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A B S T R A C T

The atmosphere over the Northeastern region of Brazil (NEB) contains a variety of different aerosol types: 
marine, soil dust, biomass burning, urban pollution, as well as mixed species. However, very few reliable in
formation on aerosols is available for the region. Satellite data provides spatial and temporal coverage in places 
with low density ground-based observational networks, with Aerosol Optical Depth (AOD) products as most 
important information on the atmospheric aerosol load. To find out how different AOD products from satellites 
behave over the NEB region we compared AOD at 550 nm from MODIS retrievals aboard both NASA’s Terra and 
Aqua satellites, and ground-based derived AOD 550 nm from the two Aerosol Robotic Network (AERONET) sites 
in the region, located in cities of Petrolina and Natal, between 2015 and 2018. We based our analysis on the 
following MODIS AOD retrievals products: Dark Target (DT), Deep Blue (DB), the combined product (DTDB), DT 
3 km resolution product (MxD3k) and MAIAC at 1 km resolution. Additionally, we used AOD from MERRA2 
reanalysis for another comparison that may provide additional insight on which products perform best over the 
region. We also analyze and compare the seasonality of the AOD products to the four biomes of NEB, which are 
Amazon rainforest, Atlantic Forest, Cerrado and Caatinga (wooded savannah-like) biomes. Petrolina is located in 
the NEB largest biome, the Caatinga, while Natal is a coastal city in the Atlantic Forest. The results show that DB 
yields the best results for the Petrolina site. The analyses also show that in all biomes the AOD monthly averages 
decrease during austral autumn and winter and increase during spring and summer. The compared products 
show some differences in AOD, even though with similar patterns. MAIAC and DB show very similar values in all 
four biomes throughout the year, recommending the use of DB and MAIAC for studies in the Caatinga region.

1. Introduction

The role of aerosols in the atmosphere has been studied for decades, 
from the global climate change scale, altering the earth’s radiative 

budget and the hydrological cycle (Albrecht, 1989; Altaratz et al., 2014; 
Arias et al., 2021; Kaufman and Koren, 2006a, 2006b; Koren et al., 2008; 
Twomey, 1977) to the local air quality scale (Ignotti et al., 2010; Marlier 
et al., 2020; Martins et al., 2018; Millman et al., 2008), especially in 
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major urban areas (Alpopi and Colesca, 2010; de Andrade et al., 2017; 
Molina and Molina, 2004; Parrish et al., 2011). Atmospheric aerosols 
present a high variability in their temporal, spatial and physio-chemical 
properties. The anthropogenic aerosols that mainly contribute to climate 
change are sulfur dioxide, organic carbon, ammonia and black carbon. 
The quantitative contribution of these aerosols to global climate until 
today present the highest source of uncertainty in the global radiative 
forcing budget (Arias et al., 2021).

The atmosphere over Northeastern Brazil (NEB) contains a variety of 
aerosol types: marine, soil dust from regional and remote sources 
(Sahara desert) and smoke, mainly from local biomass burning but also 
transported across the Atlantic from the sub-sahel region, further urban 
pollution, and mixed species (Landulfo et al., 2016; dos Oliveira et al., 
2021; de Oliveira et al., 2019; de Oliveira-Júnior et al., 2022). However, 
there is a lack of reliable information on the aerosol amount, properties, 
and impacts in the NEB region. There are only fifteen surface air quality 
monitoring stations in the entire NEB domain, which enclose an area of 
1,558,000 km2, ten of them located in only one state (Bahia), four in 
Pernambuco and one in Ceará (Ferreira et al., 2022). However, most of 
the sites do not provide new data since the last years. Satellite data 
generally provide spatial and temporal coverage of atmospheric 
composition information across the entire world including the NEB, 
providing a crucial option to regions with low density or non-existent 
observational networks. A key parameter used in the monitoring of at
mospheric composition by satellites is the Aerosol Optical Depth (AOD), 
which measures the extinction of electromagnetic radiation due to 
interaction with aerosols, from the surface to the top of the atmosphere 
at specific spectral bands. The AOD is a quantitative estimate of aerosol 
amount in the atmosphere, and can be used as a proxy for surface par
ticulate matter. Assessment of satellite-based AOD over the NEB can be 
an important source of information to mitigate the lack of in situ mea
surements. The AOD datasets have been produced from both surface 
remote sensing platforms, such as the Aerosol Robotic Network (AER
ONET) (Holben et al., 1998), and from satellites sensors such as the 
Advanced Very-High-Resolution Radiometer - AVHRR (Zhao et al., 
2008), Sea-viewing Wide Field-of-view Sensor - SeaWiFS (Sayer et al., 
2012), Moderate Resolution Imaging Spectroradiometer - MODIS (Levy 
et al., 2013), Multi-angle Imaging SpectroRadiometer - MISR (Witek 
et al., 2013) and also the Visible Infrared Imaging Radiometer Suite - 
VIIRS (Hsu et al., 2019; Sayer et al., 2018). However, the variability of 
AOD values between the different available products has been a matter 

of concern, especially regarding the differences in magnitude and tem
poral tendencies. Satellite AOD retrievals are expected to be influenced 
by uncertainties associated with the assumptions of the aerosol model 
that represent aerosol properties, the effect of the correction of surface 
reflectance, cloud contamination, and radiometric calibration (Li et al., 
2009).

Considering the number of AOD products available, there is a need to 
evaluate and validate these over the region of interest. There are some 
efforts to evaluate and find the best AOD product in different scenarios. 
Jiang et al. (2023) compared the MODIS AOD using Dark Target (DT), 
Deep Blue (DB), and Multi-Angle Implementation Atmospheric Correc
tion (MAIAC) over China and found that MAIAC had more matches and 
accuracy when compared with AERONET data and data from the 
Sun–Sky Radiometer Observation Network (SONET). Considering all 
databases, the authors found that Root Mean Squared Error (RMSE), 
Bias, R2, and data within the Expected Error (EE) were 0.243, 0.151, 
0.745, and 41.43 %, respectively, using DT products only, and 0.174, 
0.027, 0.761, and 56.98 % using the DB algorithm-based products and 
0.197, 0.036, 0.722 and 65.64 % for MAIAC data. They also show that 
MAIAC presents its lowest accuracy over water and higher accuracy over 
forests, cropland, and mixed land cover types. Similar results were found 
by Jethva et al. (2019), who also compared these 3 algorithms with 
AERONET over North America. They found that over dark surfaces, the 
performance of all three algorithms is similar, with MAIAC showing a 
slightly better result. The RMSE and correlation were 0.056 and 0.900 
for MAIAC, respectively, 0.095 and 0.933 for DT, and 0.069 and 0.756 
for DB. Over bright surface background and mountainous regions, both 
MAIAC and DB showed a good agreement with AERONET data, with an 
RMSE of ~0.06 and correlation of 0.830 and 0.720, respectively, while 
DT overestimated the AOD, an RMSE of 0.120, correlation of 0.820 and 
bias of 0.037. The authors also highlighted the higher number of 
matchups with AERONET of MAIAC, when compared with DT and DB. 
Choi et al. (2019) showed an AOD comparison from multi-satellite AOD 
against AERONET over East Asia and found that MAIAC and MISR 
showed a higher correlation, with 0.93, and a RMSE of 0.15 and 0.12, 
respectively. The MODIS DT and VIIRS yielded the lowest correlation, 
with 0.870, and a RMSE of 0.220 and 0.160. Nguyen et al. (2019) found 
a correlation of 0.81 and 0.68 between AERONET against MODIS DT and 
VIIRS, respectively, in the Southeast Asia region. On a global scale, Chen 
et al. (2022) showed that MODIS DT presents the lowest correlation (r), 
with 0.820, while VIIRS DB has the highest one, with 0.866. Martins 

Fig. 1. Area of the Northeastern Brazil (NEB). Shaded colors are used to describe NEB’s biomes. Yellow dots are the locations of the AERONET operating sites in the 
cities of Petrolina/PE and Natal/RN. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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et al. (2017) validated MAIAC aerosol product over South America, 
comparing with AERONET AOD data, and found a correlation coeffi
cient of 0.956 to Terra and 0.949 to Aqua. However, in their analysis, 
there were no AERONET sites in the NEB. More recently, Rudke et al. 
(2023) evaluated AOD MODIS products DT, DB, MAIAC, and the DT 3 
km, over Brazil and concluded that MAIAC and DB yields smaller error 
and uncertainties than DT. Nevertheless, the DT shows better results 
over forested areas. In the Savanna region, the study results show a 
RMSE between 0.038 (Aqua DB) and 0.108 (Terra DT 3Km) and a cor
relation coefficient between 0.71 (Aqua DB) and 0.46 (Aqua MAIAC).

To determine the quality of AOD products from MODIS in more 
detail for the Northeastern Brazilian region, this paper evaluates and 
validates the AOD of distinct MODIS products, including all AERONET 
stations available in the region, and also analyzing their performance 
according to the different biomes. We compare the DB, DT, and MAIAC 
products based on MODIS retrievals, located aboard Terra and Aqua 
satellites. As AOD reference we used the AOD from the AERONET 
network stations within the region. We also included the AOD from 
Modern-Era Retrospective Analysis for Research and Applications, 
Version 2 (MERRA2) in the intercomparison. Section 2 of the paper 
describes and characterizes the region of NEB and the database used. 
Section 3 shows the AOD products collocation strategy, the data analysis 
methodology, the results of MODIS products validation against AERO
NET, as well as a regional analysis by the different biomes. Finally, in 
section 4 we present our conclusions.

2. Description of region, dataset, and methodology

2.1. The region of Northeast Brazil

The Northeastern region of Brazil (NEB) is located in tropical lati
tudes, with 1,552,175 km2 of area, which is approximately 18 % of the 
total Brazilian territory, and almost three times the size of France. It is 
the second most populated region of Brazil, with ~54.6 million in
habitants (IBGE, 2023). This population is concentrated mostly along 
the coastal areas, where most of the NEB state capitals are located. There 
are nine States in NEB (Fig. 1): Alagoas (AL), Bahia (BA), Ceará (CE), 
Maranhão (MA), Paraíba (PB), Piauí (PI), Pernambuco (PE), Rio Grande 
do Norte (RN) and Sergipe (SE). The NEB is composed of four distinct 
biomes in the NEB, namely Amazon Rainforest (7.3 % of NEB area), 
Atlantic Forest (10.0 %), Cerrado (29.2 %), and Caatinga (53.5 %) 
(IBGE, 2019).

The climate of NEB is affected by multi-scale processes. At the global 
scale systems and phenomena such as the El Niño-Southern Oscillation 
(ENSO), North Atlantic Oscillation (NAO), South Atlantic Subtropical 
Anticyclone (SASA), North Atlantic Subtropical Anticyclone (NASA), 

and the Intertropical Convergence Zone (ITCZ) play an important role. 
At mesoscale, for instance, there are influences of Mesoscale Complex 
systems, Squall Lines and, very rarely, frontal systems. At the synoptic 
scale one of the most famous elements of the NEB climatology is the 
Upper Level Cyclonic Vortex (ULCV) (de Cavalcanti et al., 2009; dos Reis 
et al., 2021; Kodama, 1992; Kousky, 1980, 1979; Kousky and Gan, 1981; 
Uvo, 1989). The raining season in the Amazon, Cerrado and Caatinga 
biomes in the NEB, takes place between January and April, while in the 
Atlantic Forest it occurs from March to July (Table 1). The dry season 
occurs between August and October in the Amazon, Caatinga, and 
Atlantic Forest, and between June and August in Cerrado (Correia Filho 
et al., 2019; Oliveira et al., 2017). In the NEB region, the wind origins 
mainly from east and southeast, varying from northeast in the Amazon 
region of the state of Maranhão, to southeast in the center of Bahia and 
the coast of Rio Grande do Norte, Pernambuco, and Paraiba states (de 
INMET, 2018). The mean annual temperature ranges between 20◦ and 
28 ◦C, except for a few elevated regions where mean temperatures of 
lower than 20 ◦C may prevail (Kayanoi and Andreoli, 2009).

The NEB atmosphere has been characterized as containing a small 
load of atmospheric aerosols, mainly when compared with the biomass- 
burning regions of the Amazon basin and center-west of Brazil (do 
Rosário et al., 2022; Rosário et al., 2013). de Oliveira et al. (2019)
showed that the AOD average at 550 nm, across the NEB biomes is 0.20, 
ranging from 0.04 to 0.52. The authors also showed that there are two 
periods during the year when AOD values are more elevated, from 
January to March and from August to October. During the first period, 
the increase in AOD is either caused by advection of aerosols from dust 
storms in the Sahara or from carbonaceous aerosols from fires in the sub- 
sahel region of northern hemispheric Africa, while during the second 
period the increase is caused by the advection of marine aerosols from 
the coast due to the higher wind intensity during that period, and oc
casionally due to the transportation of fire smoke plumes from fires in 
the African equatorial tropical forest (Landulfo et al., 2016; de Oliveira 
et al., 2019).

The Amazon biome is a tropical forest composed mostly of Evergreen 
Forest, wetlands, and water bodies, with some savanna and natural 
grassland. The predominant land use is agriculture, cattle ranching, 
mining, logging, and non-timber forestry production. The Caatinga is 
composed of woody and deciduous forests. The region is used for agri
culture, cattle ranching, smallholder livestock production, non-timber 
forestry, and urbanization. The biome Cerrado is composed of sa
vannas, grasslands, and forests, where the predominant land use is 
agriculture, cattle ranching, timber exploitation for coal production, and 
artificial water reservoirs. The Atlantic Forest has isolated forest frag
ments, mostly old secondary growth, forest plantation, croplands, 
pasture, urbanized areas and infrastructure. Six of the nine state capitals 
in Northeastern Brazil are located in the Atlantic Forest biome (Souza 
et al., 2020). Due to this variety of land use and cover the surface 
reflectance across the NEB shows different patterns according to region.

2.2. AERONET

The Aerosol Robotic Network (AERONET) is a global project that 
characterizes aerosol optical properties worldwide using ground-based 
remote sensing (Giles et al., 2019; Holben et al., 1998). The Cimel 
Sun-Photometers are able to measure spectral Sun direct irradiance and 
sky radiances between the channels 340 nm to 1640 nm. AERONET 
provides AOD, other optical properties, as well as microphysical prop
erties for three data quality levels: Level 1.0 (unscreened), Level 1.5 
(near-real-time automatic cloud screening and automatic instrument 
anomaly quality control) and Level 2.0 (level 1.5 with pre-field and post- 
field calibrations). Inversions of precipitable water and other AOD- 
dependent products are derived from these levels and may implement 
additional quality checks. The AOD estimated uncertainty is 
~0.010–0.021, due primarily to instrument calibration. The errors 
depend on the wavelength, with higher values in the UV. AOD accuracy 

Table 1 
Monthly and annual precipitation (mean ± standard deviation) for the NEB 
biomes, between 1979 and 2013 based on the CHELSA database. Bold numbers 
reflect the three months of highest precipitation for each biome.

PRECIPITATION SEASONALITY IN THE NEB BIOMES (mm)

AMAZON ATLANTIC FOREST CERRADO CAATINGA

JAN 234 ± 100 88 ± 56 198.9 ± 98 102 ± 76
FEB 282 ± 106 98 ± 60 189.6 ± 76 111 ± 55
MAR 371 ± 86 130 ± 59 203.1 ± 63 143 ± 65
APR 340 ± 132 155 ± 63 142.0 ± 66 119 ± 63
MAY 197 ± 87 147 ± 42 57.7 ± 37 61 ± 35
JUN 99 ± 46 157 ± 50 15.9 ± 9 41 ± 21
JUL 66 ± 31 138 ± 36 9.3 ± 7 29 ± 11
AUG 32 ± 16 102 ± 31 7.3 ± 7 18 ± 7
SEP 29 ± 14 71 ± 28 20.3 ± 15 13 ± 7
OCT 36.3 ± 22.3 77.6 ± 30.7 65.3 ± 35 22 ± 15
NOV 56.9 ± 27.7 103.1 ± 44.1 124.8 ± 43 48 ± 24
DEC 111.6 ± 54.7 99.8 ± 61.1 169.9 ± 65 69 ± 48
ANNUAL 1848 ± 419 1364 ± 217 1197 ± 219 773 ± 212

Adapted from Correia Filho et al. (2019).
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also depends on the uncertainties in the estimations of the optical air 
mass, optical depths of Rayleigh and ozone, and the column water vapor 
(Dubovik and King, 2000; Eck et al., 1999; Holben et al., 1998; Sinyuk 
et al., 2020). The NEB region only has two sites to monitor atmospheric 
aerosols on an operational basis, one at Petrolina-PE and the other at 
Natal-RN (Fig. 1). Petrolina is located at 9.069◦S; 40.320◦W, in the 
western region of Pernambuco state. It is located in a semi-arid region, 
within the Caatinga biome. It is the only city with a consolidated AER
ONET long-term monitoring in NEB, with observations from 2004 until 
today. Natal, located at 5.84157◦S; 35.19965◦W, is a coastal city in the 
Rio Grande do Norte state, within the Atlantic Forest biome. In Natal, 
the measurements started in 2016, with irregular observations from 
Jan/2016 to Jul/2016 and Aug/2017 to Mar/2018, and on Aug/2018. 
In this study, we use level 2.0 data from Version 3. For Petrolina we use 
Version 3 level 2.0 quality-assured data from 2015, Apr/2016 to Mar/ 
2017, Dec/2017, and Nov/2018 to Dec/2018 (Fig. 2). We opted to 
analyze the MODIS AOD dataset to the years of 2015 to 2018 to obtain a 
recent continuous timeseries that encompasses the period available of 
the data from both sites. Besides these two sites from AERONET, there is 
no other ground-based operational observational data in the region 
retrieving AOD.

2.3. MODIS

The sensor MODerate resolution Imaging Spectroradiometer 
(MODIS), one of the first developed targeting AOD monitoring, is 
installed on board the Terra and Aqua sun-synchronous satellites, 
launched in 1999 and 2002, respectively. Terra overpasses the NEB re
gion in the morning while Aqua overpasses during the afternoon. Both 
satellites cover the entire earth’s surface every 1 to 2 days. MODIS is a 
passive spectroradiometer with 36 bands in the visible and thermal 
wavelengths and resolution of 250 m, 500 m, and 1 km at nadir, ac
cording to the band. MODIS products are classified into seven levels, 
where level-2 (L2) represents the derived geophysical variables from 
level-1 swath data with georeferenced information and atmospherically 
corrected. Level-2G is the L2 data mapped in a sinusoidal tiled gridded 
system (https://modis.gsfc.nasa.gov).

The MODIS aerosol products level-2 recent collection C061 
MOD04_L2 (Terra) and MYD04_L2 (Aqua) provide AOD at wavelength 
550 nm (AOD550), with 10 km of spatial resolution at nadir (Levy et al., 
2015, 2013). An alternative product named MOD04_3k and MYD04_3k, 
provides AOD with 3 km of spatial resolution (Gupta et al., 2018; Remer 
et al., 2013). The MxD04_L2 products are retrieved based on 2 inde
pendent algorithms: Dark Target (DT) and Deep Blue (DB). Targeting 
MODIS AOD application to monitor aerosols at an intra-urban scale, the 
most recently available product is the Multi-Angle Implementation of 
Atmospheric Correction (MAIAC – MCD19A2) at 1 km spatial resolution 
(Lyapustin et al., 2018, 2011a, 2011b). MAIAC data is available in Level- 

2G.
After 2000, with the launch of the Terra satellite, with its MODIS 

sensor, the DT algorithm have been used to derive AOD. Two entirely 
independent DT algorithms are applied to calculate AOD over dark 
surfaces of the ocean (Levy et al., 2003; Tanre et al., 1997) and land 
(Kaufman et al., 1997), such as non-glint open ocean scene and dark 
vegetated landscape. The land algorithm uses the reflectance of MODIS 
channels 0.47 μm, 0.66 μm, and 2.13 μm. The EE to DT data over land 
from MxD04_L2 is ±(0.05 + 0.15 τA), where τA is the AOD observed by 
AERONET (Levy et al., 2010, 2013).

Due to the limitation of DT to retrieval AOD over bright surfaces, Hsu 
et al. (2004, 2006) have developed the DB algorithm to retrieve aerosol 
properties over deserts and bright land surfaces, except for ice and snow. 
For MODIS data, the algorithm uses channels 412 nm, 470 nm, and 650 
nm. The aerosol characteristics are estimated by comparing the radi
ances measured by the satellite sensor with pre-calculated reflectances 
from look-up tables to find the best match (Sayer et al., 2013). Hsu et al. 
(2013) estimated an EE for the DB data over land from MxD04_L2 of 
±(0.05 + 0.2τA).

Since the C6 MODIS collection, the DB algorithm provides infor
mation on aerosol properties over vegetated land surfaces. For this 
reason, the C6 collection provides a merged product combining the DT 
and DB retrievals. To merge them, a monthly Difference Vegetation 
Index (NDVI) climatology over land was used. The DB data is used for 
Normalized NDVI ≤0.2 and the DT data for NDVI ≥0.3. If 0.2 ≤ NDVI 
≤0.3 the product with a higher QA flag is used. If both products present a 
QA = 3, the mean value is used (Sayer et al., 2014).

The MODIS AOD not only is applied for climate studies but also for 
small-scale air quality studies (de Castanho et al., 2008; Li et al., 2005). 
For this reason, Remer et al. (2013) developed an AOD product with 3 
km spatial resolution (MOD04_3k/MYD04_3k), available in the C6 
MODIS collection. This product is similar to the 10 km product, also 
using the DT algorithm. The main difference is the quantity of pixels 
selected to retrieve AOD. While the 10 km product uses a retrieval box 
with 400 px (20 × 20 px) with 10 × 10 km, the MxD04_3k uses a 
retrieval box of 36 px (6 × 6 px) with 3 × 3 km spatial resolution. Both 
products filter the pixels for clouds, bright surfaces, snow, ice, ocean 
sediments, sun glint, and inland water. They also eliminate the brightest 
and darkest pixels (Gupta et al., 2018). Globally, over land, this product 
has an EE of ±(0.05 + 0.2τA) (Remer et al., 2013).

The traditional DT (10 km) and the new DB products and 3 km al
gorithms are based on the instant measurement for each pixel in swath- 
based data. The Multi-Angle Implementation Atmospheric Correction 
(MAIAC - MCD19A2) algorithm interpolates the radiance measurements 
to a fixed 1 km horizontal grid. Using the sliding window technique, the 
algorithm accumulates 16 days of measurements from different orbits, 
creating a time series for each cell. It helps to separate the atmospheric 
and surface radiometric contributions as the same point is observed over 

Fig. 2. Database of AOD 550 nm from AERONET sites at Petrolina-PE and Natal-RN, Brazil.

G.B. Münchow et al.                                                                                                                                                                                                                           Atmospheric Research 315 (2025) 107864 

4 

https://modis.gsfc.nasa.gov


time with different angles (Lyapustin et al., 2012a, 2012b, 2011a, 
2011b). MAIAC provides aerosol retrievals over bright and dark sur
faces. Lyapustin et al. (2018) estimated a globally EE of ±(0.05 + 0.1τA).

Due to the MODIS scan geometry with its swath width of ~2330 km, 
the MxD04 horizontal resolution of 10 × 10 km at nadir (viewing zenith 
angle 0◦) degrades toward the swath edges (viewing zenith angle ~65◦), 
increasing up to 20 × 40 km. In addition to this across-track distortion, 
there is also overlap between pixels in consecutive along-track scans. 
These effects are known as “bow-tie effect” (Barnes et al., 1998; Remer 
et al., 2020; Sayer et al., 2015a, 2015b; Wolfe et al., 1998). This results 
in AOD errors and uncertainties in the MxD04 products being dependent 
on the viewing zenith angle. The MAIAC product is also affected by this 
problem, but minimizes its impact by using a gridding algorithm based 
on scan-by-scan processing and area-weighted gridding method 
(Lyapustin et al., 2018; Wang and Lyapustin, 2007).

Table 2 summarize MODIS AOD product names in the hdf-files used 
in this paper, with their respective quality flags and the name of each 
product that is used from now on. We will use MOD to refer to Terra 
products, MYD to Aqua’s, and MxD as either MOD or MYD.

In this study, we have developed a new approach to work with 
MODIS AOD products that consist of an ensemble of sensor products, 

combining the DT and DB, from MxD04_L2, MxD04_3k, and MAIAC. We 
performed four tests calculating the mean and the median of MxD_DT, 
MxD_DB, and MAIAC, named MxD_3EnsMean and MxD_3EnsMedian, 
testing the three algorithms with distinct processing methodology. In 
another ensemble we additionally include MxD_3k, named MxD_4En
sMean and MxD_4EnsMedian.

2.4. MERRA2

The Modern-Era Retrospective Analysis for Research and Applica
tions, Version 2 (MERRA2) is an atmospheric reanalysis produced by 
Global Modeling and Assimilation Office, from North American National 
Aeronautics and Space Administration (GMAO / NASA). It uses the 
Goddard Earth Observing System, version 5 (GEOS-5) atmospheric 
model and a Gridpoint Statistical Interpolation (GSI) analysis scheme, 
with a three-dimensional variational approach (3DVAR). It provides 
data with 0.5◦ x 0.625◦ of spatial resolution, since 1980, of 1-hourly and 
3-hourly instantaneous diagnostics, and time-averaged collections 
contain hourly, three-hourly, monthly, or monthly diurnal means. The 
set of assimilation input observations includes surface conventional 
data, ground-based remotely sensed, satellite-derived data, satellite re
trievals, radio occultation, and satellite radiance (Gelaro et al., 2017). 
This version 2 of MERRA2 includes aerosols information, using a radi
atively coupled version of the Goddard Chemistry, Aerosol, Radiation, 
and Transport model (GOCART) with the Goddard Aerosol Assimilation 
System (GAAS). The data assimilated is the bias-corrected AOD derived 
from AVHRR radiances (during the period of 1980 to 2002) and from 
MODIS radiances (Terra: 2000 onwards, Aqua: 2002 onwards), the AOD 
retrievals over bright land surfaces from MISR (2000–2014), and AOD 
level 2 from AERONET (1999–2014). The MODIS Dark Target radiances 
are assimilated over the land and ocean (Buchard et al., 2017; Randles 
et al., 2017). In this paper, the MERRA2 product used is the AOD hourly 
time-averaged collection from tavg1_2d_aer_Nx (M2T1NXAER) to 
compare with AERONET data (session 3.1). The regional analyses 
(section 3.2) used the AOD three-hourly instantaneous collection from 
inst3_2d_gas_Nx (or M2I3NXGAS). To compare this data with the Terra 
and Aqua retrievals, we used the output of 12 UTC and 15 UTC, 
respectively. These are the closest output times to the satellite’s over
passes in the NEB region. Reanalysis products were useful to fill spatio- 
temporal gaps in the observation time series, as gaps are a common 
feature in AOD retrievals due to cloud coverage or the lack of adequate 
monitoring coverage.

2.5. Data analysis

For the collocated analysis, AOD data from AERONET (τAERONET) was 

Table 2 
MODIS aerosol products in the hdf data files.

SDS Name product / SDS Quality Flag Expected Error 
(EE)

Exp name 
TERRA 
AQUA

Dark Target (DT) 
- Image_Optical_Depth_Land_And_Ocean 
- Land_Ocean_Quality_Flag

±(0.05 + 15 %) MOD_DT 
MYD_DT

Deep Blue (DB) 
- Deep_Blue_Aerosol_Optical_Depth_550_Land 
- Deep_Blue_Aerosol_Optical_Depth_550_Land_QA_Flag

±(0.05 + 20 %)
MOD_DB 
MYD_DB

Combine Dark Target and Deep Blue (DTDB) 
- AOD_550_Dark_Target_Deep_Blue_Combined 
- AOD_550_Dark_Target_Deep_Blue_Combined_QA_Flag

MOD_DTDB 
MYD_DTDB

Dark Target (3 k) 
- Image_Optical_Depth_Land_And_Ocean 
- Land_Ocean_Quality_Flag

±(0.05 + 20 %) MOD_3k 
MYD_3k

MAIAC 
- Optical_Depth_055 
- AOD_QA

±(0.05 + 10 %)
MOD_MAIAC 
MYD_MAIAC

Table 3 
Number of pixels inside the 0.5◦ x 0.5◦ box centered and collocated with AER
ONET AOD data from Petrolina/PE with all valid values and only the best quality 
control flags for each AOD product and its respectively mean AOD.

Product Pix Count Mean AOD 
Valid pixels 
(All QA)

Mean AOD 
Best QA

Valid 
(all QA)

Best QA

MOD_DT 1627 820 0.016 − 0.014
MOD_DB 2460 1509 0.120 0.093
MOD_DTDB 944 934 0.001 − 0.002
MOD_3K 11,610 9965 0.026 0.025
MOD_MAIAC 320,109 252,787 0.146 0.123
MOD_3Ens_MEAN – 96,363 – 0.057
MOD_3Ens_MEDIAN – 96,363 – 0.078
MOD_4Ens_MEAN – 96,363 – 0.041
MOD_4Ens_MEDIAN – 96,363 – 0.032
MYD_DT 1153 499 0.009 − 0.022
MYD_DB 2239 1153 0.100 0.060
MYD_DTDB 614 606 − 0.010 − 0.010
MYD_3k 7322 6264 0.010 0.007
MYD_MAIAC 465,146 351,316 0.153 0.124
MYD_3Ens_MEAN – 80,487 – 0.033
MYD_3Ens_MEDIAN – 80,487 – 0.050
MYD_4Ens_MEAN – 53,476 – 0.016
MYD_4Ens_MEDIAN – 53,476 – 0.008
MERRA2 – 3118 – 0.079
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Fig. 3. Scatterplot of AOD550 from Aqua and Terra MODIS C6.1 Dark Target 10 km (DT), Deep Blue (DB), DTDB, Dark Target 3 km (3 k), MAIAC, and the ensemble 
products 3EnsMEAN, 3EnsMEDIAN, 4EnsMEAN and 4EnsMEDIAN as a function of AERONET AOD measurements over Petrolina/PE. The black solid line is the 1:1 
line. The dashed lines are the expected error (EE) interval. N is the sample size, EE is the percentage of the samples within (=EE), under(<EE) or above (>EE) the 
expected error interval. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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interpolated to 550 nm using the Ångström exponent based on the 440 
and 675 nm channels (da Lopes, 2011), since all AOD MODIS (τM) 
products are available only at 550 nm. The τAERONET was averaged using 
an interval of 1 h centered at the time of the satellite overpass. The 
MODIS AOD data was averaged across a box with 0.5◦ x 0.5◦ resolution 
centered at the surface sites (Remer et al., 2020). This is close to the 50 
× 50 km box in the region of this study.

To perform an intercomparing analysis, we used the scatterplots with 
the percentage of the data falling within the expected error (EE), above 
(>EE) and under (<EE) of the ±(0.05 + 0.15τ) envelope (Gupta et al., 
2018; Levy et al., 2013). Although the products have different EE, the 
statistics using the same EE allows the products to be directly compared 
(Sayer et al., 2014). Additionally, error indexes (RMSE, MAE, and bias) 
and Spearman Rank correlation coefficient (r) were added to the anal
ysis. We adopted the Spearman correlation due the small data sample in 
Natal site. This coefficient is more robust and resistant than the Pearson 
correlation, which one is commonly used. Spearman correlation mea
sure the monotone dependence for continuous variables and it reflects 
the association between these variables (Freund and Wilson, 2003; 

Wilks, 2019). Only correlations with a confidence interval of 95 % (95 % 
CI) are considered. The statistics were calculated only for pixels with the 
highest Quality Assurance (QA) flags, which refers to QA = 3 for MxD04 
products and QA = 0000 for MCD19A2 products.

The products ensembles were calculated with the spatial mean 
(median) of each product inside the 0.5 × 0.5 box, then with these 
values were calculated the mean (median) between the products. The 
value was calculated only when all products considered in that member 
were available, which is the MxD_DT, MxD_DB and MxD_MAIAC to 
MxD_3Ens, and MxD_DT, MxD_DB, MxD_MAIAC and MxD_3k to 
MxD_4Ens. It was considered only the pixels with best QA in the same 
satellite overpass.

The Dark Target algorithm allows small negative values of AOD. 
Even though this is physically unrealistic, they are considered to not 
introduce a bias. The negative values can be found in atmospheric clean 
conditions and arises from errors in assumptions of surface conditions, 
aerosol properties or calibration expectations (Levy et al., 2013; Remer 
et al., 2005; Sayer et al., 2014).

To analyze the spatial and temporal behavior of AOD retrieval across 
the algorithms, the swath data in the HDF files from MxD_DT, MxD_DB, 
MxD_DTDB and MxD_3k were filtered based on the highest quality flag. 
The data were then interpolated to a horizontal regular grid with reso
lution of 10 km (for DT, DB and DTDB) and 3 km (3 k), and the monthly 

Table 4 
Statistics of the comparison between AERONET AOD550 measurements and 
MODIS C6.1, from Terra (MOD) and Aqua (MYD), Dark Target 10 km (DT), 
Deep Blue (DB), DTDB, Dark Target 3 km (3 k), MAIAC AOD products, the 
ensemble products 3EnsMEAN, 3EnsMEDIAN, 4EnsMEAN, 4EnsMEDIAN, and 
MERRA2 over Petrolina/PE. EE is the percentage of the samples within (EE), 
under(<EE) or above (>EE) the expected error interval, sample size (N), RMSE, 
MAE, bias, and Spearman correlation (r) with 95 % CI. Darker colour indicates 
the best result of each index.

Fig. 4. Scatterplot of AOD550 from MERRA2 as a function of AERONET measurements for Petrolina/PE (left) and Natal/RN (right). The black solid line is the 1:1 
line. The dashed lines are the expected error (EE) interval. N is the sample size, EE is the percentage of the samples within (=EE), under(<EE) or above (>EE) the 
expected error interval.

Table 5 
Number of pixels inside the 0.5◦ x 0.5◦ box centered and collocated with AER
ONET AOD550 data from the site at Natal/RN with valid values and best quality 
control flags for each AOD product and its respectively mean AOD.

Product Pix Count Mean AOD 
Valid pixels 
(All QA)

Mean AOD 
Best QA

Valid Best QA

MOD_DT 167 32 0.180 0.155
MOD_DB 90 7 0.248 0.126
MOD_DTDB 122 32 0.152 0.155
MOD_3k 1046 201 0.164 0.167
MOD_MAIAC 69,260 28,298 0.204 0.184
MOD_3Ens_MEAN – 1446 – 0.087
MOD_3Ens_MEDIAN – 1446 – 0.072
MOD_4Ens_MEAN – 1495 – 0.081
MOD_4Ens_MEDIAN – 1495 – 0.071
MYD_DT 478 85 0.115 0.130
MYD_DB 380 19 0.207 0.137
MYD_DTDB 258 85 0.135 0.130
MYD_3K 2373 1114 0.119 0.104
MYD_MAIAC 52,379 17,912 0.213 0.194
MYD_3Ens_MEAN – 1977 – 0.124
MYD_3Ens_MEDIAN – 1977 – 0.133
MYD_4Ens_MEAN – 2217 – 0.110
MYD_4Ens_MEDIAN – 2217 – 0.102
MERRA – 875 – 0.114
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mean AOD was calculated for each grid cell, alongside the sum of pixels 
contributing to each grid point. MxD_MAIAC data were similarly filtered 
for the highest quality flag, with monthly mean AOD and pixel counts 
calculated per grid cell. Subsequently, all products, including MERRA2, 
were clipped using the shapefiles for each biome and entire NEB region 
from IBGE (Instituto Brasileiro de Geografia Estatística) (reference year 
of 2019), and then spatially averaged to estimate the monthly mean 
AOD within each clipped area. The AOD monthly mean from MERRA2 
was calculated using the values available at 12 UTC and 15 UTC, on its 
original spatial resolution. This database was prepared to serve as 
additional comparison. To calculate the correlation and mean differ
ences matrices between products, the MxD_3k and MxD_MAIAC prod
ucts were interpolated to match the 10 km grid of the other products. For 
the additional comparisons with MERRA2 data, all MODIS products 
were interpolated to align with the MERRAS2 grid.

3. Results and discussion

To evaluate the described AOD products over the NEB region, we 
present a collocated and regional analysis. The first one is a comparison 
between MODIS and AERONET AOD data, where the AERONET data is 
considered the “truth”. In the second analysis we compare the products 
for each NEB biome (Fig. 1). The biomes are assumed as homogenous 
groups in terms of surface characteristics. However, we recognize that 
these biomes are not fully preserved. In all of them, there are different 
land cover and land use categories as urbanization and conversion to 
agriculture and livestock. These analyses were performed considering 
only pixels with high-quality QA flag.

3.1. Validation comparing AERONET and MODIS AOD

3.1.1. Petrolina site in the state of Pernambuco
Petrolina city is located in the Caatinga biome, within the semi-arid 

region of the NEB. The counting of pixels inside a box of 0.5◦ x 0.5◦

centered at the AERONET site coordinates in Petrolina/PE and collo
cated with AERONET AOD data are shown in Table 3. For each product, 
the number of valid and best QA pixels from Terra is higher than from 
Aqua, except for the MAIAC algorithm. DB is the 10 km resolution 

product with the highest number of valid and best QA pixels. Both 
MxD_DTDB products have the highest percentage of best QA regarding 
valid pixels (99 %). These results were expected as the DTDB algorithm 
selects the high-quality pixels either from DT or DB. The MYD_DT shows 
the lowest one (43 %). When accounting for all products, the high- 
quality data set (Best QA) contains about 23 % less than all available 
valid pixels. A similar comparison was made by Gupta et al. (2018) on a 
global scale, who found 20 % fewer pixels for all QA when compared 
with the best QA.

The products MxD_MAIAC and the MxD_3k are of a higher spatial 
resolution of 1 km and 3 km, respectively. For this reason, they have 
more pixels than the 10 km products. However, the MAIAC product 
shows a much higher quantity of valid and best QA pixels, which is not 
only related to its higher resolution. For example, considering only the 
difference in resolution from 3 km (MxD_3k) to 1 km (MxD_MAIAC), a 
nine-fold increase would be expected. Instead, over sixty times more 
valid pixels and almost fifty times more best QA pixels were found. This 
shows that the quality control method of the MAIAC algorithm can select 
more pixels with good QA than the MxDL2 products. The AOD mean 
considering all QA varies between − 0.01 (MYD_DT) to 0.153 (MYD_
MAIAC), with similar values for Aqua and Terra when comparing the 
corresponding products. When considering only the best QA pixels the 
AOD means are smaller than those for all QA pixels, with values ranging 
between − 0.022 and 0.124.

Comparing the AOD from the MODIS products with the AOD pro
vided by AERONET data, shown in the Fig. 3, and summarized in 
Table 4, reveals that satellite products tend to underestimate the AOD: 
the number of AOD values below the EE range is much higher than those 
above. This is also reflected by the bias, which is all negative. Between 
the MODIS products, the MOD_DB and MYD_DB products show the best 
results, with 95 % and 86 % of the data within the EE, respectively. This 
is also corroborated by RMSE of 0.04 and 0.05, MAE of 0.03, biases of 
− 0.01 and − 0.03, as well as correlation coefficients of 0.74 and 0.48. 
From Terra, these are the overall best results. Regarding Aqua products, 
even though MYD_DB yields the best results, the correlation of MYD_3k 
is similar. However, only 28 % of the data lies within the EE range and 
show higher RMSE, MAE and bias. Both MxD_DT products yielded the 
highest percentage of underestimates (<EE). As expected, the combined 
products (MxD_DTDB) lie between the DT and DB results, with values 
closer to DTs. The Terra product MOD_DB (95 % within EE range) per
forms better than the Aqua product MYD_DB (86 % within EE range). 
However, for the DT and DTDB products, data from Aqua shows slightly 
better results than from Terra. The MxD_DT products and MxD_3k, also 
based on the DT algorithm, have the highest RMSE and MAE. These 
results indicate that the pure Dark Target product is not able to represent 
well the AOD for this region. MxD_MAIAC shows good results as well, 
and it is the only product overestimating the AOD, with a positive bias. 
However, the MAIAC product has the advantage of its higher resolution, 
offering a larger sample. Only the MxD_DB, MxD_MAIAC products, as 
well as the ensembles provide more than 66 % of the AOD values within 
EE. The average errors of the products for each satellite presents similar 
values for Terra and Aqua, with a mean RMSE of 0.09, a mean MAE of 
0.08 and a mean bias of − 0.06. For both satellite products, there is a 
tendency to underestimate the AOD values when compared to the AOD 
from AERONET, except MAIAC. The ensembles products show results, 
specially the MxD_3Ens. The MOD_3EnsMEAN and MOD_3EnsMEDIAN 
present similar results, except to EE, where the median ensemble shows 
94 % of the data within EE, while the mean ensemble shows 71 %. Due 
the restriction that all products considered in each ensemble must have 
at least 1 pixel available, the MxD_4Ens show a smaller N than 
MxD_3Ens, because the 4Ens would need the same AOD products as the 
3Ens add the MXD_3K.

The AOD reanalysis from MERRA2 shows a good agreement with 
AERONET AOD, indicating that this database can be used for AOD 
studies over the region, with the advantage of providing a more regular 
space-time characterization (Fig. 4 - left). However, the spatial 

Table 6 
Statistics of the comparison between AERONET AOD550 measurements and 
MODIS C6.1, from Terra (MOD) and Aqua (MYD), Dark Target 10 km (DT), 
Deep Blue (DB), DTDB, Dark Target 3 km (3 k), MAIAC AOD products, the 
ensemble products 3EnsMEAN, 3EnsMEDIAN, 4EnsMEAN, 4EnsMEDIAN, and 
MERRA2 over Natal/RN. EE is the percentage of the samples within (EE), 
under(<EE) or above (>EE) the expected error interval, sample size (N), RMSE, 
MAE, bias and Spearman correlation (r) with 95 % CI. Darker colour indicates 
the best result of each index.

G.B. Münchow et al.                                                                                                                                                                                                                           Atmospheric Research 315 (2025) 107864 

8 



resolution of 0.5◦ x 0.625◦ (~50 km close to the Equator) of MERRA2 is 
much coarser than the MODIS AOD products (1 to 10 km). It is also 
worth mentioning that MERRA2’s good performance is highly influ
enced by its assimilation of some of these observations discussed here, 
namely the radiances of DT products (Randles et al., 2017). The superior 
performance of DB products, when compared with DT, indicates that a 
regionally customized assimilation of MODIS AOD products by 
MERRA2, according to their errors, can improve its AOD analysis.

3.1.2. Natal site in the state of Rio Grande do Norte
Natal is on the eastern coast of the NEB, within the Atlantic Forest 

biome. The numbers of valid and best QA pixels and AOD mean at the 
AERONET site in Natal/RN, within the 0.5◦ x 0.5◦ and temporally 
collocated with the AERONET data, are shown in Table 5. There are very 
few valid and best QA pixels for the 10 km products. The best QA pixel of 

MAIAC represent 41 % (MOD) and 34 % (MYD) of all valid pixels. The 
MYD_3K present the highest proportion, with 47 % of all pixels benign 
best QA, and the MxD_DB with the lowest percentage. On the average, 
the MYD products present a higher percentage of best QA in relation of 
valid pixels. Due to the site location at the Atlantic coast, situated 2 km 
from the shore, it is marked by the transition between land and ocean, 
where the MODIS AOD products historically miss or produce highly 
biased AOD (Wang et al., 2021). In addition, DB algorithm only retrieval 
AOD over land. The proportion of the number of valid and best QA of 
MxD_MAIAC and the 10 km products presents similar results of Petrolina 
site. The number of MxD_MAIAC pixels is more than a hundred times of 
10 km products, showing that the number of pixels is not only due the 
higher resolution. The total amount of valid pixels and best QA are 
higher in Aqua’s product, except of MAIAC. This behavior is the opposite 
of what occurred to Petrolina. The AOD mean when considering all valid 

Fig. 5. Scatterplot of AOD550 from Aqua and Terra MODIS C6.1 Dark Target 10 km (DT), DTDB, Dark Target 3 km (3 k) and MAIAC as a function of AERONET AOD 
measurements over Natal/RN. The black solid line is the 1:1 line. The dashed lines are the expected error (EE) interval. N is the sample size, EE is the percentage of 
the samples within (=EE), under(<EE) or above (>EE) the expected error interval. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.)
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pixels ranges between 0.115 (MYD_DT) and 0.248 (MOD_DB). If only the 
best QA pixels are considered, the AOD mean ranges between 0.1 
(MYD_3K) and 0.19 (MYD_MAIAC). Similar AOD values were found by 
dos Oliveira et al. (2021) who used AERONET AOD data from the Natal/ 
RN site, with values ranging between 0.10 and 0.15. The MOD_3Ens and 
MOD_4Ens shows a mean AOD smaller than the MOD products. This 
value is not representative due to the restriction of all products must be 
available to calculate the mean and median, in this case there is only one 
value calculated.

The MAIAC algorithm was capable of retrieve a large number of AOD 
pixels at the coastal region of Natal. The comparison with AERONET 
data with both MOD_MAIAC and MYD_MAIAC, shown in Table 6 and 
Fig. 5, display weaker performance compared to their corresponding 
Dark Target products, with higher RMSE (0.10–0.11) and lower corre
lations (0.59 for Terra, 0.37 for Aqua)… and a positive bias of 0.07 
(MOD) and 0.08 (MYD), which are a little higher to those of Petrolina. 
This suggests that MAIAC may not be as reliable for AOD retrieval in this 
specific region. MYD_DT and MOD_DT are fairly comparable in terms of 
RMSE (both 0.06), MAE (0.04), and bias (close to 0). However, MYD_DT 
performs slightly better in terms of the percentage within the expected 
error range (91 % vs. 67 %) and correlation (r = 0.56 vs. 0.63 for Terra). 
To the site in Natal, the products show a tendency of overestimate 
(positive bias) the AOD from AERONET, except the MYD_3K. The 
Spearman correlation of MOD_3K is not shown due its p value smaller 
than the confidence level of 0.05. The ensembles and MxD_DB are not 
shown due its small sample (N). As in Petrolina, MERRA2has the highest 
number of samples (N = 875) and shows very strong performance across 
most metrics. It has the highest percentage of data within the expected 
error range (95 %), the lowest RMSE (0.04), and a solid Spearman 
correlation (r = 0.73), which makes it reliable to use on the region.

Sayer et al. (2014) analyzed DB, DT, and DTDB from MODIS 
collection 6 for Central- and South America and found that all of the 
products showed correlations with AERONET close to 0.9, and a RMSE 
of 0.14, a mean bias of − 0.022, − 0.033 and − 0.032, respectively. The 
amount of data within the EE was 73 %, 54 %, and 56 %, respectively. 
The authors also show that the DB presents a better performance to the 
Petrolina site. Gupta et al. (2018) showed that the DT products from 
Terra, for both 10 km and 3 km resolution, presented a mean bias 0.03 
higher than Aqua, and concluded that the 3 km product is less accurate 

than the 10 km one. This result was previously found by Remer et al. 
(2013). Lyapustin et al. (2018) validated MAIAC data and found a cor
relation with the AERONET site at Petrolina of ~0.4, RMSE of ~0.06, 
and a bias of ~0.2.

3.2. Regional analysis

The daily AOD550 values of the analyzed products were monthly and 
spatially averaged for the entire NEB region and individually for each 
biome. First, we discuss the results for the entire NEB region and sub
sequently those for each specific biome.

During the four analyzed years, relatively low mean values of AOD 
were obtained considering all of the NEB region. The mean of all AOD 
data from Terra is 0.095, while Aqua’s AOD mean is 0.091. Analyzing 
the products individually, the AOD mean of the four years ranges from 
0.03 ± 0.08 (MYD_DT) to 0.09 ± 0.06 (MYD_MAIAC). The distinct AOD 
products from Terra (DT, DB, etc.) present a higher correlation among 
themselves when compared with the correlation among the same 
products from Aqua. This can be seen in Fig. 6, as well, as a correlation 
matrix for the AOD mean from distinct products all over the NEB region. 
The average correlation coefficient between all Terra products is 0.75 
compared to Aqua products with a correlation coefficient of 0.69. The 
MAIAC AOD shows a better correlation with 3 k products than the other 
products. This can be due to the higher spatial resolution that both have, 
retrieving AOD with higher details than the 10 km resolution. The 
correlation between DT and DB is better for Terra (0.71) than for Aqua 
(0.58) products. Comparing the correlation of the satellites (MOD x 
MYD) to each product, the 3 k product shows the highest correlation, 
followed by DB correlation.

The merged DT and DB product (DTDB) has a correlation of 1 with 
the DT product, for both satellites. This indicates the prevalence of AOD 
values from the DT algorithm, instead of those from DB in the merged 
DTDB product. This result was expected due to the DTDB algorithm 
choice map (Sayer et al., 2014), which indicates that in almost all NEB 
area, the algorithm uses DT data every month. There is a small region in 
Caatinga area where the algorithm merges DT and DB some months. 
This case will be discussed in more detail later. The DTDB choice map 
partially agrees with the NDVI values shown by da Silva et al. (2023) in 
the NEB region, where the NDVI ranging from − 0.69 to 0.85, where 

Fig. 6. Correlation matrix of AOD550 with significance level α = 0.05 (left side) and AOD550 mean differences (column minus row; right side) between MODIS 
AOD550 products to the NEB region between 2015 and 2018.
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− 0.69 to − 0.01 are identified as water bodies. Areas with little or sparse 
vegetation range from 0.00 to 0.40, such as the Caatinga biome. Regions 
with dense vegetation during most of the year show NDVI values from 
0.43 to 0.85.

To include the MERRA2 AOD analysis in the correlation matrix, all 
data was interpolated to MERRA2’s grid (not shown). MERRA2 has a 
good correlation with DB and DT products (> 0.60). MERRA2’s lowest 
correlation is with MYD_MAIAC (0.47). The monthly AOD from 
MERRA2 at 12 UTC and 15 UTC are very similar, with a mean difference 
of − 0.002 (MERRA2_12UTC minus MERRA2_15UTC). Analyzing this 
difference in each biomes, the values are also very small, with 0.005 in 
the Amazon, − 0.007 in the Atlantic Forest, 0.003 in the Caatinga, and 

0.003 in the Cerrado. Due this reason, on the figures to each biome, the 
MERRA2 values to MOD and MYD seems very similar.

Analyzing the Fig. 6 (right), where we show mean difference of the 
product in the column minus the product in the row, the mean difference 
of AOD values between the products in we can see that the highest 
differences occur between DB and DT products, with DB in general being 
higher than DT (differences around 0.05). This result is consistent with 
Sayer et al. (2014) who found values of AOD DT minus AOD DB between 
0.05 and 0.1 in the Caatinga and Cerrado biomes of Brazil. The mean 
difference between DT and DTDB is close to zero. The MxD_MAIAC and 
MxD_DB products show only small differences.

Regarding the interannual variability for the analyzed period, all 

Fig. 7. Seasonal pattern of AOD550 with monthly mean (colored lines) and number of pixels (bars) for the NEB region from 2015 to 2018 for Terra (MOD) and Aqua 
(MYD) satellites products. There are scale factors in the pixels count scale of 104 (DT, DB, DTDB), 105 (3 k), and 107 (MAIAC). (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.)
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AOD products show a similar pattern, with the primary difference being 
the timing of maximum values (Fig. 7). All products converge on a 
maximum in Nov/2018. However, for the remaining period, patterns 
diverge MxD_DB products reach peak AOD values in Oct-Nov, while 
MxD_DT, MxD_DTDB and MxD_3k products exhibit peaks between 
December and April. The MxD_MAIAC show an annual trend like 
MxD_DB, yet they follow peaks observed in both DB and DT products. 
The MxD_DT, MxD_DTDB, and MxD_3K present minimum values in Jun- 
Jul-Aug, whereas MxD_DB, MxD_MAIAC, and MERRA2 reach the mini
mum values in May-Jun-Jul. The MERRA2 shows elevated AOD values 
in Oct-Nov. The number of pixels with high QA of AOD product also 
reveals clear seasonality, with the highest counts in Jul-Aug and the 
lowest in Jan-Feb. These pixels distribution aligns with the seasonality 
of precipitation in NEB’s semi-arid region (Oliveira et al., 2017), marked 
by a rainy season during Dec-Jan-Feb and a dry period during Jun-Jul- 
Aug. This will be further discussed in more detail when we analyze 
each biome.

In the NEB region, the agriculture and livestock are the primary 
drivers of forest fires. Among the Brazil’s five regions, NEB ranks second 
in fire foci occurrence, contributing 27.1 % of the national total. (Caúla 
et al., 2015). During the study period, fire activity (Fig. 8) shows a 
marked increase in Sep-Oct-Nov-Dec across all biomes, with a decline in 
January. In the Amazon, the fire activities are concentrated in Oct-Nov- 
Dec, with significant peaks in 2015 and 2017. November 2015 marks the 
highest fire foci counts across the datasets, suggesting a particularly 
severe fire season that year. In the Caatinga, the fire activity also peaks 
in Sep-Oct-Nov, with high values in 2015 and 2017. The Cerrado area 
exhibits high fire activity primarily in Aug-Sep-Oct, with values peaking 
in 2015, 2017, and moderately in 2016, consistently showing some of 
the highest fire occurrences compared to the other biomes. The Fire 
activity in the Atlantic Forest region is comparatively lower, displaying 
more consistent, less variable patterns, although with prominent peaks 
in September 2015 and 2017.

A comparison of AOD patterns and fire activity in NEB shows that 
peal AOD values in MxD_DB products align with months of heightened 
fire activities in Caatinga. Meanwhile, peaks in the AOD products based 
on the Dark Target algorithm in November correspond with intense fire 
periods in Amazon. Another possible reason for this time discrepancy 
between AOD maxima may be the number of high-quality pixels avail
able per product. This is illustrated in the Fig. 9 and Fig. 10, which 
presents the monthly mean AOD of MxD_DT, MxD_DB, MxD_3k, 

MxD_MAIAC and MERRA2 in October and December of 2015. This year 
were selected only as an example, however there is similar results across 
the remain years. The Deep Blue products demonstrate a limited AOD 
representation over the Amazon and surroundings areas compared to 
Dark Target and MAIAC products. However, DB offers great AOD 
coverage over Caatinga relative to DT products. In contrast, Dark Target 
products show fewer AOD retrievals in Caatinga than Cerrado and 
Amazon, proportionate to biome area. These discrepancies affect the 
mean AOD for the entire NEB region, contributing to timing differences 
among the product maxima. This effect is also evident in October, when 
MxD_DTDB values are slightly higher than those of MxD_DT due to the 
increased number of AOD retrievals selected from DB in Caatinga re
gion, aligning more closely with DB’s mean AOD. In December, high 
AOD values across eastern NEB, particularly in Amazon and Cerrado, 
skew the mean AOD to reflect this area more prominently.

3.3. The Amazon biome in Northeast Brazil

In the Amazon biome of the NEB, the minimum number of pixels for 
all satellite products is observed in Jan-Feb-Mar (Fig. 11). Due to its 
small area, there are periods with few high-quality pixels available, with 
an extreme case in February 2018, when the MYD_DB product presents 
0 pixels. The maximum number of pixels can be found for the month of 
July, for both high-resolution (MxD_MAIAC) and coarser-resolution 
products. This seasonality in the number of pixels is consistent with 
the precipitation cycle pattern shown by Correia Filho et al. (2019), 
Oliveira et al. (2017), and Paredes-Trejo et al. (2017), with the lowest 
number of pixels occurring during the months of the rainy season 
(January–April), and highest number observed during the dry season 
(July and September). The mean seasonal variability of each AOD 
product in the portion of the NEB region that corresponds to the Amazon 
biome is presented in Fig. 11. In general, MOD and MYD present a 
consistent seasonality, with minimum values occurring during JJA and 
AOD increasing from September and peaking in November/December. 
The AOD MERRA2 peak in November presents a sharper decrease when 
compared to the AOD of the satellite products. Also, it presents a min
imum period, from March to July, larger than that of the satellite 
products. For the latter, the lowest AOD occurs during Jun-Jul-Aug, with 
the minimum values varying from 0.04 (MOD_DTDB) to 0.05 
(MYD_DTDB). The highest values occur in Nov-Dec-Jan, ranging from 
0.38 (MYD_3k) to 0.39 (MOD_3K). The 3 K product presents the highest 

Fig. 8. Monthly density of active fires (fire foci normalized by the area of each biome) in NEB region from 2015 to 2018, using the MODIS products MOD14A2 
and MYD14A2.
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Fig. 9. Monthly mean AOD at 550 nm of MODIS/Terra products and MERRA2 in NEB region for October and December of 2015. Gray lines indicate biomes 
boundaries and black line delineates the NEB area.

G.B. Münchow et al.                                                                                                                                                                                                                           Atmospheric Research 315 (2025) 107864 

13 



Fig. 10. Monthly mean AOD at 550 nm of MODIS/Aqua products and MERRA2 in NEB region for October and December of 2015. Gray lines indicate biomes 
boundaries and black line delineates the NEB area. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.)
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values during almost all months. MERRA2 shows values of AOD smaller 
than almost all MODIS products between January until May, except in 
March when MOD_DT and MOD_DTDB are smaller, and in February 
when MYD_DB is smaller. From July until October, the MERRA2 AOD is 
the highest among the Terra products, and between the MYD_3K and the 
10 km products. This region is affected by the biomass burning season of 
the northeast portion of Amazonia, which occurs later than the well- 
known Southern Amazon biomass burning season (Rosário et al., 
2013). The number of fires in this part of the NEB starts to increase in 
August, and reach their peak in Oct-Nov-Dec (Fig. 8).

3.4. The Atlantic Forest in Northeastern Brazil

The NEB portions correspond to the Atlantic Forest biome extending 
along the coast, where nine out of 10 state capitals of the NEB are 
located. Hence, it is the most populated biome in the region. In general, 
the AOD is lower than for the Amazon biome in all products. There is a 
weak seasonal pattern, with minimum AOD values in April and May 
(Fig. 12). All MODIS and MERRA2 products show a very similar pattern 
and values, except for the MOD_3k which presents the highest AOD for 
all months. The MYD_DT and MYD_DTDB products have the lowest AOD 
values during all months. The products from Aqua have a better 
agreement among themselves than Terra’s products. The monthly AOD 
among Terra’s products range from 0.04 (MOD_DTDB) to 0.17 
(MOD_3k), with a total average of 0.09. For Aqua, the values vary from 
0.34 (MYD_DTDB) to 0.12 (MYD_3k), with an average of 0.08. Using 
data from an AERONET sun-photometer temporarily installed in Natal/ 
RN (in the Atlantic Forest region), dos Oliveira et al. (2021) calculated a 
monthly average of AOD500nm between 0.1 and 0.15 from Aug/2017 to 
Mar/2018. In their analysis the aerosol columnar load is composed 
mainly of marine aerosols, dust, and local and remote biomass burning. 

The number of high-quality pixels is at a minimum in February for both 
satellites’ products, except for the MYD_DB for which the minimum 
occurs in April. All Aqua products show about 10 % more pixels than 
those of Terra. Contrary to the Amazon biome, the seasonal pattern of 
the number of pixels in the Atlantic Forest biome did not follow the 
seasonal climatology of precipitation in the region. In the northern part 
of the Atlantic Forest biome, the maximum monthly precipitation occurs 
typically in May and June, while for the southern part of the coast, the 
largest amount of precipitation is observed during November and 
December (Correia Filho et al., 2019; Oliveira et al., 2017; Paredes-Trejo 
et al., 2017).

3.5. The Cerrado biome in Northeast Brazil

In the Cerrado region of the NEB, for Terra’s satellite products, the 
extreme monthly AOD varies between 0.004 (MOD_DT) in July, and 
0.157 (MOD_DB) in November (Fig. 13). All Terra products present a 
similar seasonal pattern, with minimum values in July, except for the 
MAIAC product with its minimum in June, and its maximum in 
November. MOD_DB and MOD_MAIAC show close AOD values over the 
year, but from September to December MOD_DB AOD increases faster 
than the MOD_MAIAC product. MYD_DB and MYD_MAIAC AOD are very 
close between June and November, and differ on January until April, 
when MYD_MAIAC presents a higher AOD than MYD_DB. For the same 
period MOD_DB AOD is higher than that of MOD_MAIAC. The minimum 
AOD from Aqua’s products occurs in June/July, with the lowest AOD of 
− 0.014 obtained for MYD_DT. The maximum AOD is 0.187 registered by 
MYD_3k in December. In NEB’s Cerrado the number of fire foci starts to 
increase in August, reaching its maximum in September (Fig. 8). 
MERRA2 shows values higher than the satellite products (MOD and 
MYD) for the second half of the year, with a maximum in October and 

Fig. 11. Seasonal pattern of AOD550 with monthly mean (colored lines), and number of pixels (bars) in the NEB biome domain of Amazon from 2015 to 2018 for 
Terra (MOD) and Aqua (MYD) satellites products. There are scale factors in the pixels count scale of 102 (DT, DB, DTDB), 103 (3 k), and 104 (MAIAC). (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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November. However, in the final trimester of the year, the predominant 
wind direction in the region is from E/SE, coinciding with a higher 
number of fire foci in the Caatinga and Atlantic Forest biomes, which are 
situated east of the Cerrado biome. Therefore, an important fraction of 
AOD measured by the MODIS products in this period can be due to the 
transportation of plumes emitted in the Caatinga and the Atlantic Forest. 
The MOD products show in total 42 % more high-quality pixels than 
those of MYD. However, all of them provide a similar pattern during the 
year, with a maximum in austral winter and a minimum in summer, 
which agrees with the rainfall seasonality of the Cerrado in the NEB 
region: a rainy period in Jan-Feb-Mar and a drier period in Jun-Jul-Aug 
(Correia Filho et al., 2019; Oliveira et al., 2017; Paredes-Trejo et al., 
2017).

3.6. The Caatinga biome in Northeast Brazil

Caatinga is a unique biome and the most extensive of the NEB, 
covering almost 1/3 of its area. Comparing MODIS AOD products for this 
biome (Fig. 14), we can see that on average it presents the lowest AOD 
mean compared to all other biomes. The AOD mean for Terra products is 
0.037, with a seasonality ranging between − 0.017 in July (for the DT 
algorithm) and 0.093 in October (for the DB algorithm). For Aqua, the 
obtained AOD mean is 0.04, with a seasonality among the products 
ranging from − 0.025 (for the DT in July) to 0.095 (for the MAIAC in 
March). Generally, the products based on the DT algorithm (MxD_DT 
and MxD_3k) and the MxD_DTDB present similar patterns with an AOD 
increase in Feb-Mar-Apr and a decrease in July, reaching negative 
values. MOD_DB and MOD_MAIAC AOD’s have very similar values and 
patterns, with a difference in November when MOD_DB is higher than 
MOD_MAIAC. MYD_MAIAC shows higher AOD values than MYD_DB 
during all months, except for October when both products estimate an 
AOD of 0.09. The seasonal pattern of the MERRA2 AOD is similar to 
those of MxD_DB and MxD_MAIAC and shows a higher AOD in all 

months compared to the MODIS products, except in March and April, 
when MAIAC AOD increases and is higher than MERRA2 AOD. The 
Caatinga is the only biome where the DTDB shows perceptible differ
ences compared to DT. This can be related to the low NDVI surface 
values that characterize the region. In this area, the DTDB choice map 
merges the DT and DB during some months. If the pixel shows a NDVI 
between 0.2 and 0.3, the DTDB algorithm uses the AOD retrieved with 
the higher QA from DB or DT, or the mean of these two if both return QA 
= 3. September to December is the period with a higher quantity of fire 
foci in the region (Fig. 8). This can explain the AOD s behavior during 
this period. The elevation of AOD during Feb-Mar-Apr in the NEB region 
has been related to the long-range transport of aerosols from Africa, due 
to biomass burning and Sahara dust (Formenti et al., 2008; dos Oliveira 
et al., 2021; Tsamalis et al., 2013; Weinzierl et al., 2011). Regarding 
pixel statistics, the lowest number of pixels occurs in the austral summer 
for all products, while the highest counts can be found in Jul-Aug-Sep. 
The largest number of pixels matches with the period with low precip
itation, while the months with a lower number of pixels are found in the 
period with more precipitation (Correia Filho et al., 2019; Oliveira et al., 
2017; Paredes-Trejo et al., 2017). As in the Amazon and Cerrado, the 
total number of pixels accounted for in the MOD products is higher than 
for the MYD products, with a difference of 28 %.

4. Conclusions

In this paper we analyze and discuss the aerosol columnar load over 
the Northeast of Brazil (NEB), estimated as AOD by different remote 
sensing platforms and as calculated by MERRA2. The NEB is the most 
diverse region in Brazil when it comes to biomes (Atlantic Forest, 
Amazon, Cerrado, and Caatinga) and comprises an area about three 
times the size of France. Consequently, the NEB region presents a vast 
variety of aerosol sources and surface features, which may be considered 
a critical aspect for AOD retrieval from satellite observation, which can 

Fig. 12. Seasonal pattern of AOD550 with monthly mean (colored lines), and number of pixels (bars) in the NEB biome domain of Atlantic Forest from 2015 to 2018 
for Terra (MOD) and Aqua (MYD) satellites products. There are scale factors in the pixels count scale of 102 (DT, DB, DTDB), 103 (3 k), and 104 (MAIAC). (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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be extremely complex. The analyzed remote sensing platforms are the 
AERONET sun-photometer and the MODIS instruments aboard both 
Terra and Aqua satellites, providing MODIS AOD daily products, 
currently producing collection numbered 6.1.

The MODIS-based AOD products comprise several approaches based 
on different algorithms, aiming to reduce the uncertainties, improve or 
adjust their accuracy and application. The traditional DT algorithm at 10 
and 3 km resolutions explores low albedo surface (DT) to estimate AOD 
at regional and urban scales, respectively. The DB algorithm was 
developed targeting the improvement of AOD inversion over high al
bedo surface, such as the NEB semi-arid region. Finally, the more recent 
MAIAC product at high resolution (1 km) explores and produces high 
spatial variability AOD maps (for instance a suburban setting).

As validation analysis over the Brazilian Northeast, we compared 
these MODIS-based products and MERRA2 against AERONET AOD from 
two sites, (Petrolina/PE and Natal/RN cities), for the period between 
2015 and 2018. Petrolina is located in NEB largest Caatinga biome, 
while Natal is a coastal city in the Atlantic Forest biome.

The AOD seasonality from all satellite and MERRA2 products over 
each biome in the NEB were compared. The satellite validation analysis 
against AERONET showed that the AOD retrievals MxD_DB are the best 
products over Petrolina. The DB algorithm was developed with the main 
focus on bright surfaces, such as deserts, and fits well the conditions of 
the Caatinga as it is a brighter surface than the other biomes. Consid
ering that, we can conclude that this product is the most adequate to use 
for studies in the Caatinga region. However, in the coastal region of 
Natal, the results from the DB algorithm are not reliable due to the low 
number of valid pixels with the highest QA. This is because the DB al
gorithm does not retrieve AOD over ocean surfaces and assigns lower QA 
values to pixels in the transition zones between land and ocean. As ex
pected, the coastline also influenced the proportion of high-QA and valid 

pixels across all MODIS products. Compared to the Petrolina site, the 
percentage of high-QA pixels relative to all valid pixels at the Natal site 
was significantly lower. Among the MODIS products, MxD_DT are the 
best performer in this region. The MAIAC products generally under
perform compared to Dark Target, and while the ensemble products 
could offer potential, the sample size is too small for definitive conclu
sions. A bigger sample could provide deeper insights. MERRA2 also 
provides good results for both AERONET sites, showing that the AOD 
database can be used for future studies. MERRA2’s disadvantage is 
related to the considerably lower spatial resolution compared to the 
MODIS products. On average, Terra and Aqua have similar results at the 
Petrolina site. The good performance of DB products in Caatinga region, 
indicates that a regionally customized assimilation of MODIS AOD 
products by MERRA2 can improve its AOD analysis.

The analyses of the different biomes show that in all of them the AOD 
monthly average decreases during austral autumn and winter and in
creases in spring and summer. In general, all MODIS products agree with 
each other in all biomes, except the period with maximum values. DB 
and MAIAC yield a higher AOD in the Caatinga and Cerrado, compared 
to the other products. In the Atlantic Forest biome all products have 
similar AOD values, except for MOD_3k, which presents higher values. 
The Amazon biome presents the most accentuated variation throughout 
the year and the highest AOD. This is caused mostly by the forest fire 
season. All products also show differences in the AOD values, even 
though with similar patterns. It should be highlighted that MAIAC and 
DB show very similar values in all four biomes throughout the year. DB 
shows the best results in comparison against AERONET in the Caatinga 
biome, followed by MAIAC, which is also in good agreement. Thus, 
MAIAC may be recommended for studies in the Caatinga region, espe
cially since it is produced on a high spatial resolution of 1 km.

The annual AOD cycle in the NEB region closely aligns with forest 

Fig. 13. Seasonal pattern of AOD550 with monthly mean (black dots), and number of pixels (bars) in the NEB biome domain of Cerrado from 2015 to 2018 for Terra 
(MOD) and Aqua (MYD) satellite products. There are scale factors in the pixels count scale of 103 (DT, DB, DTDB), 104 (3 k), and 106 (MAIAC). (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web version of this article.)
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fire activity, highlighting the significant contribution of local fires to the 
total aerosol load in the atmospheric column. The AOD data based on DT 
algorithm shows stronger agreement with fire activity in the Amazon 
region and its surroundings, while the data from DB algorithm aligns 
more closely with fire activity in the Caatinga. This reinforces the need 
for a more sophisticate selection of the AOD products tailored to 
regional characteristics.
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