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Abstract: Powerlines pose a significant threat to many bird species, impacting their conser-
vation. Current research focuses on developing methods to mitigate bird mortality due to
electrocution and collisions with powerlines. In this study, we designed a sound prototype
to be installed on infrastructure poles, including powerlines, aiming to reduce their use by
birds. We conducted bird surveys over 47 days, from February to May 2020, in five light
poles: the central pole where the device was installed (0 m), two poles at 25 m, and two
poles at 50 m from the central pole. The first 10 days served as a control period with the
deterrent device switched off, followed by 37 days with the device switched on. In total,
we recorded 1945 bird observations, of which 1569 occurred with the device on. The device
was triggered by bird movements, resulting in 588 reactions to sound. When activated,
10.6% of large- and medium-sized birds were flushed from the surveyed poles: 2.6% were
already perched and flushed due to the sound, 3.9% were prevented from perching, and
4.1% were flushed after perching, thereby reducing the risk of electrocution. Among the
birds perching or approaching the pole where the device was installed, 25% were deterred
by the sound. The black kite, Milvus migrans, was the most reactive species to the device
(54.3% flushed at 0 m, and 8.8% flushed at 25 and 50 m), while the white stork, Ciconia
ciconia, showed the least sensitivity to the disturbances (14.4% flushed at 0 m, and 2.7%
flushed at 25 and 50 m). The corvids exhibited a response rate between the other two
species (33.3% flushed at 0 m, and 6.8% flushed at 25 and 50 m). We identified significant
limitations to this prototype and proposed recommendations to improve its efficiency.

Keywords: bird electrocution risk; deterrent prototype; medium- to large-sized birds;
powerlines; southern Portugal

1. Introduction
Electrocution and collision with powerlines are significant causes of mortality for many

bird species, posing a severe threat to their populations [1–3]. Electrocution, particularly
in medium- to high-voltage distribution powerlines, is among the main conservation
problems for some bird species [4–7]. Large- and medium-sized birds, such as storks,
diurnal and nocturnal birds of prey, and corvids, are especially susceptible to electrocution
due to their frequent use of powerlines and their poles [1,8,9] for perching, roosting, and
nesting, and as strategic hunting spots [2,10]. Electrocution typically occurs during landing
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or take-off from a pole, while collisions happen in flight when birds are unaware of the
powerlines as obstacles [11].

To mitigate the negative impacts of powerlines on birds, including several endan-
gered species, some potential solutions have been proposed and implemented in the last
decades [8,12–14]. These interventions include modifications in pole design and character-
istics, such as the use of safe and non-conductive materials (e.g., wood or fiberglass); the
installation of devices designed to prevent perching and nesting; and making structural
changes to the voltage levels of older powerlines within the same corridor and often using
the same poles [13,15–19]. Despite these efforts, bird mortality due to electrocution remains
a persistent problem, and the scale and demographic consequences are still not well un-
derstood [20–24]. Developing effective methods to reduce electrocution continues to be a
relevant area of research, even after more than four decades of study and practical applica-
tions. In response to this ongoing challenge, we designed and tested a sound prototype
aimed at minimizing the use of electric poles by medium- and large-sized birds, thereby
reducing the risk of electrocution.

2. Materials and Methods
2.1. Study Area

We conducted this study in the inter-municipal landfill of Évora (38◦50′15.75′′ N,
8◦02′61.59′′ O), located in southern Portugal and managed by GESAMB (Environmental
and Waste Management Company). These facilities provide exceptional conditions to
assess the efficiency of the deterrent prototype due to the high concentrations of medium-
to large-sized birds and the abundance of light poles regularly used by birds where the
prototype can be installed (Figure S1). The surrounding area of the landfill comprises open
woodlands of cork oaks, Quercus suber, and holm oaks, Q. rotundifolia, with management
practices including cattle and sheep grazing. The region features a typical Mediterranean
climate with average temperatures ranging from 10.4 ◦C in winter to 22 ◦C in summer and
an average annual rainfall of 799.1–1091.8 mm, falling mainly from October to March [25].

2.2. Prototype Description

The deterrent prototype includes a motion detection system based on infrared sensors
and a sound device. It measures an area approximately 40 cm wide × 50 cm high and
weighs about 2 kg. This device reproduces sounds in mp3 format, with an intensity between
20 Hz and 20 kHz up to 100 dB, and it is equipped with five passive infrared sensors (PIR)
to detect surrounding movements up to 12 m (Figure 1). Upon detecting motion, the device
plays pre-selected audible sounds with frequencies and time intervals (5–7 s) that change
randomly to prevent bird habituation to a specific frequency pattern. The selection of
sounds, stored on a Micro SD Card, includes attention-grabbing elements such as a siren,
barking dogs, gunshots, and church bells, each reaching a peak of 100 dB. This device is
powered by a 12 V 45 Ah battery attached to the bottom of the pole.

2.3. Field Testing of the Device

We installed the deterrent device on a light pole at the landfill’s periphery and mon-
itored it between February and May 2020 (Figure S2). To minimize installation-related
disturbances, we allowed a three-day accommodation period before starting data collection.
The initial 10 days of monitoring served as the experimental control, and the device was
kept switched off. After this period, the device was switched on and we surveyed the poles
for 10 additional consecutive days. The following monitoring involved keeping the device
switched on four days a week for six weeks, with the exception of the seventh week which
only comprised three days due to logistic constraints. Monitoring consisted of surveys,
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each lasting four hours and starting at 14 h 30. One observer, positioned at ca. 70 m from
the device and concealed inside a car, recorded all medium- and large-sized birds (the
size of a carrion crow, Corvus corone, and above) perching or approaching the light poles.
The full record also included the species identification, the distance of the focal poles to
the device (see below), the duration of the bird’s stay on the pole (if perched), and every
time the device was activated (i.e., produced sound). We also recorded the reactions of the
individuals towards the prototype sound: (1) flushed (before or after perching) vs. did not
flush (perching or remaining perched on the poles), and (2) perched vs. did not perch (was
flushed before perching). We considered a flushing event to be whenever the individuals
became restless and flushed during the playing period while perching, or when they were
prevented from perching. We monitored five light poles: a central pole where the device
was installed (0 m), two poles distancing 25 m, and two poles distancing 50 m from the
central pole in each direction. This approach aimed to evaluate any potential reduction
in noise level with increasing distance. However, due to the low range of the movement
sensor, recording the effect of the device’s sound on the poles at 25 and 50 m away was
only possible when another bird activated the device. The records did not specify which
sound was playing during the flushing events.
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Figure 1. Deterrent device with the location of the PIR sensors (indicated by arrows).

Given the common occurrence of the carrion crow and common raven Corvus corax
species in the study area, we grouped these two relatively similar species as Corvus sp.
(corvids) in the analysis to minimize potential incorrect identifications.

2.4. Data Analysis

We evaluated the effectiveness of the deterrent device on bird behavior. We used a
chi-square test to achieve the following: (1) To compare the number of birds perching or
approaching the poles by species between the periods with the deterrent device switched
off and on. In addition, we applied chi-squared tests to (2) compare the number of birds
that flushed vs. the number of birds that did not flush while perching or approaching the
central pole (0 m) and the farthest poles (25 and 50 m) with the deterrent device active,
and (3) to compare the number of birds approaching the device that landed and stayed,
perched and flushed afterwards, and those that did not perch the poles with the deterrent
device active. Moreover, we performed a Generalized Additive Model (GAM) to model the
accommodation effect of birds to the device over the periods. We used the “mgcv” package
(version 1.9-1) [26] and included “Period” as a smooth term, and flush vs. did not flush as a
categorical predictor. Significance was set at 0.05 for all tests. All analyses were conducted
using R 3.6.3 [27] and RStudio 1.2.5042 [28].
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3. Results
During the study period, we recorded 1945 individual bird observations either perch-

ing or approaching the five monitored poles: 844 (43%) white storks, 759 (39%) corvids
(carrion crows and common ravens), and 342 (18%) black kites. In the initial 10 days when
the device was switched off, we observed 376 individuals: 66% were corvids, 21% were
white storks, and 13% were black kites (Figure 2A). During the following 37 days of monitor-
ing, distributed across 8 periods with the device switched on, we recorded 1569 individuals:
49% white storks, 32% corvids, and 19% black kites (Figure 2A, Table S1). The number of
white storks increased significantly with the device turned on (F(8) = 4.52, p = 0.017), while
the number of corvids significantly declined (F(8) = 8.73, p = 0.003). However, the number
of black kites did not show a significant difference between the device being off and on
(F(8) = 2.49, p = 0.066) (Figures 2A and 3A–C, Table S1).

While the device was switched on, 262 birds approached the central pole (0 m), coming
within the necessary distance to trigger the motion detector. However, only 164 (62.6%) of
them actually activated the detector and triggered the sound. We recorded the reactions of
588 individuals, at all distances, towards the prototype sound, of which 337 (57%) were
white storks, 136 (23%) were corvids, and 115 (20%) were black kites. These events included
89.5% of birds that did not flush and 10.5% that flushed in response to the sound.

Among the individuals that flushed in response to the device’s sound, most occurred at
the central pole (66.2%), whereas 27.4% flushed from the poles at 25 m, and only 6.5% from
the poles at 50 m (Figure 2B, Table S2). At the central pole, we found a significant difference
in the birds that flushed vs. those that did not among species (χ2(2) = 23.31, p < 0.001),
suggesting the likelihood of flushing events are associated with species. White storks had
the fewest flushing events (14.4% flushed vs. 85.6% did not flush), followed by the corvids
(33.3% flushed vs. 66.7% did not flush). Black kites were the most reactive species to
the sound (54.3% flushed and 45.7% did not flush) (Figures 2C and 4A–C, Table S2). Of
the birds approaching the central pole, 25% were deterred by the sound. At the farthest
poles (25 and 50 m), we observed similar patterns with significant differences among
species as well (χ2(2) = 5.822, p = 0.047) (Figures 2D and 4A–C, Table S2). Among the birds
approaching these poles, 5% were deterred by the sound.

The deterrent device prevented bird perching in 3.9% of the events, while in 6.7% of
the events, birds were flushed after perching; 4.1% perched while the device was active
and flushed afterwards, and 2.6% were already perched when the device was activated and
then flushed.

In 55.9% of the events, the birds approaching the poles landed and stayed while the
device was active, and in 33.5% of the events, birds that were already perched did not flush.
These events were distributed with 43.5% occurring at 25 m, 33.1% at 50 m, and 23.4% at
0 m (Figure 2B, Table S2).

The perching behavior varied significantly among the three species (χ2(4) = 17,
p = 0.002). White storks had the highest proportion of individuals that landed and stayed
perched, with relatively few instances of not perching, or perching and flushing afterwards.
Corvids predominantly perched and flushed afterwards; however, they rarely did not
perch while the device was active. In contrast, black kites were the most sensitive species,
showing the highest proportion of events where they either avoided perching or perched
and flushed afterwards, and the lowest proportion of individuals that landed and stayed
perched (Figure 2E).

The number of birds flushing from the device did not show significant differences
across time periods, indicating no accommodation effect (GAM model; F = 0.244, p = 0.63).
The model explains approximately 40.4% of the variance, suggesting a moderate fit to the
data (adjusted R2 = 0.312).
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Figure 2. (A) Proportion (%) of white storks, corvids, and black kites perching and approaching the
poles with the deterrent device (prototype) switched off and with the device switched on (8 periods).
(B) Proportion (%) of individuals (all species pooled) that flushed and did not flush in response to the
sound of the device according to the distance of the light pole to the deterrent device (0, 25, 50 m).
(C) Proportion (%) of white storks, corvids, and black kites that flushed and did not flush on the
central pole (0 m) in response to the sound of the device. (D) Proportion (%) of white storks, corvids,
and black kites that flushed and did not flush on the farthest poles (25 and 50 m) in response to
the sound of the device. (E) Proportion (%) of white storks, corvids, and black kites that did not
perch, perched and flushed afterwards, and landed and stayed perched at the poles while the sound
was active.
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4. Discussion
Our study evaluated the effectiveness of a deterrent prototype designed to reduce

bird use of powerline poles, thereby mitigating the risk of mortality from electrocution
and collision.

The deterrent device employed a motion detection system, which was triggered and
activated 588 times when birds approached or perched on the pole. The emitted sound
effectively flushed 10.6% of the birds either perching or approaching the poles. Specifically,
the deterrent device prevented 3.9% of the birds from perching, while 4.1% perched during
sound activation and flushed afterwards, and 2.6% were already perched when the sound
was activated and then flushed. Considering the birds perching or approaching the pole
where the device was installed, 25% were deterred by the sound. However, at distances of
25 m and 50 m, only 5% of the birds were flushed.

The response to the emitted sound varied among the three bird species studied. Black
kites were the most reactive species, consistently being the most frequently flushed species
at all distances (0 m, 25 m, and 50 m) and showing the lowest perching rate with the
sound activated. In contrast, white storks were the least responsive to the deterrent sound.
Although the number of white storks increased significantly during the study period, they
showed fewer flushing events. This species benefits from landfills for feeding and selecting
nesting and breeding sites [29], becoming less sensitive to environmental disturbances
as they age [30]. The proportion of corvids perching or approaching the poles decreased
significantly over time, with their sensitivity lying between that of black kites and white
storks. Corvids are known for their high intelligence, showing strong cognitive and learning
abilities [31], which may explain their tendency to avoid the sound over time.

Thus, the effectiveness of our deterrent device varies by species, potentially yielding
better results for those who are more sensitive or wary of novel stimuli. These findings align
with previous research indicating species-specific variability in response to bird deterrent
systems [1]. According to [32,33], white storks and corvids are among the species with the
highest mortality rates from electrocution recorded in the Iberian Peninsula, while black
kites show lower mortality rates. Birds with larger wingspans, such as white storks, are at
a higher risk due to their increased likelihood of contacting powerline components [34].
However, all the studied species face significant concerns because of their perching behavior,
often remaining on poles for extended periods. In addition, for gregarious species, the risk
is even greater, as close contact between individuals can result in chain reactions, leading
to massive electrocution events [34].

The study also evaluated the effect of distance from the deterrent device on bird
behavior. We found that the deterrent device was most effective at the central pole (0 m)
which hosted the device, with diminishing effects at greater distances. This attenuation of
the deterrent effect with distance suggests that the sound levels and sensor range might
be insufficient for effective deterrence beyond a certain proximity. However, the lack of
accommodation effects over time indicates that the birds did not become less responsive to
the deterrent sounds, demonstrating the prototype’s consistent effectiveness throughout
the study period.

Other innovative sound systems, such as DTBird, have been developed to detect
and prevent bird collisions on wind turbines. These systems use real-time bird detection
through a camera-based technology that can detect birds at long distances, triggering two
audible signals: first, a warning signal when a bird approaches a critical distance, then a
stronger dissuasion signal, encouraging the bird to alter its flight path. Several institutes
have tested DTBird systems, with pilot results revealing different rates of success: ref. [35]
observed avoidance behavior in 88% of cases where the bird was on a collision course, also
indicating that this is a viable system for bird detection; ref. [36] reported a 52% successful
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deterrence rate for the target species (golden eagles), and 30–40% for other raptors, while
the detection probability was 63%; ref. [37] found a 20–30% reduction in the likelihood of
approaching the rotor-swept zone, increasing to 40% for birds at a higher risk of entering
it, with a detection probability of ~65%; ref. [38] recorded a 19% successful deterrent
rate and a detection probability of 30.5%; and in [39], only 7% of the birds responded to
the warning/dissuasion signals, although the detection probability was higher than 80%.
These studies also presented high rates of false-positive detections (30–69%), with higher
deterrence and detection probabilities at shorter distances from the wind turbines/for birds
closer to wind turbines.

Alternative works with similar systems [40,41] have explored strobe lights combined
with audible alarms as warning signals, yet none have shown the results of their effective-
ness in preventing bird collisions.

Despite some positive results, we recognize the following limitations in our deterrent
device and the experimental design:

(1) The device was effectively triggered by approx. 63% of the overall number of birds
perching or approaching the pole where the device was installed. To enhance its
efficiency, the sensitivity and range of motion detection should be optimized to detect
a higher percentage of approaching birds. Moreover, when transposed to electric
poles, the installation of the deterrent device should prioritize those with the highest
risk of electrocution [13].

(2) The device was tested using a selection of four randomly alternating sounds, each
with a peak intensity of 100 dB. Further research should explore variations in sound
types, frequencies, and duration to determine the most effective combination for
deterring the greatest number of bird species.

(3) The effectiveness of the device seems to be distance-limited. The low detection range
of the infrared sensors restricted the assessment of deterrent effects beyond 12 m,
impacting the comprehensiveness of the collected data. In addition, most flushing
events occurred on the pole where the deterrent device was installed. The sound
intensity reaching the farthest poles was lower and likely insufficient to flush these
birds which are already acclimated to frequent sound disturbances, as observed in
landfills. Addressing this limitation will require increasing the detection range and
sound propagation, as well as covering potential blind areas where the device may
currently fail to trigger.

(4) The study was conducted over a short-term period. Extending the field testing
period is necessary to assess the long-term effectiveness of the deterrent device and to
investigate potential habituation effects over an extended timeline.

(5) The study was limited to one location and did not consider seasonal variations.
Expanding the study to include diverse habitats and seasons, potentially hosting
different bird species, would ensure a more comprehensive understanding of its
effectiveness under varying environmental conditions.

(6) The study lacked a control group of poles without the sound device’s effect, which
would allow for a more accurate evaluation of variations in the overall number of birds
using the landfill during the study period. Some of the individuals that were flushed
first perched on the poles while the sound device was active. Although this outcome
does contribute to reducing the prolonged exposure of birds to the infrastructure, thus
lowering the risk of electrocution, it is insufficient to entirely prevent it.

Based on our results, further refinement of the device’s design is necessary to identify
the most efficient combination of sounds, frequencies, and durations to maximize bird
flushes. Nevertheless, a significant advantage of our device is its adaptability, both in
implementing changes and in its easy installation, allowing for straightforward improve-



Ecologies 2025, 6, 12 10 of 12

ments in its effectiveness. In addition, the maintenance of the device is minimal. It was
only necessary to charge the battery after each monitoring period, replacing it with a fully
charged battery, and to ensure that the battery box remained dry after heavy rain. This
device also holds the potential to be integrated with several other infrastructures, including
those that pose a threat to birds (e.g., powerlines), those where birds may cause risks to
humans (e.g., airports, bridges), and those susceptible to damage by birds (e.g., monuments,
public lighting). This versatility makes it a valuable tool for bird conservation.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/ecologies6010012/s1, Figure S1: GESAMB facilities with
high concentrations of medium-/large-sized birds and light poles; Figure S2: Light pole with the
perching deterrent prototype; Table S1: Mean (±S.E.) number of birds (white stork, corvids, black
kite) recorded perching or approaching the poles at the distances (Dist.) 0, 25, 50 m from the deterrent
device and in all poles (total), during the periods; Table S2: Mean (±S.E.) of the number of birds
(white stork, corvids, black kite) that flushed and did not flush in response to the device sound in
the poles at 0, 25, 50 m from the deterrent device and in all poles (total), during the periods with the
device switched on.
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