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H I G H L I G H T S G R A P H I C A L  A B S T R A C T

• Amazon fires are linked to increased 
respiratory hospitalizations in Manaus.

• New ANN technology predicts health 
risks from fires one day in advance.

• Amazon fires have a negative impact on 
the health of people living in fire-prone 
regions.

• Early warnings could help to prevent 
fire-related health problems.

A R T I C L E  I N F O
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A B S T R A C T

Worldwide, smoke from forest fires has deleterious health effects. Even so, because of the complexity of fire 
mechanics, public health authorities face challenges in forecasting and thus mitigating population exposure to 
smoke. The population in the Amazon basin regularly suffers from fire smoke tied to agriculture and land-use 
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change. The people of Manaus, a city of two million in the center of the basin, suffer the consequences. The study 
herein evaluates the time lag between fire occurrence and hospital admission for cardiorespiratory illness. Un
derstanding the time lag is key to forecasting and mitigating the public health effects. The study approach is 
sequential application of four increasingly complex methods of machine learning to examine the relationships 
among black carbon concentrations, fire count, meteorology, and hospital admissions. The mean absolute per
centage error (MAPE) for predicting hospital admissions ranged from 27% to 38%. Furthermore, a one-day lag 
was observed between the detection of fires and the manifestations of respiratory health hazards. This finding 
suggests the potential for developing an early warning system, which could enable public health officials to issue 
advisories or implement preventive actions during the brief period before hospital admissions begin to rise. The 
findings have applicability not only to the population exposed to fires in the Amazon basin but also to pop
ulations where smoke is prevalent, notably increasingly in Australia, southern Europe, the western USA, southern 
Canada, and southeast Asia.

1. Introduction

Forest fires are a global concern. Consequences include severe air 
pollution episodes, human mortality, environmental damage, and sub
stantial economic loss (Wu et al., 2021). Human activities and climate 
change have led to heightened intensity, frequency, and duration of fire 
seasons. Approximately 200,000 forest fires are reported annually (Wu 
et al., 2021). Notably, the summer of 2022 witnessed record-breaking 
wildfire activity in the European Union and the United Kingdom, sur
passing the previous 15-year record (The Copernicus Programme, 
2022). Similarly, California experienced a record number of wildfires in 
2020, more than double the previous record (Safford et al., 2020). The 
severity of the 2019/2020 fire season in Australia was unprecedented. 
Over 23% of the temperate forest in southeastern Australia was affected 
(Abram et al., 2021).

The Amazon forest also faced an alarming increase in deforestation 
fires in 2019. At that time, the Brazilian government reversed commit
ments to control deforestation (Bowman et al., 2020). The state of 
Amazonas recording its highest fire count since 1998 in 2022 (INPE – 
National Institute for Space Research, 2023a) The impact on the Amazon 
ecosystem, known for its biodiversity and vast freshwater, is severe. 
However, studies on the effects of wildfire smoke in this region are 
limited due to the scarcity of air quality monitoring stations in the 
northern Amazon (Urrutia-Pereira et al., 2021). Forest fires contribute 
significantly to black carbon (BC) emissions. Black carbon in turn is part 
of airborne particulate matter (PM2.5) (Liakakou et al., 2020; Pani et al., 
2020).

Previous exposure assessment studies usually use PM concentration 
as a proxy for wildfire smoke (Black et al., 2017). And, there were few 
epidemiological studies of fire health effects prior to the last decade 
because of fire occurrence far from populated areas where air pollution 
levels were seldomly monitored (Cascio, 2018). More recently, Johnston 
et al. (2012) report that the overall premature mortality rate that can be 
attributed to wildfire smoke is 339,000 individuals globally each year. 
Nawaz and Henze (2020) found that Brazilian biomass burning emis
sions (mostly in Amazonia) accounted for a 74% increase in premature 
deaths. Alves et al. (2017) further demonstrated that biomass burning in 
the Amazon region leads to DNA damage and cell death in human lung 
cells. Recently, Prist et al. (2023) estimated that 500 cardiorespiratory 
infections per 100,000 inhabitants were related to forest fires in the 
Amazon. Further studies in the Amazon region confirm a positive cor
relation between wildfire smoke and an increase in the incidence of 
morbidity and mortality among vulnerable populations, including 
children and the elderly (Urrutia-Pereira et al., 2021; Nawaz and Henze, 
2020; Alves et al., 2017; Prist et al., 2023).

There are several methods widely used to assess exposure to wildfire 
smoke (Reid et al., 2016). The fires and non-fire days can be compared, 
the concentration of PM can be monitored or modeled, smoke indicators 
including counts and burned area from satellite observations can be 
used, and combination methods can integrate one or more of these ap
proaches. However, forewarning predictions of health risks based on fire 
episodes are scarce. If such forewarning were possible, the public, 

especially vulnerable populations, could take action to avoid smoke 
exposure. Similarly, healthcare professionals, hospital systems, and 
health insurers could integrate potential health impacts into day-to-day 
actionable planning (Cascio, 2018).

The present study, focusing on the impact of wildfire smoke on the 
health of the general population in the central Amazon, employs ma
chine learning to examine relationships among black carbon concen
trations, fire count, meteorology, and hospital admissions for 
cardiorespiratory illness. The use of artificial neural networks (ANNs) as 
machine-learning forecasting models could provide elegant and robust 
solutions for non-linear relationships among multiple variables and 
discontinuous datasets (Polezer et al., 2018; Araujo et al., 2020; Kachba 
et al., 2020; Kassomenos et al., 2011; Tadano et al., 2016, 2021a). The 
approach herein not only provides insights into the dynamics in the 
central Amazon but also contributes significantly to the global discourse 
on forest fires and their health implications.

2. Materials and methods

2.1. Sampling site

Manaus is a metropolitan area located in the central Amazon with a 
population of 2.3 million in 2021 (IBGE, 2023). In a subtropical 
monsoon climate, the average annual temperature is 27 ◦C, and the 
average relative humidity is 80% (INMET - National Institute of Mete
orology, 2018). The wet season lasts from November to May, and the dry 
season takes place from June to October. There is intermittent intrusion 
of regional and continental scale wildfire smoke, primarily during the 
dry season (Wu et al., 2019). The severe, episodic pollution strongly 
affects public health and hospital admissions. For this study, sampling 
campaigns took place from 2011 to 2013 (3◦ 5′43.94″S, 59◦59′25.56″W) 
and 2015–2016 (3◦ 6′12.5″S, 59◦58′55.8″W) in a central area of Manaus 
(Fig. 1). The obtained dataset of particulate matter (PM2.5) and black 
carbon (BC) had 785 samples collected over four years. Corresponding 
meteorological data were obtained from the Brazilian National Institute 
of Meteorology (INMET).

2.2. PM2.5, BC, and fire counts

PM2.5 was collected (24-h sampling) from Oct 2011 to July 2013 and 
from Aug 2015 to Aug 2016 using a low-volume Harvard impactor and 
37-mm polycarbonate filters. PM2.5 mass concentrations were deter
mined gravimetrically following the same procedure by Polezer et al. 
(2018), positioning the impactor 2 m height and using blank filters to 
track and reduce errors due to filter handling and transport. The BC 
fraction of the sampled PM2.5 was determined through transmittance at 
an 880 nm wavelength (infrared) (Sootscan optical transmissometer, 
model OT 21, Magee Scientific Company). The BC concentration and the 
daily fire count were used as proxy variables for wildfire smoke.

The variability of fire data around Manaus up to 500 km is quite the 
same, as shown in Fig. S1. In this sense, we chose to use the number of 
fires within 200 km around Manaus, 10 times the city’s average radium. 
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The fire data was obtained from the National Institute for Space 
Research (INPE – National Institute for Space Research, 2023a). The 
data is from the reference satellite (AQUA, which uses a MODIS sensor) 
(INPE – National Institute for Space Research, 2023b).

2.3. Hospital admissions

The health impacts accompanying wildfire smoke were evaluated 
using the Manaus hospital admission count for cardiorespiratory illness. 
Cardiorespiratory illness is widespread following exposure to fire smoke 
(Youssouf et al., 2014a). Hospital admission data across Oct 2011 to Aug 
2016 were obtained from the Brazilian Unified Health System for res
piratory diseases (RD) (International Classification of Diseases – ICD-10, 
codes J00 to J99) and cardiovascular diseases (CVD) (ICD-10, codes I00 
to I99) (DATASUS, 2019).

2.4. Machine learning

Machine learning was applied to examine the relationships among 
black carbon concentrations, fire count, meteorology, and hospital ad
missions. Explanatory variables (i.e., input variables) included daily BC 
concentration, mean temperature, mean relative humidity, precipita
tion, solar intensity, and the fire count. When dealing with air pollution 
epidemiological studies, it is common to observe a relation between air 
pollution concentration some days ahead of health outcomes, then it is 
crucial to consider a seven-day window when dealing with air pollution 
health impacts, as suggested by (Polezer et al., 2018; Araujo et al., 2020; 
Belotti et al., 2020a, 2020b; Tadano et al., 2012). Therefore, this study 
examined data from zero (lag 0) to seven-day lag (lag 7) after exposure 
to forest fires and BC concentrations.

Machine learning by artificial neural networks (ANN) performed the 
analysis. ANNs are nonlinear methodologies used to solve problems such 
as nonlinear mapping, forecasting, classification, and clustering, among 
others (Haykin, 2009). The ANN neurons are organized into layers, 
commonly named input, hidden (intermediate), and output layers 
(Siqueira et al., 2014). Four artificial neural networks architectures were 
sequentially applied, including so-called extreme learning machine 

(ELM), echo state network (ESN), multilayer perceptron (MLP) with one 
and two hidden layers (MLP-1 and MLP-2, respectively), and radial basis 
function network (RBF). ESN is a recurrent neural network, and the 
others are feed-forward neural networks (Haykin, 2009; Siqueira et al., 
2018). MLP and RBF are fully trained methodologies because all weights 
are adjusted. Two unorganized machines (UM) were also considered 
(ELM and ESN). UM tunes only the output layer, which confers a simple 
implementation and low computational cost.

The dry and wet season differed significantly from one another in 
terms of fire count, PM concentrations, and hospital admissions 
(Table 1). Therefore, the analyses were also conducted with and without 
a Z-score, which is a de-seasonalization technique. The goal was to 
evaluate if transformation into stationary dataset without seasonal 
components improves model performance (Siqueira et al., 2014, 2018, 
2023). The Z-score consists of subtracting the value of each sample from 
the mean and dividing the result by the standard deviation.

Statistics of the dataset used in the ANN analysis are listed in Table 1. 
For machine learning, the dataset was divided into three parts, including 
a training dataset (used to adjust the free parameters of the neural 
models; 585 samples), a validation dataset (to avoid overtraining; 100 
samples), and a test dataset (used to evaluate the performance of the 
proposed models; 100 samples). For each ANN, sixteen analyses (lag 
days × Z-score) were carried out including all inputs, excluding forest 
fire count, and excluding BC concentration for respiratory and cardio
vascular diseases, totaling 96 analyses peer ANN.

The performance of each neural network was evaluated based on the 
root mean square error between predicted and observed admissions in 
the test dataset. The mean absolute percentage error (MAPE) was also 
calculated. The cost function the ANNs minimize is the RMSE and, in the 
case in which different error metrics indicate distinct models as the best, 
the one with the lowest RMSE should be assumed as the best one (Araujo 
et al., 2020; Siqueira et al., 2014; Tadano et al., 2021b). MAPE indicates 
the absolute model performance relative to the observations of hospital 
admissions. It is important to highlight that error metrics from different 
datasets are not comparable.

The Friedman test was applied to assess if the error values were 
statistically different from each other, meaning one ANN performed 

Fig. 1. Sampling locations for 2011–2013 (3◦5′43.94″S, 59◦59′25.56″W) and 2015–2016 (3◦6′12.5″S, 59◦58′55.8″W). In counterclockwise direction, the four panels 
show progressively smaller scales from South America at the largest scale (top left), to Amazonas, to Manaus environs (corresponding to red box), to localized urban 
view of Manaus at the smallest scale (top right). (Google Maps). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web 
version of this article.)
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better than another. Details about the ANN designs and performances 
are in the Supplementary Material.

3. Results and discussion

Different approaches can be used to assess fire health risks: using 

monitored PM during fire events, PM data from chemical transport 
modeling, satellite smoke data (counts and/or burned area), comparison 
between smoky versus non-smoky days, self-questionnaire information, 
satellite data plus chemical transport modeling, and others (Reid et al., 
2016; Youssouf et al., 2014a, b).

Urrutia-Pereira et al. (2021), in reviewing biomass burning and 

Table 1 
Statistics of observations.

Variable Season Statistic 2011 2012 2013 2015 2016

Number of days in analysis wet ​ 45 115 114 34 135
​ dry ​ 13 123 48 72 86
PM2.5 (μg m− 3) wet max 19.4 30.0 68.7 24.9 16.2

min 4.3 1.7 0.8 4.8 1.9
avg 9.7 8.9 9.5 10.5 5.6
median 8.5 6.8 6.9 8.4 5.3

dry max 16.3 58.0 31.9 29.6 22.1
min 4.5 0.0 2.1 3.5 2.6
avg 10.8 11.6 10.8 11.5 7.7
median 8.9 10.0 9.0 8.5 7.0

BC (μg m− 3) wet max 4.7 5.6 4.7 3.4 3.7
min 0.4 0.4 0.4 0.7 0.6
avg 2.0 2.0 2.0 1.3 1.4
median 1.9 1.7 1.9 0.9 1.3

dry max 5.2 5.2 4.0 3.2 5.1
min 0.1 0.2 0.2 0.3 0.6
avg 2.2 2.3 1.8 1.3 2.0
median 1.8 1.9 1.7 1.2 1.7

Daily hospitalization count: respiratory disease a wet max 45 85 64 34 58
min 7 12 15 9 10
avg 26.36 31.67 34.51 22.18 27.78
median 25 27 34 23 26

dry max 34 49 51 37 63
min 19 14 18 8 9
avg 27.54 29.24 34.15 20.92 29.28
median 28 28 33 20 27

Daily hospitalization count: cardiovascular disease b wet max 37 40 37 30 32
min 9 5 8 10 5
avg 19.51 19.57 19.65 18.71 19.50
median 19 19 19 18 19

dry max 27 48 29 31 37
min 9 4 4 10 8
avg 18.08 20.58 17.52 18.65 19.15
median 18 20 18 19 19

Fire count wet ​ 153 375 30 295 166
dry ​ 100 1089 167 2298 377

a Source: J00 - J99 from ICD-10.
b Source: I00 to I99 from ICD-10.

Fig. 2. Forest fire count in a 200-km radius around Manaus for the two BC campaign periods (a) Oct 5, 2011 to Jul 26, 2013 and (b) Aug 15, 2015 to Aug 30, 2016 
(Andrade-Filho et al., 2013).
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human health in the Amazon rain forest, point out that studies related 
the effects of forest fire smoke in this region are limited due to a lack of 
air quality measurements in the northern region of Brazil. This is in 
accordance with Bowman et al. (2020), who point out that historical 
records of fire activity, even for simple metrics like area burned, are 
limited. To that end, a decision was made that the best available proxy 
for the studied region to compare the impact of fires on health in the 
Brazilian Amazon Forest is active fire hotspots as it captures the dy
namics of fires over time, a conclusion affirmed by Sant’Anna and Rocha 
(2023). Then, the fire count within 200 km around Manaus during the 
study period was used (INPE - National Institute for Space research, 
2023b) The dataset is plotted in Fig. 2. The year 2014 is missing because 
no BC sampling campaigns were carried out during that year, which 
prevented its inclusion in the analysis.

During the study period, the daily BC concentrations ranged from 
0.06 to 5.56 μg m− 3, with annual means varying from 1.29 to 2.28 μg 
m− 3 (Table 1). On days of severe episodic smoke, the BC concentration 
reached levels up to 2–3 times higher than the average levels observed 
during periods of urban pollution, with a maximum recorded concen
tration of 5.6 μg m⁻3.

Given the critical role of BC in our study, it is essential to acknowl
edge the complexities and challenges associated with its measurement. 
The mass absorption cross-section of BC, often employed to estimate BC 
mass from optical measurements, can vary significantly across different 
environments and conditions, leading to substantial uncertainty in 
quantification. This variability is further exacerbated by factors such as 
lensing effects and the mixing state of particles, particularly in scenarios 
involving biomass burning, as discussed in the works of White et al. 
(2016); Bond and Bergstrom (2006); Zhang et al. (2023). Furthermore, 
changes in particle size and morphology post-sampling can influence 
light absorption measurements, thereby impacting the accuracy of BC 
mass estimates. These challenges underscore the importance of careful 
interpretation of BC data in epidemiological studies like ours, where 
accurate exposure assessment is crucial for understanding health 
impacts.

The PM2.5 concentration ranged from 0.04 to 68.7 μg m− 3, with a 
daily average of 9.2 μg m− 3 and a standard deviation of 6.83 μg m− 3. For 
comparison, Table 2 lists values for studies in the Amazon region from 
literature. For the 2000’s, the literature observations agree with those of 
this study, considering the standard deviation. However, Artaxo et al. 
(2005) reported data for the 1990’s, during which PM2.5 concentrations 
were 3–6 times higher. In Rondônia state, records of 50–90 μg m− 3 were 
observed during the dry season from 2002 to 2009 (Andrade-Filho et al., 
2013). During fire episodes from Aug to Sep 2020, average daily PM2.5 
concentration were four to eleven times the National Ambient Air 
Quality Standards (NAAQS) in major cities in California (USA), Wash
ington (USA), and Oregon (USA) (Filonchyk et al., 2022). Notably, fire 
smoke is a global issue, and our finding will have applicability not only 
to the population exposed to fires in Manaus, but also to populations 
where smoke is prevalent, such as USA, southern Europe and others. 
Ahangar et al. (2021) considered eight cities along the South Coast Air 

Basin (USA) and analyzed the wildfire contribution to PM2.5 and its 
carbon content for 2008 to 2016. The authors analyzed the reduction in 
PM2.5 and BC annual averages when excluding the fire days. In the urban 
areas, the most significant difference was 7% for PM2.5 and BC in 2008. 
In remote regions, the differences were 4% for PM2.5 and 21% for BC in 
2016. For the present study, much larger reductions of 17% and 11% for 
PM2.5 and BC were observed, respectively, in 2012.

Fig. S2 shows the boxplot of BC percent of the total PM2.5 mass. The 
values ranged from 0.8 to 95.4%, with an average value of 23.0% and a 
standard deviation of 12.4%. The BC percent is above typical values of 
biomass burning in the Amazon rainforest (Urrutia-Pereira et al., 2021). 
Typically, 10–15% of PM2.5 composition from Amazonian wildfires is 
BC. The fire count on a single day ranged from 0 to 253 throughout the 
200 km region surrounding Manaus (Fig. 2). The fire count is at its 
highest during the dry season, with a record of 2,298 recorded in 2015.

As listed in Table 1, the fire count and BC concentrations do not 
correlate with cardiorespiratory data. Fig. S3 shows a dispersion dia
gram with Pearson correlation coefficients. The relation between BC, 
forest fire, and cardiorespiratory diseases is not linear, with Pearson 
correlation coefficients from − 0.16 (between respiratory hospitaliza
tions and the fire count) to 0.12 (between cardiovascular hospitaliza
tions and BC). For comparison, Andrade-Filho et al. (2013) reported 
Pearson correlation coefficients of − 0.079 between respiratory hospi
talizations and fire count. The Spearman correlations are between − 0.21 
and 0.13 and Kendall correlations are between − 0.16 and 0.09 (cf. 
Tables S1 and S2). The low Pearson, Kendall, and Spearman correlations 
indicate that any trends, if present, are a complex non-linear problem. 
For this task, ANNs are suitable.

The main results of the ANN analyses are listed in Table 3. The 
complete set of results is listed in Tables S3–S8. Machine learning by 
multilayer perceptron was the most successful in predicting hospitali
zation related to air pollution from forest fires. The MLP was also well 
constrained by the explanatory variables, as confirmed using the 
Friedman test. The p values were nearly zero, meaning a change in the 
model led to distinct results. The best performance by MLP corroborates 
recent research about air pollution and health impacts (Tadano et al., 
2012; Youssouf et al., 2014b) that MLP tends to outperform the “newer” 
ANN models such as RBF and the unorganized machines (ELM and ESN). 
The fully learned structure of MLP allows for advantageous approxi
mation of the nonlinear mapping inputs.

The causality of fire count and black carbon concentrations as 
explanatory variables of hospital admissions was evaluated by repli
cating the machine learning for three cases: (1) including all input 
variables (daily fire count, black carbon, mean temperature, relative 

Table 2 
Comparison between PM2.5 and BC concentrations of this study to those in 
literature. *Estimated based on satellite image.

Reference Region Period PM2.5 conc 
(μg m− 3)

BC conc 
(μg m− 3)

this study Manaus 2011–2013, 
2015–2016

9.20 ±
6.83

1.83 ±
0.99

Andrade-Filho et al. 
(2013)

Manaus 2002–2009 15* –

Fernandes and 
Machado (2021)

Manaus Aug to Sep 2017 14.7 3.0

Jacobson et al. 
(2009)

Mato 
Grosso, 
Brazil

2008 19.6 ±
11.9

1.00 ±
0.48

Table 3 
Best-performing neural networks for predictions of hospital admissions. Results 
are listed for respiratory and cardiovascular diseases. Abbreviations include 
artificial neural network (ANN), neuron count (NC) of each hidden layer, stan
dard score (Z), root mean square error (RMSE), mean absolute percent error 
(MAPE), and multilayer perceptron (MLP) with 1 or 2 hidden layers.

Inputs ANN NC Z lag 
(day)

RMSE MAPE 
(%)

Respiratory disease
All MLP- 

2
60/ 
40

without 1 10.4 38

Excluding forest 
fires

MLP- 
2

40/ 
50

with 3 11.8 36

Excluding black 
carbon

MLP- 
2

40/ 
100

without 2 11.7 35

Cardiovascular disease
All MLP- 

2
40/ 
80

without 0 4.9 27

Excluding forest 
fires

MLP- 
2

70/ 
40

with 6 5.2 25

Excluding black 
carbon

MLP- 
1

80 without 6 5.2 24

Y. de Souza Tadano et al.                                                                                                                                                                                                                    Chemosphere 367 (2024) 143688 

5 



humidity, precipitation, solar radiation, wind speed, and wind direc
tion), (2) excluding the fire count, and (3) excluding black carbon. As 
expected, the best performance used all input variables (Table 3). For 
respiratory illness, there was a one-day lag between health effects and 
exposure. For cardiovascular illness, there was no lag. Results changed 
drastically when excluding fire count or black carbon as explanatory 
variables. Lag increased from 1 day to 2–3 days for respiratory illness 
and from no lag to 6 days for cardiovascular illness. We may conclude 
that incorporating both fire count and black carbon (BC) concentration 
is crucial for accurately predicting hospital admissions because these 
variables capture distinct aspects of exposure to fire-related pollutants. 
While BC provides a direct measure of particulate matter generated by 
fires, which has immediate health impacts, the fire count reflects the 
broader scale and intensity of fire activity, including additional fire- 
generated pollutants and physical effects that may not be directly 

captured by BC measurements alone. The improved model performance 
when both variables are included suggests that non-fire sources of BC 
and other pollutants resulting from fire activity contribute significantly 
to health outcomes. These findings are consistent with literature 
(Shrivastava et al., 2019) indicating that aging smoke, which contains 
various harmful compounds beyond BC, and interactions with urban 
pollutants, may exacerbate health impacts.

Fig. 3 plots the observed and predicted values of the test dataset 
using the best-performing model. The figure shows the model has dif
ficulty in predicting higher and lower values, especially for discontin
uous variables. The predictions for hospitalizations are related only to 
the considered inputs, mainly BC and fires. By comparison, the output of 
hospital admission depends on many other factors not included in the 
model, such as lifestyle, age, economic factors, and so on. In this sense, 
errors around 27% and 38% (Table 3) are acceptable and provide 

Fig. 3. Comparison between observed and predicted hospitalizations across test dataset for (A) respiratory disease using MLP-2 with a one-day lag and (B) car
diovascular disease using MLP-2 and no lag.
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reasonable predictive power for discontinuous datasets. Some studies 
using ANN and considering the same outputs (cardiorespiratory dis
eases) (Polezer et al., 2018; Araujo et al., 2020; Kachba et al., 2020; 
Tadano et al., 2016, 2021b) presented results with errors of the same 
order of magnitude (ranging from 17 to 36%), which confirms that the 
ANNs showed a good performance to our database.

The emissions from the Amazon fires affect the short- and long-term 
health of the 25 million people living throughout the Amazon biome, as 
reflected in increased hospital admissions for respiratory and cardio
vascular diseases during the burning season. During 2021 and 2022, a 
trend of worsening conditions in Amazonas state continued (INPE – 
National Institute for Space Research, 2023a), suggesting even more for 
the future. The development of effective early-warning mechanisms 
could prevent severe health impacts, but the precise mix of conditions to 
activate an alert has been uncertain in this data-poor region. In this 
context, the study herein used the best available health records in the 
central Amazon, corresponding to the several million people living in 
Manaus, and likewise the best-available datasets of air quality. Simple 
multilinear regressions failed to establish Pearson, Kendall, or Spearman 
coefficients above a noise threshold between environmental measure
ments and health effects. Analysis by artificial neural networks did 
establish relationships, however. Specifically, the ANNs successfully 
modeled the time lag between fire incidence and hospital admissions 
based on input factors of daily averages of black carbon concentrations, 
temperature, relative humidity, precipitation, solar radiation, and 
regional fire count. The prediction of the time lag between environ
mental observations and health effects can be used for health-oriented 
decision-making. Timely information can be provided in advance to 
the health care sector to properly allocate resources during periods when 
admissions are expected to increase. The ANN approach developed 
herein can be applied in diverse scenarios worldwide to forecast health 
hazards resulting from fires. In the long term, the study results highlight 
the need for effective measures to reduce fire occurrence and thereby 
mitigate the adverse impacts of regional air pollution on human health.

The Amazon region has one of the highest deforestation rates 
worldwide (Ribeiro et al., 2018), related to socioeconomic factors, 
governance effectiveness, and climate change. The wildfire smoke 
negatively impacts the human health of local communities, ecosystems, 
and climate change. For Manaus, Paralovo et al. (2019) report on the 
decline in air quality from forest wildfires and controlled burning after 
deforestation. Throughout the last few years, this issue is growing more 
severe. In Amazonia, deforestation, maintenance of cleared areas, and 
forest fires account for 8%, 39%, and 53% of fire outbreaks, respectively, 
with distinct social and environmental impacts (Urrutia-Pereira et al., 
2021). At times in the dry season, a smoke layer envelops the larger part 
of the entire Amazon basin and much of central South America. Marlier 
et al. (2020) highlighted that the duration of the dry season is length
ening, which may increase the incidence of fire in Amazonia.

In the Amazon, wildfire smoke, often driven by deforestation and 
land-use changes, poses severe public health challenges, leading to 
increased hospital admissions for cardiorespiratory illnesses 
(Urrutia-Pereira et al., 2021). Similarly, California and Australia expe
rience intense wildfires, exacerbated by climate change, resulting in 
episodes of air pollution and corresponding health impacts. However, 
while California and Australia have more developed monitoring and 
response measures, the Amazon struggles with a scarcity of air quality 
monitoring stations, limiting the ability to forecast and mitigate these 
impacts effectively. In Southeast Asia (Pani et al., 2020), particularly 
during agricultural burning seasons, air pollution reaches critical levels, 
causing adverse health effects akin to those observed in the Amazon. 
This global analysis highlights the urgent need for early warning systems 
and targeted mitigation policies tailored to the unique socioeconomic 
and environmental contexts of each region, with the aim of protecting 
populations exposed to wildfire smoke. The results show the potential of 
ANN as a tool capable of predicting forest fire health risks, suggesting 
their potential to support the creation of an early warning system, 

although further research is needed to fully elucidate the underlying 
mechanisms and optimize the timing of interventions. Some limitations 
that need to be addressed in future research are the use of different 
proxies for fires, more complete databases, emergency visits as output, 
and to include socioeconomic and other individual characteristics.

Relating our findings to the United Nations’ Sustainable Develop
ment Goals (SDGs), our study aligns significantly with SDG 3 (Good 
Health and Well-being), SDG 13 (Climate Action), and SDG 15 (Life on 
Land). SDG 3 aims to ensure healthy lives and promote well-being for all 
ages, and our research underscores the critical need for early warning 
systems to reduce the adverse health impacts of wildfire smoke, 
particularly in vulnerable populations. The observed increase in 
cardiorespiratory illnesses due to black carbon exposure from wildfires 
directly relates to this goal by highlighting the importance of mitigating 
environmental health risks. SDG 13 focuses on combating climate 
change and its impacts, and our study provides evidence of the exacer
bated wildfire activity driven by climate change, emphasizing the urgent 
need for climate action to reduce the frequency and intensity of these 
fires. Lastly, SDG 15 seeks to protect, restore, and promote sustainable 
use of terrestrial ecosystems. Our findings on the detrimental health 
effects of wildfires on Manaus’ population illustrate the critical need for 
sustainable land management practices. By addressing these SDGs, our 
research contributes to a broader understanding of the intersection be
tween environmental degradation and public health, advocating for 
integrated policies that promote a healthier and more sustainable future.
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