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Abstract: The indole scaffold is considered a privileged framework in the design and synthesis of
several active pharmaceutical ingredients, particularly as promising anticancer agents. Its presence
in several bioactive natural compounds has caught the attention of the scientific community, which
has been committed to unveiling its biosynthetic pathways and generating multiple derivatives with
innovative synthetic routes. The large variety of structural derivatives enhances their use in multiple
bioapplications and pharmacological activities. In this review, the reader will have easy access
to some examples of natural and synthetic indole derivatives with antimicrobial, antidepressant,
anti-inflammatory, antiviral, antimigraine, and antiemetic activity. However, the main topic of this
review is related to cancer and the importance of indole derivatives as promising anticancer drugs.
Two of the reasons why cancer is considered a massive problem worldwide are attributed to the
struggle to develop target-specific drugs while avoiding drug resistance. Among countless drugs
targeting specific proteins involved in tumorigenesis, prompting life quality in the treatment of
several cancer types, protein kinases, desoxyribonucleic acid topoisomerases, and P-glycoprotein
have been shown to be the main targets when it comes to the development of novel anticancer agents.
Furthermore, indole and its derivatives are also studied regarding affinity to other targets related
to cancer. This review aims to highlight the utility of the indole scaffold in anticancer drug design,
inspiring the creation and synthesis of new derivatives that target specific proteins and address drug
resistance challenges.

Keywords: indole; biological profile; cancer; protein kinases; DNA topoisomerase; tubulin
polymerization; P-glycoprotein

1. Introduction

Indole (1) (Figure 1), also named 1H-benzo[b]pyrrole, is a small molecule constituted
by a six-member aromatic ring fused with a pyrrole five-membered ring. The general
reactivity of (1) is summarized in Figure 1 [1–3].

It was first discovered in 1866, in Adolf von Baeyer’s studies on the Indigo plant.
Further in his research, he ended up oxidizing indigo to isatin, which was reduced to
oxindole and then to (1), after rinsing off the vapors over zinc dust (Scheme 1). Even
though it was a synthetic process that gave access to (1), it can be found in a plethora
of natural sources, including several plant families (Apocynaceae, Rubiaceae, Catharanthus
roseus, Rauvolfia serpentina), aquatic organisms (Aplysina cavernícola), and bacteria (Shewanella
algae) [4–6].

Regarding its biosynthesis (Scheme 2), (1) is an intermediate in the shikimic acid path-
way, a common approach for the biosynthesis of aromatic amino acids, like L-tryptophan,
and other metabolites in bacteria, fungi, and plants [7,8].
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Figure 1. Reactivity of indole (1) scaffold. 

 
Scheme 1. Adolf von Baeyer’s synthetic approach to access indole. 

Regarding its biosynthesis (Scheme 2), (1) is an intermediate in the shikimic acid 
pathway, a common approach for the biosynthesis of aromatic amino acids, like L-
tryptophan, and other metabolites in bacteria, fungi, and plants [7,8]. 

In humans, several natural derivatives of (1) can be found in metabolic pathways, 
displaying relevant biological roles. Serotonin (2) (Figure 2) is a monoamine 
neurotransmitter located in blood cells, peripheral and central nervous system, and 
cardiovascular tissue. Its basal function is to regulate muscle contraction, as well as 
vasoconstriction, memory, and others. Given the fact that (2) main receptors are in the 
nervous system, in neurodegenerative diseases, such as Alzheimer’s and Parkinson’s 
diseases, the pathophysiological process includes the inhibition of (2) uptake, mainly for 
overexpressed MAO enzymes, emphasizing the need to use (2) receptor agonists or MAO 
inhibitors as therapeutic approaches in order to increase the reuptake. Melatonin (3) 
(Figure 2) is produced from (2) and plays a key role in circadian rhythm, sleep regulation, 
and seasonal photoperiodic regulation, being used to treat sleeping disorders [8–10]. β-
Carboline alkaloids (4) (Figure 2) can also be obtained from L-tryptophan (Scheme 2). The 
complexity of the structure is dependent upon the substituents on the aromatic rings, and 
therefore, (4) also has neurological effects and is used in cases of depression and 
neurologic diseases, like Alzheimer’s and Parkinson’s disease [7,8,11]. Both vincristine (5) 
and vinblastine (6) (Figure 2) have the mechanism of action of interacting with the 
microtubule binding site, causing cell arrest during mitosis. Compound (5) is used to treat 
lymphocytic leukemia, neuroblastoma, Wilkin’s tumor, childhood leukemia, and a few 
more diseases. Meanwhile, (6) is used in the treatment of Hodgkin’s disease, 
neuroblastoma, breast and lung cancers, and acute and chronic leukemia, among others. 
By binding to the end of the microtubules, it disrupts this structure, leading to tumor 
growth suppression, combined with the increase of cAMP and glutathione levels and the 
inhibition of the synthesis of proteins, nucleic acids, and the DNA repair mechanism 
[8,12]. Even though both compounds are very efficient in lower doses, when in higher 
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In humans, several natural derivatives of (1) can be found in metabolic pathways, dis-
playing relevant biological roles. Serotonin (2) (Figure 2) is a monoamine neurotransmitter
located in blood cells, peripheral and central nervous system, and cardiovascular tissue. Its
basal function is to regulate muscle contraction, as well as vasoconstriction, memory, and
others. Given the fact that (2) main receptors are in the nervous system, in neurodegenera-
tive diseases, such as Alzheimer’s and Parkinson’s diseases, the pathophysiological process
includes the inhibition of (2) uptake, mainly for overexpressed MAO enzymes, emphasizing
the need to use (2) receptor agonists or MAO inhibitors as therapeutic approaches in order
to increase the reuptake. Melatonin (3) (Figure 2) is produced from (2) and plays a key
role in circadian rhythm, sleep regulation, and seasonal photoperiodic regulation, being
used to treat sleeping disorders [8–10]. β-Carboline alkaloids (4) (Figure 2) can also be
obtained from L-tryptophan (Scheme 2). The complexity of the structure is dependent
upon the substituents on the aromatic rings, and therefore, (4) also has neurological ef-
fects and is used in cases of depression and neurologic diseases, like Alzheimer’s and
Parkinson’s disease [7,8,11]. Both vincristine (5) and vinblastine (6) (Figure 2) have the
mechanism of action of interacting with the microtubule binding site, causing cell arrest
during mitosis. Compound (5) is used to treat lymphocytic leukemia, neuroblastoma,
Wilkin’s tumor, childhood leukemia, and a few more diseases. Meanwhile, (6) is used in
the treatment of Hodgkin’s disease, neuroblastoma, breast and lung cancers, and acute and
chronic leukemia, among others. By binding to the end of the microtubules, it disrupts this
structure, leading to tumor growth suppression, combined with the increase of cAMP and
glutathione levels and the inhibition of the synthesis of proteins, nucleic acids, and the DNA
repair mechanism [8,12]. Even though both compounds are very efficient in lower doses,
when in higher doses, they can have adverse effects, like hallucinogenic and neurotoxic ac-
tivity. In previous studies, (6) was disclosed to cause an increase in gastrointestinal toxicity
and a decrease in bone-marrow formation. Particular attention should be given to (5), since
its capacity to disrupt mitosis can affect both cancer and healthy cells [8,12]. Another indole
natural derivative performing a key role in anticholinesterase activity is physostigmine
(7) (Figure 2). Taking advantage of the carbamate group to establish interactions with the
acetylcholinesterase (AChE) active site, it prevents the normal destruction of acetylcholine
(ACh), increasing the cholinergic neurotransmission. It also demonstrated the potential
to reverse the effects of competitive muscle coolers and in the treatment of Alzheimer’s
disease [8].
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the scientific community to investigate and develop alternative synthetic routes to access
(1) and derivatives [13].

1.1. Accessing (1) and Derivatives: Synthetic Processes

Due to the importance of indole derivatives, several synthetic routes have been de-
veloped over the years, focused on (1) or the substituted indole derivatives. The use of
transition-metal catalysts is one of the most investigated methods in the literature, since
they are crucial for achieving alkyne activation, leading to nucleophilic additions permitting
the formation of the indole ring. Palladium, zinc, iron, nickel, rhodium, ruthenium, cop-
per, and silver are some of the transition-metal catalysts reported in the literature [14–16].
There are several well-known reaction approaches to access unsubstituted (1), such as
Leimgruber–Batcho [17], Julia [18], Fischer [19], Reissert [20], and Baeyer–Emmerling [21]
reactions (Scheme 3).
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As for the synthesis of substituted indole compounds, a plethora of complex synthetic
processes is reported in the literature. Examples described by some research groups are
summarized in Scheme 4 [22–24].
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Non-catalyzed indole synthesis was also highly reported in the literature. Some of
the most referenced methods are depicted in Scheme 5, where Madelung [25], Bartoli [26],
Larock [27], and Fukuyama [28] reactions can be seen in more detail.
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1.2. Biological Profile of the Scaffold

An extensive variety of derivatives could be obtained from (1) (from natural to syn-
thetic and hemisynthetic sources), and they were distinguished for their potential and
numerous applications. Sunitinib (8) (anticancer), sumatriptan (9) (antimigraine), perindo-
pril (10) (antihypertension and a heart-failure moderator), and delavirdine (11) (antiviral)
are examples of well-known derivatives of (1) used as active pharmaceutical ingredients
(APIs), according to the DrugBank database (Figure 3) [5,29–32].
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Figure 3. Indole derivatives as commercially available APIs.

Other indole derivatives are also used as antitubercular, anticholinergic, antiarrhyth-
mic, anti-asthmatic, antimalarial, antidiabetic, antiplatelet, antidiarrheal, antispasmodic,
and antileishmanial agents [33,34]. Several multidisciplinary research groups have set-
tled some structure–activity relationship (SAR) studies, meaning the relevant correlations
between the molecular structure of the indole core and its substitution pattern and the corre-
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sponding interactions with biological targets. Figure 4 represents some of those established
correlations for the development of antimicrobial, antidepressant, and anti-inflammatory
indole derivatives [34].
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1.2.1. Antimicrobial Activity

From the leaves of Alstonia rupestri were extracted the indole derivatives scholarisins
I, II, III, and F (12a-d) (Figure 5). These compounds showed potent antifungal activity
against Giberella publicaris and Cercospora nicotianae, exhibiting MIC values of 0.64–0.69 µM,
1.37–1.44 µM, 1.80–1.91 µM, and 1.55–1.71 µM, respectively. Melokhanines B, D, E, and
F (13a-d) (Figure 5) were also extracted from natural sources (Melodinus khasianus), and
exhibited antibacterial activity against Pseudomonas aeruginosa, presenting MIC values
ranging from 2 to 5 µM [33,34]. Regarding synthetic derivatives, compound (14) (Figure 5),
synthesized by Choppara and co-workers [35], proved to be active against Gram-positive
bacteria, Gram-negative bacteria, and fungi, such as Bacillus subtillis, Klebsiella pneumonia,
Pseudomonas aeruginosa, and Aspergillus spp. The group of Mielczarek [36] successfully
synthesized the indole derivative (15) (Figure 5), which displayed moderate activity against
Bacillus subtillis and Escherichia coli, inferring that substitutions with small groups decrease
the activity of the drug candidate [35,36].
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1.2.2. Antidepressant Activity

Located on the leaves, mitragynine (16) (Figure 6) is extracted from the Mitragyna
speciosa Korth plant. It was tested in mouse models of depression, using the forced-swim
test and the tail-suspension test, revealing an abrupt decrease of corticosterone release
and allowing a reduction of stress and depressive effects. Moreover, having inhibitory
activity against MAO, lyaloside (17) (IC50 of 50.04 µg/mL) and strictosamide (18) (IC50 of
132.5 µg/mL) (Figure 6), extracted from Psychotria suterella and Psychotria laciniate, respec-
tively, induced antidepressant activities in the mitochondrial fractions of rat brains [33].
Synthetic compounds, like indalpine (19) and roxindole (20) (Figure 6), demonstrated
activities through 5-HT reuptake inhibition and as a D2R agonist, respectively, with an
EC50 of 0.37 nM for (20) [16,37].
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1.2.3. Anti-Inflammatory Activity

From Alstonia yunnanensis, indole derivatives like perakine N4-oxide (21a), raucaf-
frinoline N4-oxide (21b), and vinorine N4-oxide (21c) (Figure 7) can be found with selective
inhibitory activity against COX-2, presenting potency percentages of 94.77%, 88.09%, and
94.05%, respectively. Synthesized by Bhat and co-workers [38], compound (24) (Figure 7)
demonstrated a potency of 0.79 against COX-2, which was found to be even more selec-
tive when compared to indomethacin (23), (potency of 1.0), a control drug, emphasizing
the importance of the presence of the nitrophenol substituent [16,33,38]. Extracted from
the seeds of the Capsicum family species, capsaicin (22) (Figure 7) can be found to have
inhibitory activity against TNF-α, a proinflammatory kinase. The group of Mukthung [39]
synthesized compounds (25a) and (25b) (Figure 7), with different numbers of carbons
on the main chain and different substituents in the aromatic rings. It was observed that
there was inhibition of TNF-α, suggesting that the presence of nitro groups is crucial for
increasing the activity (relative % inhibition of 47.65% and 51.95%, respectively) [16,39]. Cu-
riously, strictosamide (18) (Figure 6), in addition to antidepressant activity, also displayed
anti-inflammatory activity, with a relative % inhibition of 28.1%, in an assay with mice with
ear-edemas-induced TPA in a dose of 40 mg/kg [33].
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1.2.4. Antiviral Activity 
From the Alstonia family species, there are 17-nor-excelsinidine (26) and strictamine 

(27) (Figure 8) compounds, which are extracted from Alstonia scholaris and have antiviral 
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1.2.4. Antiviral Activity

From the Alstonia family species, there are 17-nor-excelsinidine (26) and strictamine
(27) (Figure 8) compounds, which are extracted from Alstonia scholaris and have antiviral
activities against HSV, with EC50 values of 1.09 µg/mL and 0.36 µg/mL, respectively, and
ADV, with EC50 values of 0.94 µM and 0.28 µM, respectively [16,33]. From a synthetic
origin, oglufanide (28) (Figure 8), an indole derivative capable of inhibiting VEGF and
possibly affecting and inhibiting angiogenesis, can also be active against the hepatitis C
virus. Atevirdine (29) (Figure 8), acts as a non-nucleoside reverse transcriptase inhibitor
(NNRTI). NNRTIs bind to reverse transcriptase (the enzyme responsible for the conversion
of RNA to DNA), playing an essential role in stopping virus development [16,33]. Recent
in silico studies revealed that indomethacin (23) (Figure 7) could exhibit antiviral activity
against SARS-CoV-2 [40].
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1.2.5. Antimigraine Activity

Several indole–triptan derivatives were developed regarding antimigraine activity,
like nicergoline (30) and rizatriptan (31) (Figure 9), which act as agonists of 5-HT1B and
5-HT1D receptors. From marine sources, in this case from the Caledonian sponge Gellius sp.,
gelliusine A (32) (Figure 9) showed an analogous behavior to ergot indole derivatives [34].
Ergot is a disease of wild and cultivated wheat, and over the years, many compounds
have been isolated from diseased plants and studied regarding their mechanism of action.
Likewise, the ergot compounds, derived from ergotamine (33), originated from lysergic
acid (34), an ergolinic alkaloid (Figure 10), were classified as another indole class that holds
structural similarities to serotonin and dopamine, herein expressing an agonist activity in
the same receptors. They have been used as antimigraine agents and for the treatment of
diseases implying vasodilatation, such as Parkinson’s disease, given its vasoconstriction
effects [8].
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1.2.6. Antiemetic Activity

Antiemetic drugs are usually applied to treat nausea and vomiting symptoms, due
to their antagonist action on 5-HT3 receptors. Even though there are no natural sources
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of indole derivatives with antiemetic activity, as far as we know, some synthetic products
have been developed to ameliorate the side effects caused by chemotherapy, radiation
therapy, and surgery [34]. Some examples of synthetic compounds derived from the indole
scaffold with antiemetic activity are ondansetron (35), tropisetron (36), and alosetron (37)
(Figure 11) [34].
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2. Indole in Cancer

In 2023, the National Cancer Institute (NCI) defined cancer as “a disease in which
some of the body’s cells grow uncontrollably and spread to other parts of the body” [41].
Generally, cancer is a multifactorial disease, which can be caused by either internal or
external [42] factors, and therefore, there is always a certain degree of unpredictability
since it is a consequence of epigenetic DNA modifications, resulting in a genetic mutation
that leads to the formation of several defective proteins in the organisms. In fact, there is
no conventional explanation for the development of cancer, and, over the years, several
approaches/mechanisms of action have been presented regarding tumorigenesis [43]. This
malfunction is not so amendable as it may seem to our immune system, considering that
once the mutation is present, it starts to develop defensive tools surrounding DNA repair
mechanisms, deceiving normal cells and enhancing cancer cells’ growth, usually using the
synergy between p53 and MDM2 by inhibition and overexpression, respectively. This event
allows for the mutation to grow and accumulate genetic and epigenetic alterations (giving
heterogenicity properties), providing the necessary conditions to form carcinogen–DNA
adducts that inactivate tumor-suppressor genes and/or activate protooncogenes [43–45].
Those effects make tumor cells capable of behaving as self-sufficient, of growing, and of
ignoring signals to stop dividing or to die (apoptosis), supplying oxygen by promoting
angiogenesis and producing energy from nutrients obtained in different ways, among other
features. In tumor cells, the conditions to proliferate from localized tumors to other anatom-
ical locations, is a process called metastasis [44–46]. As previously mentioned, mutations
can be triggered by damage to DNA sequences, whether caused by DNA methylation,
which is essential for the regulation of gene expression. But, when over or under-expressed,
it can also develop oncogenic diseases or, by interaction with reactive oxygen species (ROS),
where DNA oxidation modifies the nitrogenous bases, induces damage to it, resulting
in genomic instability. Damaged DNA produces mutated proteins that will work in the
function of cancer survival and not regulate normal cell mechanisms [47,48]. Genetic
mutations affect signaling pathways, stimulating the activation of proto-oncogenes, such
as GTPases (e.g., Ras, Rab, and Rho), lipid kinases (e.g., PI3K), NRTK (e.g., Abl, Src, and
BTK), RTK (e.g., EGFR), amongst others, and inactivation of tumor-suppressor genes, such
as p53, PTEN, APC, MLH1, BRCA1 and BRCA2, and CDK (e.g., Akf and Raf), that can
work as both an oncogene and TSG. Those proteins, important for normal cell growth and
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regulation, become overexpressed, and others, responsible for apoptosis, become muted,
allowing the tumor to grow, proliferate, and metastasize [49]. In the last decades, indole
(1) has been considered a privileged structure in the design of new APIs to treat certain
pathologies, especially targeting the proteins involved in cancer treatment. Considering
that the indole scaffold can easily undertake chemical modifications, allowing the synthesis
of numerous derivatives, over the last few years, many reports regarding the synthesis
and bioprofiles of these derivatives have established some trends, with crucial assessments
regarding their anticancer activity. It has been observed that the presence of a carbonyl
group at position 2 of the indole scaffold (oxindole-type compounds) increased cytotoxicity
in cancer cells, as well as the presence of a spiro-ring at position 3 (Figure 12). The same
trend was noticed regarding the presence of a methoxyl group at position 3, whereas at
position 5 of the indole scaffold, it was observed that there was activity in the upregulation
of TSG. The presence of a double bond and an ester group at position 3 also increased
cytotoxicity. The introduction of an aryl group, substituted with Br at position 3 or 5,
exhibited favorable results regarding TK inhibition (Figure 12). The presence of halogen
derivatives (F, Cl, Br) at position 5 or position 7 of the aromatic ring of the indole scaffold
also produces an effect on cytotoxicity (Figure 12) [34,50].

Drugs Drug Candidates 2024, 3, FOR PEER REVIEW 13 
 

reports regarding the synthesis and bioprofiles of these derivatives have established some 
trends, with crucial assessments regarding their anticancer activity. It has been observed 
that the presence of a carbonyl group at position 2 of the indole scaffold (oxindole-type 
compounds) increased cytotoxicity in cancer cells, as well as the presence of a spiro-ring 
at position 3 (Figure 12). The same trend was noticed regarding the presence of a methoxyl 
group at position 3, whereas at position 5 of the indole scaffold, it was observed that there 
was activity in the upregulation of TSG. The presence of a double bond and an ester group 
at position 3 also increased cytotoxicity. The introduction of an aryl group, substituted 
with Br at position 3 or 5, exhibited favorable results regarding TK inhibition (Figure 12). 
The presence of halogen derivatives (F, Cl, Br) at position 5 or position 7 of the aromatic 
ring of the indole scaffold also produces an effect on cytotoxicity (Figure 12) [34,50]. 

 
Figure 12. SAR trends for anticancer indole (1) derivatives. 

2.1. Main Targets of Indole Derivatives in Cancer 
2.1.1. Protein Kinases 

Protein kinases (PKs) are capable of catalyzing phosphate-group transfer from aden-
osine triphosphate (ATP) to the residues of specific proteins. They assist several signaling 
pathways, expressing activity in cellular processes, such as the regulation of transcription 
factors, mRNA stability, and protein translation, therefore playing a role in cell growth 
and development. Given its diversity and multiple roles in several pathways, PKs repre-
sent a major influence in cell development, being consequently a target in cancer research. 
However, the innumerous families of this class of proteins make the design of inhibitors 
a difficult and challenging task, since the specificity depends deeply on the interactions 
established by the small molecule with the active site of the PK. Great efforts have been 
made over the last several years to develop small molecules that can inhibit PK in the 
active site, whether through competition or conformational alteration [29,51]. Studies de-
veloped by Paul and co-workers [52] using a theoretical model of PK ATP-binding site 
(Figure 13) demonstrated key interactions to consider when designing inhibitors. A gen-
eral PK active site presents an adenine region that holds the main interactions (through 
hydrogen bonds) with the hinge region, a sugar interaction region (that contributes to the 
overall binding), a hydrophobic channel and pocket (without established interactions), 
and a phosphate-binding region (which anchors ATP to the binding site) [52]. 

Figure 12. SAR trends for anticancer indole (1) derivatives.

2.1. Main Targets of Indole Derivatives in Cancer
2.1.1. Protein Kinases

Protein kinases (PKs) are capable of catalyzing phosphate-group transfer from adeno-
sine triphosphate (ATP) to the residues of specific proteins. They assist several signaling
pathways, expressing activity in cellular processes, such as the regulation of transcription
factors, mRNA stability, and protein translation, therefore playing a role in cell growth and
development. Given its diversity and multiple roles in several pathways, PKs represent
a major influence in cell development, being consequently a target in cancer research.
However, the innumerous families of this class of proteins make the design of inhibitors
a difficult and challenging task, since the specificity depends deeply on the interactions
established by the small molecule with the active site of the PK. Great efforts have been
made over the last several years to develop small molecules that can inhibit PK in the
active site, whether through competition or conformational alteration [29,51]. Studies
developed by Paul and co-workers [52] using a theoretical model of PK ATP-binding site
(Figure 13) demonstrated key interactions to consider when designing inhibitors. A gen-
eral PK active site presents an adenine region that holds the main interactions (through
hydrogen bonds) with the hinge region, a sugar interaction region (that contributes to the
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overall binding), a hydrophobic channel and pocket (without established interactions), and
a phosphate-binding region (which anchors ATP to the binding site) [52].
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Regarding synthetic indole derivatives, sunitinib (Sutent®) (8) (Figures 3 and 14) is
a well-known multitarget PTKI that is often used as the first-line treatment for renal cell
carcinoma and gastrointestinal stromal tumors, exhibiting antiangiogenetic activity [53,54].
Osimertinib (Tagrisso®) (38) (Figure 14) targets the EGFRATP binding site, and it is used
as a first-line drug for non-small cell lung cancer and as a potential antiglioblastoma
agent [53,55]. Among the indole alkaloids derived from natural sources, midostaurin (39)
(Figure 14), an indole alkaloid isolated from Streptomyces staurosporeus, was identified as
a multikinase inhibitor due to its activity against PKC-α, VEGFR, KIT, PDGFR, WT, and
mutant FLT3, with IC50 values in a sub-micromolar range. It induces apoptosis, being prefer-
ably used in the treatment of acute myeloid leukemia and systemic mastocytosis [56,57].
Breifussin C (40) (Figure 14), extracted from the marine hydrozoan Thuiaria breitfussi, targets
PKs such as PIM1 and DRAK1. It displays activity in a wide range of cancer cell lines,
highlighting the drug-resistant triple-negative breast MDA-MB-468 cell line, with IC50
values between 0.34 and 3.0 µM. It also presented IC50 values below 200 nM of inhibition
of PIM1 and DRAK1, suggesting that (40) is a potential candidate to be a selective kinase
inhibitor in breast cancer treatment [6,58]. Saccharomonosporine A (41) (Figure 14), ex-
tracted from Callyspongia siphonella and targeting PIM1, presents antiproliferative activity in
colon (HT29) cancer cells, with an IC50 value of 3.5 µM. Christodoulou and co-workers [59]
synthesized a set of derivatives of (41), which presented inhibitory activity against PIM
1, 2, and 3, with IC50 values of 0.22 to 2.46 µM [6,59]. Meridianins B, C, D, and E (42a-d)
(Figure 14) from sea squirt Aplidium meridianum displayed activity in CDK, PK, and GSK-β.
(42b) and (42c) demonstrated inhibitory activity against PKA and PKG, and (42a) and (42d)
were able to inhibit CKA1 and CDK5. Also tested against NT2 cells, (42a) displayed an
accumulative effect at the G0/G1 phase, and (42d) displayed cell arrest at the G2/M phase.
Such events lead to a cytotoxic effect and, subsequently, to cell apoptosis. Since CDK and
GSK play active roles in neural functions, these compounds were designed to treat brain
cancer [6,60].
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cell lines, where compound (44) (Figure 15) revealed IC50 values of 0.189 µM and 1.04 µM, 
respectively, for each cell line. Moreover, the best enzymatic inhibition against EGFR and 
CDK2, displayed IC50 values of 96.6 and 34.7 nM, respectively [62]. Furthermore, com-
pound (44) was able to induce an increase in the cell population at the S-phase of the cell 
cycle, but a diminishing effect on the cell population at the G1 and G2/M phases, causing 
cell arrest in the S-phase. Dubba and co-workers [63] reported the synthesis of a group of 
indole–oxadiazole-coupled isoxazole hybrids with inhibitory activity against EGFR. Pre-
liminary in vitro assays of breast (MCF-7 and MDA-MB-231) cancer cell lines established 
the higher potency of the derivatives against MCF-7 cells (IC50 values in a range of 2.16 to 
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Spirooxindole derivatives were revealed to be very promising indole-derived scaf-
folds, exhibiting remarkable antiproliferative activity targeting PKs. For example, the
group of Barakat61 reported the synthesis of a family of spirooxindoles-based N-alkylated
maleimides, with inhibitory activity in HER2 and HER3. The MTT assay in breast cancer
cell lines (MCF-7 and MDA-MB-231) showed the potency of compounds (43a) and (43b)
(Figure 15), with IC50 values in the range of 3.88 to 5.83 µM in MCF-7 cells and an IC50
of 17.897 µM in MDA-MB-231 cells [61]. The morphological studies revealed that these
compounds were able to suppress PI3K activity and, thus, p-Akt, and for that matter
the PI3K/Akt signaling pathway. Since this pathway is intrinsically activated by the up-
regulation of HER3, then inhibiting the PI3K/Akt signaling pathway leads to the inhibition
of HER3. Also, their activity was tested against SKBR-3 cells (HER2-expressed breast cancer
cell line), showing their capability of inhibiting HER-2 [61]. Al-Jassas and co-workers62 also
synthesized new families of spirooxindole derivatives, having a pyrazole unit targeting
CDK2. The cytotoxicity was measured in breast (MCF-7) and liver (Hep-G2) cancer cell
lines, where compound (44) (Figure 15) revealed IC50 values of 0.189 µM and 1.04 µM,
respectively, for each cell line. Moreover, the best enzymatic inhibition against EGFR and
CDK2, displayed IC50 values of 96.6 and 34.7 nM, respectively [62]. Furthermore, com-
pound (44) was able to induce an increase in the cell population at the S-phase of the cell
cycle, but a diminishing effect on the cell population at the G1 and G2/M phases, causing
cell arrest in the S-phase. Dubba and co-workers [63] reported the synthesis of a group
of indole–oxadiazole-coupled isoxazole hybrids with inhibitory activity against EGFR.
Preliminary in vitro assays of breast (MCF-7 and MDA-MB-231) cancer cell lines established
the higher potency of the derivatives against MCF-7 cells (IC50 values in a range of 2.16
to 21.43 µM) compared to MDA-MB-231 cells (IC50 values in a range of 8.33 to 61.61 µM).
The most potent compounds were tested regarding EGFR inhibition. Compounds (45)
and (46) (Figure 15) demonstrated great potency, with IC50 values of 0.311 and 0.203 µM,
respectively, being considered good drug candidates for breast cancer treatment [63].
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2.1.2. DNA Topoisomerase

Processes like replication, transcription, and recombination require accessing DNA
stored information, with separation of the DNA helix double strand leading to a super-
coiling tension that can only be relieved by a group of enzymes called topoisomerases.
This main function of topoisomerases is essential for the maintenance of genomic stability
and proper DNA function [64,65]. There are two isoforms of the topoisomerase enzyme,
TopI and TopII. While TopI works with only one of the DNA strands, TopII deals with
both [64,65]. However, mutations of these enzymes lead to genomic instability, and since
their mechanism of action requires the formation of bonds with DNA, mutations will trigger
the uncontrolled functioning of topoisomerases, whether by damaged DNA accumulation,
defective chromosomal rearrangements, or even by topoisomerase inhibitors, which due
to the lack of specificity for abnormal cells, can down-regulate the enzyme. Such events
lead to errors in DNA replication and transcription and, subsequently, to the formation of
unreliable cells, enabling mutations and, thus, cancer development [64,65]. The synthetic
indole edotecarin (47) (Figure 16) is an inhibitor of TopI (IC50 of 0.05 µmol/L), with potent
activity in glioblastoma multiforme and malignant brain tumors, as demonstrated in Phase
II clinical trials. Nonetheless, it never moved further into Phase III clinical trials [56]. Be-
catecarin (48) (Figure 16), a synthetic analog of rebeccamycin isolated from Nocardia sp.,
is also an inhibitor of TopI. Preliminary studies indicated good potency against Ewing
sarcoma, medulloblastoma, neuroblastoma, and rhabdomyosarcoma cell lines, and even
better potency against a leukemia cell line when compared with rebeccamycin. However,
in Phase II clinical trials, it exhibited myelosuppression as a side effect when administered
in children with solid CNS tumors [56]. From Aspergillus effuses H1-1 and H1-2, dihydro-
cryptoe chinulin D (49) (Figure 16) was isolated, exhibiting activity against TopI with an
IC50 value of 1.83 µM, revealing to be a potential anticancer agent in leukemia and lym-
phoma treatment [6]. Isotubulosine (50) (Figure 16), extracted from the Pogonopus tubulosus
trunk, is potent against TopII, with GI50 values between 4.26 and 8.42 µM, and induced
cell arrest at the G2/M phase of the cell cycle. The group of Wu [66] developed a class
of evodiamine-inspired HDAC dual inhibitors as antitumor agents for leukemia therapy.
The hybrids were active against breast (MCF-7), lung (A549), colorectal (HCT116), liver
(HepG-2), and blood (K562 and HEL) cancer cells. SAR studies against HDAC exhibited a
direct correlation between the activity and the linker in the scaffolds. Also, the assay on
the inhibitory activity on TopI and TopII showed that it is preferable to have less activity
in HDAC to access a more balanced inhibitory effect in both enzymes, which allowed for
highlighting compound (51) (Figure 16) since it presented a tumor growth inhibition of
68.5% in a dose of 10 mg/kg in patient-derived xerographs’ models. Further experiments
on compound (51)’s cellular effects, metabolic stability, and antitumor efficacy, made this
small molecule a promising lead compound for antitumor treatment. Recently, it was
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reported that PARP inhibitors had the potential for multi-target therapy, as this enzyme
plays a vital role in cell regulation [67]. Considering this observation, the synthetic and
already patented drug rucaparib (52) (Figure 16) could be repurposed. This drug exhibits an
inhibitory activity in PARP 1, 2, and 3, being active in advanced ovarian cancer but directly
affecting TopI, opening an opportunity for new anticancer treatment options [55,68].
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2.1.3. Tubulin Polymerization

Microtubules represent a crucial element for cell stability and organization, being
responsible for cell division and, therefore, for chromosome segregation, equal distribution
of genetic material to daughter cells, and the transport of proteins and organelles. Their
structure is comprehended by tubulin proteins, aggregated in such a way that they generate
a cylindrical structure that interacts with other proteins, regulating microtubule behav-
ior [69–71]. The process of tubulin aggregation is denominated tubulin polymerization and
consists of the organization and rearrangement of tubulins grouped in dimers that will
assemble, producing layers of each isoform of tubulin, α-tubulin, and β-tubulin [69–71].
Tubulin polymerization only happens if GTP binds to tubulin, with the binding to β-tubulin
particularly important because it is the only one that takes GTP to hydrolyze to GDP. GDP
formation weakens the affinity of tubulin to other molecules, triggering polymerization
and ultimately embodying microtubule normal dynamics [69–71]. Given the importance of
this process, microtubules need their dynamic (in)stability to work properly; otherwise, any
deflecting in tubulin regulators will affect microtubules, whether through cell mitosis or cell
proliferation [69–71]. Vindesine (53) (Figure 17) is a semi-synthetic alkaloid, derived from
vinblastine (6) (Figure 2), whose mechanism of action consists of blocking the cell from
entering metaphase mitosis over inhibition of tubulin action. Vinorelbine (54) (Figure 17) is
also a semi-synthetic indole derivative that expresses an improved inhibitory activity in
microtubules due to lower side effects. It revealed excellent behavior at inhibiting cancer
cell migration, as well as arresting cells at the G2/M phase and inducing apoptosis [8,72,73].
From synthetic sources, Yan and co-workers [74] synthesized a set of indole–chalcone
derivatives with inhibitory activity of tubulin polymerization. All the compounds were
tested for their antiproliferative activity towards lung (A549), cervix (HeLa), liver (Bel-7402),
breast (MCF-7), ovarian (A2780), and colorectal (HCT-8) cancer cell lines. Most of the com-
pounds were active, particularly compound (55) (Figure 17), with IC50 values ranging
from 0.0003 to 0.009 µM [74]. The most active compounds were submitted to a tubulin
polymerization activity assay, and compound (55) proved to be the most potent inhibitor,



Drugs Drug Candidates 2024, 3 503

with an IC50 value of 2.68 µM in tubulin polymerization. Further tests showed that the
cellular mechanism of this compound involved the arrest of the G2/M phase and induced
apoptosis, suggesting its use as a chemotherapeutic agent [74]. To improve the results
obtained with compound (55), Romagnoli and co-workers [75] synthesized a new class of
potent inhibitors of tubulin polymerization, designated 2-alkoxycarbonyl-3-anilinoindoles
(56) (Figure 17). These compounds were tested against cervix (HeLa), colon (HT29), breast
(MCF-7), and blood (HL-60) cancer cells, exhibiting, mostly, IC50 values under 2 µM, despite
some of them presenting IC50 values above 5 µM and even 10 µM [75]. Compounds (56a)
and (56b) (Figure 17) were the most potent ones as tubulin polymerase inhibitors (IC50
values, 0.40 and 0.37 µM, respectively) and had specificity to the colchicine binding site. In
addition to that, they also increased the cell population in the G2/M phase and decreased
it in the G1 phase of the cell cycle. Given these results, it was noticed that an addition of
a methyl acetate group provided an increase in activity, and because of that, compounds
(56a) and (56b) were considered as potential new antiproliferative agents that target tubulin
at the colchicine site [75].
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2.1.4. P-Glycoprotein

Glycoproteins are a subclass of transmembrane proteins responsible for transporting
small molecules out of the cell, operating the removal of xenobiotics and the entrance of
nutrients into the cell. Among the known glycoproteins, P-glycoprotein (P-gp or ABCB1)
has been identified as a key class of proteins in cancer development [76,77]. In addition
to their physiological role, they are active in drug transport by regulating the uptake of
exogenous small molecules through endothelial cells from the organs, such as kidneys,
GI, liver, ovaries, testicles, adrenal and pituitary glands, placenta, choroid plexus, and
the capillary cells of the brain. This may result in the access of cytotoxic agents or, if a
mutation in P-gp occurs, in a multidrug-resistance effect, which will initiate a cascade of
events and eventually result in the development of severe diseases [76,77]. It was observed
in numerous studies that P-gp is expressed in different ways, according to the type of
cancer where its mutation is present. For example, in acute myeloid leukemia (AML) and
lung, ovarian, and renal cancer, P-gp is upregulated, but in colorectal, breast, and prostate
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cancer, it is down-regulated [76,77]. Voacamine (57) (Figure 18) is an example of a natural
bis-indole alkaloid, extracted from Peschiera fuchsiaefolia, that targets P-gp, displaying, in
addition, an alteration of microtubules. With activity in the U-2 OS/WT and U-2 OS/DX
cell lines, (57) induces autophagy and is used in the treatment of osteosarcoma [58,73].
In 2017, Paterna and co-workers [78] demonstrated the potential of the monoterpene
indole alkaloids from Tabernaemontana elegans dregamine (58a) and tabernaemontanine
(58b) (Figure 18) as P-gp modulators. The group synthesized a set of those derivatives
and tested them against PAR cells and ABCB1-gene transfected mouse T-lymphoma cells
(multidrug-resistance cells) regarding their cytotoxicity, verifying that the compounds
demonstrated higher toxicity levels than the parent compounds. The ABCB1 modulating
ability of the compounds was then tested, and compounds with an imine moiety and extra
aromatic ring, such as (59a-c) (Figure 18), and a methoxybenzyloxycarbonyl moiety, such
as (59d) (Figure 18), demonstrated the best inhibitory activity against ABCB1. Moreover,
assays with doxorubicin showed their good synergy, suggesting their use as multidrug-
resistance reversers [78]. Curiously, Raimundo and co-workers [79] recently identified
compound (59b) (BBIT20) (Figure 18) as a potential agent against aggressive and resistant
cancers, revealing activity in triple-negative breast and advanced ovarian cancer through
the disruption of the BRCA1-BARD1 interaction [79]. A few years later, the group of
Cardoso [80] achieved equivalent results, synthesizing different derivatives of (58a-b).
An MTT assay against sensitive and resistant human colon adenocarcinoma cells (COLO
205, COLO 320), L5178Y parental (5178Y, PAR), and human ABCB1-gene transfected
(5178Y) mouse T-lymphoma cells was performed and demonstrated a lack of significant
cytotoxicity, neither in sensitive nor resistant cell lines. A FAR assay to access the potential
of indole derivatives as P-gp inhibitors was also performed, evidencing that, for COLO
320 cells, the values were too low, disabling their usage. Yet, for 5178Y multi-resistance
cells, the obtained values were satisfying, allowing the group to classify the synthesized
compounds between active and strong inhibitors of P-gp when applied in a concentration
of 20 µM. Furthermore, a drug-combination assay with doxorubicin was made, and the
results pointed to compounds (60a-c) (Figure 18) as promising agents, suggesting their
potential use in combined therapy [80].
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2.1.5. Other Interesting Targets

Evidently, the indole scaffold enables an immeasurable panoply of bioactivities,
whether in terms of types of derivatives or in terms of their pharmacological applica-
tions. Since indole derivatives demonstrate high potential as anticancer agents for several
targets of interest and within the scope of this review, Table 1 displays other targets of
interest where this type of compound has some promising activity. In the past few years, it
has been discovered that some interesting derivatives exhibited activity against some of
these targets. Compounds (61) [81], (62) [81], and (63) [82] (Table 1) also target PKs and their
signaling pathways. Yet, in contrast to what was previously explained, this occurs through
other mechanisms of action, whether by inhibition of a downstream and direct p53 activator,
such as the protein Aurora A, by the inhibition of upstream pathways like the PDK1/Akt
one, or by the inhibition of ROS that contribute to the activation of the MAPK signaling
pathway [81,82]. Compound (64) [58] also showed an interesting mechanism of action,
since it pursues the dysfunction of the topoisomerase by cross-linking to the DNA strand,
creating an error in the DNA chain with an exogenous agent, leading to cytotoxicity [58].
Acting through another pathway, compound (65) [83] (Table 1) disrupts the interaction
between proteins p53 and MDM2. These two are regulators of one another by inhibition,
and once their interaction is inhibited, it allows p53 to stabilize and activate freely the
apoptosis system [83,84]. Also, with a role in the functions of the p53 protein, there is
SIRT, which when inhibited, promotes the acetylation of p53 and, for that, its activation
as well as the apoptosis pathway. Compound (66) [85] is an example of an inhibitor of
SIRT [85,86]. Following the same logic, compound (67) [87] (Table 1) inhibits anti-apoptotic
proteins, such as Bcl-2, Bcl-xl, and Mcl-1, enabling pro-apoptotic proteins to act [87,88].
As for the σ2 receptors, when activated by agonists, they exhibit antiproliferative and
cytotoxic activity in tumor cells, and since they are present in great density, they were
used as biomarkers of the tumors’ proliferation [88]. One example of an agonist of these
receptors is compound (68) (Table 1) [88]. In the line of the apoptosis inducers, there is also
compound (69) [89] (Table 1), which works as an inhibitor of the protein HDAC, promoting
the down-regulation of anti-apoptotic genes and the de-upregulation of pro-apoptotic
genes, inducing apoptosis [89,90].

Table 1. Highlighting indole derivatives with miscellaneous targets aiming at anticancer activity.

Indole Derivative Target Bioactivity Ref.
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3. Conclusions and Future Perspectives

Indole-based molecules can be widely found in nature, and their study and clinical
uses have been the scope of many research groups over the last decades. Furthermore,
it is indubitable the effort that has been carried out regarding the design and synthesis
of new indole derivatives, offering advantageous structural properties for its numerous
clinical applications, including in viral, inflammatory, and, in particular, cancer diseases.
Cancer is one of the deadliest diseases of this century, and the outlook for the future is
not very encouraging. It was observed that the most promising indole derivatives that are
currently available on the market came from natural sources and semi-synthetic routes,
demonstrating their potential to be considered in future drug design and development.
Several examples of these natural or semi-synthetic derivatives are given throughout this
review, exhibiting potent activity for several targets of interest in cancer, such as PK, TopI
and TopII, and microtubule inhibitors, among others. Similarly, many synthetic indole
derivatives were also pointed out as promising candidates for cancer treatment, such as
spirooxindole derivatives and others, showing great activity for the same described targets.
Despite the knowledge obtained so far, it is imperative to continue developing new drug-
design approaches targeting the indole scaffold and subsequent screening technologies to
access more potent and highly selective compounds as anticancer agents, to move further
the clinical trials pipeline. Either by the modification of natural products or synthesis of
lead compounds, advances in the chemical modification of indole frameworks generating
active moieties are a crucial approach to generating new molecules with potential for a
particular target or multiple targets in future research work.
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Abbreviations

Abl abelson leukemia gene
ACh acetylcholine
AChE acetylcholinesterase
ADV adenovirus
Akf protein kinase B
AML acute myeloid leukemia
APC adenomatous polyposis coli
API(s) active pharmaceutical ingredient(s)
ATP adenosine triphosphate
BRCA1 associated ring domain 1
BRCA1 breast cancer gene 1
BRCA2 breast cancer gene 2
CDK cyclin-dependent kinase
COX-2 cyclooxygenase-2
DRAK1 kinase-related apoptosis-inducing protein kinase 1
EGFR epithelial growth factor receptor
FLT3 fms-like tyrosine kinase 3
GSK-β glycogene synthase kinase beta
GTP guanosine triphosphate
HCV hepatitis C virus
HDAC topoisomerase-histone deacetylase
HER2 human epidermal growth factor receptor 2
HER3 human epidermal growth factor receptor 3
HSV herpes simplex virus
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HVB hepatitis B virus
KIT proto-oncogene c-kit
L-Gln glutamine
MAO monoamine oxidase
MDM2 mouse double minute 2 homolog
MLH1 mutL homolog 1
mRNA messenger ribonucleic acid
NNRTI nonnucleoside reverse transcriptase inhibitor
NRTK non-receptor tyrosine kinase
P phosphate
p53 tumor protein 53
PAR parental chemosensitive cells
PARP poly ADP-ribose polymerase
PDGFR platelet-derived growth factor receptor alpha
PI3K phosphoinositide 3-kinase
PIM1 serine/threonine kinase
PK(s) protein kinase(s)
PTEN phosphatase and tensin homolog
PTKI protein tyrosine kinase inhibitor
Rab ras-associated binding gene
Raf rapidly accelerated fibrosarcoma gene
Ras rat sarcoma gene
Rho rhodopsin gene
ROS reactive oxygen species
RTK receptor tyrosine kinase
SAR structure-activity relationship
Src sarcoma gene
TK tyrosine kinase
TopI topoisomerase I
TopII topoisomerase II
TPA 12-tetradecanoylphorbol-13-acetate
TSG tumor-suppressor gene
VEGR vascular endothelial growth factor
WT Wilms’ tumor gene
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