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A B S T R A C T

Inland freshwaters are essential in maintaining ecological balance and supporting human development. How-
ever, comprehensive water data cataloguing remains insufficient, especially for small water bodies (i.e., ponds),
which are overlooked despite their ecological importance. To address this gap, remote sensing has emerged as a
possible solution for understanding ecohydrological characteristics of water bodies, particularly in water-stressed
areas. Here, we propose a novel framework based on a Sentinel-1&2 local surface water (SLSW) model targeting
very small (<0.5 ha, Mdn ≈ 0.031 ha) and seasonal water bodies. We tested this framework in three semiarid
regions in SW Iberia, subjected to distinct seasonality and bioclimatic changes. Surface water attributes,
including surface water occurrence and extent, were modelled using a Random Forests classifier, and SLSW time
series forecasts were generated from 2020 to 2021. Model reliability was first verified through comparative data
completeness analyses with the established Landsat-based global surface water (LGSW) model, considering both
intra-annual and inter-annual variations. Further, the performance of the SLSW and LGSW models was compared
by examining their correlations for specific periods (dry and wet seasons) and against a validation dataset. The
SLSW model demonstrated satisfactory results in detecting surface water occurrence (μ ≈ 72 %), and provided far
greater completeness and reconstructed seasonality patterns than the LGSW model. Additionally, SLSW model
exhibited a stronger correlation with LGSW during wet seasons (R2 = 0.38) than dry seasons (R2 = 0.05), and
aligned more closely with the validation dataset (R2 = 0.66) compared to the LGSW model (R2 = 0.24). These
findings underscore the SLSW model’s potential to effectively capture surface characteristics of very small and
seasonal water bodies, which are challenging to map over broad regions and often beyond the capabilities of
conventional global products. Also, given the vulnerability of water resources in semiarid regions to climate
fluctuations, the present framework offers advantages for the local reconstruction of continuous, high-resolution
time series, useful for identifying surface water trends and anomalies. This information has the potential to better
guide regional water management and policy in support of Sustainable Development Goals, focusing on
ecosystem resilience and water sustainability.
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1. Introduction

Inland freshwater systems play a key role in supporting biological
cycles and promoting ecosystem services (De Groot et al., 2018; Gleick,
1998), yet they represent a limited natural resource with scarce repre-
sentation (~3%) in the Earth’s biosphere, of which only a portion (~35
%) represents a renewable resource globally available (Downing et al.,
2006). The mounting evidence of water scarcity in many regions and
associated socio-economic and ecological impacts has progressively
pressed for advancements in freshwater detection and monitoring stra-
tegies. Such advancements can mitigate stressors and overexploitation
related to natural freshwater systems, and enhance resilience towards
climate change (Erwin, 2009). As a result, the spatiotemporal dynamics
of global and local freshwater systems have emerged as topics of prime
interest, aligning with the development of Sustainable Development
Goals (SDGs; UN, 2022).

Spatiotemporal information from Earth Observation (EO) Satellites
has opened a new era for assessing qualitative and quantitative dynamic
attributes of freshwater resources (Bhaduri et al., 2016; Petropoulos
et al., 2015). EO data covering large geographic areas represent an
important milestone for sustainable water management, especially in
water-stressed areas such as arid and semiarid regions (Heimhuber et al.,
2016; Tulbure et al., 2016; Wickens, 1998). In this context, most
research has been devoted to inferring water characteristics and dy-
namics over the long term through quantitative remote sensing
methods. Among these, multi-spectral information from MODIS (Mod-
erate Resolution Imaging Spectroradiometer) is notable for its excep-
tional temporal resolution. However, its spatial resolution (250 m) is
relatively coarse, hampering its application for monitoring small and
seasonally unstable water bodies. In an attempt to overcome this limi-
tation and improve surface water mapping, substantial progress has
been made in employing advanced instruments, such as public sensors
affiliated with Landsat missions and their derived products, ensuring
higher spatial, radiometric, and spectral resolution (Pekel et al., 2016;
Tulbure et al., 2016; Zou et al., 2018).

However, despite their critical importance for numerous ecosystems,
small-sized water bodies (< than 5 ha; De Meester et al., 2005), often
referred to as ’ponds’, are rarely considered in large-scale inventories
and mapping programs (Céréghino et al., 2008; Wang et al., 2022). They
are hypothesized to be more frequent than large water bodies (i.e.,
lakes), and to cover a far greater fraction of Earth’s surface (Downing
et al., 2006). Importantly, ponds and associated freshwater habitats are
among the most endangered ecosystems worldwide, and provide refuge
to approximately 10 % of known species (Reid et al., 2019). Therefore,
the development of satellite-based solutions for detecting and moni-
toring small-sized water bodies is of crucial importance to improve
conservation and sustainable management planning of water resources
(Ozesmi and Bauer, 2002; Pekel et al., 2016). This is particularly rele-
vant in semiarid areas where environmental conditions are expected to
worsen due to widespread extreme heat events, desertification pro-
cesses, increased salinity, and agricultural intensification (Reid et al.,
2019; Wickens, 1998).

Recently, the high-quality data provided by Sentinel missions have
gained ground over Landsat-derived data for delineating and mapping
small water bodies, given their better compromise between spectral,
temporal, and spatial resolution (Wang et al., 2022). Another emerging
practice to assess seasonal dynamics in small-sized water bodies relies
on the use of multi-temporal multi-sensor imageries (Ozesmi and Bauer,
2002; Vanderhoof et al., 2023; Tulbure et al., 2016; Tulbure et al.,
2022), with focus on Sentinel-1 and Sentinel-2 (Jiang et al., 2022; Mayer
et al., 2021; Radoux et al., 2016; Huang et al., 2018), or a combination of
both (Bioresita et al., 2019; Chen and Zhao, 2022; Vanderhoof et al.,
2023) for classification purposes. Notably, while the combination of
Sentinel-1 and Sentinel-2 has the potential to enhance the comprehen-
sion of surface water distribution and seasonality, particularly in small
water bodies, this remains poorly investigated in the current literature,

making it still unclear whether Sentinel-derived products offer higher
performance compared to other high-resolution approaches (e.g.,
Landsat) for detecting and quantifying small-sized water bodies.

In this study, we propose an innovative data-fusion approach using
Sentinel-1 and Sentinel-2 information in semiarid environments to
address data gaps and improve predictions on the spatiotemporal trends
of dynamic surface water, specifically targeting open and very small
(<0.5 ha) water bodies. To assess the effectiveness of the approach,
water bodies were mapped, and the Sentinel-based local surface water
(SLSW) predictions were compared with those from Landsat-based
global surface water (LGSW) (Pekel et al., 2016). Specifically, we
aimed to: (i) identify the best Sentinel-1&2-derived metrics to detect
surface water occurrence, and understand the multi-spectral reflectance
and backscattering responses involved; (ii) utilize SLSW predictions to
characterize the intra- and inter-year (2020–2021) dynamic trends
(seasonality patterns) in surface water occurrence and extent in three
semiarid regions; and (iii) compare the SLSW archives’ completeness
with those derived from the LGSW (Pekel et al., 2016), and evaluate the
agreement between the estimated water extent from both data sources
(Sentinel and Landsat), with a specific focus on the wet season (January-
April) and the dry season (June-September), using a validation dataset.

2. Materials and methods

2.1. Study areas

Three study areas within the Mediterranean biome in southwestern
Iberia (Fig. 1a) were selected to test the reliability of Sentinel-based data
for accurate water surface mapping: two in Baixo Alentejo (southern
Portugal), and one in Extremadura (south-eastern Spain). In these areas,
small water bodies were detected (Fig. 1b) and mapped (Fig. 1c).

General similarities between the areas include climatic, topographic,
and environmental conditions. In particular, a pronounced climatic
variation exists between the wet and dry seasons, inducing severe in-
fluences on the water cycle. All areas are influenced by a semiarid
climate with hot, dry summers and cool, wet winters, with most of the
precipitation occurring from autumn to spring (AEMET, I. P. M. A,
2011). Typical weather parameters across the three areas were averaged
yearly between 2012 and 2022 from the E-OBS daily gridded meteoro-
logical data (Cornes et al., 2018), resulting into an annual average
temperature of 17.42 ◦C (±SD = 0.52) and a maximum temperature of
23.98 ◦C (±SD = 0.76), whereas an annual average precipitation
amount of 450.69 mm (±SD = 122.24). Besides, soils in these areas are
generally poor and, consequently, have limited water-retention capac-
ity. As a result, water bodies are mostly very small (Mdn ≈ 0.031 ha; see
Figure SM2.1), and sparsely distributed (Fig. 1). The three areas are
characterized by plains and gentle slopes, dominated by pastures and
extensive cereal agriculture. Each area is located within a Special Pro-
tection Area (Natura 2000 Network): Castro Verde (CV), Vale do
Guadiana (VG), and La Serena y Sierras Periféricas (LS). These areas are
included within a climate change hotspot, where drought events and
water deficit anomalies are expected to increase (Samaniego et al.,
2018).

2.2. Study design

The study design is comprehensively depicted in Fig. 2, encom-
passing a series of distinct steps, ranging from water bodies’ inventories
and remote sensing data collection and processing, to the subsequent
modelling stages for estimating surface water occurrence and extent as
high-frequency time series.

2.2.1. Data acquisition and pre-processing

2.2.1.1. Water bodies data collection. The identification and delineation
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Fig. 1. The upper panel (a) shows the locations of the study areas: Castro Verde (CV; southern Portugal, Beja), Vale do Guadiana (VG; south-western Portugal, Beja),
and La Serena y Sierras Periféricas (LS; south-eastern Spain, Badajoz). Each area in detail (b) displays the distribution of water body sites as centroids, with red points
serving as reference for assessing data-fusion model performance, and jointly with blue points for extrapolations. Blue vectors in the circular panel (c) represent
illustrative water bodies. Each study area is overlaid with an RGB color composite from Sentinel-2 imagery, along with a geographical grid for reference and a sample
grid, with 3 × 3 km cells utilized to divide the data into folds. The yellow-highlighted regions (1, 2, and 3) indicate the geographic extents shown in Fig. 6. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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of water bodies were conducted within a GIS environment through the
photointerpretation of high-resolution imagery (Google Earth software;
Google) (Fig. 2a), during both dry (August and September) and wet
periods (November and March) from 2017 to 2021 (Table SM2.1). The
decision to extend the survey period beyond the specific investigative
timeframe was motivated by the necessity to comprehensively represent
all study areas under consideration. The margins (shorelines) of water
bodies were vectorized (Fig. 1) based on the maximum water capacity,
determined by observing the separation of evident flood-prone shores
from the surrounding landscape. This criterion included the transitional
zone (littoral zone) but excluded the vegetative buffer zone. Eligible
water bodies included dammed ponds, reservoirs, and natural and semi-
natural ponds (temporary, permanent, semi-permanent, and farm
ponds), while excavations, pools, and water treatment systems were
ignored (Céréghino et al., 2008). A total of 3366 water bodies were
vectorized (centroids in Fig. 1), of which 932 were used as a reference
dataset (surface water occurrence) for further analysis. This reference
dataset was selected using proportional stratified random sampling by
parameterizing polygon frequencies within blocks (cells) of 3 × 3 km
(Fig. 1) as population ‘strata’ (sensu Cochran, 1977). This means that the
number of water bodies found in each grid block determined the sam-
pling proportion for that block, ensuring that the random sampling was
representative of the varying densities of water bodies across the entire
study area. Water surface occurrence (presence/absence) was included

as an attribute to these polygons, jointly with an ID, and a timestamp
(YYYY/MM/DD) reflecting the acquisition date of the imagery used.
Additionally, a separate validation dataset was created by character-
izing the effective surface water within water bodies, and used to vali-
date the surface water extent model predictions (Fig. 2b; further details
in SM1.1).

2.2.1.2. Sentinel-1&2 data pre-processing. The remote sensing data were
derived from the Sentinel-1&2 constellations, which are key assets of the
Copernicus program administered by the European Space Agency. The
Sentinel-1 satellite carries a phase-preserving dual-polarization Syn-
thetic Aperture Radar (SAR) instrument, while the Sentinel-2 satellite
carries a multispectral instrument (MSI). These satellites have a swath
width of 250 km for Sentinel-1, and 290 km for Sentinel-2. For the
analysis, the Level-2A product from the Sentinel-2A and Sentinel-2B
generations was used, while, for Sentinel-1A and Sentinel-1B, the
Level-1 Ground Range Detected (GRD) product was selected, with the
Interferometric Wide (IW) swath as a baseline acquisition modality for
both ascending and descending orbits. Both collections underwent
several pre-processing steps, including the use of quality assessment
(QA) bands (Fig. 2c) to filter out biased pixels; further details are pro-
vided in SM1.2. Subsequently, to harmonize the datasets from Sentinel-
1&2 satellites, a spatiotemporal data fusion (Fig. 2c) was applied, which
involved aligning the two collections both temporally (co-registration;

Fig. 2. Framework diagram depicts the analytical steps across four main panels, where arrows represent the operational progressions. The left panel illustrates how
water bodies’ datasets were prepared, namely surface water occurrence (a) and extent (b), whilst the central-upper panel (c) shows how satellite (Sentinel-1&2)
image time series were pre-processed and how variables were calculated. The central-lower panel (d) indicates how data were compiled for subsequent analyses to
respond to the first objective (i). The right panel depicts the second (ii) and third (iii) objectives, following the characterization of the SLSW time series (e) and the
comparative assessment with the LGSW time series (f).
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Chen and Zhao, 2022) and spatially (i.e., resample), resulting into
routinely compositing the imageries into 15-day time intervals. This
temporal window leverages each sensor’s approximate 6-day revisit
frequency, ensuring at least one image per sensor in each observation
period. The Sentinel-1&2 imageries ingestion and pre-processing ana-
lyses were conducted using Google Earth Engine (GEE) (Fig. 2c), a cloud
computing platform capable of communicating with different re-
positories and rapidly process vast amounts of geospatial information
(Gorelick et al.,2017).

2.2.2. Environmental factors calculation
To assess the ability of metrics to flag the occurrence of surface water

(objective i), bands from Sentinel-1&2 were included (Fig. 2c). From the
Sentinel-2 reflectance bands, those with a native spatial resolution of 60
m (cirrus band, coastal aerosol, and water vapour) were discarded,
resulting in 10 high-resolution bands at 10 m and 20 m, in turn down-
scaled using default nearest neighbor resampling (Gorelick et al., 2017).
These bands covered the visible spectrum (blue, green, red), near-
infrared spectrum (NIR1&2, Red-edge1&2&3), and short-wave-
infrared spectrum (SWIR1&2) (Drusch et al., 2012). The Sentinel-1
data, originally projected at a resolution of 10 m, was represented by
the C-band SAR with dual-polarimetric channels: co-polarized vertical
transmit and vertical receive (VV), and cross-polarized vertical transmit
and horizontal receive (VH) (Attema et al., 2008). In addition to spectral
and SAR information, several water-related indices were considered
(Table 1). Among them, the Normalized Difference Vegetation Index
(NDVI; Rouse et al., 1974) was selected to further calculate textural
indices using the Gray-Level Co-occurrence Matrix (GLCM; Haralick
et al., 1973) to address complex surface conditions often found in small

water bodies (Bangira et al., 2019). These indices were computed to
enhance surface water detection and provide information on landscape
biophysical attributes, such as soil and vegetation moisture (Table 1)
(Bangira et al., 2019; Huang et al., 2018).

2.2.3. Surface water occurrence and extent analyses
Prior to analyses, the dataset was converted into centroids (Fig. 2a).

The ID and timestamp fields from the centroids served as input data for
various sequential operations in the web-based tool GEE_xtract (Valerio
et al., 2024) (Fig. 2d), ensuring the extraction of environmental data
with a high spatial match, while providing reasonable temporal align-
ment in the time series (15-days frequency). To determine water pres-
ence (occurrence) within polygons, a binary classification was selected
to discriminate between water and non-water classes (response vari-
able), with environmental factors used as explanatory variables. To
develop the SLSW (Sentinel-based Local Surface Water) model, a
Random Forests (RF; Breiman, 2001) algorithmwas used as a supervised
machine learning method (Fig. 2d), given its robustness in extracting
information about water bodies from space-based remote sensing data
(Bangira et al., 2019; Jiang et al., 2022; Peña-Luque et al., 2021).
Furthermore, while RF is capable of handling high-dimensional infor-
mation (Jiang et al., 2022), environmental variables with a Pearson’s
correlation coefficient |r|<9 (Millard and Richardson, 2015) were
retained. Hence, our initial dataset resulted into 14 eligible variables for
further analysis (Figure SM2.2). The RF algorithm was then configured
with a node-splitting parameter equal to the square root of the total of
selected variables, and a total of 2000 trees were utilized (Valerio et al.,
2020). For the analyses, the reference dataset of 932 water body ob-
servations (~28 % of the total dataset) was used. The multivariate RF

Table 1
The portfolio of spectral and SAR bands with derived indices initially included for detecting surface water in small water bodies.

Satellite/
sensor

Type Subtype Description Band/equation Reference

Sentinel-2A/
Sentinel-2B

Spectral bands Reflectance
bands

Blue, Green, Red, Red Edge 1&2&3,
NIR1&2, SWIR1&2

B2, B3, B4, B5, B6, B7, B8, B8a, B11, B12 Drusch et al., 2012

Spectral indices Water-related
indices

Normalized Difference Moisture
Index, using NIR1 (NDMI_N1) or
NIR2 (NDMI_N2) band

(B8 − B11)
(B8+ B11) Wilson and Sader,

2002

Normalised Difference Water Index
2, using NIR1 (NDWI2_N1) or NIR2
(NDWI2_N2) band

(B8 − B12)
(B8+ B12) Gao, 1996

Sentinel-2 water index (SWI) (B5 − B11)
(B5+ B11) Jiang et al., 2020

Vegetation-
related indices

Normalized Difference Vegetation
Index, using NIR1 (NDVI_N1) or
NIR2 (NDVI_N2) band

(B8 − B4)
(B8+ B4) Rouse et al., 1974

Modified Soil-adjusted Vegetation
Index 2, using NIR1 (MSAVI2_N1) or
NIR2 (MSAVI2_N2) band

(2*B8+ 1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(2*B8+ 1)2 − 8*(B8 − B4)
√

2
Richardson and
Wiegand, 1977

Normalized Difference Index 45
(NDI45)

(B5 − B4)
(B5+ B4) Delegido et al., 2011

Textural indices Second-order Contrast, Variation, Homogeneity,
Mean (GLCM-C, GLCM-V, GLCM-H,
GLCM-M)

Calculated using NDVI with a 3 × 3 pixels window in
multi-directions (0◦, 45◦, 90◦, and 135◦)

Haralick et al., 1973

Sentinel-1A/
Sentinel-1B

Dual-
polarimetric
descriptors

Co-polarization Vertical Transmit Vertical Receive VV Attema et al., 2008
Cross-
polarization

Vertical Transmit Horizontal
Receive

VH Attema et al., 2008

SAR indices Polarization
ratios

Cross Ratio (VHVVR or VH/VV) (VH)
(VV) Alvarez-Mozos et al.,

2021
Normalized Difference Polarization
Index (NDPI)

(VV − VH)
(VV + VH) Cao et al., 2008

Dual-Polarized Radar Vegetation
Index VV (RVI)

(4*VH)
(VV + VH) Nasirzadehdizaji

et al., 2019
Normalized VH Index (NVHI) (VH)

(VV + VH) McNairn and Brisco,
2004

Normalized VV Index (NVVI) (VV)
(VV + VH) McNairn and Brisco,

2004
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models were assessed through cross-validations (Fig. 2d). The data, split
into 70 % for training and 30 % for testing, were stratified into 5 k-folds
based on spatial blocks of 3× 3 km (details in Figure SM2.3) to minimize
autocorrelation problems and maximize the model’s extrapolation
power (Valavi et al., 2018). From developed confusion matrices, five
accuracy metrics were selected: Area Under the Curve (AUC; Swets,
1988), sensitivity, specificity, accuracy, F1 score, and Matthews’ Cor-
relation Coefficient (MCC; Baldi et al., 2000). The importance of vari-
ables for classification (water and non-water classes) and for surface
water occurrence detection was determined using the Gini index
(Breiman, 2001), which measures the effect of each variable in
explaining surface water occurrence. The RF multivariate analyses were
repeated along the previously selected time series (48 time intervals× 5-
fold cross-validations) to infer surface water occurrence probability, at
each time interval with retained variables (14), for a total of 672 vari-
ables (14 × 48). The continuous classification probability was then
subjected to a thresholding procedure to predict ‘water’ and ‘non-water’
pixels within the original polygons representing maximum water ca-
pacity. The optimal threshold (p = 0.51) was determined using five
combined techniques (further details in SM1.3). The surface water
occurrence was computed within polygons containing at least one pixel
flagged as with water, and then compared proportionally to those
lacking any water pixels.

To measure the surface water extent, the cumulative area from the
amount of predicted surface water occurrence was calculated within
each polygon and compared to the original polygon area, at each time
interval. The previously described steps were repeated along the time
series, which enabled the investigation of the temporal trends in surface
water occurrence and extent of the SLSW model (objective ii; Fig. 2e).

2.2.4. Reliability assessment of the SLSW model
The reliability of our modeling approach (SLSW) was tested through

a high-quality external model, the JRC Monthly Water History (v1.4)
developed by Pekel et al. (2016). Here, a monthly time series coincident
with the SLSW period was selected and referred to as LGSW (Landsat-
based Global Surface Water; Fig. 2f). The LGSW underwent the same
processing steps as SLSW to enable the comparison between models in
terms of archive completeness (objective iii; Fig. 2g). For eachmodel, the
completeness threshold was defined for each timestamp in the time se-
ries where median values were above 0 %. The SLSW time series for
water surface occurrence and extent were further scrutinized through
the comparison with those derived by the E-OBS gridded meteorological
parameters (Cornes et al., 2018), focusing on parameters such as mean
and maximum temperature, precipitation amount, relative humidity,
and surface shortwave downwelling radiation. Additionally, it was
investigated how water surface occurrence and extent varied according
to the size of water bodies. To accomplish this, the area (ha) of the
identified water bodies was categorized into 5 classes, each reflecting a
maximum number of associated water pixels, respectively 2, 3, 5, 10,
and 100.

Second, the agreement in surface water extent (objective iii; Fig. 2g)
was assessed through a linear and quadratic regression modeling be-
tween SLSW (dependent variable) and LGSW (independent variable)
models, under wet (January-April 2021) and dry (June-September
2021) environmental conditions. This statistical procedure was sepa-
rately repeated by using the independent validation dataset (Fig. 2d),
and spatiotemporally coincident predictions (May 2022) from SLSW and
LGSW models. For each analysis, the distribution values were compared
as density plots, and linear and quadratic regressions were performed.
The coefficient of determination (R2) was used as a measure of relat-
edness (Peña-Luque et al., 2021), and the slope (B1) was calculated
using standardized major axis regression. The statistical analysis and
data synthesis were conducted in the R environment (v.4.2.0; R Core
Team, 2021). Specifically, data stratification was performed using the
‘blockCV’ (v.2.1.4; Valavi et al., 2018) package, while the Random
Forests analyses through the ‘randomForest’ (v.4.7–1; Liaw and Wiener,

2002) and ‘caret’ (v.6.0–90; Kuhn, 2015) packages.

3. Results

3.1. SLSW model outcomes

The analysis of surface water occurrence performance for the SLSW
model indicated a low Out-Of-Bag (OOB) error rate (Table SM2.3), with
a similar score (μ ≈ 26 %) between the water and non-water classifiers.
The Specificity metric demonstrated better performance than Sensi-
tivity, and a good level of agreement for Accuracy, AUC, MCC and F1
metrics (Table SM2.3). The most influential variables were the vegeta-
tion index NDI45, the SWIR1, BLUE, and NIR1 reflectance bands, fol-
lowed by the second-order textural index GLCM-C and the SAR index
polarization ratio VHVVR (Figure SM2.4).

The probability of surface water occurrence improved with
increasing NDI45 index values (Fig. 3). Conversely, for SWIR1 and NIR1
reflectance bands, the probability decreased as the reflectance values
increased (Fig. 3). For the GLCM-C and VHVVR variables, highly steep
curves (respectively positive and negative) were identified, while for
VHVVR, a higher probability was observed from increased backscat-
tering values, followed by an abrupt negative response (Fig. 3).

3.2. SLSW intra- and inter-annual trends

In the three regions combined, a clear seasonal pattern emerged for
the SLSW model, characterized by pronounced surface water changes in
both 2020 (Fig. 4a) and 2021 (Fig. 4b). Specifically, minimum surface
water extent conditions (~20 % to 10 %) were observed from late July
to early September, followed by an extensive recovery in November in
both years (Fig. 4a and 4b). Both 2020 and 2021 exhibited similar
seasonal variability, with high agreement during wetter conditions
(November-April); yet, a prolonged anomalous period of water deficit
conditions was detected in 2020 (Fig. 4a) between September to early
October, where slower recovery compared to 2021 was observed
(Fig. 4b). These yearly variations in seasonal trends appear to align with
observed meteorological patterns (see Figure SM2.6), supporting the
idea that SLSW predictions accurately reflect natural fluctuations rather
than being artificially produced (Figure SM2.6).

The three regions exhibited distinct seasonal variability in surface
water extent (Fig. 5a and 5b). In particular, during dryer conditions
(summer), a larger deficit was consistently observed in the time series,
and again, a slower recovery in surface water extent during 2020
(Fig. 5a) with respect to 2021 (Fig. 5b).

The SLSW time series revealed a constant discrepancy between
classes throughout the wet season (January-April), which became more
pronounced during the dry season (June-September) (Figure SM2.9;
SM2.10). In particular, from mid-September to mid-October of 2020,
anomalous extended periods of reduced surface water extent were evi-
denced compared to 2021 (Figure SM2.9), coinciding with higher tem-
perature (mean and maximum), lower humidity and precipitation
amount, and markedly lower values in surface shortwave downwelling
radiation (Figure SM2.6).

3.3. SLSW and LGSW model comparisons

3.3.1. Archives completeness
For the three regions separately, complete archives in surface water

extent emerged for the SLSW model for both 2020 (Fig. 5a) and 2021
(Fig. 5b), contrary to LGSW (Fig. 5c and 5d). Considering the three areas
concomitantly, the LGSW time series also reported a lack of complete-
ness (median values equal to 0), corresponding to an underestimation
magnitude of approximately 3 times (μ ≈ 70.5 %) than SLSW for both
2020 (Fig. 4c) and 2021 (Fig. 4d). Diversely, for the SLSW model, the
time series consistently produced median surface water extent values
above 0 % (Fig. 4a and 4b). Furthermore, the surface water occurrence
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mapping process showed detailed information across the three regions
(Fig. 6a). As expected, a higher representativeness of surface water
occurrence pixels emerged using SLSW rather than LGSW, in specific
during drier periods (e.g., August) compared to wetter periods (e.g.,
January) (Fig. 6b). The cumulative surface water occurrence along the
SLSW time series is also depicted, highlighting pixels subject to higher
and lower variability (Fig. 6c).

Regarding surface water occurrence, the results reflected those of
surface water extent, indicating lower completeness for LGSW than
SLSW models considering all the three areas concomitantly (Figure
SM2.7), as well separately (Figure SM2.8, Figure SM2.11).

3.3.2. Comparison between methods and validation dataset
When comparing regression models using SLSW as a function of

LGSW for surface water extent, higher correlations (relatedness) were
observed during the wet period (Fig. 7a) compared to the dry period
(Fig. 7b). When SLSW and LGSW were separately compared with the
validation data, SLSW exhibited satisfactory fit and performed well ac-
cording to the three metrics, with similar results between linear and
quadratic regressions (Fig. 7c). Conversely, the LGSW showed poor
regression correlations (Fig. 7d). Additionally, the median difference
from the density plots between LGSW and the validation data was
markedly high, resulting in ~45 % (Fig. 7d), and evidencing an un-
derestimation in surface water extent stronger than the overestimation
observed with SLSW (~25 %) (Fig. 7c).

4. Discussion

We propose an innovative multi-temporal multi-sensor data fusion
method enhancing the delineation and mapping of small seasonal water
bodies. These are often neglected and challenging to monitor, resulting
in frequent archive discontinuities. Results shed light on the prospective
benefits of combining Sentinel-1 and Sentinel-2 data for surface water
detection and quantification within small and complex water bodies,
and the added value of time series for inferring intra- and inter-year
surface water trends in different areas. The reliability of our findings
was supported by comparing local and global products in terms of pre-
diction completeness and agreement during wet and dry periods, and
validated using an independent dataset.

4.1. Surface water occurrence inference

The NDI45 index emerged as the most influential variable for
explaining the potential occurrence of surface water in our study areas.
This is probably due to its strong relationship with chlorophyll content
and its high sensitivity to vegetation biophysical properties, particularly
in the red edge wavelength interval (Jiang et al., 2022; Delegido et al.,
2011). In contrast, previous research on water classification found lower
NDI45 importance scores and higher scores for water-related indices
such as NDWI and MNDWI, which are possibly more suitable for iden-
tifying larger water areas (limnetic zone) (Jiang et al., 2022; Radoux
et al., 2016) and clearer waters (Sun et al., 2012). The diminished
relative importance of NDWI may also suggest some limitations of
traditional water-related indices and associated methods (e.g., NDWI-

Fig. 3. Partial dependence plots of most important variables explaining surface water occurrence. For each variable, multiple curves are depicted, with each color
representing a fold of the stratified RF cross-validations. Additional plots of the remaining variables can be found in Supplementary Materials (Figure SM2.5).
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based thresholding; Zhou et al., 2017) in specific contexts, such as when
targeting small-sized water bodies. The importance of NDI45 relies on its
ability to discriminate between different types of vegetation, including
both terrestrial and aquatic. For the aquatic vegetation, minimum
healthy conditions have been observed at values ≈0.1 in a nearby
geographic region in northeastern Spain (Soria et al., 2022), which
aligns with our response curve inflexion point. The NIR and SWIR bands
were also important as they explicitly detect water signals given the
considerable absorption of electromagnetic radiation in the invisible
wavelength area, whether non-water landscape attributes typically
exhibit higher reflectance (Sun et al., 2012). Interestingly, a band from
the visible spectrum, the BLUE band, also demonstrated high relevance,
as indicated by the negative response curve, suggesting its association
with water-related light absorbability (Jiang et al., 2022; Sun et al.,
2012). The horizontal structural GLMC-C variable showed a rapid in-
crease in the probability of surface water occurrence in areas with highly
contrasting photosynthetic activity (i.e., central water areas and vege-
tative buffer zones). This metric successfully captured the landscape
ecological properties of water bodies, which may be beneficial in clas-
sification, extraction, and segmentation workflows, as well as for accu-
rate mapping of water bodies in uncharted regions (Bioresita et al.,
2019; Peña-Luque et al., 2021).

A further key metric explaining water surface occurrence was the
cross-polarization SAR metric VHVVR (also known as VH/VV, or
VHrVV). The backscattering response is influenced by the synergistic
effects of the structure (e.g., volume scatters from vegetation) and the
dielectric field of the surfaces, determining the resulting amount of en-
ergy received by the sensor (Vreugdenhil et al., 2020). A high proba-
bility of surface water occurrence was found with increased

backscattered energy, ranging from highly smooth surfaces, indicated by
lower backscatter coefficients, to more irregular surfaces (Tang et al.,
2022). However, it is important to note that this range of values prior to
the inflexion point, roughly around 0, may also include signals from wet
soil and scattered vegetation, potentially including the detection of more
irregularly inundated areas (Huang et al., 2018; Petropoulos et al.,
2015). Interestingly, the VHVVRmay hold the potential for conservation
studies exclusively targeting temporary ponds, which can be more
complex in terms of variant conditions (such as habitat, persistence, and
pond bed; Sebastián-González and Green, 2014) compared to permanent
water bodies.

4.2. SLSW and LGSW accuracy

4.2.1. Intra and inter-annual surface water trends
The time series comparison demonstrated a better completeness

from SLSW in both intra- and inter-annual surface water trends
(occurrence and surface water extent), attributable to LGSW archive
discontinuities (Pekel et al., 2016). It is relevant to emphasize that
during the wet season, that is, when cloud cover is highest, specific dates
were identified with missing information in the SLSW time series,
although this bias was deemed negligible. Hence, the selected 15-day
time windows are a reasonable tradeoff for aggregating information,
as found in previous research (Peña-Luque et al., 2021).

The SLSW corroborated high seasonal variability within the three
areas, with the Natural Park of Vale do Guadiana (VG) exhibiting the
lowest variation, possibly attributed to the local presence of deep-rooted
vegetation, likely enhancing infiltration and groundwater recharge. In
the other areas (LS and CV), by contrast, higher surface water losses

Fig. 4. Surface water extent, considering the three semiarid regions collectively. The time series represent the SLSW model for both 2020 (a) and 2021 (b), and the
LGSW model for both 2020 (c) and 2021 (d), with a time interval of 15 days and 30 days, respectively. For each date, the range of values illustrates the water extent
percentage within water bodies, with dots depicting the outliers.
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during summer can be explained by higher hydroclimatic variability
influenced by temperature and energy stocks, and typically affecting
smaller water bodies (Rachid et al., 2022). Our findings revealed a
recurrent pattern in surface water fluctuations, suggesting periodic
changes in pond levels, with trends reflecting the period of water bodies
recovering, from autumn to early winter (Gómez-Rodríguez et al.,
2009). Further, the SLSW analysis indicated that 2020 experienced drier
conditions than 2021, concomitantly with E-OBS data showing higher
temperatures, lower humidity, and precipitation rates in the former
year. Notably, the SLSW time series revealed fine-scale differences be-
tween years, uncovering water deficit anomalies most evident during
the transition from the late dry season to the early wet season, attrib-
utable to prolonged dry conditions. The intra-year variation during this
specific period was further evidenced by the E-OBS trends, particularly
concerning the substantial amplitude rates found in surface shortwave

downwelling radiation. Although additional research is required to fully
elucidate the relationship between these drivers and the observed
trends, the observed increased amplitude suggests a marked rise in
ground radiation absorbability during 2020 (Rachid et al., 2022). These
prolonged drier conditions reflect drought events, which are conven-
tionally detected via coarser sensors (Zou et al., 2018). Climatic anom-
alies are suspected to increase in these regions, with rising temperatures
and drought events posing socio-economic concerns, and increasing
attention towards sustainable water resource management (Samaniego
et al., 2018).

4.2.2. Surface water inference reliability
In both dry and wet seasons, there was minimal agreement between

SLSW and LGSW in terms of the extent of identified surface water.
During dry periods, the surface water extent decreased dramatically,

Fig. 5. Surface water extent, considering the three semiarid regions (CV, VG, and LS; Fig. 1) separately. The time series represent the SLSW model for both 2020 (a)
and 2021 (b), and the LGSW model for both 2020 (c) and 2021 (d), with a time interval of 15 days and 30 days, respectively. For each date, the range of values
illustrates the water extent percentage in water bodies, with dots depicting the outliers.
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hindering the relatedness between SLSW and LGSW, with the latter
being less accurate and underestimating surface water. In fact, the
relatively limited spatial resolution (30 m) of the Landsat-derived LGSW
model is a recognized constraint that warrants adjustment in future EO-
based methodologies (Pekel et al., 2016). This supports the advantages
of using Sentinel-1&2 data-fusion approaches when targeting very small
water bodies in open and seasonal waters, especially in semiarid and
water-stressed areas, where frequent water shortages may interfere with
sensor detection (Peña-Luque et al., 2021).

The limited ability of LGSW to accurately infer surface water extent
in small ponds was further corroborated with the validation data,
resulting in very poor agreement and significant underestimation of
surface water extent. Furthermore, the higher spectral resolution asso-
ciated with the Sentinel-derived SLSW model likely enhances its ability
to characterize complex water bodies with diverse characteristics
(Bangira et al., 2019). On the other hand, it should be noted that while
the SLSW exhibited a considerably better performance than LGSW, a
slight overestimation tendency emerged in surface water extent values
compared to validation data. In this direction, to handle overestimations
when extrapolating surface water occurrence in new areas, it might be
beneficial the incorporation of topographic predictors (e.g., topographic
wetness index; Huang et al., 2018; Tang et al., 2022; Vanderhoof et al.
2023).

4.3. Limitations and opportunities

4.3.1. SLSW limitations
When targeting permanent waters in relatively large reservoirs, high

accuracy scores, ranging from 70 % to over 90 %, are often achieved
(Bioresita et al., 2019; Jiang et al., 2022; Zhou et al., 2017). Similar
outcomes have also been reported for seasonal water bodies (Bangira
et al., 2019; Huang et al., 2018). More specifically, recent studies re-
ported high accuracy for detecting surface water in small bodies ranging
from 0.5 ha (Wang et al., 2022) to up to 5 ha (DeLancey et al., 2022;
Peña-Luque et al., 2021). However, research on very small water bodies
(<0.5 ha) has been limited, and studies focusing on this size range have
shown suboptimal performance when using publicly available EO sat-
ellite data (e.g., Cordeiro et al., 2021). Within this range, our review of
the literature did not find studies that inventoried and catalogued water
bodies comparable to our study (Mdn≈0.031 ha), while also investi-
gating the dynamics of seasonal and complex waters. Despite some
limitations (i.e., sensor resolution, algorithm sensitivity, or technical
issues like pond destruction or dislocation), the metric scores, the pro-
duced high-frequency time series, and the validation results are gener-
ally satisfactory given the complexity of detecting dynamic water
surfaces (Bangira et al., 2019; Wang et al., 2022).

To soften classification biases more effectively, Sun et al. (2012)
suggested separating water bodies into three classes: clear, green, and
turbid water. Also, errors in surface water occurrence analyses might be
due to mixed pixels, which cannot be ignored as they frequently provide
the sole information for describing environmental characteristics. In this

Fig. 6. Surface water distribution in the magnified areas (a), where numbers indicate their representative regions depicted in Fig. 1. The magnified areas were
comparable concerning surface water occurrence predictions (in white) by SLSW (upper panels) and LGSW (middle panels) (b), jointly with SLSW-derived variability
(lower panels) (c). Upper and middle panels were bisected by a vertical (white) dashed line, to represent dry (August) and wet conditions (January). Ellipses and
circles are also depicted in magnified areas highlighting clustered water bodies, to emphasize prediction comparisons between SLSW and LGSW.
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context, the literature widely acknowledges the efficacy of employing
sub-pixel approaches (Radoux et al., 2016; Ozesmi and Bauer, 2002).
However, caution is needed as multiple distinct classifications to derive
spectral signature can significantly increase computation time, which
can become unfeasible when reproducing high-frequency time series at
high spatial detail. Given the heterogeneity and varying sizes of ponds, it
is generally prudent to predefine pond boundaries, though this approach
may pose significant limitations when applied at continental scales.
Consequently, as an alternative to reduce the time required for data
preparation, boundaries could be delineated for a representative subset
of detectable ponds for model training, and the results subsequently
extrapolated across the entire study area.

4.3.2. Applications in Ecology
Water availability is critical for the survival of plant and wildlife

populations and the development of human activities, particularly in
water-stressed and drought-prone regions. The present framework can
be of interest for a range of semiarid research and application fields. It
can contribute to the conservation of small wetland areas, as recom-
mended by initiatives such as the Ramsar Convention (De Meester et al.,
2005). The predominance of Sentinel-2 data in explaining water surface
occurrence reveals that the inclusion of Sentinel-1 data may provide
gains in open water scenarios, and that can be advantageous when
targeting specific ponds (i.e., temporary ponds). This information is
valuable for the protection and restoration of temporary ponds, sup-
ported by long-term environmental monitoring using public sensors
(Céréghino et al., 2008; De Meester et al., 2005). This is important
considering the role of small-sized ponds as habitat for many
conservation-priority species (De Meester et al., 2005), especially since

these ponds are often poorly managed and severely degraded (Díaz-
Paniagua et al., 2024; Gleick, 1998). Interestingly, the observation of
inter-annual water deficit anomalies can provide insights into emerging
threats (see Reid et al., 2019) and their implications, which are other-
wise difficult to detect on ponds with marked hydroperiods, on which
local biodiversity depends (De Meester et al., 2005). By enabling the
detection of open surface water, this framework advances efforts in
measuring the spatiotemporal arrangement and effective connectivity of
small-sized ponds (Sebastián-González and Green, 2014). The consid-
eration of time series with high frequency also supports the shifting
paradigm from a static unrealistic landscape viewpoint to a dynamic
landscape connectivity approach (Martensen et al., 2017). This shift
may facilitate better planning solutions to guarantee population
viability for different taxonomic groups of plants and animals, based on
connectivity constraints imposed by water presence and species
dispersal potential (Herceg-Szórádi et al., 2023).

4.3.3. Applications for water sustainable use
Sustainable water resources management and development require

effective methods for water detection and quality assessment. Ponds, in
particular, are highly vulnerable to pollution and overexploitation in
many regions, which deepens the challenge of achieving an equilibrium
between rural competitiveness and ecological sustainability (Reid et al.,
2019). In semiarid regions facing climate change and growing pop-
ulations, adaptive strategies are becoming increasingly critical to pro-
tect water bodies (Gašparović and Singh, 2022; Wickens, 1998), and
surrounding habitats, such as grasslands (Shabbir et al., 2019). Remote
sensing applications, as the one presented here, may be useful to expand
the scope of drought impacts and quality assessments within open water

Fig. 7. Density scatterplots are depicted with the linear (blue line) and quadratic (red line) regressions between SLSW and LGSW models concerning surface water
extent percentage under both wet (a) and dry conditions (b). Furthermore, independent comparisons of SLSW and LGSW models with the validation dataset are
presented in separate panels (c and d). In all panels, each graph point is a representation of a distinct water body. Density plots are coupled with each regression,
where dashed lines represent the median value of estimated surface water extent. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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bodies across wide areas. Advances in public sensor technology and
cloud-computing environments nowadays offer notable benefits in more
reliable and cost-efficient assessments of water quality, with indices
such as band ratios and more specific ones such as the Normalized
Difference Chlorophyll Index (NDCI) potentially enhancing our under-
standing of dynamic changes and anomalies in aquatic ecosystems
(Deutsch et al., 2018; Mishra and Mishra, 2012). Besides, our modelling
procedure can support initiatives aimed at restoring hydrological cycles
(De Groot et al., 2018; Gleick, 1998), improving renewable water re-
sources in regions lacking significant reservoirs, and promoting the
planning of supplementary or alternative water bodies (Erwin, 2009;
Morante-Carballo et al., 2022). In semiarid regions, routinely charac-
terized by poor governance, such initiatives can be valuable for
achieving policy objectives (i.e., food security and public health),
incorporating the spatiotemporal distribution of social impacts arising
from water scarcity, which is expected to increase significantly in
Europe (Samaniego et al., 2018). This information is vital in improving
water resource management protocols and for advancing SDGs (e.g.,
SDG 6&15) (Bhaduri et al., 2016), fostering negotiations for conflict
resolutions between water governance and environmental sustainability
involving institutions, stakeholders, policymakers, and local commu-
nities (Homobono et al., 2022; Veldkamp et al., 2015).

5. Conclusions

This research addresses critical gaps in water surface mapping,
underscoring the benefits of high spatiotemporal resolution of EO sat-
ellite imagery for monitoring inland freshwater systems, specifically
small water bodies often overlooked in literature. The utilization of
Sentinel-based models revealed numerous advantages in semiarid re-
gions subjected to seasonal changes, particularly in quantifying hydro-
logical dynamics through continuous data analysis. The robustness of
our findings was supported through accuracy metrics, model compari-
son with recent state-of-the-art research, and independent data valida-
tion. The produced water surface time series proved competitive with
global products of similar resolution, namely from Landsat, demon-
strating its utility for regional applications. Sentinel-1 and Sentinel-2
data provide substantial improvements in addressing water-related
archive inconsistencies, particularly for very small-sized bodies, while
effectively characterizing their complex dynamics, including trends
comparisons and the detection of potential anomalies. This is made
possible by recent technological advancements of optical and radar
sensors, offering high-quality and high-resolution information readily
accessible through online repositories and processable using cloud
computing platforms (e.g., Google Earth Engine). The proposed frame-
work finally supports innovative pathways for advancing land and water
monitoring across a plethora of applications, bringing novel solutions in
cross-boundary conservation and sustainability strategies.
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Herceg-Szórádi, Z., Demeter, L., Csergő, A.M., 2023. Small area and low connectivity
constrain the diversity of plant life strategies in temporary ponds. Divers. Distrib. 29
(5), 629–640.
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