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Abstract
We propose a new theory based on the notions of marginal and large difference 
which has natural models in the context of nonstandard mathematics. We introduce 
the notion of finite marginality and show a representation result which ensures, for 
finitely marginal countable models, the existence of a homomorphism of the struc‑
ture of marginal and large difference into a nonstandard model of the natural num‑
bers, and show the extent to which any such homomorphism is unique. Finally, we 
show that our theory constitutes part of the underlying abstract structure of three 
distinct philosophical theories of vagueness: Dean’s neofeasibilism, Itzhaki’s theory 
of nonstandard heuristics, and our own initial sketch of a nonstandard primitivism 
about vagueness.

1 Introduction

1.1  Vagueness and Soritical Reasoning

One of the distinctive features of vague predicates is that they give rise to Sori-
tical reasoning. The following ingredients are thought to yield instances of the 
Sorites paradox: 
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(A) A strict weak order R;
(B) A set A of objects such that 

(1) R is a linear order on A;
(2) There are elements b and e of A such that R(b, e), b (evidently) has property 

T and e (evidently) fails to have property T;
(3) The inductive premise is plausible
  Inductive premise:

  For every member x in A, if x has property T then x’s R‑successor in A 
also has property T.

(4) A is finite.

From the inductive premise and the fact that b, the first member of A relative to 
R, has property T one reaches the conclusion that the second member of A rela‑
tive to R also has property T. Via a novel application of the inductive premise one 
reaches the conclusion that the third member of A relative to R has property T. 
And so on, until one reaches the absurd conclusion that e, the last member of A 
relative to R, both has and lacks property T.

A typical example of a Soritical scenario consists of a finite sequence of peo‑
ple such that i) its first member is clearly not bald, ii) its last member is clearly 
bald, and iii) if y is the successor of x in the series, then x has 1 hair more than 
y. In this example, the weak order R consists in the balder than relation and the 
property T is the property of not being bald. Since the first member of the series 
isn’t bald, the second member of the series also isn’t bald, by the inductive prem-
ise. And so on, until one reaches the absurd conclusion that the last member of 
the sequence is both bald and not bald.

Recently, some philosophers (e.g., Dean 2018, Itzhaki 2021) have argued that 
a satisfactory resolution of the Sorites paradox, or at least satisfactory answers to 
some of the intriguing questions that it raises, requires an appeal to the idea that 
an infinite structure—akin to the order structure of nonstandard models of arith‑
metic and analysis—is, in some way or the other, present in Soritical scenarios 
(see also Dinis, 2018; Dinis & van den Berg, 2019; Dinis & Jacinto, 2021). The 
present paper offers one particular way of developing this thought.

One of our aims is to formulate and motivate what we call the �� theory (of 
marginal and large difference). In our view, part of the puzzlement underlying 
the phenomenon of vagueness concerns the absence of a theory articulating the 
principles governing these notions.

A second aim of the paper is to offer a measurement theory for the notions of 
marginal and large difference as these are axiomatised by the �� theory. Our results 
reveal that the �� theory determines a rich structure of what might be called vague 
degrees. Significantly, this structure is akin to the order structure of models of non‑
standard arithmetic and analysis. Accordingly, vague degrees turn out to be be rep‑
resentable, in a measurement‑theoretic sense, by those models’ elements.

∀x, y ∈ A((T(x) ∧ S(x, y)) ⇒ T(y))
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Our final aim is to show how the �� theory constitutes part of the abstract struc‑
ture which underlies recently proposed “nonstandard” theories of vagueness—in 
particular, Dean’s neofeasibilism, Itzhaki’s theory of nonstandard heuristics, and 
our own nonstandard primitivism.1 A defense of any one of these theories is, how‑
ever, outside the scope of the present paper.

The paper is structured as follows. In Sect. 2 we offer a formal characterisation of 
the �� theory. Specifically, we present the theory’s axioms and gloss on their intui‑
tive character. We also present a result showing that the �� theory is not interpret‑
able by the order relation of (standard) arithmetic or analysis. In Sect. 3 we show 
the theory’s consistency by providing models in the context of nonstandard arith‑
metic and analysis. We offer our measurement theory for the �� theory in Sect. 4. 
In particular, we prove both a representation theorem and a uniqueness theorem 
with respect to a special class of so called “empirical models”. Finally, in Sects. 
5, 6, 7, we briefly show how the �� theory affords part of the abstract structure 
of the neofeasibilist, nonstandard heuristics and nonstandard primitivist theories of 
vagueness.

2  The �� Theory

A strict weak order is a binary relation which satisfies the following conditions: 

(1) Irreflexivity: ∀x(¬R(x, x))
(2) Transitivity: ∀x, y, z((R(x, y) ∧ R(y, z)) → R(x, z))

(3) Almost connectedness: ∀x, y, z(R(x, y) → (R(x, z) ∨ R(z, y)).

As mentioned, the �� theory axiomatises the relations of both marginal and large 
difference with respect to an underlying strict weak order R. Accordingly, we assume 
the existence of two binary relations—denoted by, respectively, M and L. Their 
intended interpretation is the following: M(x, y) states that x is marginally smaller 
than y with respect to the order R, while L(x, y) states that x is largely smaller (i.e., 
much smaller) than y with respect to R. As such, the �� theory is a theory of “mar‑
ginal” and “large” difference.

The �� theory’s first axiom postulates that the theory is not trivial: there 
are objects which are “largely different” with respect to the weak order R. The 
existence of “marginally different” objects is a direct consequence of Axiom 2.1 
together with decomposition (Axiom 2.10 stated below).

Axiom 2.1 ∃x, y L(x, y)

The second and third axioms postulate that whenever x is marginally/largely 
smaller than y, then these objects are ordered by R.

1 The label for Itzhaki’s theory is our own – as is the label ‘nonstandard primitivism’.
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Axiom 2.2 ∀x, y (M(x, y) ⇒ R(x, y))

Axiom 2.3 ∀x, y (L(x, y) ⇒ R(x, y))

We assume that marginal differences are transitive. This is in line with one of 
the so‑called Leibniz rules (on which, see Dinis & van den Berg, 2019,  Chap‑
ter  1), corresponding to the intuition that the sum of two infinitesimals is still 
infinitesimal, but in contrast with other approaches e.g. approaches using semi‑
orders such as Luce (1956) and Cobreros et al. (2012) (see also van Rooij, 2011, 
in which three objects a, b, c can be such that a is noticeably smaller than c, but 
b located between them is unnoticeably larger than a, and unnoticeably smaller 
than c).

Axiom 2.4 ∀x, y, z (M(x, y) ∧M(y, z) ⇒ M(x, z))

The next axiom states that marginal differences are not large.

Axiom 2.5 ∀x, y (M(x, y) ⇒ ¬L(x, y))

Axiom  2.6 captures the idea that marginal differences can be neglected with 
respect to large differences—an idea commonly associated with vague phenomena. 
Together with Axiom  2.4, this entails that large differences can never be decom‑
posed merely into marginal differences. As such, our theory embraces transitivity 
principles in what regards the Sorites paradox.

Axiom 2.6 ∀x, y, z (M(x, y) ⇒ ((L(z, y) ⇒ L(z, x)) ∧ (L(x, z) ⇒ L(y, z))))

The next two axioms capture the intuition that increasing large differences only 
results in large differences.

Axiom 2.7 ∀x, y, z ((R(x, y) ∧ L(y, z)) ⇒ L(x, z))

Axiom 2.8 ∀x, y, z ((L(x, y) ∧ R(y, z)) ⇒ L(x, z))

Axiom 2.9 rules out differences which are neither marginal nor large.2

Axiom 2.9 ∀x, y (R(x, y) ⇒ (M(x, y) ∨ L(x, y)))

2 When conjoined with Axioms 2.2 and 2.3 the effect of Axiom 2.9 is that the strict weak order R on 
which the �� theory is based is explicitly definable as follows: ∀x, y (R(x, y) ⇔ (M(x, y) ∨ L(x, y))).
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Any large difference can be decomposed into a marginal difference and a large 
difference. This is of course another salient feature of vague phenomena: removing a 
grain of sand from a heap still leaves a heap.3

Axiom 2.10 (decomposition)

Finally, we have an axiom of “density” for marginal differences: if x is marginally 
smaller than y then, for every z between x and y, it must be the case that x is margin‑
ally smaller than z and z is marginally smaller than y.

Axiom 2.11 ∀x, y(M(x, y) ⇒ ∀z((R(x, z) ∧ R(z, y)) ⇒ (M(x, z) ∧M(z, y))))

This concludes our presentation of the �� theory’s axioms. Before proceeding, 
we should make it clear that we do not claim it to be an exhaustive theory of the 
notions of marginal and large difference. Nor do we think that it captures all the dif‑
ferent uses of ‘marginal difference’ and ‘large difference’, as these notions are com‑
monly used. Rather, we take our axiomatisation to capture theoretically significant 
uses of these notions as they are employed in describing and reasoning about para‑
digmatic cases of “vague phenomena”.

A significant consequence of the �� theory is that there are infinitely many 
objects. Axiom 2.1 entails that there are objects x and y such that y is largely greater 
than x. So, it follows from decomposition that there is some object x1 which is mar‑
ginally greater than x. By Axiom 2.6 we obtain that x1 is largely greater than y. So, 
again by decomposition, there is some object x2 which is marginally greater than x1 . 
And so on, so that we get an infinite sequence of objects x1, x2, x3,… such that no 
two elements of the sequence are identical, by Axiom 2.2 and the fact that R is a 
strict weak order.4

A commitment to an infinitude of objects is a common idealisation of several 
theories of measurement. For this and related reasons some authors (see e.g. Mundy, 
1987 and Swoyer, 1987) have proposed that theories of measurement should be 
formulated as theories about relations between magnitudes (i.e. about relations 
between particular properties of objects) rather than about relations between objects.

We are sympathetic to this “higher‑order” view on measurement theories, and 
�� ’s quantifiers may be conceived as ranging over magnitudes rather than objects. 
Notwithstanding, and for the sake of familiarity, for the moment we will follow the 

∀x, y (L(x, y) ⇒ (∃z(M(x, z) ∧ L(z, y)) ∧ ∃w(M(w, y) ∧ L(x,w))))

3 In virtue of Axiom 2.6 the decomposition axiom could be simplified to

We chose to present the axiom in this way in order to emphasize what we mean by “decomposition”.
∀x, y (L(x, y) ⇒ (∃zM(x, z) ∧ ∃wM(w, y))).

4 This proof relies only on the simplification, noted in fn. 3, of the decomposition axiom. Using the full 
strength of decomposition, this result is derivable from the fact that R is strict by appealing only to Axi‑
oms 2.1 and 2.2.
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more common practice of conceiving the quantifiers of the �� theory as ranging 
over objects rather than properties.

Let us illustrate the theory with an example. Consider the relation R defined as 
being balder than. Then the relations of marginally balder than and largely balder 
than can be represented as follows (Fig. 1):

Circles in the figure represent individuals. If a point has another one to its left, 
then the former is balder than the latter (e.g. R(m, n) and R(n, q)—n is balder than 
m and q is balder than n). Ellipsis, ‘ … ’, indicate an infinite sequence of individuals, 
and vertical bars indicate that all the individuals to its right are largely balder than 
all the individuals to its left (e.g. L (m, p) and L(m, q)—p and q are both largely 
balder than m). Points which are not separated by vertical bars differ only marginally 
(e.g. M(m, n)—n is marginally balder than m).

We finish this section by presenting a result that points out the need to consider 
nonstandard structures.

Theorem 2.12 In the context of the �� theory, the relation R is not interpretable as 
the usual less than ordering < on the reals or on the naturals.

Proof We start by proving the result for the reals. Suppose towards a contradiction 
that R is interpretable as < on the reals. Using Axiom 2.1 we let x, y be such that 
L(x, y) and define

Clearly, y is an upper bound of S, by Axiom 2.3. Moreover, S is nonempty. Indeed, 
by decomposition, there exists z0 such that M(x, z0) . We have that z0 ∈ S since 
L(z0, y) , by Axiom 2.6, and x < z0 , by Axiom 2.2. Let � be the least upper bound of 
S. Clearly, x < a ≤ � for every a ∈ S.

It must be the case that ¬L(�, y) . Otherwise, there exists w such that M(�,w) and 
L(w, y), by decomposition. Since M(�,w) , we have that � < w , by Axiom 2.2. But 
then x < � < w and so w ∈ S . Hence w ≤ � because � is an upper bound of S, a 
contradiction.

Since y is an upper bound of S, we have that � ≤ y . So, either � = y or M(�, y) , 
by Axiom 2.9. In both cases, L(x,�) , by Axiom 2.6. Then there exists w0 such that 
M(w0,�) and L(x,w0) , by decomposition. So, w0 < � , by Axiom  2.2. Let a ∈ S . 
Then, by Axiom 2.6, we obtain L(a,�) and L(a,w0) . Hence a < w0 , for all a ∈ S , by 
Axiom 2.3. This means that w0 is an upper bound of S and w0 < � , in contradiction 
with the fact that � is the least upper bound of S.

Therefore, R is not interpretable as < on the reals. The proof for the naturals is 
similar but appealing to the well‑ordering principle instead of working with least 
upper bounds.   ◻

S ∶= {z ∶ L(z, y) ∧ x < z}.

Fig. 1  ‘Marginally balder than’ and ‘largely balder than’
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In Sect.  3—in particular in Sect.  3.2—we show that the �� theory indeed has 
models in nonstandard arithmetic and nonstandard analysis.

3  Nonstandard Models

3.1  Nonstandard Analysis

‘Nonstandard analysis’ was the name given by Abraham Robinson (1961; 1966) 
to any theory giving a formal and consistent treatment of infinitesimals. There are 
many such theories (cf. e.g. di Nasso, 1999; Dinis & van den Berg, 2019; Kanovei 
& Reeken, 2014). For the purposes of this paper a very “economical” version due to 
Edward Nelson (1987, Chapter 4), which we shall denote by ��� (for Elementary 
Nonstandard Analysis), is sufficient.5 Indeed, the main requirement that we need 
from nonstandard analysis is the possibility of defining different orders of magni‑
tude, which can be achieved in virtually any theory that permits the existence of 
infinitesimals.

The axioms of Zermelo‑Fraenkel Set Theory (with or without the Axiom of 
Choice) are the most common foundation of mathematics. These are written in a 
language which only contains one undefined non‑logical symbol, ‘ ∈ ’, for set mem‑
bership (cf. e.g. Kunen, 1980; Potter, 2004). The theory ��� (cf. Figure 2) is a con‑
servative extension of Zermelo‑Fraenkel Set Theory which is governed by a simple 
set of extra axioms after adding to the language a new predicate, ‘ st’.6 One should 
read st(x) as ‘x is standard’. Formulas which involve the predicate ‘ st ’ are called 
external and those that do not, i.e. formulas in the language of classical mathemat‑
ics, are called internal.

Let us briefly comment on the axioms of ��� . The first two axioms state that the 
usual natural numbers are standard. The third axiom postulates the existence of non‑
standard natural numbers. Finally, we have as an axiom scheme a form of induction 

Fig. 2  The axioms of ���

5 This theory is dubbed ENA− in Dinis and van den Berg (2019).
6 This means, in particular, that all axioms of ��� are valid in ��� , in the language only containing ‘ ∈’.
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that allows us to conclude that a property is true of all standard natural numbers 
given that it is true of zero and that whenever it is true of some standard n, then it 
is also true of its successor n + 1 . Since ��� is a conservative extension of classical 
mathematics, the usual form of induction is still valid, albeit only for internal prop‑
erties. To see why such restriction is required, consider the formula Φ(n) ∶≡ st(n) . If 
one could apply internal induction to Φ the conclusion would be that every natural 
number is standard, in contradiction with the third axiom.

One defines different orders of magnitude as follows. A real number x is said to 
be infinitesimal if its absolute value is smaller than the inverse of any positive stand‑
ard natural number; limited, if it is, in absolute value, bounded by some standard 
natural number and unlimited, or infinitely large if it is not limited.

3.2  Nonstandard Models

In the following we show the �� theory’s consistency by providing two different 
instantiations, ℑ1 and ℑ2 , of the predicates R, M and L, such that all the axioms of 
the �� theory are satisfied in the context of ��� . The choice of nonstandard models 
is guided by the observation that the simplest standard structures are not models of 
our theory, as revealed by Theorem 2.12. We will return to this point in Sect. 4.4.

The instantiation ℑ1 is arithmetical in nature because it only involves (both stand‑
ard and nonstandard) natural numbers: 

(1) R(x, y) ∶= x < y , where < is the usual order in the natural numbers
(2) M(x, y) ∶= ∃n (st(n) ∧ y = x + n)

(3) L(x, y) ∶= x ≤ y ∧ ¬st(y − x)

Instantiation ℑ2 is analytic in nature as it requires (nonstandard) real numbers: 

(1) R(x, y) ∶= x < y , where < is the usual order in the real numbers
(2) M(x, y) ∶= “ x < y and their difference is infinitesimal”
(3) L(x, y) ∶= “ x < y and their difference is not infinitesimal”

Theorem 3.1 Given any of the instantiations ℑ1 and ℑ2 , the �� axioms are satisfied 
in ���.

The verifications of the previous theorem are all immediate, so we omit its proof.
The following is a straightforward corollary of Theorem 3.1.

Corollary 3.2 The �� theory is consistent, if �� is consistent.
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4  Measurement

4.1  Ingredients of Measurement

Roughly, mathematical theories of measurement reveal the conditions under 
which relations between “concrete” entities are appropriately represented by 
mathematical relations. It is the fact that “concrete” relations—e.g. being more 
massive than, having a greater difference in temperature than – can be appro‑
priately represented by mathematical relations that makes it possible to refer to 
those concrete relations by speaking about mathematical relations.

Representing concrete relations by mathematical relations allows to perform 
surrogative reasoning about them by reasoning about their mathematical repre‑
sentations. Relatedly, the mathematical representations of concrete relations 
afford further insight into their structure, since typically the mathematical models 
in which those concrete entities are represented are well‑known.

A representational theory of measurement investigates the conditions under 
which particular concrete relations are representable by mathematical relations. 
The task of offering a representational theory of measurement for a certain phe‑
nomenon involves the following ingredients: (i) a theory of the phenomenon in 
question; (ii) a representation theorem showing that any model of this theory—
here we follow the common practice of referring to such models as ‘empirical 
models’ – can be represented by a particular mathematical model � ; and (iii) a 
uniqueness theorem characterising all the ways in which each empirical model 
may be represented by the mathematical model �.

Let us be more precise on the sort of results that are delivered by representa‑
tion and uniqueness theorems. Consider first the notion of an homomorphism.

Definition 4.1 (Homomorphism) Let � and � be models in a common signa‑
ture. Then, a homomorphism from � to � is a function f such that, for all objects 
o1,… , on in the domain D� of model �,

for all n‑ary predicates R of � and � ’s common signature.

When a homomorphism maps an empirical model to a mathematical model, it 
is said to be a representation of the empirical model in the mathematical model. 
Then, the measurement‑theoretic notion of a scale is defined in the following way.

Definition 4.2 (Scale) A measurement scale is a triple ⟨�,�, f ⟩ such that: 

(i)  � is an empirical model;
(ii)  � is a mathematical model;
(iii)  f is a homomorphism from � to �.

o1,… , on stand in relation (R)� iff f (o1),… , f (on) stand in relation (R)�,
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A representation theorem establishes, for a chosen mathematical model, that 
every empirical model can be represented in it. That is, a representation theorem 
establishes, for a chosen mathematical model � , that every empirical model has 
a scale containing � . Given any scale ⟨�,�, h⟩ , surrogative reasoning about � 
can then be performed by reasoning about the mathematical relations that obtain 
between the images of � under h.

A uniqueness theorem offers a characterisation of how unique a scale is. It does 
so in terms of a distinguished class of transformations of the domain of the numeri‑
cal model. Thus, a uniqueness theorem consists of a result to the effect that a spe‑
cific class C of transformations of the domain of a chosen mathematical model is 
such that, for every empirical model and every homomorphism h from the empirical 
model to the numerical model: (i) the result of composing h with any transforma‑
tion in C yields a novel homomorphism from the empirical model to the numeri‑
cal model; and (ii) every homomorphism f from the empirical model to the chosen 
numerical model is identical to the result of composing h with some transformation 
c in C.

Given such a class C of transformations of the domain of the numerical model, 
it is possible to discern the limits of surrogative reasoning performed in terms of a 
scale ⟨�,�, h⟩ . Only the mathematical relations which are invariant under all trans‑
formations in such a class C are meaningful irrespective of the choice of scale.

4.2  A Measurement Theory for ��

We now offer a measurement theory for the �� theory by proving both a representa-
tion theorem and a uniqueness theorem in the context of ���.

The mathematical model which will be used to represent facts about marginal 
and large difference—the representative model – exhibits, in a sense to be explained 
below, a structure akin to the structure of countable nonstandard models of arith‑
metic. Given a scale ⟨�,�, h⟩ with � a model of �� , h(x) may be described as the 
degree of R�‑ness of x in ⟨�,�, h⟩ , for each x ∈ D� . For instance, when T stands 
for the taller than relation, h(x) is the degree of tallness of x in the scale ⟨�,�, h⟩ , 
for each x ∈ D�.

We start by defining our representative mathematical model for the �� theory.

Definition 4.3 (Representative model) The representative model ℜ∗ is a quadruple 
ℜ∗ = ⟨Dℜ∗ ,Rℜ∗ ,Mℜ∗ , Lℜ∗⟩ where: 

(i)  Dℜ∗ = {⟨i, j⟩ ∶ i ∈ ℚ and j ∈ ℤ};
(ii)  Rℜ∗ (⟨a, b⟩, ⟨c, d⟩) iff a < c , or a = c and b < d;
(iii)  Mℜ∗ (⟨a, b⟩, ⟨c, d⟩) iff a = c and b < d;
(iv)  Lℜ∗ (⟨a, b⟩, ⟨c, d⟩) iff a < c.

The representative model may be conceptualised as divided into countably 
many blocks, arranged as the rational numbers, each of which composed of 
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countable many elements, arranged as the integers. That is, a pair of a rational 
number and an integer may be understood as a coordinate; the rational number 
singles out a block in ℜ∗ and the integer singles out a location within that block.

This structure is very close to the structure of countable nonstandard models 
of arithmetic. For our purposes, the main difference between the two structures 
is that in (countable) nonstandard models of arithmetic the previously mentioned 
blocks have appended to them a first block consisting of countably many loca‑
tions arranged as the natural numbers (Fig. 3).

In Figure  3 we have that m and n share the same first coordinate and so 
Mℜ∗ (m, n) , while we have both Lℜ∗ (m, p) and Lℜ∗ (n, p).

As should be clear, the representative model ℜ∗ has the same signature as that 
of any model of the �� theory. Observe also that ℜ∗ is countable. Accordingly, our 
representation theorem will only concern countable models of ��.7

For the purposes of our representation theorem, we will impose a further restric‑
tion on models of �� . In order to introduce this restriction, we will first define (rela‑
tive to models in the signature of �� ) the notion of weakly marginal succession.

Definition 4.4 (Weakly marginal succession) For every model � = ⟨D�,R� , 
M�, L�⟩ and all x, y ∈ D� , y is a weakly marginal successor of x in � , denoted 
S�(x, y) , if and only if both 

(i)  M�(x, y);
(ii)  ∀z ∈ D�(M�(x, z) ⇒ ¬M�(z, y)).

Fig. 3  Representative model

7 The existence, in ��� , of a definable, countably saturated proper elementary extension of the reals was 
shown in Kanovei and Shelah (2004).
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That is, for y to be a weakly marginal successor of x it must be the case that x is 
marginally smaller than y and that if x is marginally smaller than some z, then z is 
not marginally smaller than y.

The extra restriction on models of �� that we will impose is that they be finitely 
marginal.

Definition 4.5 (Finite marginality) A model � = ⟨D�,R�,M�,L�⟩ is finitely 
marginal if and only if:

That is, a model is finitely marginal just in case, whenever x is marginally smaller 
than y, there is a finite chain of weakly marginal succession between x and y.

On the condition that the models of �� are both countable and finitely marginal, 
our representation theorem ensures the existence of a homomorphism h yielding 
a representation, in ℜ∗ , of the structure of marginal and large difference, as these 
notions are axiomatised by the �� theory.

Specifically, an object x is marginally smaller than an object y if and only if 
their images under h belong to the same block and the location of h(x) in that block 
comes before the location of h(y) in that block—i.e. if and only if h(x) = ⟨a, b⟩ , 
h(y) = ⟨c, d⟩ , a = c , and b < d , for some a, b, c, d. Moreover, an object x is largely 
smaller than y if and only if h(x) belongs to a block which comes before the block 
to which h(y) belongs—i.e. if and only if h(x) = ⟨a, b⟩ , h(y) = ⟨c, d⟩ , and a < c , for 
some a, b, c, d. In this way, blocks are arranged in a sort of 2‑dimensional lattice 
where “horizontal” differences (i.e. differences along the first coordinate) are large 
and fixing a “column” (i.e. an element in the first coordinate) the “vertical” differ‑
ences (i.e. differences along the second coordinate) are marginal.

The proof of the representation theorem appeals to the following notion of 
indiscernibility.

Definition 4.6 (Indiscernibility) For every model � = ⟨D�,R�,M�, L�⟩ , and all 
x, y ∈ D� , x and y are indiscernible in � , denoted x ∼� y , if and only if ¬(xR�y) 
and ¬(yR�x).

That is, x and y are indiscernible just in case none of them is R�‑related to the 
other.

Theorem  4.7 (Representation theorem) For every countable and finitely marginal 
��‑model � = ⟨D�,R�,M�, L�⟩ , there is a homomorphism h from � to ℜ∗.

Proof Assume that � is a countable and finitely marginal model of �� . Since � is 
countable, let o1, o2, o3 … be a list of its elements. We will now inductively define 
a function h mapping each element o of D� to some element h(oj) of Dℜ∗ . We let 

∀x, y ∈ D�(M�(x, y) ⇒ ∃n ∈ ℤ
+∃z1 … zn

(x = z1 ∧ S�(z1, z2) ∧ … ∧ S�(zn−1, zn) ∧ zn = y)).
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h(o1) = ⟨0, 0⟩ . Now, assume h(oj) is already defined, for all j < k . We will now 
define h(ok) . There are four cases to consider:8

(1) There is some j < k such that ok ∼� oj;

• In such case, let h(ok) = h(oj).

(2) Either a) M�(oj, ok) or b) M�(ok, oj) , for some j < k;

• 2a): Pick the biggest j < k such that M�(oj, ok) . Then, let 
h(ok) = ⟨�1(h(oj)),�2(h(oj)) + n⟩ , where n is the number of marginal differ‑
ence‑steps that it takes to get from oj to ok—we know that there is such a 
number, since � is finitely marginal.

• 2b): h(ok) is defined in the obvious dual manner.

(3) Either a) L�(ok, oj) for all j < k ; or b) L�(oj, ok) , for all j < k;

• 3a): Pick the biggest j < k such that R�(oj, oi) , for all i < k . Let 
h(ok) = ⟨�1(h(oj)) − 1, 0⟩.

• 3b): h(ok) is defined in the obvious dual manner.

(4) We have that, for all j < k , oj ∈ {u ∶ L�(u, ok)} , or {u ∶ L�(ok, u)} , with both 
sets finite and nonempty.

• Pick the biggest j < k such that 𝜋1(oi) < 𝜋1(oj) , for all i < k such that 
oi, oj ∈ {u ∶ L�(u, ok)} . Similarly, pick the biggest l < k such that 
𝜋1(ol) < 𝜋1(oi) , for all i < k such that ol, oi ∈ {u ∶ L�(ok, u)} . Then, let 
h(ok) = ⟨

�1(h(oj))+�1(h(ol))

2
, 0⟩.

We now need to show that h is a homomorphism from � into ℜ∗ . But it should 
be clear that it is, as the construction of h guarantees that the function h preserves 
all of R� , M� and L� .   ◻

So far, we have established that there is a representation, in ℜ∗ , of any (count‑
able and finitely marginal) model of �� . Our next result clarifies to what extent 
such a representation is unique.

First consider the following class of transformations of ℜ∗.

Definition 4.8 (Cautiously monotone-increasing transformation) For every subset X 
of ℚ × ℤ , a function � ∶ X → ℚ × ℤ is a cautiously monotone-increasing transfor‑
mation if and only if, for all x ∈ ℚ and all y ∈ ℤ such that ⟨x, y⟩ ∈ X:

where: 

�(⟨x, y⟩) = ⟨f (x), gx(y)⟩,

8 Observe that �1 and �2 are projections, i.e. functions mapping each pair to, respectively, its first mem‑
ber and its second member.
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(i)  f ∶ {�1(x) ∶ x ∈ X} → ℚ is a monotone‑increasing transformation (i.e. 
∀x, y ∈ {𝜋1(x) ∶ x ∈ X}(x < y ⇔ f (x) < f (y)))

(ii)  g is a function with domain {�1(x) ∶ x ∈ X} such that, for every 
x ∈ {�1(x) ∶ x ∈ X} , gx ∶ {y ∶ ⟨x, y⟩ ∈ X} → ℤ is a monotone‑increasing 
transformation.

Cautiously monotone‑increasing transformations may thus be conceived as 
pairs of a monotone‑increasing function f on the rational numbers and a collec‑
tion G of monotone‑increasing functions on the integers, with each member y of 
G being indexed by a rational. That is, y = gx , for some rational x. Accordingly, a 
cautiously monotone‑increasing transformation is a function mapping a pair ⟨a, b⟩ 
to a pair ⟨f (a), ga(b)⟩ , where, for all rationals a and c, a < c iff f (a) < f (c) , and for 
all integers b and d, b < d iff ga(b) < ga(d) , for all rational numbers a.

To understand what cautiously monotone‑increasing transformations do, f may 
be conceptualised as a function mapping a block to a different block, with the 
proviso that a block x comes before a block y if and only if block f(x) comes 
before block f(y). Moreover, g may be conceptualised as a function mapping a 
location l (in block x) to a location gx(l) (in block f(x)), with the proviso that a 
location l in a block x comes before another location j in x if and only if location 
gx(l) (in block f(x)) comes before location gx(j) (in block f(x)).

By indexing the monotone‑increasing functions on the integers with rational num‑
bers it is guaranteed that, if a ≠ c , then the only differences between ⟨a, b⟩ and ⟨c, d⟩ 
which matter are precisely those between a and c. Differences between b and d are 
spurious. That is, when blocks are distinct, specific differences having to do with the 
locations within each block are spurious.

We now have all the ingredients needed for our uniqueness theorem. The first part of 
the theorem states that the class of homomorphisms by which a given model � of the 
�� theory may be represented in ℜ∗ is closed under cautiously monotone‑increasing 
functions. The theorem’s second part ensures that this closure exhausts the ways of rep‑
resenting � in ℜ∗.

Theorem  4.9 For every model � of the �� theory, and every homomorphism h 
from � to ℜ∗

 (i) if � is a cautiously monotone‑increasing transformation, then �◦h is a homo-
morphism from � to ℜ∗;

 (ii) if u is a homomorphism from � to ℜ∗ , then there is a cautiously monotone‑
increasing transformation � such that u = �◦h.

Proof (i)  Suppose that � is a cautiously monotone‑increasing transformation. 
Using Theorem 4.7 and the fact that � is cautiously monotone‑increasing 
we derive that 
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 Hence M𝔐(a, b) iff Mℜ∗ ((�◦h)(a), (�◦h)(b)).

  Similarly, 

 Hence 

 Finally, 

 Hence R�(a, b) iff Rℜ∗ (�◦h(a), �◦h(b)) , and we conclude that �◦h is a homomor‑
phism from � to ℜ∗.

(ii)  Suppose that u is a homomorphism from � to ℜ∗ . We define a function 
� ∶ {h(x) ∶ x ∈ D𝔐} → Dℜ∗ in the natural manner: 

 Observe that � is well‑defined. For suppose that �(x) ≠ �(y) . Then, �(h(z)) ≠ �(h(w)) , 
for some z such that h(z) = x and w such that h(w) = y . So, u(z) ≠ u(w) . Hence, 
z ≠ w , since u is a homomorphism Rℜ∗ (u(z), u(w)) and ¬R�(z,w) or Rℜ∗ (u(w), u(z)) 
and ¬R�(w, z) . So, x = h(z) ≠ h(w) = y , since h is a homomorphism.

M𝔐(a, b) iff Mℜ∗ (h(a), h(b))

iff 𝜋1(h(a)) = 𝜋1(h(b)) and 𝜋2(h(a)) < 𝜋2(h(b))

iff f (𝜋1(h(a))) = f (𝜋1(h(b))) and g𝜋1(h(a))(𝜋2(h(a))) < g𝜋1(h(b))𝜋2(h(b))

iff 𝜋1(𝜏(h(a))) = 𝜋1(𝜏(h(b))) and 𝜋2(𝜏(h(a))) < 𝜋2(𝜏(h(b)))

iffMℜ∗ (𝜏(h(a)), 𝜏(h(b)))

iffMℜ∗ ((𝜏◦h)(a), (𝜏◦h)(b)).

L𝔐(a, b) iff Lℜ∗ (h(a), h(b))

iff 𝜋1(h(a)) < 𝜋1(h(b))

iff f (𝜋1(h(a))) < f (𝜋1(h(b)))

iff 𝜋1(𝜏(h(a))) < 𝜋1(𝜏(h(b)))

iff Lℜ∗ ((𝜏◦h)(a), (𝜏◦h)(b)).

L𝔐(a, b) iff Lℜ∗ (�◦h(a), �◦h(b)).

R𝔐(a, b) iff M𝔐(a, b) or L𝔐(a, b)

iff Mℜ∗ ((�◦h)(a), (�◦h)(b)) or Lℜ∗ ((�◦h)(a), (�◦h)(b))

iff Rℜ∗ (�◦h(a), �◦h(b)).

∀x ∈ {h(x) ∶ x ∈ D�}(�(h(x)) = u(x)).
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  We show that � is cautiously monotone‑increasing. For each x ∈ D� , let 

 and 

 We have that 

 which shows that f is monotone‑increasing. The fact that g�1(h(x)) is monotone‑
increasing is shown in an analogous way.

  ◻

4.3  Nonstandard Representation

Let us now return to the relationship between ℜ∗ and nonstandard mod‑
els of arithmetic. Observe that any countable nonstandard model of arithmetic 
� = ⟨D�, st�,<�,+�, ⋅�⟩ is of order type � + (�∗ + �) × � , where � is the order 
type of the natural numbers, �∗ is the dual order of � and � is the order type of 
the rationals. Now, let �‡ = ⟨D�‡ ,<�‡ ,≺�‡ ,⊏�‡⟩ , where: 

(1) � is a nonstandard model of arithmetic such that D�‡ = D� ;
(2) <�‡=<�;
(3) ≺�‡ (x, y) iff � ⊨ ∃n(st(n) ∧ y = x + n) , and
(4) ⊏�‡ (x, y) iff x <� y and � ⊨ ¬∃n(st(n) ∧ y = x + n).

A routine proof reveals that, for every nonstandard model � of arithmetic, we 
have 𝔑‡ ≅ ℜ = ⟨Dℜ,Rℜ,Mℜ, Lℜ⟩ , where: 

(1) Dℜ = ({−∞} × ℕ) ∪ (ℚ × ℤ)

(2) Mℜ(⟨x, y⟩, ⟨z, u⟩) iff x = z and y < u;
(3) Lℜ(⟨x, y⟩, ⟨z, u⟩) iff x < z;
(4) Rℜ(⟨x, y⟩, ⟨z, u⟩) iff Mℜ(⟨x, y⟩, ⟨z, u⟩) or Lℜ(⟨x, y⟩, ⟨z, u⟩).

It should be clear that ℜ is a model just like ℜ∗ except for one single difference, 
specifically, that ℜ appends to the blocks of ℜ∗ an initial block, indexed by −∞ , 

f (�1(h(x))) = �1(�(h(x))) = �1(u(x))

g�1(h(x))(�2(h(x))) = �2(u(x))

𝜋1(h(x)) < 𝜋1(h(y)) iff Lℜ∗ (h(x), h(y))

iff L𝔐(x, y)

iff Lℜ∗ (u(x), u(y))

iff 𝜋1(u(x)) < 𝜋1(u(y))

iff 𝜋1(𝜏(h(x))) < 𝜋1(𝜏(h(y)))

iff f (𝜋1(h(x))) < f (𝜋1(h(y))),
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whose elements are arranged as the natural numbers. That is, it should be clear 
that ℜ∗ is nothing but the model ℜ|ℚ×ℤ—the restriction of the model ℜ to ℚ × ℤ.

The following is an immediate corollary of our representation theorem:

Corollary 4.10 (Representation) For every countable and finitely marginal model � 
of the �� theory, there is a homomorphism from � to ℜ , and so also to �‡ , for 
every countable nonstandard model � of arithmetic.

The following uniqueness theorem, similar to Theorem 4.9—except that now the 
notion of a cautiously monotone-increasing transformation is expanded to arbitrary 
subsets of ({−∞} × ℕ) ∪ (ℚ × ℤ) in the natural way –, is also available.

Theorem 4.11 For every model � of the �� theory, and every homomorphism h 
from � to ℜ

 (i) if � is a cautiously monotone‑increasing transformation, then �◦h is a homo-
morphism from � to ℜ;

 (ii) if u is a homomorphism from � to ℜ , then there is a cautiously monotone‑
increasing transformation � such that u = �◦h.

We spare the reader with the details, since the proof of Theorem 4.11 adds noth‑
ing to that of Theorem 4.9.

Finally, consider the expansion of the notion of a cautiously monotone‑increasing 
transformation to nonstandard arithmetical models:

Definition 4.12 (Nonstandard cautiously monotone increasing transformation) For 
every countable nonstandard model of arithmetic � , and every subset X of D� , a 
function � ∶ X → D� is a cautiously monotone-increasing transformation if and 
only if both 

(i)  ∃n(st(n) ∧ y = x + n) if and only if ∃n(st(n) ∧ �(y) = �(x) + n);
(ii)  x ≤ y ∧ ¬st(y − x) if and only if f (x) ≤ f (y) ∧ ¬st(f (y) − f (x)).

Then, we have the following corollary of Theorem 4.11.

Corollary 4.13 For every countable nonstandard arithmetical model � , every model 
� of the �� theory, and every homomorphism h from � to �‡

 (i) if � is a cautiously monotone‑increasing transformation, then �◦h is a homo-
morphism from � to �‡;
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 (ii) if u is a homomorphism from � to �‡ , then there is a cautiously monotone‑
increasing transformation � such that u = �◦h.

4.4  Spurious Structure

As is revealed by Theorem 4.7, the initial blocks of ℜ and of countable nonstandard 
arithmetical models bring with them spurious structure vis‑à‑vis the representation 
of the facts about marginal and large difference captured by the �� theory (even 
when only countable and finitely marginal models of the theory are considered). It 
was for this reason that we began by offering representation and uniqueness theo‑
rems with respect to ℜ∗ rather than with respect to ℜ , or to a countable nonstandard 
arithmetical model.

Still, nonstandard arithmetical models are better equipped than their standard 
counterparts for representing in a natural manner the facts about marginal and large 
difference captured by the �� theory. Specifically, given the natural interpretation of 
the weak order R as less than, standard arithmetical models are incapable of repre‑
senting the existence of an omega‑sequence of individuals each of which is margin‑
ally greater than the one before it, with further (largely) greater individuals coming 
after all those individuals in the omega‑sequence. By contrast the existence of an 
omega‑sequence of individuals followed by largely greater individuals can be rep‑
resented in nonstandard models via those models’ less than and existence of a non-
standard difference relations.

The less than and existence of a nonstandard difference relations of nonstandard 
arithmetical models are also capable of representing a dense structure of large dif‑
ferences. By contrast, the relation of existence of a standard difference is incapable 
of representing a dense structure of marginal differences. Accordingly, ℜ∗ itself pos‑
sesses spurious structure, even disregarding its countable character.

It is because nonstandard arithmetical models and the model ℜ∗ all possess this 
spurious structure that we restricted our attention to finitely marginal models of �� . 
The representation of a dense structure of marginal difference thus requires models 
other than ℜ∗ . One natural option would be to further exploit the dense structure of 
the rationals by considering a model � just like ℜ∗ except that the domain of this 
new model consists of ℚ ×ℚ , rather than of ℚ × ℤ.

It should be easy to see that our construction of a homomorphism mapping any 
countable and finitely marginal model of �� to ℜ∗ could then be adapted to con‑
struct a homomorphism mapping any given countable (and possibly not finitely 
marginal) model of �� to this new model � . The proof of the uniqueness theorem 
would be left unchanged.

We will spare the reader with the details. We do wish to point that while we have 
not considered uncountable models of �� , we conjecture that the structure of mar‑
ginal and large differences of at least some such models is representable in non‑
standard analytical models. We leave investigation of this issue for future work.
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5  Infinite Soritical Series and Dean’s NeoFeasibilism

So far, we have formulated the �� theory of marginal and large difference, and 
shown that it can be represented in rich mathematical models with a structure akin 
to the order structure of nonstandard models. In the next sections we will consider 
three philosophical theories on vagueness and the Sorites—and show how the �� 
theory constitutes part of their underlying abstract structure.

We will start with Dean’s (2018) neofeasibilism about vagueness. Before doing 
so, and because it will be relevant to the discussion in this section, we want to 
start by pointing out one way of making the assumptions of the Sorites paradox 
jointly consistent, while formulating it in a manner congenial to—but not man‑
dated by—the �� theory. For concreteness, we will continue to focus on a Soriti‑
cal paradox for ‘bald’.

Some natural assumptions, given the resources of the �� theory, concerning 
the version of the Sorites paradox which concerns ‘bald’ are the following: 

Largely balder:  The last element of the Soritical series, e , is largely balder than 
b , the series’ first element.

baldness:  For every x, x is bald if and only if e is not largely balder than x.

Then, it is a straightforward consequence of the �� theory that everything 
balder than e will count as bald. More interestingly, the following tolerance 
principles for baldness are straightforward consequences of the �� theory and 
baldness. 

Tolerance:  (i)  ∀x, y((¬B(x) ∧M(x, y)) ⇒ ¬B(y))

  If x isn’t bald and y is marginally balder than x, then y isn’t bald.

(ii)  ∀x, y((B(x) ∧M(y, x)) ⇒ B(y))

  If x is bald and x is marginally balder than y, then y is bald.

Relatedly, it is prima facie reasonable to offer the following characterisation of 
succession in a Soritical series A. 

Succession:  y succeeds x in series A if and only if 
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  (i)  y is marginally greater than x with respect to order R;

(ii)  For every element z in series A such that R(x, z), R(y, z) or else y = z.

succession implies, in the context of our Soritical series for ‘bald’, the follow‑
ing fact about marginality: 

Not bald enough:  If x has only 1 hair less than y, then x is marginally balder than 
y.

not bald enough presumably underlies our support for the inductive premise. 
Indeed, the inductive premise for ‘bald’ is a joint consequence of not bald enough, 
tolerance and baldness. Now, given an infinite Soritical series, the assumptions that 
(i) b isn’t bald, (ii) e is bald, and (iii) the inductive premise is true are jointly consist-
ent. So, Soritical reasoning is not fallacious provided that the Soritical series for 
‘bald’ is infinite.

The following picture (Fig. 4) might be helpful, where the conventions in place 
are the same as those in Figure 1:

In this picture b represents the first element in the Soritical series for ‘bald’, e its 
last element, with every element between b and e also being a member of the series. 
By baldness: b , m and n are all not bald, since e is largely balder than each one of 
them; and o, p and e are all bald, since none is largely balder than e . As the picture 
reveals, each one of the nonbalds is “infinitely distant” from each bald.

The observation that the premises of the Sorites paradox are jointly satisfiable 
provided that the soritical series is infinite will be key in Dean’s (2018) neofeasibil-
ist theory of vagueness. In order to understand Dean’s neofeasibilism it will be help‑
ful to start by briefly presenting the feasibilist theory of vagueness.

According to feasibilists the premises of the conditional sorites paradox are 
almost consistent: even if inconsistent, no derivation of a contradiction from those 
premises is feasible. By ‘the conditional Sorites’ is meant that version of the Sori‑
tes paradox which has among its premises conditionals asserting, for each member 
of the Soritical series except the last one, that if it has the relevant vague property, 
then its successor also has it. According to feasibilists, no derivation of a contradic‑
tion from the conditional form of the sorites paradox is feasible owing to the para‑
dox involving too many premises. To give just one example, it is not uncommon 
for 1, 000, 000 to be given as the number of hairs of the first element of a Soritical 
series for ‘bald’ (its last element having 0 hairs).

Fig. 4  Soritical series for ‘bald’
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For reasons that we will not revisit here, Dean finds feasibilism about vague‑
ness unsatisfactory. In its place he proposes the neofeasibilist theory of vagueness.9 
Dean’s feasibilism consists of (at least) the following three components:10

(i)  A reductionist view on vague predicates according to which satisfaction of 
any vague predicate supervenes on wholly precise matters. For instance, satis‑
faction of the predicate ‘is bald’ supervenes on hair number.

(ii)  The view that the numbers used to give extremal values in the Sorites paradox 
actually denote infinite numbers. For instance, ‘1, 000, 000’, as used to denote 
the number of hairs of the first element of the Soritical sequence for ‘bald’, 
actually denotes, according to Dean, an infinite number in a nonstandard 
arithmetical model. Without going into the details, Dean’s reasoning is that 
the extremal values for a number of predicates are offered without any empiri‑
cal corroboration or consideration of their numerical properties. Rather, they 
have been chosen because they are safe—likely to be agreed upon. But it is 
their safety which turns out to suggest, by Dean’s lights, that they are infinite. 
They are safe precisely because they are “infinitely distant” from the other 
extreme. For instance, the denotation of ‘1, 000, 000’ would be “infinitely dis‑
tant” from 0, a safe number of hairs for counting as bald.

(iii)  The view that the premises of the Sorites paradox are jointly consistent, even 
though adjacent members in a Soritical series differ by some fixed precise 
amount (e.g., exactly one hair, in the case of ‘bald’)—since the first and last 
elements of a Soritical series are “infinitely distant”.11

As should be clear, the �� theory constitutes part of the underlying abstract 
structure of the neofeasilibist theory of vagueness. For concreteness, let us focus on 
the predicate ‘is bald’. Then: (i) the partial order relation R may be interpreted as 
‘balder than’; (ii) marginally smaller may be interpreted as having a finite positive 
difference in number of hairs; and (iii) largely smaller may be interpreted has hav‑
ing an infinite positive difference in number of hairs. This interpretation of the �� 
theory fits with the one mentioned at the beginning of this section. Indeed, under the 
interpretation just given, neofeasibilists would not be opposed to the theses largely 
balder, baldness and not bald enough. And, as shown before, in the context of the 

9 A view quite similar to Dean’s feasibilism is put forward by Itzhaki, (2021, Sect. 5). Given their simi‑
larities, we will here focus on a different view of Itzhaki’s, the theory of nonstandard heuristics, as this 
latter theory affords a different interpretation of the �� theory.
10 Dean’s views on versions of the Sorites paradox involving phenomenal predicates (e.g., ‘looks red’, 
‘tastes sour’, etc.) is somewhat different. For simplicity, we focus on neofeasibilism as it concerns ‘ordi‑
nal predicates’, where these are predicates associated with sortal units (e.g., a single hair, in the case of 
‘bald’, and a single grain, in the case of ‘heap’).
11 When dealing with phenomenal predicates (see fn. 10), Dean advocates not that the first and last ele‑
ments in a Soritical series are infinitely distant, but rather that they differ by an infinitesimal quantity.
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�� theory, these principles imply both tolerance and the inductive premise—prin‑
ciples to whose truth neofeasibilists are committed.

Furthermore, our representation theorem (or a generalization of this result) can 
presumably be deployed to show that vague predicates are appropriately represented 
by structures of the sort Dean appeals to, and a generalization of our uniqueness the‑
orem can be deployed to show the extent to which such representations are unique. 
So, the �� theory can indeed be seen as constituting part of the abstract structure 
underlying Dean’s theory.

While the underlying abstract structure of Dean’s theory is given, at least in part, 
by the �� theory, it is not the only theory of vagueness for which this is the case. In 
particular, such a theory need not be committed to soritical series having infinitely 
many elements. In the next couple of sections we consider two theories which differ 
from neofeasibilism in this and other respects, and whose underlying abstract struc‑
ture is also given by the �� theory.

6  Itzhaki’s Theory of Nonstandard Heuristics

As we have just seen, tallness and succession yield a consistent set of premises when 
Soritical series consisting of infinitely many objects are considered. Notwithstanding, 
tallness and succession fail to yield a consistent set of premises when Soritical series 
consisting of only finitely many objects are considered. Given this observation, what 
resolutions of the more standard, finite versions of the Sorites fit with the �� theory?

The resolutions of the paradox that we will consider involve rejecting the truth 
of the inductive premise in Soritical scenarios. Since rejecting the inductive prem-
ise arguably amounts to accepting the prima facie implausible claim that there is a 
sharp boundary between those objects in the series that fall under a vague predicate 
T and those that do not, four questions naturally arise:12

• The semantic question: How is the claim that there are sharp boundaries con‑
sistent with the existence of borderline cases? What is a borderline case, given 
that there are sharp boundaries?

• The epistemological question: If there is a sharp boundary, why are we unable 
to identify the point at which that boundary is located even when the relevant 
facts all seem to be known?

• The psychological question: Why are we inclined to accept the inductive prem-
ise, if it is false? Why are we inclined to think that the cut‑off point between the 
Ts and the not‑Ts is not at any particular point in the series?

• The metaphysical question: If there is a cut‑off point, what are the facts about 
the use of the vague predicate T, or about the things to which T is applied, that 
ground the fact that the cutoff point is where it is?

While an all‑encompassing theory of vague phenomena will have satisfactory 
answers to all these questions, our present focus will mainly be on the psychological 

12 See Fara (2000) and Stalnaker (2018).
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question. One available approach is the one suggested in Itzhaki, (2021, Sect.  6). 
Itzhaki’s resolution is based on the idea that we heuristically attribute to objects fic-
tional magnitudes with a nonstandard structure in order to ‘omit irrelevant informa‑
tion’. According to him Itzhaki, (2021, p. 24):

Every forest has an exact number of trees. The fact that our mental representa‑
tion of a forest is that of an arbitrarily large number of trees, is just a cognitive 
tool to help us reason about concepts of varying or unknown size without hav‑
ing to refer to their actual size.
Similarly, there are no perfectly negligible quantities. The representation of 
small quantities as negligible is a tool for alleviating cognitive load by omit‑
ting information that is judged irrelevant in the context.
… That is, if one takes the induction premise as referring to actual individu‑
als, rather than to ideal representations, then one must relate the idealised rep‑
resentation to actual individuals according to some heuristic principle. But 
a heuristic principle is not universally true, and therefore certain conditions 
must exist for it to apply. To accept this interpretation of the induction prem‑
ise is to deny its validity as a logical principle, because it does not hold uni‑
versally.

Just as Dean’s neofeasibilism, Itzhaki’s nonstandard heuristics theory is reductionist 
about vagueness, in that satisfaction of a vague predicate supervenes on wholly pre‑
cise matters. In addition, it is composed of the following elements: 

(i)  The view that vague properties have as correlates idealized cognitive 
representations;

(ii)  The view that idealized representations of vague properties satisfy an ideal‑
ized version of the inductive premise;

(iii)  The view that representations of vague properties are related to their nonide‑
alized correlates via heuristic principles.

Itzhaki’s account appeals to hyperreal numbers, a proper extension of the real 
numbers that includes nonstandard elements, in particular infinitesimals and infinite 
numbers.13 To give an example (one going beyond what Itzhaki was able to offer 
by way of clarifying his theory of nonstandard heuristics), Itzhaki takes satisfac‑
tion of ‘bald’ to supervene on a person’s number of hairs.14 He furthermore seem‑
ingly takes baldness to have a cognitive correlate, baldness∗ . Not to be bald∗ is to 

13 See, e.g. (Goldblatt, 1998).
14 Note that Itzhaki’s semantics for gradable adjectives—such as ‘bald’—is formulated in terms of infini-
tesimals. Our description of Itzhaki’s treatment of the #∗(⋅) function is actually closer to his treatment of 
collective nouns. For simplicity and ease of exposition, we have avoided reference to infinitesimals here.
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be assigned—by a cognitively real number‑of‑hairs∗ function #∗(⋅) mapping people 
to hyperreal numbers—H ± n hairs, for some finite positive integer n, and where H 
is a chosen infinite number. Itzhaki takes the function #∗(⋅) to behave as follows. It 
maps a person to the number of hairs it really has if that person is known to be bald. 
It maps a person to H if the person isn’t bald but not known not to be bald, and maps 
the person to H + m , where m is its real number of hairs, if the person is known not 
to be bald.

While Itzhaki offers no remarks on what is the exact form of the principle by 
which idealized representations are related to actual individuals, it is reasonable to 
think that it involves replacing thought about baldness by thought about baldness∗ . 
And indeed, the inductive premise is true if understood as concerning baldness∗ 
rather than baldness. So, Itzhaki’s answer to the psychological question is that the 
inductive premise (about baldness) seems true because the inductive premise (about 
baldness∗ ) is true, and we heuristically reason about baldness in terms of baldness∗ . 
Further, and just as it was the case with Dean’s neofeasibilism, all premises of the 
Sorites paradox are jointly satisfiable on Itzhaki’s theory provided that the Soritical 
series is infinite and that the paradox is understood as concerning baldness∗ rather 
than baldness. The picture we get is thus the following (Fig. 5):

It should be clear that the �� theory also constitutes part of the abstract structure 
of Itzhaki’s theory of nonstandard heuristics. It suffices to interpret (i) the partial 
order relation as the relation in which x and y stand when #∗(x) > #∗(y) , (ii) margin-
ally smaller than as the relation in which x and y stand when #∗(x) − #∗(y) is a finite 
positive integer; and (iii) largely smaller than as the relation in which x and y stand 
when #∗(x) − #∗(y) is an infinite positive integer. ‘Bald’ is then satisfied by all and 
only those people who are not largely smaller than any clear case of being bald—
such as someone without any hairs.

Relatedly, our representation theorem (or a generalization theoreof) may presum‑
ably be deployed in a defence of the claim that hyperreal numbers are indeed appro‑
priate for representing the structure of Itzhaki’s fictional magnitudes; and a generali‑
zation of our uniqueness theorem may presumably be appealed to in order to reveal 
the extent to which a representation of fictional magnitudes by hyperreal numbers is 
unique. For, as Itzhaki himself points out (Itzhaki, 2021, fn. 4), the hyperreal num‑
bers constitute just one of a number of mathematical structures which may be used 
to account for our heuristic reasoning involving vague predicates.

Fig. 5  Soritical series for bald‑
ness∗
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7  Nonstandard Primitivism

As previously mentioned, Dean and Itzhaki are reductionists about the satisfaction 
of vague predicates, in that they take their satisfaction to supervene on precise mat‑
ters. But one need not be a reductionist about vagueness.15 Furthermore, the avail‑
ability of a theory of the relations of marginal and large difference—the �� theory 
– affords the means for a preliminary sketch of an alternative primitivist theory of 
vagueness.

According to our proposed view, nonstandard primitivism, there are vague quan‑
tities out there in the world, over and above precise quantities. Their degrees are 
vague in that the having of such a degree by an entity is neither reducible to nor 
supervenient on the having of a precise degree by that entity. Further, there are mar-
ginally smaller than and largely smaller than relations between degrees of vague 
quantities. The obtaining of either one of these relations is also not reducible to nor 
supervenient on the obtaining of precise relations between precise degrees. Finally, 
according to nonstandard primitivism, marginally smaller and largely smaller than 
are appropriately axiomatized by the �� theory.

For instance, on the nonstandard primitivist theory in question, it is held that we 
have a hold on the relations of largely balder than and marginally balder than, and 
that these relations obey the principles of the �� theory. To be bald is not to be 
largely balder than some person with zero hairs.

To be sure, this primitivist theory need not be primitivist about balder than. It can 
still be that y is balder than x if and only if x has more hairs than y. What the theory 
is nonreductionist about are the notions largely balder than and marginally balder 
than, and the baldness degrees that these relate. Consequently, it is also nonreduc‑
tionist about the satisfaction of ‘bald’: its satisfaction supervenes not on the precise, 
but rather on facts concerning what is largely balder than anyone with zero hairs.

As should be clear, nonstandard primitivism immediately implies tolerance, 
and largely balder than. Yet, and by contrast with neofeasibilism, the nonstand-
ard primitivist theory now being sketched rejects succession and not bald enough. 
Indeed, this theory accepts the existence of versions of the Sorites paradox based 
on soritical series with finitely many elements, and advocates that in those cases the 
inductive premise is false.

While Itzhaki’s theory of nonstandard heuristics accounted for the inductive 
premise’s appeal by taking it to be confused with a true principle about our repre-
sentations, rather than about degrees that objects might really have, according to 
nonstandard primitivism the inductive premise’s appeal is explained not by a feature 
of our representations but by the fact that we are prone to confuse (really existing) 
marginal differences between (really existing) degrees of objects with difference by 
a fixed small precise amount. From the standpoint of nonstandard primitivists, these 
are not to be confused: marginal difference does not supervene on difference by any 
fixed precise amount.

15 For one very developed nonreductionist view on vagueness, see Bacon (2018).



542 B. Dinis, B. Jacinto 

It is true that the inductive premise is true of Itzhaki’s representations as well as of the 
vague degrees postulated by nonstandard primitivism. However, according to Itzhaki’s 
nonstandard heuristics, it is not the case that objects really have the degrees that we 
take them to have via our vague representations. By contrast, according to nonstand-
ard primitivism, objects really have vague degrees over and above precise degrees. So, in 
our view, neofeasibilism, nonstandard heuristics and nonstandard primitivism are indeed 
three distinct nonstandard approaches to vagueness.

Relevantly, nonstandard primitivism affords the resources for conceiving of bald-
ness degrees in two distinct ways. The first is the familiar one of taking baldness 
degrees to be 1‑1 correlated with hair number. The baldness degree of x is greater 
than that of y just in case x’s number of hairs is less than y’s.

The other way of conceiving of baldness degrees is afforded by the �� theory—
and complemented by our representation and uniqueness theorems. We might think 
of the quantifiers in terms of which the axioms of the �� theory are formulated 
as ranging, in the first instance over baldness degrees (now not to be explained in 
terms of precise properties), rather than as ranging over individuals. It is these bald‑
ness degrees which, in the first instance, stand in relations of marginal and large 
difference. The relations marginally balder than and largely balder than then obtain 
between individuals x and y if and only if x’s degree of baldness is marginally 
(respectively, largely) greater than y’s. Indeed, this is the nonstandard primitivist’s 
preferred way of conceiving the axioms of the �� theory, since it allows the theory 
not to be committed to there being infinitely many individuals in the first place.

Nonstandard primitivism thus affords the following picture of baldness and bald-
ness degrees (Fig. 6):

In this figure circles represent baldness degrees rather than individuals. 
Squares represent individuals and arrows map individuals to their baldness 
degrees. It can easily be appreciated that, according to nonstandard primitivism, 
if a baldness degree is a degree of a nonbald individual, then whatever baldness 
degree is marginally greater than it will itself be a baldness degree of a nonbald 
individual. But adjacent individuals in a Soritical series will not always both be 
bald or both be not bald. In the case of n and o, being one hair shorter does imply 
being largely balder. Accordingly, while n isn’t bald, o is.

The representation and uniqueness theorems then make it possible to use 
rational number‑integer pairs to speak of particular baldness magnitudes. From a 
nonstandard primitivist standpoint, and while we will not develop this view here, 
it is scales for baldness degrees understood in this nonreductionist manner that 
should be adopted in formulating degree‑based semantics for gradable adjectives, 
not scales given in terms of precise magnitudes such as hair number.

This is not the place to compare the relative merits of neofeasibilism, the the‑
ory of nonstandard heuristics, and nonstandard primitivism. For the present pur‑
poses, what is important to note is that the �� theory also constitutes part of 
the abstract structure of nonstandard primitivism. Thus, the �� theory is of wide 
applicability and explanatory power. As should be clear, at the moment our incli‑
nation is towards nonstandard primitivism. Yet, a case in its favour will have to 
wait for another occasion.
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8  Conclusion

Alongside the work in Dean (2018) and Itzhaki (2021), our paper constitutes 
a further attempt at clarifying in what way, and to what extent, reasoning with 
vague predicates resembles reasoning about nonstandard arithmetical and analyti‑
cal structures. Our first contribution has been to propose the �� theory of mar‑
ginal and large difference. Our second contribution has been a study of the math‑
ematical structures capable of representing it. In particular, we have demonstrated 
representation and uniqueness theorems revealing that specific mathematical 
structures are capable of representing the �� theory, and how unique that repre‑
sentation is. These results have shown that the structures capable of representing 
the �� theory are akin to the order structures of nonstandard models. A further 
result revealed that neither the (standard) natural numbers nor the (standard) real 
numbers are capable of representing the �� theory. Our third contribution has 
been to show how the �� theory provides part of the abstract structure of three 
philosophical theories of vagueness. Two of these consisted of theories already 
present in the literature: Dean’s neofeasibilist and Itzhaki’s theory of nonstand-
ard heuristics. The third theory – or a preliminary sketch thereof—was our own 
nonstandard primitivism about vagueness. This third contribution has revealed 
the �� theory’s wide applicability and explanatory power. In future work we plan 
to further develop the nonstandard primitivist theory, of which the �� theory is a 
central component.
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