resolution.  

A second artificial neural network (ANN model B) is similar to ANN model A, 

but uses the Levenberg-Marquardt backpropagation algorithm and has eight 

neurons in the hidden layer, taking as input a time series of 12 timesteps of 

the improved DNI forecasts prior to the forecast moment (from the output of 

the ANN model A) along with the season and time of day. This model takes 
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into consideration the temporal variation in DNI and further improves the 

DNI forecasts from ANN model A.  

Appendix B 

Table 4.9 - Metrics of DNI and DIF forecasts for the measuring periods used for first-row 

tests (MBE, MAE and RMSE in W/m2). 

Period and 

Variable 

Day 0 Day 1 Day 2 

R2 MBE MAE RMSE  R2 MBE MAE RMSE  R2 MBE MAE RMSE 

1 
DNI 0.5114 -33.1 57.0 87.6  0.6120 -14.9 38.3 67.9  0.4664 -15.3 72.2 99.5 

DIF 0.1228 18.5 26.5 39.1  0.2874 6.0 11.0 13.7  0.0912 -2.8 32.0 37.9 

                

2 
DNI 0.9082 -68.7 68.9 72.7  0.7794 -30.4 39.5 58.6  0.6228 -36.1 61.6 85.1 

DIF 0.8119 40.8 41.1 46.5  0.0063 6.8 15.9 21.1  0.0019 7.0 31.7 36.5 

                

3 
DNI 0.3542 -50.9 92.0 115.0  0.0803 -17.7 175.5 204.5  0.0014 -13.2 131.0 164.0 

DIF 0.6937 -8.7 59.7 70.4  0.5290 0.6 78.9 86.8  0.6843 -9.4 70.4 77.7 

                

4 
DNI 0.2470 47.4 74.0 127.7  0.2273 -33.2 79.1 128.7  0.1022 -322.1 322.1 391.3 

DIF 0.2873 -57.5 58.4 94.0  0.4425 -24.5 40.2 69.2  0.4884 11.7 43.2 69.3 

                

5 
DNI 0.4456 -86.6 149.2 220.4  0.1410 -121.6 206.9 283.7  0.2980 -132.1 180.7 256.1 

DIF 0.5380 -3.2 32.5 39.9  0.0513 33.5 57.9 70.8  0.0195 36.9 65.1 76.6 
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Table 4.10 - DNI and DIF forecast results for the measuring periods used for testing of the 

developed model (MBE, MAE and RMSE in W/m2). 

Period and 

Variable 

Day 0 Day 1 Day 2 

R2 MBE MAE RMSE  R2 MBE MAE RMSE  R2 MBE MAE RMSE 

1 
DNI 0.1957 26.3 101.8 141.4  0.1127 14.1 92.3 146.1  0.0151 -28.4 128.6 162.6 

DIF 0.1687 -59.2 64.2 76.0  0.4663 -36.4 36.9 52.9  0.0006 4.7 59.5 67.6 

                

2 
DNI 0.9552 55.4 55.6 66.8  0.4768 28.5 59.8 80.9  0.9153 9.4 21.7 33.9 

DIF 0.5153 -48.5 48.5 52.3  0.0240 -20.4 31.3 40.1  0.2740 -23.8 30.7 39.8 

                

3 
DNI 0.6753 24.0 121.2 190.3  0.6811 -16.6 134.1 187.7  0.6930 2.9 134.2 184.3 

DIF 0.6857 -19.4 48.7 72.4  0.6798 -15.5 51.3 71.1  0.5439 -15.4 60.7 85.3 

                

4 
DNI 0.0879 46.2 178.6 273.2  0.1934 59.5 162.1 253.6  0.2277 51.8 162.0 251.3 

DIF 0.2560 -55.3 63.1 97.3  0.5052 -60.9 65.2 90.1  0.4056 -55.6 64.6 91.0 

                

5 
DNI 0.1872 -58.2 106.8 140.4  0.0197 -45.0 133.4 184.8  0.0065 0.4 83.2 149.6 

DIF 0.1999 21.2 40.3 46.0  0.0189 -11.8 38.5 58.5  0.0143 -4.1 35.6 56.4 

                

6 
DNI 0.3289 -147.5 169.6 210.3  0.3673 46.18 47.2 89.7  0.3013 38.0 46.6 89.3 

DIF 0.0152 88.0 96.9 129.0  0.0550 -33.5 33.5 46.3  0.0019 -25.4 28.5 44.2 

                

7 
DNI 0.8260 -24.4 36.7 44.5  0.8981 11.9 31.0 37.3  0.8394 37.6 49.0 65.9 

DIF 0.6205 14.6 22.6 28.4  0.4374 -3.9 23.9 26.6  0.0125 -25.9 38.1 49.2 

                

8 
DNI 0.8672 25.8 53.5 60.2  0.8169 30.5 74.9 85.3  0.8656 57.5 61.8 69.2 

DIF 0.5586 -3.2 11.8 15.8  0.3760 -13.7 26.8 30.6  0.0822 -26.5 26.5 30.9 

                

9 
DNI 0.1415 160.6 213.8 270.0  0.1635 99.9 184.8 223.0  0.0117 190.2 290.4 341.6 

DIF 0.3964 -102.6 115.7 143.9  0.0298 -96.5 126.6 157.6  0.0196 -102.5 131.1 161.4 

                

10 
DNI 0.3396 93.7 196.6 266.0  0.2661 33.3 204.1 268.5  0.4108 -20.3 201.3 235.9 

DIF 0.2564 -42.3 90.2 122.9  0.2894 -20.0 85.2 113.8  0.3719 -17.3 87.1 105.8 

                

11 
DNI 0.2717 -129.9 170.9 207.2  0.6058 -42.8 83.0 111.2  0.6257 22.0 69.2 103.2 

DIF 0.0832 55.7 70.8 96.5  0.0929 22.9 37.4 45.3  0.3765 -7.9 23.0 30.9 

                

12 
DNI 0.0420 45.0 197.2 228.6  0.1069 95.6 258.8 310.0  0.3188 197.5 295.7 363.3 

DIF 0.5633 -63.8 97.1 113.2  0.6490 -114.3 128.1 152.1  0.7377 -108.5 121.3 150.0 

                

13 
DNI 0.2652 200.3 217.9 265.3  0.2650 231.0 252.1 300.2  0.2762 262.2 299.9 341.5 

DIF 0.1240 -77.5 104.1 127.2  0.1153 -99.3 119.9 141.8  0.1656 -119.1 135.3 154.5 

                

14 
DNI 0.3747 101.8 137.5 163.5  0.4259 156.6 162.3 210.6  0.2201 107.0 145.8 186.7 

DIF 0.4555 26.2 89.6 111.4  0.4369 14.8 85.0 112.2  0.4314 55.2 95.9 122.8 

                

15 
DNI 0.1945 -102.7 125.5 161.5  0.2203 -148.3 173.5 190.0  0.2292 -116.1 139.4 170.9 

DIF 0.3872 66.8 68.7 93.0  0.4400 81.7 81.7 97.4  0.4533 73.0 76.7 102.6 

                

16 
DNI 0.0805 20.7 230.0 265.3  0.1606 -34.3 209.9 246.7  0.0197 -197.8 326.9 405.4 

DIF 0.5675 18.9 53.0 65.6  0.4792 31.2 64.2 77.2  0.7111 -15.6 46.0 52.8 

                

17 
DNI 0.3496 -15.5 92.7 146.0  0.4274 -37.6 119.2 158.3  0.4238 -96.0 151.4 205.5 

DIF 0.1479 14.3 29.4 38.5  0.2745 11.2 31.1 39.7  0.3782 31.2 41.1 50.6 

                

18 
DNI 0.0262 5.2 145.8 211.6  0.0983 19.4 139.8 198.7  0.0154 39.0 142.2 210.7 

DIF 0.0994 9.8 76.4 102.3  0.1921 3.7 72.6 95.8  0.0518 -4.0 81.5 111.6 

                

19 
DNI 0.7739 -27.3 65.6 99.7  0.8940 0.1 42.2 67.5  0.7421 -33.4 89.0 121.4 

DIF 0.4384 8.1 20.8 27.4  0.8150 -2.1 12.9 18.2  0.0654 34.8 45.4 60.6 
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Table 4.11- GTI metrics of first-row tests for each day of forecast horizon and for each period 

using the Modified Bugler transposition model with DNI and DIF forecasts (MBE, MAE and 

RMSE in W/m2). 

Period 
Day 0  Day 1  Day 2 

R2 MBE MAE RMSE  R2 MBE MAE RMSE  R2 MBE MAE RMSE 

1 0.9795 29.2 33.5 46.4  0.9798 29.5 35.6 46.4  0.9719 23.0 41.4 48.7 

2 0.9980 8.9 13.8 16.6  0.9941 12.7 22.6 25.6  0.9933 11.0 23.8 27.7 

3 0.9224 -29.4 45.4 63.9  0.9511 31.6 45.7 65.9  0.9345 16.3 36.4 56.3 

4 0.9177 9.8 44.7 59.4  0.8715 19.8 51.8 74.6  0.0893 -203.9 210.1 277.7 

5 0.9633 21.6 34.9 40.6  0.9329 21.8 41.7 48.4  0.9742 47.0 29.9 34.6 

 

Table 4.12 - GTI results of the developed model for rows that are not the front row for each 

day of forecast horizon and for each period using DNI and DIF forecasts (MAE and RMSE 

in W/m2, MAPE and RMSPE in %). 

Period 
Day 0  Day 1  Day 2 

R2 MBE MAE RMSE  R2 MBE MAE RMSE  R2 MBE MAE RMSE 

1 0.0043 -163.0 207.1 364.9  0.0059 -163.5 195.8 364.0  0.0048 -179.4 215.5 365.9 

2 0.9913 -30.7 34.9 38.8  0.9835 -41.0 42.7 57.2  0.9768 -50.3 53.2 70.5 

3 0.6449 -17.4 117.5 175.0  0.6302 -36.0 129.9 181.5  0.5980 -25.8 128.2 187.2 

4 0.3640 -3.7 81.8 137.8  0.3764 -3.0 84.0 138.3  0.3630 1.1 85.3 142.8 

5 0.4550 -87.7 108.9 214.5  0.4017 -99.6 131.8 234.1  0.4038 -72.3 105.8 217.9 

6 0.9196 -105.8 113.3 141.0  0.9651 -29.2 45.2 57.8  0.9636 -30.8 46.8 59.7 

7 0.9938 -43.3 43.8 48.8  0.9981 -31.1 31.6 35.0  0.9971 -26.5 27.0 30.9 

8 0.9958 -48.0 50.0 52.5  0.9963 -50.2 51.5 53.8  0.9949 -49.7 51.7 54.6 

9 0.1442 -82.6 112.5 166.3  0.1479 -93.7 114.7 166.2  0.0815 -84.5 127.3 179.2 

10 0.1607 -62.4 142.8 242.5  0.1907 -78.1 143.9 239.9  0.2246 -105.8 147.0 242.8 

11 0.8884 -92.8 97.4 125.5  0.9728 -62.1 67.4 78.0  0.9823 -37.5 44.1 51.3 

12 0.5099 -43.6 108.8 150.6  0.4232 -36.7 136.7 181.2  0.5488 44.0 111.4 167.7 

13 0.9111 19.9 57.1 71.5  0.9154 28.6 54.7 71.8  0.9025 41.8 64.9 87.6 

14 0.1142 95.4 105.1 135.2  0.1097 107.8 113.6 155.5  0.0710 111.3 121.3 155.7 

15 0.8651 -61.9 74.8 91.6  0.8613 -68.5 87.4 96.9  0.8723 -64.5 78.0 91.8 

16 0.4764 5.2 166.3 204.4  0.4233 -30.8 172.6 212.8  0.0174 -227.0 295.8 380.3 

17 0.9180 -43.9 70.8 85.8  0.9211 -59.2 76.7 91.8  0.9147 -79.1 90.5 107.8 

18 0.8772 -41.7 81.4 99.7  0.8803 -39.9 78.1 97.9  0.8741 -41.9 83.2 100.8 

19 0.6672 -55.3 65.9 114.3  0.6605 -51.8 62.1 114.6  0.6384 -39.4 51.7 109.7 
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Nomenclature 

 

𝐴  Anisotropy index 

BHI  Beam horizontal irradiance (W/m2) 

𝐶  Fraction of circumsolar area obscured by the adjacent row 

𝑐  Length along the panel (m) 

𝑐𝑠  Position of the pyranometer along the length of the panel (m) 

𝐷  Distance between rows in the horizontal plane (m) 

𝐷⃗⃗   Vector of diffuse horizontal irradiance vector (W/m2) 

𝐷𝑐𝑠  Circumsolar diffuse component of GTI (W/m2) 

DIF  Diffuse horizontal irradiance (W/m2) 

𝐷𝑖𝑠𝑜  Isotropic diffuse component of GTI (W/m2) 

DNI  Direct normal irradiance (W/m2) 

EHI  Extraterrestrial horizontal irradiance (W/m2) 

ENI  Extraterrestrial normal irradiance (W/m2) 

F  View-factor matrix 

𝐹𝑔   Ground view factor 

𝐹𝑠  Sky view factor 

𝑓  Clearness index as defined in the Klucher model 

GTI  Global tilted irradiance (W/m2) 

GRI  Global reflected irradiance (W/m2) 

ℎ0  Vertical distance between the ground and the panel base (m) 

I  Identity matrix 

𝐼𝑏  Direct component of GTI (W/m2) 

𝐼 𝑟  Vector of direct horizontal irradiance vector (W/m2) 

𝐼𝑟𝑒𝑓𝑙  Reflection component of GTI (W/m2) 

𝑘𝑇  Clearness index 

𝐿  Length of the panel (m) 

MAE  Mean absolute error (W/m2) 

MBE  Mean bias error (W/m2) 

MAPE Mean absolute percentage error (%) 

R  Reflectivity matrix 
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𝑅𝑏  Beam irradiance tilt factor 

𝑅𝑑  Diffuse irradiance tilt factor 

RMSE Root mean squared error (W/m2) 

RMSPE Root mean squared percentage error (%) 

R2  Coefficient of determination 

𝑅𝑟  Reflected irradiance tilt factor 

𝑟  Apparent angular radius of circumsolar irradiance (°) 

𝑆  Shading of direct component coefficient 

𝑆𝑐𝑠  Shading of circumsolar component coefficient 

𝑢  Length along the ground (m) 

𝑣  Length along the back of the front panel (m) 

𝑊  Row width (m) 

𝑤𝑖  Weight of irradiance component 𝑖 to the bias reduction (%)  

𝑋𝑖  Isotropic component of first-row model 

𝑋𝑐𝑠  Circumsolar component of first-row model 

 

Greek symbols 

𝛷  Solar zenith angle (°) 

𝛼  Solar elevation angle (°) 

𝛼’  Projection of α in the vertical plane of the local meridian (°) 

𝛽  Surface tilt angle (°) 

𝛾p  Surface azimuth (°) 

𝛾s  Solar azimuth (°) 

𝛿  Angle between the horizontal and the top of the front panel (°) 

𝜀 Angle between the horizontal and the top of the panel being 

considered (°) 

𝜁  Angle between the horizontal and the bottom of the front panel 

(°) 

𝜃  Angle of incidence (°) 

𝜆 Angle between the horizontal and the bottom of the panel being 

considered (°) 
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𝜉 Angle between the horizontal and the top of the panel in front of 

the front panel (°) 

𝜌  Ground albedo 

𝜎 Angle between the horizontal and the top of the panel behind the 

panel being considered (°) 

 

Acronyms 

ANN  Artificial neural networks 

CAMS Copernicus atmospheric monitoring service 

ECMWF European centre for medium-range weather forecasts 

IFS  Integrated forecasting system 

NWP  Numerical weather prediction 
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Chapter 5 

 

Assessment of thermal modeling of photovoltaic panels 

for predicting power generation using only 

manufacturer data† 

 

Abstract 

 

This study presents an assessment of thermal modeling for photovoltaic 

modules, focusing on power output prediction using manufacturer-provided 

data along with irradiance and weather-related variables. Several steady-

state thermal models based on empirical correlations were evaluated for 

computing the temperature of the photovoltaic module. Additionally, a 

dynamic model was developed based on the energy conservation equation, 

incorporating the effects of wind speed and direction, using only 

manufacturer data and other parameters available in the literature. The 

performance of these models was evaluated against measured temperatures 

on the backsides of photovoltaic modules. The models were further integrated 

with the simple estimate with temperature correction and single diode and 

five-parameter electrical models to assess combined power output prediction 

performance. Results show that the Mattei steady-state model is the most 

accurate for temperature estimation, with a mean bias error of −0.4°C and a 

root mean squared error of 2.7°C. However, for power output estimation, the 

Kurtz (Sandia1) model combined with the simple estimate with temperature 
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correction outperforms others, showing a mean bias error of 4.6 W and a root 

mean squared error of 54.5 W. This study systematically evaluates and 

compares the performance of thermal models for different photovoltaic 

systems, offering a framework for selecting appropriate models based on their 

accuracy in temperature estimation and power output prediction. These 

models can support operational photovoltaic forecasts without the need for 

production data and facilitate decision-making in the deployment and 

management of photovoltaic technology. 

 

Keywords 

Modeling and simulation; Photovoltaic; Solar energy; Thermal model 

 

5.1 Introduction 

 

A photovoltaic module is a device that converts sunlight into electrical energy 

through the photovoltaic effect occurring in a junction of two dissimilar 

semiconductor materials. The generated electricity can vary rapidly due to 

the variability of the solar resource. Solar irradiance is affected by factors 

such as the presence of clouds and aerosols in the atmosphere. Moreover, 

photovoltaic power output is also very impacted by temperature since higher 

values of module temperature result in a decrease in conversion efficiency [1]. 

Previous studies have extensively explored the impact of environmental 

parameters such as irradiation, temperature, and dust on the performance of 

PV systems, leading to the development of various empirical correlation forms 

to enhance the accuracy of PV modeling. All these aspects are important 

because, with the increase in installed capacity of photovoltaic systems 

throughout the world, the need for modeling such a variable electricity 

generation has also increased. Accurate models of the conversion from 

sunlight into electricity can allow for better planning and development of 

photovoltaic power plants, monitoring system performance, and can also be 

included in electricity generation forecasting for better control of the electric 

grid.  
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Many electrical models of photovoltaic cells have been developed in the 

literature. Among these models, the level of detail, and therefore the number 

of input parameters, may vary widely [2], ranging from simple models where 

the electrical power produced is assumed to be proportional to solar 

irradiance, to very detailed models such as the equivalent electric circuit 

models [3,4]. The most widely used models are single diode models, typically 

involving three to five parameters for optimal performance analysis. The 

parameter extraction is a key issue due to the number of parameters to 

determine and the nonlinearity of the optimization problem, usually 

requiring numerical or analytical methods and curve fitting methods [5]. 

Precisely adapting the parameters to real conditions is essential for accurate 

power output estimates. For the crystalline silicon technology, the five 

parameter single diode model shows a good balance between accuracy and 

computation time [2], although additional adaptations are needed for other 

technologies such as microcrystalline, amorphous, and cadmium telluride [6]. 

Numerous studies review and compare different electric models, presenting 

advantages and disadvantages derived from simulation or experimental tests 

[2,3,7–12]. These analyses emphasize the importance of accurately capturing 

the electrical behavior of photovoltaic modules for reliable power output 

estimation. 

When the temperature of photovoltaic cells/modules is not available, a 

thermal model is also needed for accurate power output estimation. Most 

thermal models used in the literature are steady-state and empirical, often 

biased towards specific technologies, material properties or locations. 

Tuomiranta et al. [13] obtained different correlations between module 

temperature (seven different semiconductor materials) and solar irradiance, 

air temperature and wind speed for Abu Dhabi. Coskun et al. [14] tested 

seventeen different correlations available in the literature for a photovoltaic 

powerplant in Turkey, modifying them for a better fit to the experimental 

data. The modified Chenni correlation [14] was shown to be the most suitable 

under variable wind speed conditions. A comprehensive list of explicit and 

implicit correlations for module temperature estimation found in the 
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literature is available in [15]. Most models typically incorporate solar 

irradiance, air temperature and wind speed, while additional parameters 

such as air humidity and dust deposition can also impact photovoltaic system 

performance. Gholami et al. [16] investigated the effect of these variables on 

photovoltaic panel temperature, finding standardized Beta coefficients of 

0.541, 0.645, −0.035, −0.055, and −0.068 for irradiance, ambient temperature, 

humidity, wind speed, and dust accumulation, respectively. Their proposed 

semi-empirical correlations achieved coefficients of determination ranging 

from 0.728 to 0.974. Additionally, studies have shown that dust accumulation 

impacts the performance of photovoltaic systems, causing both reduced power 

generation and increased module temperatures [17,18]. 

Physical models based on the energy conservation equation for dynamic 

regimes and heat transfer modeling can reproduce the thermal response of 

photovoltaic modules over time under variable conditions, making them 

suitable for simulations with smaller timesteps, typically at a second or 

minute time scale. Most studies in the literature consider either the electrical 

or the thermal model alone, or when both are considered, they are often 

uncoupled [2]. Since the photovoltaic cell/module temperature depends on the 

electrical power generated and vice-versa, coupling thermal and electrical 

models is advantageous. Some of the few works that include this coupling 

were developed recently [19,20]. Perovic et al. [19] developed a dynamic model 

that includes the dependence of electric power on module efficiency and 

temperature, comparing temperature results with measurements in three 

different points on the back of a photovoltaic module. Li et al. [20] developed 

a 3-D thermal model which, when coupled with the single diode 5 parameters 

electric model, resulted in values of power output, back-surface temperature, 

and current-voltage curves consistent with observations. In [21], a model for 

module temperature and power output estimation incorporating a dynamic 

thermal model and the single diode 5 parameter model, considering parasitic 

effects and bypass diodes, as well as site-specific adjusting parameters, was 

developed. In this case, root mean square error of 1.34°C for module 

temperatures and a normalized root mean square error of 1.98% for power-
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voltage curves were found. Gu et al. [22] assessed thermal resistance 

distribution and environmental effects on photovoltaic module performance 

through a coupled electrical-thermal model, highlighting the significance of 

radiative and convective thermal resistances. In [23], coupled electrical and 

thermal models for photovoltaic module temperature estimation was 

presented using inputs such as electric voltage and current, ambient 

temperature, wind speed and direction, total irradiance, and relative 

humidity. Bevilacqua et al. [24] developed and validated a one-dimensional 

thermal model for photovoltaic modules, using the energy balance of 

individual layers in dynamic conditions and determining the temperature 

distribution across the module cross-section through a finite difference 

method. In [25] a dynamic coupled thermal-electric model considering 

irradiance, air temperature, wind speed and direction, module parameters 

and geospatial data was developed for hourly data and assessed against 

observations of a poly-crystalline photovoltaic module, resulting in an MBE 

of 3.35 W/m2.  

This work systematically evaluates and compares thermal models for 

different photovoltaic systems, focusing on the accuracy of temperature 

estimation and power output prediction. It focuses on models that take only 

as inputs the characteristic values commonly provided by manufacturers in 

the datasheets, beside solar irradiance and meteorological variables. Data-

based models such as regression or machine learning models were not 

included in the analysis. Experimental values of environmental variables and 

power output of a photovoltaic system are used for model assessment. 

Additionally, a developed electric-thermal coupled model for dynamic regimes, 

considering the wind direction relative to module rows, is also included in the 

analysis and validated against the same data. All models are compared to 

find the most accurate method for estimating power output of photovoltaic 

systems without needing measurements from the system. The novelty of this 

work lies in several key aspects. Firstly, a transient thermal model was 

developed that extends beyond traditional steady-state models, enabling 

predictions under varying operational scenarios. Secondly, a thorough 
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comparative analysis of multiple thermal models was conducted, evaluating 

their performance against measured data from several PV technologies. This 

comprehensive evaluation framework ensures robustness of the proposed 

methodology and strengthens the practical implications for operational 

decision-making in PV systems. Ultimately, the approach used supports PV 

forecasts even in the absence of energy generation data, thereby advancing 

the field's capability for accurate and reliable performance estimation. 

This paper is organized as follows: Section 5.2 presents the methodology of 

this work specifically the experimental data used for model assessment, 

including the environmental conditions (solar irradiance, air temperature 

and wind speed and direction) and photovoltaic system characteristics and 

power generation data. The various steady-state thermal models of the 

photovoltaic modules for obtaining module temperature are assessed, and the 

developed dynamic thermal model is presented. These models are then 

coupled with the simple estimate with temperature correction and single 

diode five parameter electric models and validated against observations in 

Section 5.3. Finally, Section 5.4 presents the conclusions of this work. 

 

5.2. Methodology  

 

The methodology encompasses two main components: data collection and 

processing, and thermal and electric modeling. Data collection involved 

retrieving and processing solar resource and meteorological variables, as well 

as photovoltaic system data. Thermal modeling utilized both steady-state and 

dynamic models to estimate module temperatures under changing 

environmental conditions. Coupling the thermal with electric models allows 

for the estimation of photovoltaic power output. The chapter discusses the 

formulation of empirical and physics-based models and the rationale behind 

model selection. 
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5.2.1 Data  

Data from four different photovoltaic systems located at Fukushima 

Renewable Energy Institute (FREA, AIST), Koriyama, Japan (37.4495° N, 

140.3144 °  E, Fig. 5.1) were utilized in this study. The systems employ 

different photovoltaic cell technologies: one with polycrystalline modules, two 

with monocrystalline modules, and one using heterojunction technology with 

intrinsic thin layer (HIT), which combines monocrystalline and amorphous 

silicon with dissimilar band gaps. The characteristics of these systems are 

presented in Table 5.1. 

 

Fig. 5.1 - Location and plan of the photovoltaic systems at FREA, AIST. 

 

The experimental data comprise environmental variables and photovoltaic 

system variables. Environmental variables include global tilted solar 

irradiance (𝐺𝑇𝐼) measured using a class A pyranometer (Hukseflux CHF-
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SR20-JM), direct normal irradiance (𝐷𝑁𝐼) measured using a pyrheliometer, 

air temperature (𝑇𝑎), wind speed (𝑊𝑆) and wind direction (𝑊𝐷) at 7.4 m height.  

 

Table 5.1 - Characteristics of the photovoltaic systems for Standard Test Conditions (STC). 

System 1 2 3 4 

Photovoltaic  

modules 

Manufacturer Toshiba Panasonic Kyocera Sharp 

Model TA60M250WA VBHN238SJ23A 
KS242P-

3CF3CE 
NQ-198AC 

Technology Monocrystalline HIT Polycrystalline Monocrystalline 

𝑷𝒎𝒂𝒙 [W] 250.0 238.1 242.0 198.0 

𝑽𝒎𝒑 [V] 30.96 43.4 29.8 22.4 

𝑰𝒎𝒑 [A] 8.07 5.50 8.13 8.84 

𝑽𝒐𝒄 [V] 37.92 52.20 36.90 27.50 

𝑰𝒔𝒄 [A] 8.62 5.85 8.80 9.50 

𝜶𝑷𝒎𝒂𝒙 [%/𝑲] −0.440 −0.290 −0.450 −0.392 

𝜶𝑽𝒐𝒄 [%/K] −0.300 −0.288 −0.320 −0.357 

𝑳 [m] 1.650 1.580 1.662 1.165 

𝑾 [m] 0.991 0.812 0.990 0.990 

Thickness 

[mm] 
40 35 46 46 

Strings 

No. of modules 8 8 8 10 

Position 1st row 2nd row 3rd row 5th row 

Peak power 

[W] 
2000.0 1904.8 1936.0 1980.0 

Inverters 

Manufacturer 
Tabuchi 

Electric 
Tabuchi Electric 

Tabuchi 

Electric 

Tabuchi 

Electric 

Model 
EPU-A-T100P-

SB 

EPU-A-T100P-

SB 

EPU-A-T100P-

SB 

EPU-A-T100P-

SB 

Efficiency (%) 93 93 93 93 

Capacity [kW] 10 10 10 10 
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Photovoltaic system variables comprise power output (𝑃) and temperature at 

the back of the module (𝑇𝑚𝑜𝑑), measured with a type T thermocouple attached 

with Kapton tape directly to the back of one module per system. These 

variables were recorded at 1-minute timestep and converted to 10-minute 

mean values. The dataset spans from January 1st 2017 to December 31st 2020. 

Data preprocessing excluded winter months (December through March) due 

to snow accumulation on modules, retaining records with valid values across 

all variables. This resulted in a total of 24543 10-minute data points per 

system during the daylight hours. 

 

5.2.2 Thermal modeling of photovoltaic modules 

When the measured temperature of the modules is unavailable, a model for 

its estimation is necessary. Specifically, a model that can accurately estimate 

the temperature using easily available meteorological variables and 

characteristics of the photovoltaic systems is required. From the models 

described in the literature, two main categories can be found: steady-state 

and dynamic models. 

Steady-state models are most common and assume that the heat transfer rate 

between the modules and the environment is quasi-stationary. In contrast, 

dynamic models consider the variation in thermal energy storage in the 

module and heat transfer rates over time. Steady-state models are usually 

correlations based on experimental data, which can make these models biased 

towards specific climates or technologies. Dynamic models tend to be based 

on physical principles and are more suitable for estimations made over small 

timesteps. 

5.2.1.1 Steady state models 

The steady-state models analyzed in this work are amongst the most 

commonly used thermal models in the literature and typically require air 

temperature (𝑇𝑎), global tilted irradiance (𝐺𝑇𝐼) and wind speed (𝑊𝑆).  
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 Modified Chenni thermal model  

The Chenni thermal model [8] was improved by examining the trend in the 

temperature difference between the model’s results and observation data, 

resulting in the modified Chenni thermal model [14], as shown in Eq. (5.1). 

The observation data used results from a year of records from a 

polycrystalline powerplant in Turkey. 

 

𝑇𝑚𝑜𝑑 = 𝑇𝑎 − 1.93666 + 0.0138 𝐺𝑇𝐼(1 + 0.031 𝑇𝑎)(1 − 0.042 𝑊𝑆)

+ 0.007882𝐺𝑇𝐼 − 0.0000134647(𝐺𝑇𝐼)2 
(5.1) 

  

Mattei thermal model   

The Mattei thermal model [26] was developed using observation data from a 

grid-connected system and a polycrystalline module with eight temperature 

sensors integrated into the module, resulting in the correlation shown in Eq. 

(5.2). The coefficient of thermal losses, 𝑈𝑝𝑣, is computed through Eq. (5.3), and 

the transmittance and absorption product at a normal incidence angle of 

irradiance, (𝜏𝛼)𝑛, assumes a value of 0.81. 

 

𝑇𝑚𝑜𝑑 =
𝑈𝑝𝑣 𝑇𝑎 + 𝐺𝑇𝐼 ((𝜏𝛼)𝑛 − 𝜂𝑆𝑇𝐶  (1 − 𝛼𝑃𝑚𝑎𝑥 × 𝑇𝑠𝑡𝑐)

𝑈𝑝𝑣 + 𝐺𝑇𝐼𝛼𝑃𝑚𝑎𝑥𝜂𝑆𝑇𝐶
 (5.2) 

𝑈𝑝𝑣 = 26.6 + 2.3𝑊𝑆 (5.3) 

 

 Sandia thermal model 

The Sandia thermal model [27], shown in Eq. (5.4), was developed for 

different module and mount types through the experimentally determined 

coefficients 𝑎 and 𝑏, as presented in Table 5.2. 

 

𝑇𝑚𝑜𝑑 = 𝑇𝑎 + 𝐺𝑇𝐼𝑒
𝑎+𝑏 𝑊𝑆 (5.4) 
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Table 5.2 - Parameters of the Sandia models. 

Name Module Type Mount a b 

Kurtz (Sandia1) Glass/cell/glass Open rack −3.47 −0.0594 

Sandia2 Glass/cell/glass Close roof mount −2.98 −0.0471 

Sandia3 Glass/cell/polymer sheet Open rack −3.56 −0.0750 

Sandia 4 Glass/cell/polymer sheet Insulated back −2.81 −0.0455  

  

Faiman thermal model 

The Faiman thermal model [28] is computed using the correlation shown in 

Eq. (5.5), derived from observations on seven different photovoltaic modules 

with mono and polycrystalline silicon cells located at Sede Boqer in the Negev 

Desert. The observations of 𝐺𝑇𝐼 and 𝑇𝑚𝑜𝑑 were made using a pyranometer on 

the plane of array and thermocouples attached to the back of the modules 

using a small bead of quick-drying epoxy putty. 

 

𝑇𝑚𝑜𝑑 = 𝑇𝑎 +
𝐺𝑇𝐼

25 + 6.84 𝑊𝑆
 (5.5) 

 

JIS thermal model 

The JIS thermal model presented in Eq. (5.6), originates from the Japanese 

Industrial Standard [29] and was determined for two different mount types, 

resulting in parameters 𝑎 and 𝑏 shown in Table 5.3. 

𝑇𝑚𝑜𝑑 = 𝑇𝑎 + (
𝑎 

𝑏 𝑊𝑆0.8 + 1
+ 2)

𝐺𝑇𝐼

𝐺𝑆𝑇𝐶
− 2 (5.6) 

  

Table 5.3 - Parameters of the JIS models. 

Name Mount a b 

JIS1 Frame 46 0.41 

JIS2 Roof 50 0.38 
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Migan thermal model  

The Migan model [30] is computed using the correlation on module 

temperature, air temperature, global tilted irradiance, and wind speed, as 

shown in Eq. (5.7). This equation is derived from several different 

assumptions regarding a 5-layer module considering conduction and 

convection losses and disregarding heat losses due to radiation. 

 

𝑇𝑚𝑜𝑑 = 𝑇𝑎 +
0.32 𝐺𝑇𝐼

8.91 + 2 𝑊𝑆
 (5.7) 

 

5.2.1.2 Dynamic model 

Dynamic thermal models are based on the energy conservation equation 

derived from the first law of thermodynamics. For a specific photovoltaic 

module, an energy balance equation for each material layer can be included 

in the model [24] or, alternatively, a simpler model can be developed by 

considering the entire module [19]. In this work, since the focus is on general 

models that only uses parameters provided by the manufacturers, the later 

approach is followed, and thus the module is considered as a block with an 

average temperature 𝑇𝑚𝑜𝑑. This approach is a compromise between the need 

for input data and parameters and computational effort. The energy balance 

can be defined by Eq. (5.8), where 𝐶𝑚𝑜𝑑 is the equivalent heat capacity of the 

module, 𝑄𝑠𝑢𝑛 is the net rate of in-plane solar irradiance and 𝑄𝑐𝑜𝑛𝑑, 𝑄𝑐𝑜𝑛𝑣 and 

𝑄𝑟𝑎𝑑 are the net rates of heat transfer to the environment through conduction, 

convection and thermal radiation, respectively,  and 𝑃𝑒 is the electric power 

output generated by the photovoltaic cells.  

 

𝐶𝑚𝑜𝑑
 𝑑𝑇𝑚𝑜𝑑
𝑑𝑡

= 𝑄sun − 𝑄cond − 𝑄𝑐𝑜𝑛𝑣 − 𝑄𝑟𝑎𝑑 − 𝑃𝑒 (5.8) 

 

In [25,31], a sensitivity analysis was performed to evaluate the effect of the 

heat capacity value on the performance of dynamic thermal models. The 

results showed that varying this value had very little impact on the modeled 

temperature and power output of the modules when compared to the 
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remaining terms of the equation. As such, the recommended value of 22800 

J/K is applied to any photovoltaic system [31].  

The absorbed solar energy is computed through Eq. (5.9) requiring the area 

of the module, 𝐴, provided by the manufacturer, and where 𝑆 is the absorbed 

irradiance, (𝜏𝛼)𝑛  is the optical efficiency for normal incidence, which is 

obtained through the product of transmissivity by the typical absorptivity 

value of 0.9 [27]. For the equations for the computation of 𝑆 and (𝜏𝛼)𝑛, please 

check Appendix A. Although each module has both active and inactive areas, 

in this study, the total area of the photovoltaic module is assumed to be the 

active area, since the ratio of active to total area is typically close to 1. 

 

𝑄sun = 𝐴 × 𝑆 × (𝜏𝛼)𝑛 (5.9) 

 

The heat transfer by conduction is considered negligible since the contact area 

between the module and the supporting structure is small. The net rate of 

heat transfer by convection can be computed through Eq. (5.10), where ℎ𝑓 and 

ℎ𝑏 are the convective heat transfer coefficients at the front and back of the 

photovoltaic module, respectively.  

 

𝑄𝑐𝑜𝑛𝑣 = 𝐴(ℎ𝑓 + ℎ𝑏)(𝑇𝑚𝑜𝑑 − 𝑇𝑎) (5.10) 

 

Convection can be defined as free (or natural) convection, driven by buoyancy 

due to temperature gradients in the fluid, or forced convection, driven by 

external forces, or a combination of both depending on the flow conditions. 

Eqs. (5.11) through (5.16) are used to compute the overall convective heat 

transfer coefficient of each surface [32]. In these equations, 𝐿𝑐  represents the 

length of the module along the airflow direction. The thermodynamic and 

transport properties of dry air, obtained at 1 atm and film temperature 𝑇𝑓, 

are used. The film temperature is computed through the formula 𝑇𝑓 = 𝑇𝑎 +

0.25(𝑇𝑚𝑜𝑑 − 𝑇𝑎) for natural convection [33–35]. This model considers the wind 

direction, 𝑊𝐷𝑠 , in which 0° is for a wind direction from the South (local 



Chapter 5. Assessment of thermal modeling of photovoltaic panels 

180 
 

reference meridian), through the characteristic length 𝐿𝑐 computed by Eq. 

(5.16) [34], with 𝐴𝑠 representing the photovoltaic module azimuth. 

 

ℎ𝑓/𝑏 =

{
 
 
 
 
 

 
 
 
 
 ℎ𝑓/𝑏, 𝑓𝑟𝑒𝑒 ,   𝑖𝑓 

𝐺𝑟

𝑅𝑒𝑓/𝑏
2 > 100

√ℎ𝑓, 𝑓𝑟𝑒𝑒
3 + ℎ𝑓, 𝑓𝑜𝑟𝑐𝑒𝑑

33
,  𝑖𝑓 0.1 ≤

𝐺𝑟

𝑅𝑒𝑓
2 ≤ 100

√ℎ𝑏, 𝑓𝑟𝑒𝑒
3 + ℎ𝑏, 𝑓𝑜𝑟𝑐𝑒𝑑

33
,  𝑖𝑓 0.1 ≤

𝐺𝑟

𝑅𝑒𝑏
2 ≤ 100 ∧ 𝑙𝑒𝑒𝑤𝑎𝑟𝑑

√ℎ𝑏, 𝑓𝑟𝑒𝑒
3 − ℎ𝑏, 𝑓𝑜𝑟𝑐𝑒𝑑

33
,  𝑖𝑓 0.1 ≤

𝐺𝑟

𝑅𝑒𝑏
2 ≤ 100 ∧ 𝑤𝑖𝑛𝑑𝑤𝑎𝑟𝑑

ℎ𝑓/𝑏, 𝑓𝑜𝑟𝑐𝑒𝑑,   𝑖𝑓 
𝐺𝑟

𝑅𝑒𝑓/𝑏
2 < 0.1

 (5.11) 

𝐺𝑟 = 𝑅𝑎/𝑃𝑟 (5.12) 

𝑅𝑎 = 𝑔(1/𝑇𝑓)(𝑇𝑚𝑜𝑑 − 𝑇𝑎)𝐿
3/(𝑣𝑇𝑓𝛼𝑇𝑓) (5.13) 

𝑃𝑟 = 𝑐𝑝,𝑇𝑓𝑣𝑇𝑓/ 𝑘𝑇𝑓 (5.14) 

𝑅𝑒𝑓/𝑏 = 𝑊𝑆 × 𝐿𝑐,𝑓/𝑏/𝑣𝑇𝑓 (5.15) 

𝐿𝑐 =  {

𝑊,  𝑖𝑓 𝑤𝑖𝑛𝑑𝑤𝑎𝑟𝑑 ∧  [45 < (𝑊𝐷𝑠 − 𝐴𝑠) < 135 ∨ 225 < (𝑊𝐷𝑠 − 𝐴𝑠) < 315]

𝐿,  𝑖𝑓 𝑤𝑖𝑛𝑑𝑤𝑎𝑟𝑑 ∧ [(𝑊𝐷𝑠 − 𝐴𝑠) ≤ 45 ∨ 135 ≤ (𝑊𝐷𝑠 − 𝐴𝑠) ≤ 225 ∨ (𝑊𝐷𝑠 − 𝐴𝑠) > 315]
4𝐿×𝑊

2(𝐿+𝑊)
,  𝑖𝑓 𝑙𝑒𝑒𝑤𝑎𝑟𝑑

  (5.16) 

 

The convective heat transfer coefficient for natural convection is computed 

through Eq. (5.17), where 𝐿 𝑓𝑟𝑒𝑒 is the length of the module along the natural 

airflow [34]. The Nusselt number, 𝑁𝑢, is computed using the correlations in 

Eq. (5.18) presented by [35]. The first correlation is used for laminar flow, 

while the second is used for turbulent flow.  

 

ℎ𝑓/𝑏, 𝑓𝑟𝑒𝑒 =
𝑁𝑢𝑓/𝑏 × 𝑘𝑇𝑓

𝐿𝑓𝑟𝑒𝑒
 (5.17) 

𝑁𝑢𝑓/𝑏 =  

{
 
 

 
 
(0.825 + 0.387√𝑅𝑎 𝑠𝑖𝑛 (𝛽) (1 + (

0.492

𝑃𝑟
)
9/16

)
−16/96

)

2

,  𝑖𝑓 0.1 < 𝑅𝑎 < 𝑅𝑎𝑐𝑟 ∧ 𝑃𝑟 > 0.001

0.56(𝑅𝑎𝑐𝑟𝑐𝑜𝑠 (𝜃𝑟))
0,25 + 0.13(√𝑅𝑎

3
− √𝑅𝑎𝑐𝑟

3 ),  𝑖𝑓 𝑅𝑎 ≥ 𝑅𝑎𝑐𝑟 ∧ 𝑃𝑟 > 0.001

  (5.18) 
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in which the critical Rayleigh value is computed using Eq. (5.19), where 𝜃𝑣 is 

given by Eq. (5.20). 

 

𝑅𝑎𝑐𝑟 = 108.9−0.00178(𝜃𝑣) (5.19) 

𝜃𝑣 = 90 − 𝛽 (5.20) 

 

In the case of forced convection, the convective heat transfer coefficients for 

the front and back surfaces of the module are calculated considering the wind 

speed and direction, as shown in Eq. (5.21). The first correlation is used for 

laminar flow, the second for transition flow, and the third for turbulent flow 

[36]. The critical Reynolds number (𝑅𝑒𝑐𝑟) is 4×105, and 𝐿𝑐 is computed using 

Eq. (5.16), which also depends on the wind direction. 

 

ℎ𝑓𝑜𝑟𝑐𝑒𝑑, 𝑓/𝑏 =  

{
 
 

 
 3.83𝑊𝑆

0.5𝐿𝑐
−0,5,   𝑖𝑓

𝑥𝑐𝑟
𝐿𝑐

≥ 0.95

5.74𝑊𝑆0.8𝐿𝑐
−0,2 − 16.46/𝐿𝑐 ,   𝑖𝑓 0.05 ≤

𝑥𝑐𝑟
𝐿𝑐

< 0.95 

5.74𝑊𝑆0.8𝐿𝑐
−0,2,  𝑖𝑓

𝑥𝑐𝑟
𝐿𝑐

< 0.05

 (5.21) 

 

in which the critical value 𝑥𝑐𝑟 is given by Eq. (5.22). 

 

𝑥𝑐𝑟 = 𝑅𝑒𝑐𝑟𝑣𝑇𝑓/WS (5.22) 

 

The net rate of heat transfer with the environment by thermal radiation is 

computed using Eq. (5.23). The radiative heat transfer coefficients for the 

front and back surfaces of the module are computed using Eqs. (5.24) and 

(5.25), respectively. The sky temperature is obtained in Kelvin through the 

correlation presented in Eq. (5.26) [37] and the ground temperature (𝑇𝑔𝑟𝑜𝑢𝑛𝑑) 

is assumed to be equal to the air temperature. The emissivity coefficients (𝜀) 

are assumed to be 0.85 for the front surface and 0.91 for the back surface [32]. 

 

𝑄rad = 𝐴 (ℎrad ,𝑓(𝑇𝑚𝑜𝑑 − 𝑇sky ) + ℎrad ,𝑏(𝑇𝑚𝑜𝑑 − 𝑇ground )) (5.23) 
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ℎrad, 𝑓 = 𝜀𝑓𝜎𝑆𝐵(𝑇𝑚𝑜𝑑
2 + 𝑇sky 

2 )(𝑇𝑚𝑜𝑑 + 𝑇sky )
1+𝑐𝑜𝑠(𝛽)

2
+ 𝜀𝑓𝜎𝑆𝐵(𝑇𝑚𝑜𝑑

2 +

𝑇ground 
2 ) × (𝑇𝑚𝑜𝑑 + 𝑇ground )

(𝑇𝑚𝑜𝑑−𝑇ground )

(𝑇𝑚𝑜𝑑−𝑇sky )

1−𝑐𝑜𝑠(𝛽)

2
  

(5.24) 

ℎrad ,𝑏 = 𝜀𝑏𝜎𝑆𝐵(𝑇𝑚𝑜𝑑
2 + 𝑇sky 

2 )(𝑇𝑚𝑜𝑑 + 𝑇𝑠𝑘𝑦)
(𝑇𝑚𝑜𝑑−𝑇sky )

(𝑇𝑚𝑜𝑑−𝑇ground )

1+𝑐𝑜𝑠(180−𝛽)

2
+

𝜀𝑏𝜎𝑆𝐵(𝑇𝑚𝑜𝑑
2 + 𝑇ground 

2 )(𝑇𝑚𝑜𝑑 + 𝑇ground )
1−𝑐𝑜𝑠(180−𝛽)

2
  

(5.25) 

𝑇sky = 0.0552𝑇𝑎
1.5 (5.26) 

 

 

Fig. 5.2 – Dynamic model flowchart. 

Finally, the electrical power output of the module, 𝑃𝑒, can be obtained from 

different models. In this work, the most commonly used electric models–

simple estimate with temperature correction, and the single diode and five 

parameters models (presented in Appendix A)–were coupled to the presented 

dynamic thermal model. Typical values available in the literature were 



5.3 Results and discussion 

183 

assumed for different parameters of photovoltaic modules, including surface 

emissivity [32], glazing transmissivity, module absorptivity [27], and heat 

capacity [31]. This means the model can be further optimized for improved 

results by adjusting these parameters.  

To solve these equations and simultaneously obtain the module temperature 

and electrical power output, an iterative method must be applied. In this work, 

the Dorman and Prince version of the Runge-Kutta formula [38] was used 

through the Matlab function ode45.  

Fig. 5.2 illustrates the dynamic model used to estimate the module 

temperature and electrical power output of photovoltaic systems. This 

structured approach ensures accurate modeling by integrating thermal and 

electrical processes. 

 

5.3 Results and discussion  

 

The thermal models discussed in Section 2 were applied to the study's open 

rack mounted photovoltaic systems. Models originally designed for roof-

mounted or insulated modules, namely Sandia2, Sandia4, and JIS2, were 

excluded from consideration. The results were assessed against observations 

as shown in Fig. 5.3, which presents a direct comparison between estimated 

module temperature and the measured temperature on the back of the 

photovoltaic module.  

The dynamic thermal model, which incorporates electric power output, was 

evaluated when coupled with the simple estimate with temperature 

correction (SET) and single diode and 5 parameters (1d5p) models. Selection 

of these electrical models for coupling with the dynamic thermal model was 

based on preliminary tests demonstrating their suitability and accuracy for 

predicting the electrical photovoltaic system performance. As detailed in 

Appendix A, these preliminary evaluations showed that the SET model offers 

a straightforward yet effective approach for incorporating temperature effects, 

making it a practical choice for dynamic simulations. On the other hand, the 
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1d5p model, with its detailed parameterization, provides a more nuanced and 

precise representation of the electrical characteristics of photovoltaic modules. 

 

  

Fig. 5.3 - Comparison between measured and estimated temperature with the various 

models. 

 

The models used in this study are derived from experimental correlations and 

theoretical assumptions or empirical relations developed by various 

researchers using data from different technologies and under different 

environmental conditions. As a result, each model's performance can be 

affected by the specific characteristics and assumptions inherent in its 

development. For instance, models differ in how they account for the different 

heat transfer mechanisms, material properties, and environmental 

conditions, which leads to variations in their accuracy. While some models, 
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such as the Mattei and Modified Chenni, show negative bias, others 

overestimate temperatures due to these inherent differences. 

This overestimation could also be due to the fact that temperature 

measurements are taken outside of the photovoltaic module, usually resulting 

in values slightly lower than the actual photovoltaic cell temperature, which 

is the output of the thermal models. Detailed results are provided in Table 

5.4, which presents various statistical indicators, namely the correlation 

coefficient, R2, mean bias error, MBE, relative mean bias error, rMBE, root 

mean squared error, RMSE, relative root mean squared error, rRMSE, and a 

global performance indicator GPI. The GPI allows for the ranking of the 

models from best to worst (higher to lower value) according to the above 

metrics (further details can be found in [39]). Fig. 5.4 displays a boxplot of 

these results, providing a visual comparison of the performance of each model 

relative to others based on MBE, RMSE and GPI metrics. 

 

Table 5.4 - Statistical indicators of thermal models when compared to the measured 

temperature. 

Model R2 
MBE 

(°C) 

rMBE 

(%) 

RMSE 

(°C) 

rRMSE 

(%) 
GPI 

Mattei 0.975 −0.4 −1.8 2.7 13.7 0.620 

Sandia3 0.973 0.9 4.6 2.8 14.0 0.328 

Migan 0.975 1.2 6.0 2.7 13.6 0.297 

JIS1 0.967 0.8 4.0 3.1 15.7 0.072 

Faiman 0.969 1.6 8.2 3.0 15.1 −0.159 

Dynamic + 

1d5p  
0.958 −0.4 −2.0 3.6 18.1 −0.205 

Dynamic + 

SET 
0.959 −1.0 −5.0 3.6 17.9 −0.395 

Kurtz 

(Sandia1) 
0.955 2.0 10.2 3.6 18.3 −0.932 

Modified 

Chenni 
0.926 −2.9 −14.4 4.7 23.4 −2.370 
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Fig. 5.4 - Boxplot of thermal model results. 

The assumptions discussed above are confirmed, and the steady-state Mattei 

model is identified as the best in estimating module temperature, having the 

highest GPI along with a mean bias error of −0.4 °C and root mean squared 

error of 2.7 °C. The best dynamic model is shown to be the one coupled with 

the single diode and 5 parameters electrical model with a mean bias error of 

−0.4 °C and root mean squared error of 3.6 °C. In Fig. 5.4, it is visible that the 

Modified Chenni and Kurtz (Sandia1) models show lower performance, 

particularly in terms of higher bias and lower accuracy. Detailed results for 

each model and photovoltaic system can be consulted in Table 5.9 in Appendix 

B. 

However, the measured temperature is not the actual mean temperature of 

the module and, since the goal of this work is to have an accurate estimation 

of the photovoltaic power output, the thermal models were evaluated in terms 

of estimated power when coupled with either the simple estimate with 

temperature correction or the single diode and 5 parameters electrical models. 

For steady-state models, this involved using the thermal model to estimate 

module temperature based on environmental conditions such as irradiance 

and ambient temperature. This estimated temperature is then used in the 

electrical model to adjust the electrical power output accordingly. 
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The results for the SET model are presented in Fig. 5.5, Fig. 5.6 and Table 

5.5. Here, the estimated and measured electric power are directly compared, 

with a remarkably similar overestimation for all thermal models. This is also 

observed when using the measured temperature with the SET model (upper 

left plot of Fig. 5.5). The best thermal model (with the highest GPI) coupled 

with the SET model in terms of power output prediction is shown to be the 

Kurtz (Sandia1) model with a mean bias error of 4.6 W and root mean squared 

error of 54.5 W. Using the temperature measured in the back of the module 

only returns better power estimates when compared with the results for 

Mattei and Modified Chenni models which show the worst metrics as visible 

in Fig. 5.6. The results for each model and photovoltaic system are presented 

in Table 5.10 of Appendix B. 

 

 

Fig. 5.5 - Comparison between measured and estimated power output with SET model 

coupled with each thermal model. 
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Table 5.5 - Statistical indicators of SET model output coupled with each thermal model. 

Model R2 
MBE 

(W) 

rMBE 

(%) 

RMSE 

(W) 

rRMSE 

(%) 
GPI 

Kurtz (Sandia1) 0.995 4.6 0.7 54.5 8.5 0.329 

Faiman 0.994 7.4 1.2 55.3 8.6 0.088 

JIS1 0.994 7.2 1.1 55.5 8.6 0.071 

Dynamic 0.995 12.0 1.9 54.4 8.5 0.061 

Sandia3 0.994 10.2 1.6 54.9 8.6 0.033 

Migan 0.994 9.5 1.5 55.3 8.6 0.008 

Measured 

temperature 
0.994 13.7 2.1 57.4 8.9 −0.505 

Mattei  0.994 16.3 2.5 57.0 8.9 −0.562 

Modified Chenni 0.992 27.6 4.3 66.7 10.4 −2.606 

 

 

Fig. 5.6 - Boxplot of SET results. 
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Fig. 5.7 - Comparison between measured and estimated power output with the single diode 

and 5 parameters model coupled with each thermal model. 

 

The same analysis was carried out by coupling the thermal models with the 

single diode and 5 parameters model and the corresponding results can be 

seen in Figs. 5.7, 5.8 and Table 5.6.  

With this electrical model, an overestimation of the output power is observed 

for all steady-state thermal models, being the best model the Kurtz (Sandia1) 

thermal model with a mean bias error of 15.7 W and root mean squared error 

of 83.6 W. All models, except the Mattei and Modified Chenni models, show 

better results than the use of measured module temperature when estimating 

power output with the 1d5p electrical model. The results for each model and 

photovoltaic system are presented in Table 5.11 in Appendix B. 
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Table 5.6 - Statistical indicators of single diode and 5 parameters model output coupled 

with each thermal model. 

Model R2 
MBE 

(W) 

rMBE 

(%) 

RMSE 

(W) 

rRMSE 

(%) 
GPI 

Kurtz (Sandia1) 0.987 15.7 2.5 83.6 13.0 0.250 

JIS1 0.987 15.8 2.5 83.7 13.0 0.216 

Faiman 0.987 16.0 2.5 84.0 13.1 0.119 

Dynamic 0.987 16.0 2.5 84.2 13.1 0.046 

Migan 0.987 16.2 2.5 84.4 13.1 0.000 

Sandia3 0.987 16.3 2.5 84.5 13.2 −0.059 

Measured 

Temperature 
0.987 16.3 2.5 84.8 13.2 −0.140 

Mattei 0.987 16.7 2.6 85.4 13.3 −0.348 

Modified Chenni 0.986 17.2 2.7 86.5 13.5 −0.750 

 

 

Fig. 5.8 - Boxplot of 1d5p model results. 

Comparing the results shown in Table 5.5 and Table 5.6, the best combination 

of thermal and electrical models for the estimation of power output is shown 

to be the Kurtz (Sandia1) thermal model with the simple estimate with 

temperature correction model which shows a mean bias error of 4.6 W and a 
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root mean squared error of 54.5 W. Also, clearly visible when comparing Fig. 

5.6 and Fig. 5.8, the use of the simple estimate with temperature correction 

model for electric power calculation shows greater variability in statistical 

indicators across different temperature models compared to the single diode 

5 parameters model, which has a maximum variation in MBE of 1.5 W 

between thermal models. This means that when using the 1d5p electrical 

model, the choice of thermal model is less critical for accurate power output 

estimation.  

While the models considered in this study include the impact of module 

temperature, irradiance, and some of them wind speed and direction, other 

meteorological variables such as relative humidity, precipitation in the form 

of rain or snow, and dust accumulation can also affect the thermal response 

of photovoltaic modules and deserve further investigation to enhance the 

robustness of the models. 

 

5.4 Conclusions 

 

In this work, several thermal models of a photovoltaic module, including a 

developed dynamic thermal model, were evaluated for their ability to 

estimate temperature and electrical power output using only the 

characteristic parameters provided by the module manufacturer. 

Measurements of GTI and temperature on the back of the module from four 

different technologies were used for assessment. The best model for 

estimating the measured temperature was the steady-state Mattei model, 

achieving an MBE of −0.4 °C. In terms of power output, the Kurtz model 

coupled with the simple estimate with temperature correction electrical 

model demonstrated best performance, with an MBE of 4.6 W. When coupled 

with the single diode and 5 parameter electric model, the MBE was 15.7 W. 

The single diode 5 parameter model showed consistent results across all 

thermal models, with a maximum MBE variation of only 1.5 W, indicating 

the choice of thermal model is less critical when combined with a highly 

detailed electrical model. 
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This study provides a comprehensive evaluation of both steady-state and 

dynamic thermal models, highlighting the importance of selecting 

appropriate coupling of thermal and electrical models to improve the accuracy 

of module temperature and power output estimations for photovoltaic 

systems. It is shown that selecting the most accurate model for estimating 

module temperature does not necessarily yield the best power output 

estimates, as the accuracy of power output predictions strongly depends on 

the selected electrical model. It was also shown that using one of the studied 

thermal models (excluding the Mattei and Modified Chenni models) results 

in better estimates of photovoltaic power output than using temperature 

measurements on the back of the modules. 

The evaluated models allow researchers and power plant operators to 

estimate the temperature and power output of PV systems without the need 

for extensive and costly experimental testing. These models can be employed 

for forecasting the power output of photovoltaic modules if forecasts of GTI 

and other relevant weather variables are available. Further refinements in 

thermal modeling could focus on improving accuracy under varying 

environmental conditions or specific module technologies, while continuous 

validation and adaptation of these models with experimental data from power 

plants could enhance their applicability and reliability in different 

operational settings.  

The findings can aid in the planning and development of PV systems by 

providing reliable tools for performance estimation, ultimately enhancing the 

efficiency and feasibility of PV installations. This study highlights the 

practical benefits and scientific and technological importance of these models, 

offering valuable insights for optimizing and managing photovoltaic systems, 

and paving the way for more accurate and efficient renewable energy 

solutions. 
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Appendix A – Electric models of photovoltaic modules 

 

Here, a preliminary review and assessment of standard electric models of 

photovoltaic modules, namely, a simple estimate model and an equivalent 

circuit model using a data-driven model as reference, is presented.  

The models were evaluated against observations using as input the 

characteristics of the photovoltaic modules, observed GTI and temperature 

measured at the back of the modules.  

For these models, the incident irradiance, 𝑆, is obtained through Eq. (5.27) 

[24], where 𝜃𝑏  is the incidence angle of direct solar radiation, 𝜃𝑑  is the 

equivalent diffuse incidence angle obtained through Eq. (5.28) [40] which are 

also used to compute the beam and diffuse incidence angle modifiers, 𝐾𝜃𝑏 and 

𝐾𝜃𝑑, respectively. The incident angle modifier is computed as in Eq. (5.29) [40]. 

The transmittance values can be obtained through Eqs. (5.30) and (5.31), 

respectively, where 𝜃𝑟 is the angle of refraction computed through Eq. (5.32). 

Typical input parameters for photovoltaic modules suggested in [41] were 

used in this work, namely, the refractive index 𝑛 = 1.526 , the extinction 

coefficient 𝐾𝑔 = 4 𝑚−1 and the thickness  𝐿𝑔 = 0.002 𝑚 of the glazing. 

 

𝑆 = 𝐷𝑁𝐼 cos 𝜃𝑏 𝐾𝜃𝑏 + (𝐺𝑇𝐼 − 𝐷𝑁𝐼 cos 𝜃𝑏)𝐾𝜃𝑑 (5.27) 

𝜃𝑑 = 59.7 − 0.1388𝛽 + 0.001497𝛽
2 (5.28) 

𝐾𝜃 =
𝜏(𝜃)

𝜏(0)
 (5.29) 

𝜏(𝜃) = 𝑒
−(

𝐾𝑔𝐿𝑔
𝑐𝑜𝑠(𝜃𝑟)

)
[1 −

1

2
(
𝑠𝑖𝑛2(𝜃𝑟 − 𝜃 )

𝑠𝑖𝑛2(𝜃𝑟 + 𝜃 )
+
𝑡𝑎𝑛2(𝜃𝑟 − 𝜃 )

𝑡𝑎𝑛2(𝜃𝑟 + 𝜃 )
)] (5.30) 

𝜏(0) = 𝑒−(𝐾𝑔𝐿𝑔) [1 − (
1 − 𝑛

1 + 𝑛
)
2

] (5.31) 

𝜃𝑟 = 𝑠𝑖𝑛−1 [
1

𝑛
𝑠𝑖𝑛 (𝜃)] (5.32) 

 

where 𝛽 stands for the tilt angle of the modules. The air mass modifier is 

computed as in Eqs. (5.33) and (5.34) [40], where the constants denoted as 𝑎𝑖 
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can be obtained from [41] for different photovoltaic cells. In this case, the 

coefficients for monocrystalline silicon were employed, since De Soto et al. 

[41] also showed that selecting a single set of coefficients and applying them 

for any cell type results in outcomes which are comparable to using different 

air mass modifier relationships for each cell type. 

 

𝑀 =∑𝑎𝑖(𝐴𝑀)
𝑖

4

0

 (5.33) 

𝐴𝑀 =
1

cos(𝜃𝑧) + 0.5057(96.080 − 𝜃𝑧)−1.634
 (5.34) 

 

The simple estimate model with temperature correction (SET) [4] is described 

by Eq. (5.35), where the estimated power output is directly proportional to the 

solar irradiance absorbed by the photovoltaic module (𝑆) and the air mass 

modifier (𝑀) as well as to some characteristics of the modules, namely its 

efficiency at STC given by the manufacturer (𝜂𝑆𝑇𝐶) and the surface area (𝐴), 

including a correction due to the module temperature as in [4].  

 

𝑃𝑒 = 𝜂𝑆𝑇𝐶 × 𝐴 × 𝑆 ×𝑀 × (1 + 𝛼𝑃𝑚𝑎𝑥 × (𝑇𝑚𝑜𝑑 − 𝑇𝑚𝑜𝑑𝑆𝑇𝐶)) (5.35) 

 

This correction is done through the peak power temperature coefficient, 𝛼𝑃𝑚𝑎𝑥, 

often provided in the datasheet of the photovoltaic modules, being 𝑇𝑚𝑜𝑑𝑆𝑇𝐶 the 

temperature of the photovoltaic cell at STC, namely 25°C. 

The necessary parameters for the direct computation of the power output of 

a module in real conditions using equivalent circuit models are not readily 

available. Still, the only commonly available electrical characteristics from 

the manufacturers are the maximum power (Pmax), current (Imp) and voltage 

(Vmp) at maximum power, short-circuit current (Isc) and open-circuit voltage 

(Voc), all for standard test conditions (STC). The parameters needed for a 

given equivalent electric circuit model need to be computed from these values 

and then adjusted for the real conditions in the field, namely different 

conditions of incident solar irradiance and cell temperature.  
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The single diode and 5 parameters model (1d5p) as represented in Fig. 5.9 

and with I-V curve equation as given in Eq. (5.36) includes a current source 

which is caused by the photovoltaic effect and called photovoltaic current, Ipv, 

in parallel with a diode behaving as the p-n junction and a resistance, Rp, 

which accounts for the leakage current in the p-n junction and a series 

resistance, Rs, that represents the electric resistances of the silicon, of the 

electrodes and the contact between these materials. In this model, the five 

parameters were determined based on the method presented by Castro [3] in 

which expressions for the parameters I0STC and IpvSTC are obtained as a 

function of the remaining three parameters, which in turn are obtained from 

the equations at the three characteristic points in the I-V curve, thus 

resulting in the system of equations given by Eqs. (5.37) through (5.41).  

 

Fig. 5.9 - Single diode and 5 parameters equivalent electric circuit. 

 

𝐼 = 𝐼𝑝𝑣 − 𝐼0 (𝑒
𝑉+𝐼𝑅𝑠
𝑚𝑉𝑇 − 1) −

𝑉 + 𝐼𝑅𝑠
𝑅𝑝

 (5.36) 

𝐼𝑚𝑝𝑆𝑇𝐶 = 𝐼𝑠𝑐𝑆𝑇𝐶 −
𝑉𝑚𝑝𝑆𝑇𝐶 + 𝑅𝑠𝐼𝑚𝑝𝑆𝑇𝐶 − 𝑅𝑠𝐼𝑠𝑐𝑆𝑇𝐶

𝑅𝑝

− (𝐼𝑠𝑐𝑆𝑇𝐶 −
𝑉𝑜𝑐𝑆𝑇𝐶 − 𝑅𝑠𝐼𝑠𝑐𝑆𝑇𝐶

𝑅𝑝
) 𝑒

𝑉𝑚𝑝𝑆𝑇𝐶+𝑅𝑠𝐼𝑚𝑝𝑆𝑇𝐶−𝑉𝑜𝑐𝑆𝑇𝐶
𝑚𝑉𝑇𝑆𝑇𝐶  

(5.37) 

0 = 𝐼𝑚𝑝𝑆𝑇𝐶 +
−
(𝑅𝑝𝐼𝑠𝑐𝑆𝑇𝐶−𝑉𝑜𝑐𝑆𝑇𝐶+𝑅𝑠𝐼𝑠𝑐𝑆𝑇𝐶)𝑒

𝑉𝑚𝑝𝑆𝑇𝐶+𝑅𝑠𝐼𝑚𝑝𝑆𝑇𝐶−𝑉𝑜𝑐𝑆𝑇𝐶
𝑚𝑉𝑇𝑆𝑇𝐶

𝑚𝑉𝑇𝑆𝑇𝐶𝑅𝑝
−
1

𝑅𝑝

1+
𝑅𝑠(𝑅𝑝𝐼𝑠𝑐𝑆𝑇𝐶−𝑉𝑜𝑐𝑆𝑇𝐶+𝑅𝑠𝐼𝑠𝑐𝑆𝑇𝐶)𝑒

𝑉𝑚𝑝𝑆𝑇𝐶+𝑅𝑠𝐼𝑚𝑝𝑆𝑇𝐶−𝑉𝑜𝑐𝑆𝑇𝐶
𝑚𝑉𝑇𝑆𝑇𝐶

𝑚𝑉𝑇𝑆𝑇𝐶𝑅𝑝
+
𝑅𝑠
𝑅𝑝

  (5.38) 
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−
(𝑅𝑝𝐼𝑠𝑐𝑆𝑇𝐶 − 𝑉𝑜𝑐𝑆𝑇𝐶 + 𝑅𝑠𝐼𝑠𝑐𝑆𝑇𝐶)𝑒

𝑅𝑠𝐼𝑠𝑐𝑆𝑇𝐶−𝑉𝑜𝑐𝑆𝑇𝐶
𝑚𝑉𝑇𝑆𝑇𝐶

𝑚𝑉𝑇𝑆𝑇𝐶𝑅𝑝
−
1
𝑅𝑝

1 +
𝑅𝑠(𝑅𝑝𝐼𝑠𝑐𝑆𝑇𝐶 − 𝑉𝑜𝑐𝑆𝑇𝐶 + 𝑅𝑠𝐼𝑠𝑐𝑆𝑇𝐶)𝑒

𝑅𝑠𝐼𝑠𝑐𝑆𝑇𝐶−𝑉𝑜𝑐𝑆𝑇𝐶
𝑚𝑉𝑇𝑆𝑇𝐶

𝑚𝑉𝑇𝑆𝑇𝐶𝑅𝑝
+
𝑅𝑠
𝑅𝑝

= −
1

𝑅𝑝
   

 

(5.39) 

𝐼0𝑆𝑇𝐶 = (𝐼𝑠𝑐𝑆𝑇𝐶 −
𝑉𝑜𝑐𝑆𝑇𝐶−𝑅𝑠𝐼𝑠𝑐𝑆𝑇𝐶

𝑅𝑝
) 𝑒

−𝑉𝑜𝑐𝑆𝑇𝐶
𝑚𝑆𝑇𝐶𝑉𝑇𝑆𝑇𝐶 (5.40) 

𝐼𝑝𝑣𝑆𝑇𝐶 = 𝐼0𝑆𝑇𝐶𝑒
𝑉𝑜𝑐𝑆𝑇𝐶

𝑚𝑆𝑇𝐶𝑉𝑇𝑆𝑇𝐶 +
𝑉𝑜𝑐𝑆𝑇𝐶
𝑅𝑝

 (5.41) 

 

The real conditions in the field must be considered, which is done through 

Eqs. (5.42) to (5.47). 

 

𝐼𝑠𝑐 = 𝐼𝑠𝑐𝑆𝑇𝐶
𝑆 × 𝑀

𝐺𝑆𝑇𝐶
(1 + 𝛼𝐼𝑠𝑐(𝑇𝑚𝑜𝑑 − 𝑇𝑚𝑜𝑑𝑆𝑇𝐶)) (5.42) 

𝑉𝑜𝑐,𝑔 = 𝑚𝑉𝑇𝑆𝑇𝐶𝑙𝑛(

𝑆 ×𝑀
𝐺𝑆𝑇𝐶 𝐼𝑝𝑣𝑆𝑇𝐶𝑅𝑝 − 𝑉𝑜𝑐,𝑔

𝐼0𝑆𝑇𝐶𝑅𝑝
) (5.43) 

𝑉𝑜𝑐 = 𝑉𝑜𝑐,𝑔(1 + 𝛼𝑉𝑜𝑐(𝑇𝑚𝑜𝑑 − 𝑇𝑚𝑜𝑑𝑆𝑇𝐶)) (5.44) 

𝑚 = 𝑚𝑆𝑇𝐶 (5.45) 

𝐼0 = (𝐼𝑠𝑐 −
𝑉𝑜𝑐 − 𝑅𝑠𝐼𝑠𝑐

𝑅𝑝
) 𝑒

−𝑉𝑜𝑐
𝑚𝑉𝑇  (5.46) 

𝐼𝑝𝑣 = 𝐼0𝑒
𝑉𝑜𝑐
𝑚𝑉𝑇 +

𝑉𝑜𝑐

𝑅𝑝
 (5.47) 

 

Finally, the power output is estimated through Eq. (5.48) and a system of non-

linear equations, Eqs. (5.49) and (5.50), with initial values given by Eqs. (5.51) 

and (5.52). 

 

𝑃𝑒 = 𝑉𝑚𝑝 × 𝐼𝑚𝑝 (5.48) 

𝐼𝑚𝑝 = 𝐼𝑠𝑐 −
𝑉𝑚𝑝 + 𝑅𝑠𝐼𝑚𝑝 − 𝑅𝑠𝐼𝑠𝑐

𝑅𝑝
− (𝐼𝑠𝑐 −

𝑉𝑜𝑐 − 𝑅𝑠𝐼𝑠𝑐
𝑅𝑝

) 𝑒
𝑉𝑚𝑝+𝑅𝑠𝐼𝑚𝑝−𝑉𝑜𝑐

𝑚𝑉𝑇  (5.49) 
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−
(𝑅𝑝𝐼𝑠𝑐 − 𝑉𝑜𝑐 + 𝑅𝑠𝐼𝑠𝑐)𝑒

𝑉𝑚𝑝+𝑅𝑠𝐼𝑚𝑝−𝑉𝑜𝑐
𝑚𝑉𝑇

𝑚𝑉𝑇𝑅𝑝
−
1
𝑅𝑝

1 +
𝑅𝑠(𝑅𝑝𝐼𝑠𝑐 − 𝑉𝑜𝑐 + 𝑅𝑠𝐼𝑠𝑐)𝑒

𝑉𝑚𝑝+𝑅𝑠𝐼𝑚𝑝−𝑉𝑜𝑐
𝑚𝑉𝑇𝑆𝑇𝐶

𝑚𝑉𝑇𝑅𝑝
+
𝑅𝑠
𝑅𝑝

= −
𝐼𝑚𝑝

𝑉𝑚𝑝
 (5.50) 

𝐼𝑚𝑝(0) = 𝐼𝑚𝑝𝑆𝑇𝐶(1 + 𝛼𝐼𝑠𝑐(𝑇𝑚𝑜𝑑 − 𝑇𝑚𝑜𝑑𝑆𝑇𝐶)) (5.51) 

𝑉𝑚𝑝(0) = 𝑉𝑚𝑝𝑆𝑇𝐶(1 + 𝛼𝑉𝑜𝑐(𝑇𝑚𝑜𝑑 − 𝑇𝑚𝑜𝑑𝑆𝑇𝐶)) (5.52) 

 

The recently published international standard IEC 60891 ED3 [42], 

specifically the procedure 4.4.4, was used in this work as an empirical model 

based on measurements for comparison and as a reference for this type of 

modeling approach. This model requires the current and voltage values at the 

three characteristic points of the I-V curve for four different conditions of 

incident irradiance and temperature.  

This dataset was obtained for the four systems considered in this work 

through indoor measurements in the lab for various combinations of 

irradiance at normal incidence and cell temperature, namely (1000 W/m2, 

25 ℃), (1000 W/m2, 60 ℃), (200 W/m2, 25 ℃) and (200 W/m2, 60 ℃) by means 

of a solar simulator and a temperature chamber at AIST [43]. The solar 

simulator is comprised of six xenon lamps with elliptical mirrors and 

ultraviolet, AM 1.5 G and iron net dark filters with an output range of 100 to 

1300 W/m2 while the temperature chamber has a range of 15 ℃ to 65 ℃ [43].  

The current and voltage for maximum power in real conditions is then 

obtained through bi-linear interpolation thus allowing for the estimation of 

the power output. 

The electric models presented were used to estimate the power output of the 

four different photovoltaic systems using the measured 𝐺𝑇𝐼, 𝐷𝑁𝐼 and module 

temperature data, thus generating 10-minute power output values for each 

electric model. Results were compared to the power output measurements 

and with each other as shown in Table 5.7. The same statistical indicators for 

each system/technology are presented separately in Table 5.8. All models tend 

to show an overestimation of the power output which can result in part from 

the fact that the temperature used as input to these models is the one 
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measured at the back of the photovoltaic modules and not the photovoltaic 

cell temperature. It might be the case, as it often is, that the temperature 

measured this way is lower than the actual temperature of the cell and 

consequently the power estimated will be higher than the actual power output 

of the photovoltaic module. 

 

Table 5.7 - Statistical metrics of the electric model results. 

Model R2 
MBE 

(W) 

rMBE 

(%) 

RMSE 

(W) 

rRMSE 

(%) 
GPI 

IEC 0.994 −3.6 −0.6 59.0 9.2 0.511 

SET 0.994 13.7 2.1 57.4 8.9 0.108 

1d5p 0.987 16.3 2.5 84.8 13.2 −2.020 

 

Table 5.8 - Statistical indicators of the results of electric models using measured 

temperature for each system. 

Model System R2 
MBE 

(W) 

rMBE 

(%) 

RMSE 

(W) 

rRMSE 

(%) 

       

SET 

1 0.988 26.2 4.0 61.8 9.3 

2 0.992 4.0 0.6 52.5 7.9 

3 0.991 2.3 0.3 55.4 8.4 

4 0.989 22.4 3.4 59.4 9.0 

       
       

1d5p 

1 0.970 36.6 5.5 99.1 15.0 

2 0.982 4.6 0.7 77.6 11.7 

3 0.981 5.1 0.8 78.9 12.0 

4 0.980 18.8 2.8 81.7 12.4 

       

IEC 

1 0.989 18.5 2.8 59.4 9.0 

2 0.987 −32.8 −5.0 66.3 10.0 

3 0.991 −0.9 −0.1 55.6 8.4 

4 0.991 0.9 0.1 54.0 8.2 
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The IEC model was shown to have better results which was expected since it 

is based on measurements of the specific systems assessed in this work. The 

following model is the simple estimate with temperature correction which, 

although not as detailed, achieved in this case better results than the single 

diode and 5 parameters model, especially in terms of RMSE. Both of these 

models perform slightly better for systems 2 and 3 (HIT and poly-crystalline 

technologies, see Table 5.8).  
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Appendix B – Temperature model results for each photovoltaic 

system 

 

Table 5.9 - Statistical indicators of the results of thermal models when compared to the 

measured temperature for each system. 

Model System R2 MBE (°C) rMBE (%) RMSE (°C) rRMSE (%) 

Modified  

Chenni 

1 0.857 -2.9 -11.3 4.6 18.0 

2 0.885 -2.1 -8.2 4.2 16.9 

3 0.828 -3.6 -13.5 5.1 19.4 

4 0.857 -2.9 -11.3 4.6 18.0 

       

Mattei 

1 0.951 -0.3 -1.0 2.7 10.5 

2 0.952 0.2 0.8 2.7 10.9 

3 0.952 -0.9 -3.3 2.7 10.2 

4 0.949 -0.5 -1.9 2.8 10.8 

       

Kurtz  

(Sandia1) 

1 0.909 2.0 7.7 3.7 14.3 

2 0.896 2.8 11.4 4.0 16.1 

3 0.935 1.3 5.0 3.1 11.9 

4 0.909 2.0 7.7 3.7 14.3 

       

Sandia3 

1 0.947 0.9 3.4 2.8 11.0 

2 0.941 1.7 7.0 3.0 12.1 

3 0.959 0.2 0.8 2.5 9.4 

4 0.947 0.9 3.4 2.8 11.0 

       

Faiman 

1 0.939 1.6 6.2 3.0 11.7 

2 0.923 2.5 9.9 3.4 13.8 

3 0.958 0.9 3.5 2.5 9.5 

4 0.939 1.6 6.2 3.0 11.7 

       

JIS1 

1 0.933 0.8 2.9 3.2 12.3 

2 0.929 1.6 6.5 3.3 13.2 

3 0.948 0.1 0.4 2.8 10.7 

4 0.933 0.8 2.9 3.2 12.3 

       

Migan 

1 0.951 1.1 4.4 2.7 10.5 

2 0.939 2.0 8.0 3.1 12.3 

3 0.965 0.5 1.8 2.3 8.7 

4 0.951 1.1 4.4 2.7 10.5 

       

Dynamic + SET 

1 0.907 -0.8 -2.9 3.7 14.4 

2 0.935 -0.6 -2.3 3.2 12.6 

3 0.909 -1.4 -5.1 3.7 13.9 

4 0.915 -1.2 -4.8 3.6 13.8 

       

Dynamic + 1d5p 

1 0.902 -0.2 -0.8 3.9 14.8 

2 0.932 0.0 0.0 3.3 12.9 

3 0.909 -0.8 -2.8 3.7 13.9 

4 0.915 -0.6 -2.5 3.6 13.7 
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Table 5.10 - Statistical indicators of SET model output coupled with each thermal model for 

each system. 

Model System R2 MBE (W) rMBE (%) RMSE (W) rRMSE (%) 

Measured 

temperature 

1 0.988 26.2 4.0 61.8 9.3 

2 0.992 4.0 0.6 52.5 7.9 

3 0.991 2.3 0.3 55.4 8.4 

4 0.989 22.4 3.4 59.4 9.0 

       

Modified  

Chenni 

1 0.982 41.6 6.3 76.6 11.6 

2 0.991 12.5 1.9 55.9 8.5 

3 0.989 20.3 3.1 60.4 9.2 

4 0.984 36.0 5.4 71.8 10.9 

       

Mattei 

1 0.989 28.1 4.2 61.3 9.3 

2 0.992 5.4 0.8 52.8 8.0 

3 0.991 6.5 1.0 53.4 8.1 

4 0.989 25.2 3.8 60.1 9.1 

       

Kurtz  

(Sandia1) 

1 0.991 15.3 2.3 54.6 8.3 

2 0.992 -4.0 -0.6 52.9 8.0 

3 0.990 -5.7 -0.9 56.8 8.6 

4 0.991 12.8 1.9 53.7 8.1 

       

Sandia3 

1 0.990 21.7 3.3 57.2 8.6 

2 0.992 0.0 0.0 52.3 7.9 

3 0.991 0.7 0.1 54.1 8.2 

4 0.991 18.5 2.8 55.8 8.4 

       

Faiman 

1 0.990 18.6 2.8 57.0 8.6 

2 0.992 -2.0 -0.3 52.7 8.0 

3 0.991 -2.5 -0.4 55.9 8.5 

4 0.991 15.7 2.4 55.5 8.4 

       

JIS1 

1 0.990 18.2 2.8 56.8 8.6 

2 0.992 -2.2 -0.3 52.8 8.0 

3 0.990 -2.8 -0.4 56.9 8.6 

4 0.991 15.4 2.3 55.3 8.4 

       

Migan 

1 0.990 20.9 3.2 57.6 8.7 

2 0.992 -0.5 -0.1 52.4 7.9 

3 0.991 -0.2 0.0 54.8 8.3 

4 0.991 17.7 2.7 56.1 8.5 

       

Dynamic 

1 0.990 22.4 3.4 56.2 8.5 

2 0.992 2.9 0.4 51.5 7.8 

3 0.991 0.7 0.1 54.1 8.2 

4 0.991 21.9 3.3 55.9 8.4 
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Table 5.11 - Statistical indicators of single diode and 5 parameters model output coupled 

with each thermal model for each system. 

Model System R2 MBE (W) rMBE (%) RMSE (W) rRMSE (%) 

Measured 

temperature 

1 0.970 36.6 5.5 99.1 15.0 

2 0.982 4.6 0.7 77.6 11.7 

3 0.981 5.1 0.8 78.9 12.0 

4 0.980 18.8 2.8 81.7 12.4 

       

Modified  

Chenni 

1 0.970 36.7 5.5 99.8 15.1 

2 0.982 3.6 0.5 77.3 11.7 

3 0.980 6.5 1.0 81.1 12.3 

4 0.978 21.8 3.3 86.2 13.0 

       

Mattei 

1 0.970 36.8 5.6 99.5 15.0 

2 0.982 4.7 0.7 77.6 11.7 

3 0.981 5.7 0.9 79.6 12.1 

4 0.979 19.7 3.0 83.1 12.6 

       

Kurtz  

(Sandia1) 

1 0.971 36.5 5.5 98.4 14.9 

2 0.982 5.5 0.8 77.6 11.7 

3 0.982 4.4 0.7 77.9 11.8 

4 0.981 16.6 2.5 78.8 11.9 

       

Sandia3 

1 0.970 36.7 5.6 99.0 15.0 

2 0.982 5.2 0.8 77.6 11.7 

3 0.981 5.1 0.8 78.8 11.9 

4 0.980 18.1 2.7 80.8 12.2 

       

Faiman 

1 0.971 36.6 5.5 98.6 14.9 

2 0.982 5.3 0.8 77.5 11.7 

3 0.981 4.7 0.7 78.3 11.9 

4 0.981 17.3 2.6 79.8 12.1 

       

JIS1 

1 0.971 36.4 5.5 98.4 14.9 

2 0.982 5.2 0.8 77.6 11.7 

3 0.982 4.5 0.7 77.9 11.8 

4 0.981 17.0 2.6 79.2 12.0 

       

Migan 

1 0.971 36.7 5.5 98.9 15.0 

2 0.982 5.2 0.8 77.6 11.7 

3 0.981 5.0 0.8 78.6 11.9 

4 0.980 17.8 2.7 80.6 12.2 

       

Dynamic 

1 0.971 36.5 5.5 98.8 14.9 

2 0.982 5.0 0.8 77.8 11.8 

3 0.982 4.7 0.7 78.2 11.9 

4 0.981 18.0 2.7 80.3 12.1 
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Nomenclature 

 

𝐴  Area of the photovoltaic module (m2) 

𝐴𝑠  Photovoltaic module azimuth (°) 

𝐶𝑚𝑜𝑑  Heat capacity of the module (J/K) 

𝑐𝑝,𝑇𝑓    Specific heat capacity of air film at temperature 𝑇𝑓 (J/Kg/K)  

𝐷𝐻𝐼  Direct horizontal irradiance (W/m2) 

𝐷𝐼𝐹  Diffuse horizontal irradiance (W/m2) 

𝐷𝑁𝐼  Direct normal irradiance (W/m2) 

𝑔  Gravitational Acceleration (9.8 m/s2)   
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𝐺𝑟  Grashof number 

𝐺𝑇𝐼  Global tilted irradiance (W/m2) 

ℎ  Convective heat transfer coefficient (W/m2/K) 

ℎ𝑟𝑎𝑑  Radiative heat transfer coefficient (W/m2/K) 

𝐼0  Reverse saturation current (A) 

𝐼𝐴𝑀  Incidence angle modifier 

𝐼  Electric current (A) 

𝐼𝑚𝑝  Current at maximum power point (A) 

𝐼𝑝𝑣  Photovoltaic current (A) 

𝐼𝑠𝑐  Short-circuit current (A) 

𝐾  Boltzman constant (1.38 × 10−23 J/K) 

𝐾𝑔  Extinction coefficient of the glazing (m-1) 

𝑘𝑇𝑓  Thermal conductivity of air film at temperature 𝑇𝑓 (W/m/K) 

𝐿  Length of the module (m) 

𝐿𝑐  Characteristic length of the module (m) 

𝐿𝑓𝑟𝑒𝑒  Length of the module along the natural convection air flow (m) 

𝐿𝑔  Glazing thickness (m) 

𝑚  Diode ideality factor 

𝑛  Refractive index  

𝑁𝑠  Number of photovoltaic cells in series 

𝑁𝑢  Nusselt number 

𝑃  Power output (W) 

𝑃𝑒  Estimated power output (W) 

𝑃𝑚𝑎𝑥  Maximum power output (W) 

𝑃𝑟  Prandtl number 

𝑞  Electrical charge of the electron (1.6 × 10−19 C) 

𝑄𝑐𝑜𝑛𝑑  Net rate of energy loss to the environment by conduction (W) 

𝑄𝑐𝑜𝑛𝑣  Net rate of energy loss to the environment by convection(W) 

𝑄𝑟𝑎𝑑  Net rate of energy loss to the environment by radiation (W) 

𝑄𝑠𝑢𝑛  Net in-plane solar irradiance (W) 

𝑅𝑒  Reynolds number  

𝑅𝑎  Rayleigh number 
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𝑅𝑝  Parallel or shunt resistance (Ω) 

𝑅𝑠  Series resistance (Ω) 

𝑆  Incident irradiance (W/m2) 

𝑇  Temperature (°C or K) 

𝑇𝑎  Air temperature (°C) 

𝑇𝑓  Temperature of air film at the surface of the module (°C) 

𝑇𝑔𝑟𝑜𝑢𝑛𝑑 Temperature of the ground surface(°C) 

𝑇𝑚𝑜𝑑  Mean temperature of the photovoltaic module (°C) 

𝑇𝑠𝑘𝑦  Apparent sky temperature (°C) 

𝑈𝑝𝑣  Coefficient of thermal losses from Mattei model (W/°C/m2) 

𝑉  Voltage (V) 

𝑉𝑚𝑝  Voltage at maximum power point (V) 

𝑉𝑜𝑐  Open-circuit voltage (V) 

𝑉𝑇  Thermal voltage (V) 

𝑊  Width of the module (m) 

𝑊𝐷  Wind direction (North is assumed 0°) (°) 

𝑊𝐷𝑠  Wind direction (South is assumed 0°) (°)  

𝑊𝑆  Wind speed (m/s) 

𝑥𝑐𝑟  Critical length (m) 

 

Greek symbols 

𝛼𝐼𝑠𝑐  Thermal coefficient of short-circuit current (%/°C) 

𝛼𝑃𝑚𝑎𝑥  Thermal coefficient of maximum power (%/°C) 

𝛼𝑉𝑜𝑐  Thermal coefficient of open-circuit voltage (%/°C) 

𝛼𝑇𝑓  Thermal diffusivity of air film at temperature 𝑇𝑓 (m2/s) 

𝛽  Tilt angle (°) 

𝜀  Silicon bandgap (= 1.12 eV) 

𝜀𝑏  Emissivity of the back surface of the module 

𝜀𝑓  Emissivity of the front surface of the module 

𝜂  Photovoltaic module efficiency 

𝜃  Angle of incidence (°) 
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𝜃𝑟  Angle of refraction (°) 

𝜈𝑇𝑓  Kinematic viscosity of air (m2/s) 

𝜎𝑆𝐵  Stefan-Boltzmann constant (5.670 x 10-8 W/m2/K4) 

𝜏  Transmittance 

 

 

Acronyms and Abbreviations 

1d3p  Single diode and 3 parameters model 

1d4p  Single diode and 4 parameters model 

1d4pm  Single diode and 4 parameters model with ideality factor 

adjustment 

1d5p  Single diode and 5 parameters model 

GPI  Global performance index 

HIT  Heterojunction intrinsic thin layer 

IEC  International electrotechnical commission 

MBE  Mean bias error 

rMBE  Relative mean bias error 

RMSE Root mean squared error  

R2  Coefficient of determination 

rRMSE Relative root mean squared error 

SE  Simple estimate model 

SET  Simple estimate with temperature correction model 

STC  Standard test conditions 
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b Department of Mechatronics Engineering, University of Évora, Évora, Portugal 
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Chapter 6 

 

Comprehensive approach to photovoltaic power 

forecasting using numerical weather prediction data 

and physics-based models and data-driven techniques† 

 

Abstract 

 

Photovoltaic power forecasting is essential for maintaining electric grid 

stability and efficiently integrating solar energy power plants into the 

national power generation system. However, it remains challenging due to 

the complexity of accurately predicting solar radiation across varying weather 

conditions and diverse photovoltaic system configurations. This study 

addresses these challenges by developing a novel integrated forecasting 

algorithm that includes numerical weather prediction data, physics-based 

models, and artificial neural networks. The algorithm enhances direct normal 

irradiance forecasts, computes global tilted irradiance using an improved 

transposition model, and predicts photovoltaic output with a dynamic 

thermal-electric model. Losses and inverter efficiency are also incorporated. 

The algorithm provides 72-hour power forecasts with customizable temporal 

resolution, without the need for on-site observations. Validation against 15-

minute data from a real photovoltaic plant demonstrated mean bias errors 

and root mean squared errors of 7.5 W/kWp and 123.7 W/kWp (DC), and 9.3 

W/kWp and 121.0 W/kWp (AC), corresponding to relative errors of 1.8%, 

30.0%, 2.3%, and 29.9%. The algorithm is scalable, adaptable to various 
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system configurations, and effective for regions with limited data, thus 

supporting improved grid operations, enabling better management of 

photovoltaic generation variability and enhancing energy system efficiency.  

 

Keywords 

Forecasting; Grid integration; Photovoltaic power; Solar energy; Solar power 

plant. 

 

6.1 Introduction 

 

Recently, the integration of solar energy sources in the global energy sector 

has gained considerable attention as a fundamental strategy for sustainable 

development and mitigation of the negative impacts of climate change. 

Among solar energy systems, photovoltaic (PV) energy has emerged as vital 

component in the energy mix. However, the intermittent and weather 

dependent nature of solar radiation and photovoltaic power generation 

present challenges in its integration in the electric grid and energy 

management. 

Accurate forecasting of photovoltaic power generation is essential to address 

these challenges and optimize the utilization of solar energy resources. The 

variability of solar radiation due to diurnal and seasonal patterns, as well as 

due to the dynamic nature of weather conditions, poses substantial 

difficulties in photovoltaic power forecasting. These difficulties extend to the 

complex interactions between environmental factors and the performance of 

photovoltaic systems, requiring comprehensive methods for forecasting. 

Integrated solar irradiance and photovoltaic power forecasting models can be 

divided into physics-based and data-driven. Physics-based models take into 

account the underlying physical principles and cause-and-effect relationships 

that govern the response of photovoltaic systems, typically including the 

effect of the environmental conditions, the properties of photovoltaic 

materials and the systems configuration. By building a model based on the 

equations that describe the physical phenomena and the processes in 
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photovoltaics energy conversion, such as the transport of radiation in the 

atmosphere, its interaction with the surrounding environment and the 

photovoltaic modules as well as the generation of electrical current, these 

models aim to provide a more comprehensive and theoretically grounded 

understanding of the system.  

The main steps of a physics-based integrated solar irradiance and 

photovoltaic power forecasting model would be the forecasting of the solar 

irradiance components, their transposition to the plane of a photovoltaic 

array, the conversion of solar radiation to electric energy and the conversion 

of DC to AC current for injection in the electric grid.  

Physics-based solar irradiance forecasting can be done through various 

approaches with different temporal and spatial resolutions and forecast 

horizons, including numerical weather prediction (NWP) models, sky/shadow 

or satellite imagery. NWP models integrate relations describing the dynamics 

of the atmosphere and the physical phenomena relevant to weather to predict 

meteorological variables, including global solar irradiance for the energy 

balance on the surface. Direct and diffuse solar irradiance are also prognostic 

variables of currently NWP models, but the accuracy of its prediction is 

weaker, since for the purposes of weather forecasting, the partition is less 

relevant than global radiation [1]. The Integrated Forecasting System (IFS) 

developed at the European Centre for Medium-range Weather Forecasts 

(ECMWF) is one of the most widely used and evaluated global NWP models 

in the World. El Alani et al. [2] showed strong accuracy for clear-sky solar 

forecasts but noted limitations under cloudy conditions. Perdigão et al. [3] 

observed DNI overestimation and high hourly errors in southern Portugal, 

proposing a correction index to significantly improve cloudy forecasts. Perez 

et al. [4] demonstrated ECMWF’s superior global performance compared to 

regional models across multiple regions. Mayer et al. [5] confirmed ECMWF’s 

higher accuracy for irradiance forecasting but noted reduced benefits when 

applied to regional photovoltaic power predictions. As the model produces 

forecasts of direct normal irradiation at surface, no separation model for 

obtaining direct normal and diffuse irradiance components from global 
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horizontal irradiance is required. The use of separation models prior to 

transposition models typically induces high errors in the prediction of global 

tilted irradiance and consequently on photovoltaic power forecasting. 

Gueymard demonstrated significant accuracy degradation due to 

uncertainties in diffuse-direct separation [6] and reported particularly large 

errors during cloud enhancement events [7] while Yang and Gueymard [8] 

emphasized that even advanced separation methods inherently yield 

considerable uncertainties.    

Transposition models are used to compute the global tilted irradiance (GTI), 

for example the irradiance on the plane of photovoltaic arrays, including a 

reflected component, based on the Direct Normal Irradiance (DNI) and 

Diffuse Horizontal Irradiance (DIF). The computation of direct and reflected 

components tends to be consistent across all models, while the computation 

of diffuse irradiance differs significantly depending on the modeling approach 

and the simplifications that are assumed [9]. Several studies compared 

different transposition models with observations for different locations and 

tilted surface positions. An extensive analysis of physical photovoltaic 

forecasting models highlighted the critical impact of transposition model 

choice on forecast accuracy [10]. The performance of 22 transposition models 

was evaluated across multiple locations and tilt angles in Libya, emphasizing 

substantial regional performance differences [11]. A comparative study of 24 

transposition models in Palestine revealed particular limitations of existing 

models under clear-sky conditions [12], while a benchmark study ranking 26 

widely used models concluded that no single universal model achieves 

optimal accuracy for all geographic regions [9]. Recently, improvements were 

reported by including shading effects and anisotropic diffuse irradiance 

explicitly, notably enhancing the precision of predictions for photovoltaic 

arrays arranged in parallel rows [1]. In some models, uniform sky dome 

radiance (isotropic sky) is assumed, while in others model different regions in 

the sky dome are considered (anisotropic) which tend to present a better 

performance when compared to measured data. Evaluating the diffuse 

component accurately is a challenging task because, along with the different 
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regions in the sky that can be considered – typically the circumsolar, the 

horizon brightening and the isotropic sky background regions, the complexity 

and variability of cloud shape and position result in various degrees of models’ 

performance depending on sky conditions [6]. Moreover, the majority of 

transposition models have been developed for a tilted surface in an open field, 

but for solar energy power plants with multiple rows of modules, adjustments 

need to be made to account for the constrained view of the sky dome and 

ground, as well as potential shading effects between rows. Accurate modeling 

for rows behind the front row is critical, as shown by studies that introduced 

adjustments to standard models, considering direct shading effects and 

diffuse anisotropic irradiance masking from adjacent rows [1]. Corrections 

were specifically proposed for anisotropic models to account for a reduced sky 

view angle and adjustments to circumsolar and horizon brightening 

components for inner rows [13]. A recent work demonstrated how restricted 

sky views significantly reduce diffuse irradiance at the lower parts of arrays, 

especially with narrow row spacing and steeper tilt angles [14]. Another 

analysis further highlighted that simplified shading models, ignoring diffuse 

irradiance masking, underestimate shading losses in large photovoltaic 

plants by 50–80%, emphasizing the need for detailed diffuse shading 

calculations [15]. 

Once the irradiance incident on the plane of the photovoltaic array is 

available, the absorbed energy and electric power output of a photovoltaic 

system can be determined using a photovoltaic cell/module model. Several 

photovoltaic models with different inputs, precision, complexity and 

computational costs have been developed. Gholami et al. [16] presented a 

comprehensive classification and comparative review of photovoltaic 

electrical models, detailing differences in parameter extraction methods, 

computational complexity, and precision. Pereira et al. [17] evaluated 

photovoltaic thermal models and their integration with electrical models, 

emphasizing the relevance of temperature modeling accuracy for improved 

power prediction. The simplest model assumes a linear relationship between 

solar irradiance and power output, while more advanced models include the 
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effect of cells’ temperature and describe the module as an electric circuit. 

Pereira et al. [17] integrated thermal models with electrical circuit models, 

showing that temperature corrections increase photovoltaic model realism. 

Castro [18] compared classical equivalent circuit models with artificial 

intelligence-based approaches, confirming that models accounting explicitly 

for temperature perform more accurately in experimental validations. The 

estimation of parameters for these models often requires assumptions and 

elaborated analytical or numerical methods due to the limited data provided 

by the manufacturers. The estimation of parameters is typically conducted 

for standard test conditions (STC) which, however, differ from real conditions 

on the field, thus requiring additional adjustments for an accurate estimation 

of power output. Castro [18] emphasized the challenge of accurately 

estimating model parameters, noting that artificial intelligence approaches 

achieve greater accuracy but with higher computational requirements. 

Chenni et al. [19] presented a four-parameter photovoltaic cell model based 

on manufacturer datasheets, proving its effectiveness in simulating 

photovoltaic cell performance under varying irradiance and temperature. 

Chin et al. [20] reviewed techniques to estimate photovoltaic model 

parameters from manufacturer data, concluding that sophisticated multi-

parameter models offer enhanced accuracy, particularly when environmental 

conditions vary widely. As the temperature of photovoltaic cells is related and 

has a critical impact on their efficiency, its modeling is also extremely 

important. Most models in the literature for predicting the temperature of 

photovoltaic modules are steady-state and empirical, which may be biased 

towards different technologies or locations with different climatic conditions. 

On the other hand, physics-based models that consider energy conservation 

and dynamic aspects can better describe the thermal response of photovoltaic 

modules, especially at shorter time steps. Recent works by Li and Wu [21], 

Perovic et al. [22] and Pereira et al. [17] have developed coupled electrical and 

thermal models that take into account the relationship between 

environmental conditions, cell/module temperature and electric power output. 
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Finally, the inverter introduces losses that are modeled by considering the 

efficiency of the direct (DC) to alternate current (AC) conversion and the 

power and AC voltage regulation. On the direct current side, voltage and 

current are regulated in order to maintain the operation of photovoltaic 

modules at the maximum power point within the limits of the inverter. 

However, it is common practice to design systems where the DC power 

exceeds the nominal power of the inverter leading to clipping losses [23]. The 

simplest inverter models consist of a constant efficiency value and clipping of 

the power output, since the required inputs are readily available in the 

inverter datasheet [10]. 

Besides the losses referred above, there are other aspects that induce losses 

in photovoltaic power plants such as DC wiring, bypass diodes and connectors, 

module mismatch, maximum power point tracking inefficiencies, soiling, 

degradation induced by the continued exposition to solar radiation and 

adverse environmental conditions. The computation of these losses in 

forecasting models depends on the availability of relevant information for the 

photovoltaic plants of interest.  

Considering only physics-based photovoltaic forecasting models, Mayer and 

Gróf [10] analyzed the performance of all possible combinations of nine direct 

and diffuse irradiance separation models, ten transposition models for tilted 

irradiance computation, three reflection losses, five cell temperature models, 

four photovoltaic module performance models, two shading losses models, and 

three inverter models for one-year 15-min resolution data of 16 photovoltaic 

powerplants in Hungary for day-ahead and intraday forecasting time 

horizons. This study highlighted how model selection affects the accuracy of 

photovoltaic power forecasting, particularly in the case of separation and 

transposition models.  

Some commercially available tools can also be used for photovoltaic power 

forecasting, as for example those presented in the study by González-Peña et 

al. [24], in which five software tools for predicting photovoltaic power 

generation, namely RETScreen [25], System Advisor Model (SAM) [26], 

PVGIS [27], PVSyst [28], and PV*SOL [29], were evaluated by comparing 
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predicted data with real field data from three photovoltaic power plants in 

Castile and Leon, Spain, over a 12-year period. 

In opposition to physical models, data-driven models such as linear statistical 

models and machine learning techniques use historical data to establish 

relationships between weather or photovoltaic system data and the power 

output. Bruneau et al. [30] proposed a hybrid-physical model that combines 

numerical weather prediction data with recurrent neural networks, 

significantly improving the accuracy of photovoltaic power forecasts 

compared to purely physical approaches. Cotfas et al. [31] reviewed recent 

advances in linear statistical and machine learning techniques for 

photovoltaic power prediction, highlighting their ability to effectively manage 

the inherent variability and uncertainty of solar radiation forecasts. Pereira 

et al. [32] developed artificial neural networks specifically for direct normal 

irradiance forecasting, showing substantial improvements over raw 

numerical weather predictions, especially in capturing the complex non-

linear interactions between atmospheric variables and solar irradiance. 

While the physical approach requires a detailed understanding of the 

physical processes and transport phenomena, the data-driven approach relies 

on a large set of experimental data which will only be available once a specific 

photovoltaic module or system is under real operational conditions. In this 

perspective, the physical models approach exhibits a better versatility, since 

it can be implemented even before the commissioning of the photovoltaic 

system. This feature renders physical approaches also valuable during the 

initial stages of photovoltaic projects, as stakeholders leverage them to assess 

the economic viability. Ahmed et al. [33] reviewed various photovoltaic 

forecasting methods, highlighting physical models for their effectiveness in 

capturing the dynamic behavior of solar energy based on weather 

classification and cloud motion studies. Ohtake et al. [34] conducted a 

comprehensive review of photovoltaic power forecasting, emphasizing 

physical models' ability to address unique forecasting challenges posed by 

factors such as dust and snow accumulation. Ramirez-Vergara et al. [35] 

specifically assessed photovoltaic forecasting methods in the context of 
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predictive maintenance, underlining the critical role of physically based 

models in accurately estimating system performance and preventing system 

failures.  

Hybrid forecasting models are a combination of physics-based and data-

driven models and has been shown to enhance forecasting performance, 

especially when incorporating additional data sources, as for example aerosol 

data [32]. Mathiesen and Kleissl [36] evaluated the performance of different 

NWP models and applied a stepwise multivariate fourth-order regression for 

intra-day solar radiation forecasting in seven locations in the continental 

United States obtaining improvements on the global horizontal irradiance 

(GHI) predictions. In [37] a hybrid architecture of recurrent neural networks 

and shallow neural networks was developed showing improved performance 

in predicting daily photovoltaic power generation. In [38], the ECMWF GHI 

forecasts were used in combination with model output statistics (MOS) to 

create daily solar energy predictions with reduced root mean square error 

(RMSE), while in [39] the authors improved hourly direct normal irradiance 

predictions. In [40], satellite-derived data and ECMWF forecasts were 

integrated with an Artificial Neural Network (ANN) model to improve intra-

day solar radiation forecasting. A day-ahead forecasting study using machine 

learning and the Japanese mesoscale model showed that model performance 

strongly improved forecast accuracy by effectively addressing seasonal and 

spatial dependencies [41]. A hybrid approach using numerical weather 

prediction data combined with artificial neural networks significantly 

reduced forecasting errors across Brazil's Northeastern region [42]. Physics-

informed persistence models incorporating cloud-radiation interactions 

successfully improved forecast accuracy of direct and diffuse irradiance, 

particularly for forecasts extending up to six hours ahead [43]. A combined 

approach using numerical weather prediction and artificial neural networks 

for solar resource assessment in southern Portugal considerably enhanced 

solar irradiance predictions compared to purely numerical models [44]. 

Expert knowledge in selecting physics-based predictor variables 

demonstrated clear improvements in photovoltaic power forecasting accuracy 
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and model interpretability [45]. A benchmarking study extensively compared 

statistical and naïve reference forecasting models, establishing clear 

performance standards for evaluating solar radiation prediction models [46]. 

A comprehensive review of machine learning methods for solar radiation 

forecasting highlighted that hybrid models and ensemble approaches 

generally achieved superior accuracy compared to individual methods [47]. 

An extensive review systematically classified forecasting methods by 

temporal and spatial resolutions, identifying hybrid methods as generally 

most effective for accurate solar power predictions [48]. Lastly, a broad review 

on global solar radiation prediction with machine learning emphasized the 

significant role of feature selection and input data quality in achieving robust 

and precise forecasts [49]. 

One aspect of photovoltaic power forecasting that usually is not considered in 

the literature is the forecast time horizon and temporal resolution. Jung et al. 

[50] addressed temporal downscaling specifically, converting coarse-

resolution solar irradiance forecasts into finer resolutions (e.g., from 3-hourly 

to hourly), highlighting the necessity and challenges of adapting temporal 

resolutions for practical forecasting purposes. Yang et al. [51] developed an 

operational solar forecasting algorithm aligned with real-time market needs, 

explicitly demonstrating how forecast time horizon and temporal resolution 

critically impact forecasting accuracy and usability for energy system 

operators. Solar power forecasting models should provide forecasts over 

different time frames depending on the energy market requirements and 

allowing utility companies to make decisions to counteract forecasted 

shortfalls in solar power output. The time scale of grid load variations shows 

the need for different forecasting time scales and prediction horizons with 

higher power fluctuations requiring a higher temporal resolution for accurate 

analysis [52] while a multiple time-scale data-driven forecast model 

leveraging spatial and temporal correlations has shown improved 

performance compared to conventional models [53]. 

In this context, there is still a need to develop a comprehensive and versatile 

photovoltaic power forecasting algorithm that can be applied globally for a 
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wide variety of systems, without the need for ground-based observations in 

the locations of interest and, ideally, only requiring data provided by the 

manufacturer of the systems and characteristics of the power plant. This will 

reduce the need for additional sensors and measurements, making the 

forecasting process more cost-effective and easier to implement. However, 

this means that purely data-driven models are not suitable.  

In this work, a comprehensive photovoltaic power forecasting algorithm is 

developed. This algorithm combines physics-based and ANNs models to 

enhance DNI forecasts from NWP models. ANNs are capable of modeling 

relationships between data sets and were validated using DNI observations 

from a specific site, proving applicable to a broader region [32,44]. The 

algorithm provides 72-hour photovoltaic power forecasts with customizable 

temporal resolution, applicable to any fixed crystalline silicon photovoltaic 

system without requiring on-site observations. It assumes a centralized 

inverter architecture with single or multiple maximum power point tracking 

circuits. As mentioned above, this feature reduces costs by eliminating the 

need for expensive monitoring equipment and maintenance, making it 

scalable and suitable for regions with difficult access or lacking historical data. 

Adaptable to different configurations, the algorithm supports continuous, 

real-time forecasting and integration into grid operations algorithms or 

procedures, enhancing the management of photovoltaic energy generation 

variability. 

This paper is organized as follows: a description of the different models used 

in the developed algorithm is presented in Section 6.2 while its validation 

against observations, including results and discussion, is presented in Section 

6.3. Finally, the conclusions are drawn in Section 6.4. 

 

6.2. Algorithm for photovoltaic power forecasting  

 

The flowchart of the developed integrated forecasting algorithm is presented 

in Fig. 6.1, including the different components, namely, the temporal and 

spatial downscaling of input data, the artificial neural network, the 
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transposition model, the coupled thermal and electric model and the losses 

and inverter models. The algorithm was developed using MATLAB software 

[54] takes as inputs hourly forecasts of different meteorological and aerosol 

variables retrieved from an operational NWP model, in this case the 

IFS/ECMWF and the Copernicus Atmosphere Monitoring Service (CAMS).  

 

  
 

Fig. 6.1 - Flowchart of the developed algorithm for photovoltaic power forecasting using non-

observational data. 

 

The IFS/ECMWF is the most widely used global NWP model in Europe being 

its performance attested by various studies such as in [2–4]. These forecasts 

are downscaled to the desired temporal resolution and for the location of 
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interest with a temporal horizon of 72 hours. The choice of a 72-hour forecast 

horizon ensures the algorithm’s adaptability to various operational needs. 

While 24-hour forecasts are standard for grid operators, extending the 

forecast horizon to 72 hours provides valuable insights for medium-term 

planning, including resource allocation and maintenance scheduling. 

Additionally, the algorithm is designed to run and update every 24 hours, 

incorporating the latest data to provide rolling forecasts, which ensures that 

the most recent information is always considered. In the next step, a decision 

of whether to use or not ANN models is made to obtain improved forecasts of 

DNI. These models, such as those developed in [32], are validated for a given 

region that should encompass the location of the photovoltaic powerplant. The 

global tilted irradiance on the surface of the modules is then computed 

through a transposition model which, together with the downscaled forecasts 

of air temperature and wind speed and direction, serves as inputs of a 

dynamic coupled thermal-electric model of the photovoltaic modules in order 

to obtain power output of each string of the system. The derating factors and 

conversion from DC to AC are then modelled and the final forecasts of 

photovoltaic power output are obtained. 

In the following sections each main component or model of the algorithm is 

presented in more detail. 

 

6.2.1 Input Data  

The various inputs needed to run the algorithm can be categorized into 

forecast variables and photovoltaic system variables. In this work, the 

forecast variables are retrieved from IFS, the operational NWP model of the 

ECMWF [55], and from CAMS, the Copernicus Service that provides forecasts 

about constituents such as greenhouse gases, reactive gases, ozone and 

aerosols [56].  

The IFS/ECMWF model incorporates the ecRad radiative scheme [57], which 

adeptly solves the one-dimensional radiative transfer equation both in the 

short and long wavelength spectra. This model considers vertical profiles of 

air temperature and humidity, cloud properties (droplet and ice cloud 
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effective radius), monthly mean climatological data of aerosols, gases such as 

carbon dioxide and ozone as well as trace gases. Additionally, it considers 

surface and land cover characteristics, including temperature and albedo and 

emissivity across different spectral bands and solar zenith angles. The 

underlying code for this scheme is rooted in the Rapid Radiative Transfer 

Model (RRTM), leveraging the Monte Carlo Independent Column 

Approximation (McICA) method to parameterize interactions between 

radiation and cloud cover [57]. 

The operational deterministic ECMWF model is executed twice daily, 

generating forecasts at 00UTC and 12UTC. These forecasts offer hourly 

predictions extending up to 90 hours into the future. Beyond this period, the 

model provides forecasts at 3-hour intervals up to 144 hours and at 6-hour 

intervals up to 240 hours, all at discrete points across a global grid covering 

the entire globe with a horizontal spatial resolution of 0.125° × 0.125°.  

CAMS offers a comprehensive global atmospheric composition forecasting 

system, building upon the IFS model but incorporating supplementary 

modules tailored for aerosols, reactive gases, and greenhouse gases. This 

model considers various emission and transport phenomena, including the 

emission and transport of trace gases and aerosols, the exchange of these 

components with vegetation and land or sea surfaces, their removal through 

dry deposition at the surface and scavenging by precipitation, as well as 

chemical transformations and aerosol microphysics. It generates a set of 

prognostic variables related to the atmospheric composition, which includes 

the aerosol optical depth at various wavelengths, available in a three-

dimensional grid, with an horizontal spatial resolution of approximately 40 

kilometers and a temporal step of 1 hour [58]. Hourly mean total aerosol 

optical depths are computed daily at 00UTC and 12UTC, extending over a 

forecasting temporal horizon of 5 days.  

IFS and CAMS outputs are made available after 6.2 hours from the starting 

time. Depending on the time zone of the system’s location the use of 00UTC 

or 12UTC forecast runs can be replaced depending on the goal of the user 

(same-day/day-ahead forecast).  
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An overview of the variables retrieved from IFS and CAMS is presented in 

Table 6.1. The ANN model developed in [32], which is applicable to any 

location in the south of Portugal (latitude values below 39.2692°) without 

need for further procedure of training and validation, is also used in this work. 

ANN models can be trained and validated for the region of interest through a 

similar procedure as described in [32] for generation of improved solar 

irradiance forecasts for the system location. If the system location is outside 

the ANN model validation area, it is recommended that this step is excluded 

being the variables marked with (*) unnecessary for the run of the algorithm. 

 

Table 6.1 - Input variables obtained from numerical prediction systems (* - Variables which 

are not required if not using the ANN model). 

Variables obtained from 

IFS/ECMWF 
Variables obtained from CAMS  

Date  
Total aerosol optical depth at 670 

nm*  

Direct normal irradiation  

(J/m2, accumulated) 

Total aerosol optical depth at 865 

nm*  

Global horizontal irradiation  

(J/m2, accumulated) 

Total aerosol optical depth at 1240 

nm* 

Low cloud cover*  
Sea salt aerosol optical depth at 

550nm*  

Medium cloud cover*   

High cloud cover*   

Total cloud cover*   

U wind component (m/s)  

V wind component (m/s)  

Air temperature (K)  

Solar zenith angle (°)  
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Table 6.2 - Photovoltaic system properties used as input. 

Power plant 

characteristics 
Module characteristics  

Inverter 

characteristics 

Longitude (°) 
Maximum power at STC 

(W) 

Inverter efficiency 

(%) 

Latitude (°) 
Voltage at maximum 

power point for STC (V) 

Nominal power of 

the inverter (W) 

Altitude above the m.s.l. 

(m) 

Current at maximum 

power point for STC (A) 

Number of MPPT 

circuits 

Tilt angle of modules (°)  
Open circuit voltage for 

STC (V) 

 

Azimuth angle of modules 

(°) 

Short circuit current for 

STC (A) 

 

Ground albedo 
Thermal coefficient of 

maximum power (%/°C) 

 

Module orientation 

(portrait/landscape) 

Thermal coefficient of 

short circuit current (%/°C) 

 

Length of module rows (m) 
Thermal coefficient of open 

circuit voltage (%/°C) 

 

Height of module rows (m) 
Number of photovoltaic 

cells in series 

 

Distance between rows in 

the horizontal plane (m) 
Length (m) 

 

Vertical distance between 

the ground and the panel 

base (m) 

Width (m) 

 

Strings and inverter 

configuration 

(series/parallel) 

 

 

 

The photovoltaic system characteristics include the geographical location, 

type and characteristics of the photovoltaic modules, inverter, mounting and 
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racking and grid connection, since all have an influence on the photovoltaic 

power output. For an algorithm that only uses readily available data, the 

photovoltaic system properties can typically be obtained only through the 

powerplant project and the datasheets of the photovoltaic modules and 

inverters without needing to deploy and maintain monitoring equipment, 

sensors or any data collection infrastructure. The variables required as input 

for the developed integrated algorithm are presented in Table 6.2. 

 

6.2.2 Temporal and spatial downscaling 

To obtain forecast values for a specific location with higher temporal 

resolution, spatial and temporal downscaling techniques were employed for 

all forecast variables [32]. A comprehensive flowchart of the methodology 

employed is shown in  Fig. 6.2. 

 

 
 

Fig. 6.2 - Flowchart of the temporal and spacial downscaling procedure. 
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The forecast variables were first processed in order to compute hourly mean 

values for GHI and DNI, expressed in W/m2, air temperature in °C, wind 

speed in m/s and wind direction in ° taking the North direction as reference 

and being East 90°.  

Temporal downscaling relies on piecewise cubic hermite interpolation of 

hourly mean irradiance data. For each subinterval, an hermite interpolating 

polynomial is specified for the given data points being shape preserving. The 

slopes at the interpolation points are chosen in such a way that the 

polynomial preserves the shape of the data and respects monotonicity [32]. 

Therefore, on intervals where the data is monotonic, so is the polynomial, and 

at points where the data has a local extremum, so does the polynomial. In this 

algorithm, the desired time step can be defined by the user. 

Spatial downscaling involves bi-linear interpolation by considering the four 

neighboring grid points surrounding the desired location. 

 

6.2.3 ANN models for improved DNI forecasts 

In [32], ANN models were developed and optimized to improve DNI forecasts 

in a spatial and temporal downscaled grid and timestep, respectively. These 

models were developed for the region of South Portugal (latitude values below 

39.2692°), but the same approach can be generalized provided that the ANNs 

are finetuned for any other region through a similar process of training and 

validation [32]. In this work these same ANN models are used, and a 

flowchart of this part of the proposed algorithm is shown in Fig. 6.3.  

The data used as inputs are downscaled forecasts of operational outputs from 

the ECMWF/IFS and the CAMS models as described in Section 6.2.1 and 6.2.2 

of the variables presented in Table 6.1. The downscaled variables are fed into 

a feed-forward artificial neural network, referred to as ANN model A, 

including one hidden layer with seven neurons. A backpropagation learning 

function is used, more specifically the Bayesian regularization 

backpropagation function, along with a linear layer output using the Nguyen-

Widrow initialization algorithm for weights and biases. The network utilizes 

the hyperbolic tangent sigmoid transfer function and assesses performance 
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using the mean squared error. ANN model A accounts for the nonlinear 

relationships between atmospheric and aerosol variables and the DNI. 

Results show improved DNI forecasts at the location of interest and different 

temporal resolutions defined by the user [32]. 

 

 

Fig. 6.3 - Flowchart of the ANN models used in the algorithm. 

 

Additionally, a second artificial neural network, referred to as ANN model B, 

was included in the algorithm which takes into account a time series of 12 

time steps of the improved DNI forecasts from the ANN model A leading up 

to the forecast time, in addition to considering seasonality and time of day. 

This approach captures the temporal variation of DNI, further improving the 

DNI forecasts obtained through ANN model A. Similar to model A, the ANN 

model B has a hidden layer, but it incorporates the Levenberg-Marquardt 

backpropagation algorithm and features eight neurons. 

In both models, a strategy regarding the training and validation procedures 

involving ten randomly initialized ANNs for each configuration was employed. 

In this approach, the average output of these ten ANNs is considered as the 

result for the respective ANN configuration. This methodology aligns with 

established practices in the field, as previously demonstrated in related 

studies [32,44]. 
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6.2.4 Transposition model 

For the computation of power output of a solar system the global solar 

irradiance on its surface is needed. To obtain this, a transposition model was 

employed that transposes direct and diffuse componets into GTI, including 

the part that is reflected, according to the geometry of the system and albedo 

of the surfaces [1]. Furthermore the computation of incidence angle modifiers 

and absorbed irradiance is critical to estimate power output of photovoltaic 

modules. This aspect was included in this work and Fig. 6.4 shows this part 

of the algorithm.  

 
 

Fig. 6.4 - Flowchart of the transposition model and computation of absorbed irradiance. 
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The transposition model from reference [1] was selected due to its 

demonstrated accuracy in estimating global tilted irradiance for photovoltaic 

systems with multiple rows, validated against high-resolution experimental 

data and compared to other models available in literature. Unlike other 

models developed for the first row only, the selected model accounts for 

shading and sky masking effects on inner rows, considering view factors, 

circumsolar irradiance obscuration, and reflections from surrounding 

surfaces. Validation results showed substantial improvements in accuracy, 

with a decrease in the mean bias error and root mean square error, even 

under conditions without direct shading. 

The transposition model used in this work follows the model presented in [1]. 

This model adopts the common representation of panels arranged in rows, 

where the length of the panels significantly exceeds their height and 

computes the GTI on the front and inner rows of photovoltaic power plants. 

The different surfaces, namely the solar module being evaluated, the rear of 

the front row (for modules being evaluated belonging to rows other than the 

first) and the ground between the rows are discretized into segments, being 

the GTI computed for each segment. 

The Modified Bugler model [59] is taken as the base model from which the 

isotropic and circumsolar diffuse fractions are taken [1]. Then, the different 

obscuring angles are compared with the solar elevation angle projected to the 

surfaces’ azimuth to obtain the direct and circumsolar irradiance shading for 

all the surfaces in the model. The different view-factors between each of these 

segments are computed while the albedo is assumed equal to 0.2 for the 

ground, zero for the panel being considered and 0.92 for the rear surface of 

the front panel (typically white). Finally the GTI on the panel being evaluated 

is computed taking also into account the reflected solar irradiance from each 

corresponding segment of the ground and the back of the front panel if it is 

present. More detail on this model can be found in [1]. 

The transposition model determines the irradiance incident on a photovoltaic 

panel’s surface, but for power output computation, the absorbed irradiance is 

needed. This algorithm uses available GTI and DNI data, along with the 
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reflected and diffuse irradiance components, to obtain the absorbed 

irradiance for each segment of the panel. Incidence angle modifiers for direct, 

diffuse and reflected irradiance components are calculated based on Snell's 

and Bouguer's laws according to [60]. The required incidence angles for each 

panel segment are derived for direct, isotropic diffuse, circumsolar diffuse and 

reflected irradiance components. The incidence angles for the direct 

component are calculated using the panel's latitude, solar declination, tilt 

angle, azimuth, and solar hour angle. Equivalent incidence angles of isotropic 

and circumsolar diffuse for the front row are determined and adjusted for 

other rows using an equivalent tilt angle. Equivalent incidence angles of 

reflected irradiance are computed for reflections from the back of the front 

row and the ground between rows. With these angles, the incidence angle 

modifiers are calculated, and the absorbed solar irradiance for each panel 

segment is obtained. More detail on this approach is presented in Appendix 

A. 

 

6.2.5 Coupled thermal-electric model of the photovoltaic module 

After computing the irradiance absorbed by photovoltaic modules the next 

step is to model its conversion into electricity. Various electrical models exist, 

ranging from simple proportional relationships to more complex equivalent 

circuit models. On the other hand, thermal models are also important since 

temperature is related to and has a reasonable impact on electric efficiency of 

photovoltaic conversion. Combining electrical and thermal models provides a 

comprehensive modeling approach of the response of photovoltaic modules 

under varying environmental conditions.  

In this work, a model as that in the work presented in [17] is used, which is a 

dynamic coupled thermal-electric model designed for crystalline silicon cells 

using readily available information provided by the manufacturers.  

The thermal model is based on the fundamental principle of energy 

conservation and on the description of the heat transfer processes that occur 

in illuminated photovoltaic modules in transient regime. The heat transfer 

processes by convection and thermal radiation on front and back surfaces of 
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the module are considered, while conduction is assumed negligible since the 

contact points between the module and supporting structure are small. The 

influence of wind speed and direction is taken into account when determining 

the heat transfer coefficients for forced convection, as these factors have a 

strong impact on the module temperature.  

 

 
 

Fig. 6.5 - Flowchart of the coupled thermal-electric model of photovoltaic modules. 

 

The electrical model used in this work is the single diode and five parameters 

equivalent electrical circuit [17] being the five parameters extracted solely 

from the information obtained from the datasheet of the modules. This is a 

dynamic model thus it provides the variation of module temperature and 

electric power output simultaneously at a given time step defined by the user. 

For a more detailed explanation of this model please refer to Appendix B and 

[17]. Taking into account the electric connection between strings and arrays, 

this model computes the maximum power point of each string considering the 

configuration of the photovoltaic powerplant. 
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6.2.6 Electric losses and inverter model 

Fig. 6.6 shows the flowchart of the algorithm for determining the electric 

losses and inverter efficiency. Performance losses of photovoltaic systems are 

typically represented by a derating factor, which scales the power output of 

photovoltaic arrays to account for real operation conditions in the field. The 

derating factor accounts for various losses independent of temperature, 

including DC losses, AC losses, and other such as soiling and shading. The 

derating factors are usually determined through field measurements or 

estimations and have a negative impact on the photovoltaic system energy 

yield. The inverter's efficiency is not included in the derating factors but is 

considered as a separate input parameter. Roberts et al. [61] reviewed 

different derating factors in the literature and obtained typical values for 

losses in DC wiring, in diodes and connections, module mismatch losses, 

maximum power point tracking inefficiencies, soiling, degradation induced by 

the continued exposition to solar radiation and adverse environmental 

conditions, as shown in Table 6.3. The user can choose to apply or not these 

typical derating factors in the algorithm, or to apply different factors that 

reflect site-specific conditions or experimental data. 

 

Table 6.3  - Typical values of the derating factors [58]. 

Derating factor Typical value 

DC wiring 0.980 

Diodes and connections 0.995 

Module mismatch 0.980 

Maximum power point tracker efficiency 0.990 

Soiling 0.980 

Degradation rate 0.985 

Initial light-induced degradation 0.980 

 

As for the conversion from direct to alternate current the efficiency of the 

inverter and its nominal power are taken into consideration, both values are 

readily available in the datasheet of the device. To obtain the AC power 
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forecast the DC power of each input to the inverter are summed, clipped if the 

sum overcomes the nominal power of the inverter multiplied by its efficiency. 

 

 
 

Fig. 6.6 - Flowchart of the electric losses and inverter efficiency models. 

 

6.2.7 Output 

The algorithm was developed to run every day, retrieving data from the NWP 

models as soon as available. The output comprises the photovoltaic DC power 

output of each string and AC power output of each inverter from 00UTC or 

12UTC of the forecast issue day and with a forecast horizon of 72h in text 

(ASCII) format. The temporal resolution can be selected by the user but 

should typically be under 60 minutes.  

The following is an example of an excerpt of an output file defined with 15-

minute time step: 
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Year Month Day Hour Minute PowerString1W PowerString2W 

PowerString3W PowerString4W PowerString5W PowerString6W 

PowerString7W ACPowerW 

(…) 

2022 11 10 11 0 4191.4 4216.5 4184.3 4184.6 4191.4 4216.5 4216.6 28930.8 

2022 11 10 11 15 4369.7 4394.1 4362.5 4362.8 4369.7 4394.1 4394.1 30156.5 

2022 11 10 11 30 4487.8 4512.2 4480.5 4480.8 4487.8 4512.2 4512.2 30969.9 

2022 11 10 11 45 4543.3 4568.1 4536.1 4536.4 4543.3 4568.1 4568.1 31353.6 

(…) 

 

6.3 Algorithm results and validation  

 

In this section the developed algorithm is validated against real data from a 

photovoltaic powerplant. 

 

6.3.1 Data 

For the validation of this algorithm data from a photovoltaic powerplant 

located in the region of Lisbon, Portugal commissioned by Helexia was used. 

This powerplant comprises 155 strings of 16 monocrystalline modules each, 

model SRP-400-BMA-HV PERC [62]. Additionally, data from one inverter 

model SUN2000-36KTL was used [63], namely current and voltage at the 

maximum power point of seven different strings (see Fig. 6.7) as well as the 

resulting active and reactive power. 

Each pair of strings is connected in parallel (1 and 2, 3 and 4, 5 and 6) to one 

of the four maximum power point tracking circuits of the inverter except 

string 7 which is connected to its own circuit. These strings were chosen so 

the developed transposition model used [1] could be additionally tested for 

first (string 2, 6 and 7) and inner rows of modules (strings 1, 3, 4 and 5), now 

for a real power plant in the field. The different input variables related to the 

powerplant, modules and inverters needed to run the algorithm are presented 

in Tables 6.4, 6.5 and 6.6, respectively. 
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Fig. 6.7 - Aerial view of the photovoltaic powerplant (1-7: strings considered in the work). 

 

Table 6.4  - Input values for variables related to the powerplant characteristics. 

Powerplant characteristics Value 

Longitude 38.955591° 

Latitude  -9.191087° 

Altitude above the m.s.l. 276.5 m 

Tilt angle of modules 25° 

Azimuth angle of modules 0° 

Ground albedo 0.2 

Module orientation Portrait 

Length of module rows  8.02 m 

Height of module rows  4.03 m 

Distance between rows in the horizontal plane  6.45 m 

Vertical distance between the ground and the 

panel base  
1.00 m 

Strings and inverter configuration  Pairs of strings in parallel 
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Table 6.5  - Input values for variables related to the module characteristics. 

Module and string characteristics Value 

Maximum power for STC  400 W 

Voltage of maximum power point for STC  41.6 V 

Current at maximum power point for STC  9.62 A 

Open circuit voltage for STC  49.1 V 

Short circuit current for STC  10.10 A 

Thermal coefficient of maximum power -0.36 %/°C 

Thermal coefficient of short circuit current  +0.05 %/°C 

Thermal coefficient of open circuit voltage  -0.28 %/°C 

Number of photovoltaic cells in series 72 

Length  2.02 m 

Width  1.00 m 

Number of strings 7 

Number of modules per string 16 

String power for STC 6.4 kW 

 

Table 6.6 - Input values for variables related to the inverter characteristics. 

Inverter characteristics Value 

Inverter efficiency 0.984 

Nominal power of the inverter  40 kW 

Number of MPPT circuits  4 

 

This powerplant was commissioned in 2021 and the data used ranges from 

April 1st, 2022, and April 30th, 2023, with a timestep of 5 minutes. 

Measurements of global tilted irradiance were obtained for the same period 

and time step from a calibrated silicon irradiance sensor SI-RS485TC-T-MB 

(calibrated solar cell) [64] on the tilted plane of modules. 

These observations were also filtered according to the BSRN quality control 

procedure considering the extremely rare limits [65] and following the 

procedure established in other works in this field. A previous study [44] 

applied similar BSRN quality-control filters to ensure reliable input data for 
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solar resource assessment. Another work [66] used the BSRN guidelines 

specifically to detect physically impossible or rare values in long-term solar 

radiation datasets from several locations. Additionally, a detailed 

methodology [67] was developed using BSRN quality control combined with 

statistical checks and gap-filling procedures to produce high-quality direct 

normal irradiance (DNI) datasets. For all observations, negative values in the 

records were assumed equal to zero, missing values and outliers were 

discarded and then mean values for a 15 minute time step were computed. 

According to the developed algorithm, the ECMWF and CAMS forecasts were 

obtained for the location and period of interest. 

For computational time analysis a computer with processor Intel(R) Core(TM) 

i7-8550U with a base clock speed of 1.80GHz and 16 GB of RAM was used. 

 

6.3.2 Results and Discussion 

The integrated algorithm was run for the observation site and period 

described in Section 6.3.1 with a temporal forecast horizon of 72 hours and a 

timestep of 15 minutes. Validation was carried out through the comparison 

between predicted and observed values of GTI, output power of each string 

and output power of the inverter. The metrics used were the correlation 

coefficient (R2), mean bias error (MBE), mean absolute error (MAE), root 

mean squared error (RMSE) and their relative values considering the mean 

of observations (rMBE, rMAE, rRMSE, respectively). A forecast skill score 

(FSGTI) representing the impact on the GTI forecasts of using the ANN 

models for improvement of DNI predictions is also used. This indicator is 

defined as one minus the ratio of the MAE with the ANN model to the MAE 

without the ANN model for GTI. The score quantifies the improvement in 

forecast accuracy, with a higher score indicating a greater positive impact of 

the ANN model on the GTI forecasts. 

The results for the GTI forecasts including the use of the ANN models are 

presented in Table 6.7 based on all 395 algorithm runs, each providing data 

over a 72-hour time horizon with 15-minute timestep. As expected, the MAE 

and RMSE increase with forecast horizon, although MBE shows better results 
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for forecast day 1. This improvement is highest for forecast day 0 with a value 

of 4.1 %. 

 

Table 6.7 - Metrics of GTI predictions for first row and each forecast day (number of data 

points: 46076). 

Forecast day R2 
MBE 

(W/m2) 

rMBE 

(%) 

MAE 

(W/m2) 

rMAE 

(%) 

RMSE 

(W/m2) 

rRMSE 

(%) 

FSGTI 

(%) 

0 0.844 25.1 5.7 84.5 19.3 131.0 30.0 4.1 

1 0.828 24.6 5.6 88.2 20.2 137.2 31.4 3.3 

2 0.807 27.3 6.3 92.4 21.2 145.6 33.4 2.9 

 

 

Fig. 6.8 - Observed and predicted values of GTI using the original ECMWF data and the 

improved DNI and DIF forecasts from the ANN models as input to the transposition model 

for the operational example. 

 

As an operational example that shows the outputs of a run of this algorithm, 

a forecast period of three days was selected starting the 10th of November of 

2022, being the forecast data used as inputs the ECMWF and CAMS forecasts 

issued at 00UTC of that day. This period was selected because the first two 

days are clear sky days, while on the third day there are some clouds around 

midday. Fig. 6.8 shows the GTI results with and without the use of the ANN 
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model and the experimental data. On the third day, the original ECMWF 

forecasts did not predict this effect of cloud cover. The graph shows the 

underestimation of both GTI forecasting models as well as the improvement 

achieved by applying the ANN model. 

The computation of the power generation in each string was performed as 

described in Section 6.2.5, where the maximum power point tracking of 

parallel strings (namely strings 1 and 2, 3 and 4 and 5 and 6) was taken into 

consideration, while string 7 is connected to its own maximum power point 

tracking circuit. It is important to note that strings 2, 6 and 7 were considered 

as first row surfaces while strings 1, 3, 4 and 5 were considered as inner-row 

surfaces differing from each other in the GTI forecasts used, depending on 

their position in the power plant. The results of this study, including the 

impact of using the ANN models, are presented in Table 6.8 for each string 

and forecast day based on all 395 algorithm runs, each providing data over a 

72-hour time horizon with 15-minute timestep.  Here, a forecast skill score 

(FSPOW) is also included representing the improvement of using the ANN 

models on the power generation prediction. This indicator is defined as one 

minus the ratio of the mean absolute error (MAE) with the ANN model to the 

MAE without the ANN model considering DC power generation. 

The overestimation of power output is clearly visible since until this point the 

various losses such as cable, module mismatch and deterioration losses were 

not considered yet. Similarly to the GTI forecasts, the MAE and RMSE values 

increase with the forecast horizon while the MBE shows better results for 

forecast day 1. The contribution of the ANN models for improving results is 

also higher for smaller forecast horizons with the highest forecast skill score 

being 7.0% for string 5 in day 0. The overall results show an overestimation 

of the power generation being the MBE and RMSE for all strings and the 

three days of forecast equal to 56.8 W/kWp and 142.2 W/kWp, respectively. 

This translates to relative values of 13.8 % and 34.5 %, respectively. The 

forecasts for string 1 typically have the lowest values of MAE and strings 2 

and 5 the highest. The reasoning behind this might be the fact that string 2 

is a front row and, although string 5 is considered inner row, it is on the edge 



Chapter 6. Comprehensive approach to photovoltaic power forecasting 

242 
 

of the powerplant and part of it behaves as front row. This means that these 

strings are exposed to more fluctuations in irradiance which are more difficult 

to predict. The following analysis is for the case in which the ANN models are 

used. 

 

Table 6.8 - Metrics of photovoltaic power (DC) generation forecasts for each string and each 

forecast day (number of data points per string: 42689). 

Day String R2 
MBE 

(W/kWp) 

rMBE 

(%) 

MAE 

(W/kWp) 

rMAE 

(%) 

RMSE 

(W/kWp) 

rRMSE 

(%) 

FSPOW 

(%) 

0 

1 0.835 42.2 10.0 88.0 20.8 129.3 30.5 6.6 

2 0.829 62.2 15.1 98.1 23.8 138.3 33.6 6.6 

3 0.830 57.0 14.0 96.6 23.7 135.2 33.1 6.9 

4 0.833 53.7 13.0 93.4 22.7 133.0 32.3 6.9 

5 0.833 62.0 15.4 97.8 24.2 136.5 33.8 7.0 

6 0.830 58.7 14.1 95.5 23.0 136.5 32.9 6.5 

7 0.829 57.4 13.8 95.2 22.8 136.4 32.7 6.4 

1 

1 0.817 41.9 9.9 92.1 21.8 136.1 32.2 6.2 

2 0.811 61.7 15.0 101.7 24.7 144.7 35.2 6.0 

3 0.812 56.7 13.9 100.5 24.6 141.8 34.7 6.4 

4 0.815 53.4 13.0 97.3 23.7 139.6 33.9 6.5 

5 0.814 61.7 15.3 101.5 25.2 143.0 35.5 6.5 

6 0.812 58.2 14.0 99.4 23.9 143.0 34.4 6.0 

7 0.811 56.9 13.7 99.0 23.8 142.9 34.3 5.9 

2 

1 0.794 44.6 10.6 96.6 22.9 144.9 34.3 5.5 

2 0.787 64.5 15.7 106.6 25.9 153.2 37.3 5.3 

3 0.788 59.4 14.6 105.1 25.8 150.2 36.8 5.8 

4 0.792 56.0 13.6 102.0 24.8 148.2 36.0 5.8 

5 0.791 64.4 16.0 106.3 26.4 151.3 37.6 5.8 

6 0.788 61.0 14.7 104.1 25.1 151.6 36.5 5.2 

7 0.787 59.7 14.3 103.8 25.0 151.5 36.4 5.1 

All 0.811 56.8 13.8 99.1 24.0 142.2 34.5 6.1 
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Fig. 6.9 - Power generation (DC) forecasts using the ANN model (orange) and measurements 

(blue) of each string for the operational example. 

 

Fig. 6.9 shows the results of power generation for the operational example 

considered. A noticeable trend is the overestimation of power output across 
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all strings, with the forecast curves consistently lying above the measured 

values. All strings show deviation between forecasted and actual values, 

particularly in the peak irradiance hours. This overestimation is likely due to 

higher exposure to irradiance and lack of consideration for certain losses in 

the model, such as soiling or module degradation, which is also shown in the 

aggregated results for "All strings" in the bottom-right plot. On the third day 

since the original forecasts did not consider the presence of clouds these were 

also not forecasted when applying the algorithm. 

Assuming the electrical losses described in Section 6.2.6, the results in Table 

6.9 are obtained, where the forecast skill (FSPOW-L) reflects the improvement 

gained by incorporating the losses model. This indicator is defined as one 

minus the ratio of the mean absolute error (MAE) with the ANN and losses 

models to the MAE with only the ANN model considering the DC power 

generation. The default/typical values used provide a reference for estimating 

losses, including the losses due to soiling, and can be adjusted by users if 

plant-specific data are available. This flexibility ensures the algorithm's 

adaptability to diverse operating conditions. Furthermore, the power output 

measurements used for validation inherently include soiling and other 

derating effects, ensuring that the algorithm’s performance metrics 

accurately reflect real-world conditions. 

Again, these values are based on all 395 algorithm runs, each producing data 

over a 72-hour time horizon with a 15-minute timestep. The overestimation 

was greatly reduced for all strings with an overall forecast skill value of 

16.4 % regarding MAE, but now strings 4 and 5 show lower values of this 

metric while the highest are obtained for string 1. Considering the various 

electric losses of the photovoltaic system, the overall MBE decreases to 7.5 

W/kWp and the RMSE to 123.7 W/kWp, being their relative counterparts 

1.8 % and 30.0 %. There is a significative decrease of MBE values when 

including the losses model, which explains the negative MBE for String 1. 

Without applying the losses, String 1 already has the lowest MBE among all 

the strings and when the losses are applied as a factor the power output 

forecasts for all strings are proportionally reduced. However, since String 1's 
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initial MBE was already lower as mentioned above, the additional reduction 

from the losses model caused it to become a negative value, indicating a slight 

underestimation of power output. In contrast the MBE of front-row strings, 

besides being lower, still retain positive values after the loss correction. The 

fact that string 1 presents lower MBE values than other strings can be 

attributed to the fact that string 1 is electrically connected in parallel with 

string 2 (which has a positive MBE) but are apart spatially in different rows, 

resulting in a potential mismatch in irradiance exposure between these two 

strings, with string 1 receiving less irradiance due to diffuse sky and reflected 

irradiance obstruction and shading [1], thus exhibiting a negative bias. 

 

Table 6.9  - Metrics of photovoltaic DC power output forecasts of each string and each 

forecast day considering typical losses (number of data points per string: 42689). 

Day String R2 
MBE 

(W/kWp) 

rMBE 

(%) 

MAE 

(W/kWp) 

rMAE 

(%) 

RMSE 

(W/kWp) 

rRMSE 

(%) 

FSPOW-

L (%) 

0 

1 0.835 -6.7 -1.6 81.6 19.3 118.3 28.0 7.3 

2 0.829 12.4 3.0 79.3 19.2 117.7 28.6 19.2 

3 0.830 8.1 2.0 78.7 19.3 115.6 28.3 18.6 

4 0.833 4.8 1.2 77.9 18.9 115.4 28.0 16.6 

5 0.833 13.1 3.3 77.0 19.1 114.6 28.4 21.3 

6 0.830 8.9 2.1 78.9 19.0 117.7 28.3 17.4 

7 0.829 7.6 1.8 79.4 19.1 118.1 28.4 16.5 

1 

1 0.817 -6.9 -1.6 85.5 20.2 124.6 29.5 7.2 

2 0.811 12.0 2.9 82.8 20.1 124.0 30.1 18.6 

3 0.812 7.9 1.9 82.4 20.2 122.1 29.9 18.0 

4 0.815 4.6 1.1 81.5 19.8 121.8 29.6 16.3 

5 0.814 12.9 3.2 80.8 20.1 121.1 30.0 20.4 

6 0.812 8.5 2.0 82.5 19.9 124.0 29.9 16.9 

7 0.811 7.2 1.7 83.1 20.0 124.5 29.9 16.0 

2 

1 0.794 -4.4 -1.1 89.4 21.2 132.4 31.3 7.4 

2 0.787 14.5 3.5 87.0 21.2 132.0 32.1 18.4 

3 0.788 10.3 2.5 86.4 21.2 130.0 31.9 17.7 

4 0.792 7.0 1.7 85.7 20.9 129.8 31.6 16.0 

5 0.791 15.3 3.8 84.8 21.1 129.1 32.0 20.2 

6 0.788 11.0 2.7 86.7 20.9 132.0 31.8 16.7 

7 0.787 9.7 2.3 87.3 21.0 132.4 31.8 15.9 

All 0.811 7.5 1.8 82.8 20.1 123.7 30.0 16.4 
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Fig. 6.10 - Power output (DC) forecasts (orange) and measurements (blue) of each string for 

the operational example including the electric losses. 

 

Fig. 6.10 presents the forecasts using the losses model and observations of 

power output of each string of the operational example. A clear improvement 
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is visible when comparing Fig. 6.9 and 6.10 and thus, the following analysis 

will consider the use of the losses model. There is overestimation in string 1, 

despite the overall negative MBE for this string. This may be due to the 

complex interplay between partial shading, mismatch losses, and other 

factors affecting inner-row strings like string 1. Therefore, while the bias for 

string 1 remains negative due to frequent underproduction, this specific 

figure reveals occasional instances where the model still overestimates output. 

By incorporating inverter efficiency and maximum power clipping, the results 

shown in Table 6.10 are obtained.  

 

Table 6.10 - Metrics of AC power output forecasts for each forecast days (number of data 

points: 42689). 

Day R2 
MBE 

(W/kWp) 

rMBE 

(%) 

MAE 

(W/kWp) 

rMAE 

(%) 

RMSE 

(W/kWp) 

rRMSE 

(%) 

0 0.832 8.7 2.1 76.5 18.9 114.2 28.2 

1 0.814 8.4 2.1 80.1 19.8 120.4 29.8 

2 0.790 10.8 2.7 84.2 20.9 128.3 31.8 

All 0.812 9.3 2.3 80.3 19.9 121.0 29.9 

 

 

Fig. 6.11 - AC power forecasts (orange) and measurements (blue) for the operational period 

taken as example. 
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In accordance with the aforementioned findings, the differences tend to 

increase for higher forecast horizons except for MBE which is lowest for 

forecast day 1 with a value of 388.7 W. The overall results show an MBE of 

9.3 W/kWp and RMSE of 121.0 W/kWp which translates to relative values of 

2.3 % and 29.9 %, respectively. Fig. 6.11 shows the AC power output forecasts 

and measurements of the operational period taken as example, showing good 

agreement. 

These results, namely the values of Table 6.10, are of the same order of 

magnitude and compares well with other work available in the literature.  

The authors of [68] evaluated seven methods for DC power forecasts of 

photovoltaic systems, with the best deterministic results achieved using the 

calibrated ensemble NWP paired with a random model chain (method 3C in 

[68]), which resulted in 26.1% relative MBE and 43.1% relative RMSE, while 

in this work values of 20.1% and 30.0% were achieved. Although the datasets 

used by the authors are different, all statistical indicators are normalized to 

the mean of observations. This evidences how the combination of NWP data 

with ANN models incorporating aerosol information, together with improved 

transposition and thermal-electric models, can contribute for generating 

improved forecasting results.  

In this algorithm, specific characteristics of systems with optimizers or 

microinverters are not explicitly modeled at this stage. Such configurations 

can influence the system’s performance under partial shading, mismatch, or 

other module-level effects, as these technologies allow for optimization of 

individual modules. While the presented methodology is adaptable and could 

potentially be extended to these configurations, at this stage the presented 

study does not include a module to model the response of these systems. 

Future work could incorporate detailed modeling of module-level 

optimization to improve forecast accuracy in systems with optimizers or 

microinverters. 

An important aspect of any photovoltaic forecasting algorithm is its running 

time. Thus, an analysis based on the selected operational example was 

performed regarding the computational time that each process of the 
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algorithm takes (Table 6.11). As explained in Section 6.2.1, the 00UTC 

forecast runs can take up to 06:12UTC to become available for the users with 

the download time dependent on internet connection. The most time-

consuming process after the retrieval of the NWP data is the coupled thermal-

electric photovoltaic model as expected since it involves an iterative 

numerical process. The total run time of the algorithm is found to be 

approximately 12.8 minutes, thus allowing for the efficient processing and 

use of the forecast data.  

 

Table 6.11 - Running time of the different processes of the forecasting algorithm for the 

operational period taken as example. 

Process Running time (s) Time stamp 

Availability of forecasts - 06:12 UTC 

Data retrieval 385.201  06:18 UTC 

Temporal and spatial downscaling 0.867 06:18 UTC 

ANN models 3.401  06:18 UTC 

Transposition model 13.153  06:18 UTC 

Coupled thermal-electric model 363.988  06:24 UTC 

Losses model 0.127 06:24 UTC 

Inverter model 0.006 06:24 UTC 

Generate output 0.142 06:24 UTC 

 

6.4 Conclusions 

 

The present study presents the development of a novel approach to 

photovoltaic power forecasting, which has been built utilizing numerical 

weather prediction forecasts and physics-based models with the option of 

including data-driven models for a hybrid approach. More specifically, the 

presented algorithm includes: the retrieval and processing of forecast data 

from the IFS/ECMWF and CAMS models with the option of using ANN 

models for DNI forecast improvement; an improved transposition model that 

computes GTI and absorbed irradiance for first and inner-rows of photovoltaic 
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rows considering inter-row shading and obscuring of direct, circumsolar and 

isotropic diffuse irradiance and masking of reflected irradiance; a 

comprehensive dynamic coupled thermal-electric photovoltaic model based on 

the energy conservation equation, namely the heat transfer to the 

environment through convection, radiation and the electric power output, 

taking into account wind speed and direction; losses model (optional) 

considering typical or user-provided derating factors and inverter model 

which allows for the computation of DC and AC power output of each string 

and inverter of the powerplant.  This approach is highly versatile, as it can 

be applied to any fixed crystalline silicone photovoltaic system, without 

requiring on-site observations, thereby offering significant cost savings by 

eliminating the necessity for expensive monitoring equipment and 

infrastructure, as well as maintenance. Moreover, it has the ability to 

generate 72-hour photovoltaic power forecasts, with user-defined temporal 

resolution. 

The algorithm was validated for a temporal resolution of 15 minutes with 

approximately 1-year data from a real powerplant with seven photovoltaic 

strings (4 in front rows and 3 in inner rows) located in the region of Lisbon, 

Portugal. The overall results showed an MBE of 7.5 W/kWp and RMSE of 

123.7 W/kWp for the DC power and an MBE of 9.3 W/kWp and RMSE of 121.0 

W/kWp for the AC power output forecasts considering all strings and the 72h 

forecast horizon. This translates to relative values of 1.8 %, 30.0 %, 2.3 % and 

29.9 %, respectively. 

Due to its inherent scalability, this algorithm can be effortlessly extended to 

cover a wider range of installations, without any logistical challenges. It can 

also be deployed in regions where on-site access is arduous, or in regions 

where historical data may not be available. Furthermore, it is essential to 

highlight that this algorithm possesses the adaptability to be configured 

differently, catering to the unique requirements of various installations 

providing continuous and real-time forecasting. The integration of this 

algorithm into grid operations would result in better management of 

photovoltaic energy generation variability. 
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Appendix A – Computation of absorbed irradiance 

 

The transposition model presented in [1] is used to determine the irradiance 

incident on the photovoltaic panel’s surface, however for the computation of 

the power output of such systems the absorbed irradiance, 𝑆, is necessary. In 

[17] this is accomplished using only the available GTI and DNI data, yet with 

this algorithm the reflected and different components of diffuse irradiances 

are available and so 𝑆 is obtained through Eq. (6.1) for each instant and for 

each segment of the panel being evaluated. Here, 𝛾 𝑏 is the vector with the 

incidence angle modifiers for direct irradiance for each segment, 𝐼  is the direct 

irradiance vector, 𝐷⃗⃗ 𝑐𝑠 is the diffuse circumsolar irradiance vector, 𝐷⃗⃗ 𝑖𝑠𝑜 is the 

isotropic diffuse irradiance vector,  𝛾 𝑑 is the vector with the incidence angle 

modifiers for isotropic diffuse irradiance, 𝑹 is the matrix computed through 

Eq. (6.2) which includes the matrixes with the albedo (𝝆), view-factors (𝑭), 

and incidence angle modifiers for reflected irradiance from all segments (𝜸𝒓).  

The incidence angle modifiers are computed through Eqs. (6.3) to (6.6) based 

on the principles of Snell's and Bougher's laws, as outlined in [57]. Here,  𝜃𝑟 

is the angle of refraction in the glazing of the modules, 𝜃 is the incidence angle, 

𝑛 is the effective index of refraction of the cell cover assumed to be 1.526, a 

value close to the typical refractive index of glass, 𝐾𝑔 is the glazing extinction 

coefficient with a value of 4 m⁻¹ and 𝐿𝑔 is the glazing thickness set at 2 mm, 

a dimension widely deemed suitable for most photovoltaic cell panels [66]. 

 

𝑆 = 𝛾 𝑏(𝐼 + 𝐷⃗⃗ 𝑐𝑠) + 𝛾 𝑑𝐷⃗⃗ 𝑖𝑠𝑜 + 𝑹𝐺𝑇𝐼⃗⃗⃗⃗⃗⃗  ⃗ (6.1) 

𝑹 = 𝝆𝑭𝜸𝒓 (6.2) 

𝛾 =
𝜏(𝜃)

𝜏(0)
 (6.3) 

𝜏(𝜃) = 𝑒
−(

𝐾𝑔𝐿𝑔
𝑐𝑜𝑠(𝜃𝑟)

)
[1 −

1

2
(
𝑠𝑖𝑛2(𝜃𝑟 − 𝜃 )

𝑠𝑖𝑛2(𝜃𝑟 + 𝜃 )
+
𝑡𝑎𝑛2(𝜃𝑟 − 𝜃 )

𝑡𝑎𝑛2(𝜃𝑟 + 𝜃 )
)] (6.4) 

𝜏(0) = 𝑒−(𝐾𝑔𝐿𝑔) [1 − (
1 − 𝑛

1 + 𝑛
)
2

] (6.5) 
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𝜃𝑟 = 𝑠𝑖𝑛−1 [
1

𝑛
𝑠𝑖𝑛 (𝜃)]   

 

(6.6) 

The set of incidence angles needed for each segment of the panel being 

evaluated includes the angles for direct irradiance 𝜃𝑏 , isotropic diffuse 

irradiance 𝜃𝑑, and reflected irradiance 𝜃 𝑟𝑒𝑓. The incidence angles of the direct 

component are straightforward and can be obtained through Eq. (6.7), where 

𝐿𝑎𝑡 is the latitude, 𝛿 the solar declination, 𝛽 and 𝜑 the tilt angle and azimuth 

of the panel, respectively, and  ℎ𝑠 the solar hour angle. 

For the isotropic diffuse irradiance incidence angles, an equivalent angle 

needs to be tailored to the slope of the panel [57]. For first rows Eq. (6.8) can 

be used as presented in [57]. It is worth to mention that while these 

equivalent angles were initially derived for thermal collectors, they have 

proven to be a valid option for photovoltaic systems as well. 

However, for rows other than the front row an adjustment needs to be made 

since the portion of sky in the field of view of a given segment varies 

depending on its relative position to the other surfaces. To overcome this 

aspect, an approximation was assumed by determining an equivalent tilt 

angle (Eq. (6.9)), in which the ground is assumed as being at the same level 

of the line connecting the middle of each segment and the top of the front row. 

Here, 𝑟𝐿  is the row length, D is the distance between rows and 𝑐  is the 

position vector of the middle point of each segment of photovoltaic panel.  

As for the incidence angles of the reflected irradiance, they are computed 

differently for the irradiance being reflected from the back of the front row 

𝜽𝒓𝒆𝒇,𝒗 and from the ground between rows 𝜽𝒓𝒆𝒇,𝒖. This is done through Eqs. 

(6.10) and (6.11) considering the line connecting the middle of the two 

segments being evaluated and where ℎ0 is the height of the panels from the 

ground while 𝑣  and 𝑢⃗  are the position vectors of the middle points of each 

segment of the back of the first row and the ground between rows, respectively.  

Finally, with these angles, the different incidence angle modifiers can be 

computed and the absorbed solar irradiance 𝑆  for each segment of 
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photovoltaic panel is obtained. The mean absorbed irradiance of each panel 

is then obtained by averaging 𝑆 over the respective segments.  

 

𝜃𝑏 = cos
−1 (

sin 𝐿𝑎𝑡 sin 𝛿 cos𝛽 − cos 𝐿𝑎𝑡 sin 𝛿 sin 𝛽 cos𝜑 + cos 𝐿𝑎𝑡 cos 𝛿 cos ℎ𝑠 cos 𝛽 +
+ sin 𝐿𝑎𝑡 cos 𝛿 cos ℎ𝑠 sin 𝛽 cos 𝜑 + cos 𝛿 sin ℎ𝑠 sin 𝛽 sin 𝜑

) (6.7) 

𝜃𝑑 = 59.7 − 0.1388𝛽 + 0.001497𝛽2 (6.8) 

𝛽′⃗⃗  ⃗ = tan−1 (
𝑟𝐿 × sin 𝛽 − 𝑐 sin 𝛽

𝐷 − 𝑟𝐿 × cos 𝛽 + 𝑐 cos 𝛽
) (6.9) 

𝜽𝒓𝒆𝒇,𝒗 = |90 − 𝛽 − tan−1 (
(𝑣 − 𝑐 ) sin 𝛽

𝐷 + (𝑐 − 𝑣 ) cos 𝛽
)| (6.10) 

𝜽𝒓𝒆𝒇,𝒖 = 90 − 𝛽 + tan−1 (
𝑐 sin 𝛽 + ℎ0

𝐷 + (𝑐 − 𝑢⃗ ) cos 𝛽
) (6.11) 

 

Appendix B – Details on the thermal-electric coupled model 

 

The thermal-electric model employed in this work integrates a dynamic 

thermal model based on the energy conservation equation with a single-diode 

five-parameter electrical model, allowing simultaneous computation of 

photovoltaic module temperature and electrical power output under varying 

conditions. 

The dynamic thermal model relies on the fundamental energy balance, which 

can be described by: 

 

𝐶𝑚𝑜𝑑
 𝑑𝑇𝑚𝑜𝑑
𝑑𝑡

= 𝑄sun − 𝑄𝑐𝑜𝑛𝑣 − 𝑄𝑟𝑎𝑑 − 𝑃𝑒 
(6. 12) 

 

Here, 𝐶𝑚𝑜𝑑  is the equivalent heat capacity of the module, 𝑇𝑚𝑜𝑑  the module 

temperature, 𝑄sun  the absorbed solar irradiance, 𝑄𝑐𝑜𝑛𝑣 convective heat losses, 

𝑄𝑟𝑎𝑑  radiative heat losses, and 𝑃𝑒  the electrical power output. Conduction 

losses are considered negligible. 

Heat transfer processes include forced and natural convection, influenced by 

wind speed and direction, as well as radiative heat transfer to the 

environment, determined by temperature differences and module emissivity. 
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The electrical model implemented is the single-diode five-parameter 

equivalent circuit. It represents the current-voltage (I-V) characteristics of a 

PV module using five parameters: the photo-generated current, the diode 

reverse saturation current, the ideality factor of the diode, the series 

resistance, and the shunt resistance. These parameters are estimated from 

manufacturer datasheet values such as the short-circuit current, open-circuit 

voltage, current and voltage at maximum power point, and temperature 

coefficients. The model allows for accurate prediction of module performance 

under variable irradiance and temperature conditions by solving the implicit 

current-voltage relationship. 

This coupling explicitly accounts for temperature's influence on PV module 

efficiency and power output, iteratively resolving the thermal-electrical 

interactions at user-defined time steps. Numerical integration of the dynamic 

thermal equation is carried out using the Dorman and Prince version of the 

Runge-Kutta method. 

Additionally, the model considers the configuration of the photovoltaic plant, 

explicitly modeling the electrical connections between modules, strings, and 

arrays, as well as the maximum power point tracking (MPPT) systems. This 

ensures that the overall power output accurately reflects realistic operational 

conditions and electrical interactions. 

Fig. 6.12 shows the flowchart of the coupled thermal-electric model, clearly 

illustrating the iterative calculation and interaction between input 

meteorological data, the thermal model, and the electrical model to yield 

accurate PV power output forecasts. For a more detailed explanation of this 

model please refer to [17]. 
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Fig. 6.12 - Flowchart of the thermal and the electric models and its coupling. 
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Nomenclature 

 

𝑐   Position vector of the middle point of each segment of 

photovoltaic panel (m) 

𝐷  Distance between rows in the horizontal plane (m) 

𝐷⃗⃗ 𝑐𝑠  Vector of circumsolar diffuse irradiance values (W/m2) 

DIF  Diffuse horizontal irradiance (W/m2) 

𝐷⃗⃗ 𝑖𝑠𝑜  Vector of isotropic diffuse irradiance values (W/m2) 

DNI  Direct normal irradiance (W/m2) 

F  View-factor matrix (-) 

FS  Forecast skill score (%) 

GHI  Global horizontal irradiance (W/m2) 

GTI  Global tilted irradiance (W/m2) 

ℎ0  Vertical distance between the ground and the panel base (m) 

ℎ𝑠  Solar hour angle (°) 

𝐼   Vector of direct horizontal irradiance values (W/m2) 

𝐾𝑔   Extinction coefficient of the glazing (m⁻¹) 

𝐿𝑎𝑡  Latitude (°) 

𝐿𝑔   Glazing thickness (m) 

MAE  Mean absolute error (W/m2 or W) 

MBE  Mean bias error (W/m2 or W) 
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𝑛   Effective refractive index of the solar cell cover (-) 

R  Reflectance matrix (-) 

R2  Coefficient of determination (-) 

rL  Length of the row of modules (m) 

rMAE  Relative mean absolute error (%) 

rMBE  Relative mean bias error (%) 

RMSE Root mean squared error (W/m2) 

rRMSE Relative root mean squared error (%) 

𝑆  Absorbed irradiance (W/m2 or W) 

𝑢⃗   Position vector of the midpoint of each segment of ground (m) 

𝑣   Position vector of the midpoint of each segment on the back of 

front panel (m) 

 

Greek symbols 

𝛽  Tilt angle of the photovoltaic panels (°) 

𝛾 𝑏  Vector of incidence angle modifier values for direct irradiance (-) 

𝛾 𝑑  Vector of incidence angle modifier values for diffuse isotropic 

irradiance (-) 

𝜸𝒓  Matrix of incidence angle modifier values for reflected irradiance 

(-) 

𝛿  Solar declination (°) 

𝜃  Angle of incidence (°) 

𝜃𝑏  Angle of incidence of direct irradiance (°) 

𝜃𝑑  Equivalent angle of incidence of diffuse isotropic irradiance (°) 

𝜃𝑟  Angle of refraction (°) 

𝜃 𝑟𝑒𝑓  Vector of equivalent angles of incidence values for reflected 

irradiance (°) 

𝜌  Matrix of albedo values (-) 

𝜑  Azimuth of the photovoltaic panels (°) 

 

Acronyms 

AC  Alternate Current 
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ANN  Artificial Neural Networks 

CAMS Copernicus Atmospheric Monitoring Service 

DC  Direct Current 

ECMWF European Centre for Medium-range Weather Forecasts 

GFS  Global Forecast System 

IFS  Integrated Forecasting System 

McICA Monte Carlo Independent Column Approximation 

NWP  Numerical Weather Prediction 

PV  Photovoltaic 

RRTM Rapid Radiative Transfer Model 

STC  Standard Test Conditions 
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Chapter 7 

 

Conclusions 

 

The main objective of this work was to develop a comprehensive and 

integrated model for improving accuracy of energy output forecasts of 

photovoltaic (PV) modules and power plants. This was achieved by combining 

various models and using data from Numerical Weather Prediction (NWP) 

and aerosol models. Through the successful realization of several key sub-

objectives, the research carried out resulted in the creation of a robust tool 

designed to improve the accuracy and reliability of PV power predictions, thus 

supporting the efficient operation and management of solar energy systems. 

The core of the developed method combines numerical weather prediction 

(NWP) models with artificial neural networks (ANNs) to either assess or 

predict solar resources and photovoltaic power generation at different spatial 

and time scales. Firstly, this method was used for regional solar resource 

assessment by improving solar irradiance data from NWP models that 

effectively integrate predictions from the Meso-NH model and aerosol forecast 

data from the Copernicus Atmosphere Monitoring Service (CAMS) with 

artificial neural networks (ANNs). This method was applied to a typical 

meteorological year and the region of southern Portugal and demonstrated a 

substantial reduction in the errors associated with solar radiation 

simulations for eight stations in this region, with 2.34 % and 4.26 kWh/m2 for 

global horizontal irradiance (GHI) and 3.41 % and 11.57 kWh/m2 for direct 

normal irradiance (DNI) for the relative mean bias error and root mean 

squared error, respectively. By incorporating aerosol data, the approach 

addressed a limitation of current NWP models, which often struggle to 

accurately simulate atmospheric aerosols. This approach has broader 

applicability, although its performance in different climatic regions and over 

larger geographical areas requires further investigation. The potential to 

apply this method to other meteorological variables, such as air temperature, 



Chapter 7. Conclusions 

266 
 

also opens new research topics, particularly in improving the efficiency of PV 

systems by accurately predicting the environmental conditions and how they 

will affect their operation. 

In addition to the solar resource assessment, this work presents an ANN-

based model specifically designed to improve DNI forecasting. By integrating 

NWP and aerosol forecast data, from the European Centre for Medium-range 

Weather Forecasts (ECMWF) and CAMS, respectively, the model achieved 

improvements in DNI predictions, with reductions in the mean absolute error 

of 21.1 W/m² and in the root mean squared error of 24.2 W/m² compared to 

the original forecasts. This model was rigorously validated in an operational 

setting for a location in Évora using four years of observations, demonstrating 

its robustness and effectiveness. Furthermore, the model’s adaptability was 

tested by applying it to other six locations within the same region, where it 

consistently showed enhanced forecasting accuracy. The flexibility of the 

model to operate with different temporal resolutions makes it highly relevant 

for energy market forecasting, where accurate predictions are essential. 

Another key focus of this work was the accurate estimation of solar irradiance 

on tilted surfaces, particularly in photovoltaic arrays with multiple rows of 

modules. State-of-art transposition models often fail to account for direct and 

anisotropic shading and irradiance obscuration between rows, leading to 

significant errors in energy generation predictions, particularly from modules 

located in inner rows. To address this, an improved transposition model was 

developed, which specifically considered the complex contributions of direct, 

circumsolar and isotropic diffuse and reflected irradiance components for the 

global tilted irradiance (GTI) in the case of inter-rows. This model was 

thoroughly evaluated using experimental data collected in Évora, Portugal, 

under varying conditions of tilt angles and inter-row distances. The results 

demonstrated a significant improvement in the accuracy of GTI estimates for 

rows other than the first, with mean bias error improvements of 368.3 W/m² 

and root mean square error reductions of 224.4 W/m². These findings 

underscore the importance of using dedicated models for non-front-row 

surfaces in solar power plants, as neglecting these factors can lead to 
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substantial inaccuracies in energy generation forecasts. The developed model 

is versatile and can be adapted to different configurations, making it a 

valuable tool not only for optimizing the design and operation of large-scale 

PV installations, but also for applications such as backtracking optimization 

in dual-axis tracking systems, where accurate modeling of mutual shading is 

critical for minimizing losses. 

Additionally, in this work an in-depth evaluation of various thermal models 

for predicting PV module temperature and power output was conducted. The 

accurate estimation of module temperature is crucial, as it is related and 

directly affects the efficiency and power output of PV systems. Among the 

models assessed, the steady-state Mattei model emerged as the most accurate 

for temperature prediction, achieving a mean bias error of −0.4°C and root 

mean squared error of 2.7°C. In terms of power output, the Kurtz model, when 

coupled with a simple electrical model incorporating temperature correction, 

showed the best performance, with a mean bias error of 4.6 W and root mean 

squared error of 54.5 W. A coupled thermal-electric model was also presented 

using single diode 5 parameter electric model and achieving MBE values for 

cell’s temperature and power output of −0.4 °C and 16.0 W and of RMSE 

values of 3.6 ºC and 84.2 W. The research highlighted the critical interplay 

between thermal and electrical models, demonstrating that the selection of 

an appropriate thermal model is essential for accurate power output 

predictions, particularly under varying environmental conditions. 

Additionally, the study showed that using these thermal models can result in 

more accurate power output estimates than relying solely on temperature 

measurements, which is particularly beneficial in scenarios where extensive 

experimental data are not available. This finding is significant for both 

researchers and power plant operators, as it provides a reliable method for 

forecasting PV system performance without the need for costly and time-

consuming experimental testing. 

The integration of the developed models into a single forecasting algorithm 

represents a major contribution of this work. The algorithm was designed to 

be highly versatile and scalable, capable of providing PV power forecasts for 
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different systems and locations, including those with no on-site observations. 

This algorithm also incorporates several key components, including the 

retrieval and processing of forecast data from the IFS/ECMWF NWP and 

CAMS models, the developed transposition model for GTI estimation, and a 

dynamic coupled thermal-electric model for temperature and power output 

predictions. The algorithm also includes models for losses and inverter 

efficiency, allowing for the computation of both DC and AC power output. The 

algorithm was validated using data from a real PV power plant in the region 

of Lisbon, Portugal, with results showing a mean bias error of 9.3 W/kWp and 

a root mean square error of 121.0 W/kWp for AC power output forecasts over 

a 72-hour horizon. These results indicate a high level of accuracy, with 

relative errors as low as 1.8 % for DC power and 2.3 % for AC power. The 

algorithm’s scalability and adaptability are particularly noteworthy, as it can 

be easily extended to cover a wide range of PV installations, offering a cost-

effective alternative to expensive on-site monitoring through accurate 

forecasting. Moreover, the algorithm’s ability to provide continuous 

forecasting makes it an invaluable tool for grid operators, who can use it to 

manage the variability of PV energy generation more effectively. Its practical 

strengths, including efficient data acquisition and a relatively fast execution 

time, further enhance its value, making it a dependable and practical tool for 

integrating PV power into the grid.

Several areas of research could further enhance the models and algorithms 

developed in this work. Expanding the application of these models to different 

climates and larger geographical areas would help to validate their 

robustness and identify any limitations in their performance. Refining the 

thermal models to improve accuracy under varying environmental conditions, 

particularly for specific PV module technologies, would also be a valuable area 

of study. Finally, ongoing validation and adaptation of the models with real-

time data from a diverse range of PV installations will be essential for 

ensuring their continued reliability and applicability in different operational 

settings. By addressing these areas of future work, the models and algorithms 

developed in this work can contribute to the advancement of renewable 
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energy technologies and support the global transition to more sustainable 

energy systems. 

 

Nomenclature 

 

DNI  Direct normal irradiance (W/m2) 

GHI  Global horizontal irradiance (W/m2) 

GTI  Global tilted irradiance (W/m2) 

 

Acronyms 

AC  Alternate Current 

ANN  Artificial Neural Network 

CAMS Copernicus Atmosphere Monitoring Service 

DC  Direct Current 

ECMWF European Centre for Medium-range Weather Forecasts 

IFS  Integrated Forecasting System 

MBE  Mean Bias Error 

NWP  Numerical Weather Prediction 

PV  Photovoltaic 

RMSE Root Mean Squared Error 
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